Poster session

Wednesday, November 12th 18:00-21:00

1. Imaging of gliotransmitter release from cultured astrocytes

Lee HaeUng^{1,2}, Shigeyuki Namiki³, Kenji Tanaka^{1,2}, Kishio Furuya^{4,5,6}, Hongtao Liu⁷, Masahiro Sokabe^{4,5,6}, Kenzo Hirose³, Yasunobu Okada^{1,7}, Kazuhiro Ikenaka^{1,2}

(1. SOKENDAI, 2. Division of Neurobiology and Bioinformatics, NIPS, 3. Dept. of Cell Physiology, Nagoya Univ. Graduate School of Medicine, 4. Intl. Cooperative Research Project/Solution Oriented Research for Science and Technology, Cell-Mechanosensing Project, JST, 5. Dept. of Physiology, Nagoya Univ. Graduate School of Medicine, 6. Dept. of Molecular Physiology, NIPS, 7. Dept. of Cell Physiology, NIPS)

2. *Drosophila* male germline-stem-cell-niche formation is antagonistically regulated by Notch and Egfr signaling

Yu Kitadate and Satoru Kobayashi (OIB)

3. Jagged2 regulates proper development of pharyngeal arches and somites in association with fibronectin

<u>Hiroyuki Takahashi</u>, Shinji Takada (OIB)

4. Roles of Porcupine in zebrafish development

Qiuhong Chen and Shinji Takada (OIB)

5. Wnt proteins, modified with mono-unsaturated fatty acids, are secreted as self-assembled oligomers from cultured cells

<u>Ritsuko Takada</u> and Shinji Takada (OIB)

- 6. Tbx-associated transcriptional corepressor *Ripply3* is essential for pharyngeal arch development Tadashi Okubo, Akinori Kawamura, Jun Takahashi, Akiko Ohbayashi, Shinji Takada (OIB)
- 7. Analysis of spinal V0 neurons in zebrafish

Chie Sato

(SOKENDAI)

8. Membrane Proteins Immunolocalization with High Spatial Resolution by STEM-EDX on Freeze-Fractured Replica

Alexandre Loukanov¹, Naomi Kamasawa², Radostin Danev¹, Ryuichi Shigemoto² and Kuniaki Nagayama¹ (1. Division of Nano-Structure Physiology, Dept. of Molecular Physiology, OIB, 2. Division of Cerebral Structure, Dept. of Cerebral Research, NIPS)

9. Tuning of Zernike Phase plate for Visualization of Detailed Ultrastructures in Complex Biological Specimens

Yoshiyuki Fukuda^{1,2}, Yugo Fukazawa^{1,3}, Radostin Danev^{1,2}, Ryuichi Shigemoto^{1,3}, Kuniaki Nagayama^{1,2,4} (1. SOKENDAI, 2. Division of Nano-Structure Physiology, NIPS, 3. Division of Cerebral Structure, NIPS, 4. Division of Nano-Structure Physiology, OIB)

10. Development of Photon-Electron Hybrid Microscope

<u>Hirofumi Iijima</u>¹, Yoshihiro Arai², Susumu Terakawa³, Kuniaki Nagayama⁴ (1. Dept. Physiological Sciences, SOKENDAI, 2. Terabase Ltd., 3. Hamamatsu Univ. School of Medicine, 4. OIB)

11. HemDGC, A Novel Globin-Coupled O₂ Sensor, Regulates Synthesis Of A Bacterial Second Messenger (c-di-GMP)

<u>Hitomi Sawai</u>¹, Shiro Yoshioka¹, Takeshi Uchida², Mamoru Hyodo³, Yoshihiro Hayakawa³, Koichiro Ishimori², and Shigetoshi Aono¹

(1. OIB, 2. Graduate School of Science, Hokkaido Univ., 3. Graduate School of Information Science /Human Informatics, Nagoya Univ.)

12. Equilibrium and kinetics of the acid transition of β_2 -Microglobulin

Atsushi Mukaiyama¹, Kosuke Maki¹, Yuji Goto², Kunihiro Kuwajima¹

(1. OIB, 2. Institute for Protein Research, Osaka Univ.)

13. Role of the Main-Chain Hydrogen Bonding in β-Sheet Register

<u>Koki Makabe</u>¹, Shohei Koide², Kunihiro Kuwajima¹ (1. OIB, 2. The University of Chicago)

14. Folding Mechanism of Homologous Proteins: A Comparative Study of Goat α -Lactalbumin and Canine Milk Lysozyme.

<u>Takashi Nakamura</u>¹, Katsuaki Tomoyori², Kosuke Maki¹, Kimiko Saeki² and Kunihiro Kuwajima¹ (1. OIB, 2. Dept. of Physics, School of Science, Univ. of Tokyo)

15. The TRPV4 channel is involved in cell-cell junction-dependent barrier function in skin

<u>Takaaki Sokabe</u>¹, Tomoko Fukumi-Tominaga^{1,2,3}, Sigenobu Yonemura⁴, Makoto Tominaga^{1,2,3}, (1. Section of Cell Signaling, OIB, 2. NIPS, Dept. of Physiological Sciences, 3. SOKENDAI, 4. Laboratory of Cellular Morphogenesis, RIKEN)

16. Identification of critical determinants which potentiate TRPV1 activity under diabetic conditions

<u>Koji Shibasaki</u> ^{1,2,3}, Violeta Ristoiu ⁴, Maria-Luiza Flonta ⁴, Makoto Tominaga ^{1,2,3} (1. Section of Cell Signaling, OIB, 2. NIPS, 3. SOKENDAI, 4. Dept. of Animal Physiology and Biophysics, Univ. of Bucharest)

17. Analysis of Ligand-independent Activation of the Estrogen Receptor in Mouse Vagina

Naoka Kikuchi, Taisen Iguchi

(Dept. of Basic Biology, SOKENDAI, OIB)

18. Epigenetic effect of estrogen exposure in prenatal mice

<u>Shizuyo Yoshida-Koide</u>, Hajime Watanabe, Taisen Iguchi (OIB)

19. Molecular analysis of the csd gene from the water flea, Daphnia magna

<u>Yasuhiko Kato</u>¹, Kaoru Kobayashi¹, Shigeto Oda², Norihisa Tatarazako², Hajime Watanabe¹, Taisen Iguchi¹ (1. OIB, National Institute for Basic Biology, 2. National Institute for Environmental Studies)

20. Comparative Responsiveness and Sensitivity of Fish Estrogen Receptor to Steroid Estrogens and other Environmental Estrogens

Y. Katsu^{1*}, A. Lange², C.R. Tyler² and T. Iguchi¹
(1. OIB, 2. School of Biosciences, Univ. of Exeter, United Kingdom)

21. Structural basis of fate-determination of glycoproteins in cells

Yukiko Kamiya^{1,2}, Miho Nishio^{1,2}, Daiki Kamiya², and Koichi Kato^{1,2} (1. OIB, 2. Graduate School of Pharmaceutical Sciences, Nagoya City Univ.)