生理学研究所の
点検評価と将来計画

2013年度

第21号
目次

巻頭言 1

第１部　生理学研究所の現状と将来計画 3

1 生理学研究所の現状ならびに将来計画 5

2 岡崎統合バイオサイエンスセンター 21

3 中期計画・年度計画・評価 22

4 共同研究等 24

5 機構内研究連携 31

6 多次元共同脳科学推進センター 35

7 国際交流 37

8 大学院教育・若手研究者育成 44

9 技術課 47

10 労働安全衛生 50

11 研究に関わる倫理 52

12 男女共同参画推進 54

13 基盤整備 55

14 環境に関わる問題 59

15 動物実験関連 60

16 知的財産 64

17 生理科学実験技術トレーニングコース 65

18 広報活動・社会との連携 67

19 日米科学技術協力事業「脳研究」分野 69

20 ナショナルバイオリソースプロジェクト「ニホンザル」 71

21 文部科学省 脳科学研究戦略推進プログラム 72

22 革新的イノベーション創出プログラム（COI STREAM） 76
第Ⅱ部 所外専門委員による外部評価
1 発達生理学研究系 認知行動発達機構研究部門 (伊佐正教授) の評価 79
2 発達生理学研究系 生殖・内分泌発達機構研究部門 (箕越靖彦教授) の評価 81
3 細胞生理研究系 細胞生理研究部門 (富永真琴教授) の評価 89
4 行動・代謝分子解析センター 行動様式解析室 (宮川 剛 教授 (客員)) の評価 98

第Ⅲ部 本年度の研究活動 — 総括 —
1 機能分子の働きとその動作・制御メカニズム 111
2 生体恒常性維持機構と脳神経系情報処理機構の解明 113
3 認知行動機能の解明 115
4 より高度な認知行動機構の解明 116
5 4 次元脳・生体分子統合イメージング法の開発 118
6 遺伝子変異動物技術の開発 120

第Ⅳ部 本年度の研究活動
1 分子生理研究系 123
2 細胞器官研究系 125
3 生体情報研究系 127
4 統合生理研究系 129
5 大脳皮質機能研究系 134
6 発達生理学研究系 137
7 行動・代謝分子解析センター 139
8 脳機能計測・支援センター 142
9 岡崎統合バイオサイエンスセンター 144

第Ⅴ部 業績リスト
1 分子生理研究系 147
2 細胞器官研究系 149
3 生体情報研究系 151
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>統合生理研究系</td>
</tr>
<tr>
<td>5</td>
<td>大脳皮質機能研究系</td>
</tr>
<tr>
<td>6</td>
<td>発達生理学研究系</td>
</tr>
<tr>
<td>7</td>
<td>行動・代謝分子解析センター</td>
</tr>
<tr>
<td>8</td>
<td>腦機能計測・支援センター</td>
</tr>
<tr>
<td>9</td>
<td>岡崎統合バイオサイエンスセンター</td>
</tr>
<tr>
<td>10</td>
<td>動物実験センター</td>
</tr>
<tr>
<td>11</td>
<td>個別研究</td>
</tr>
<tr>
<td>12</td>
<td>特別研究</td>
</tr>
<tr>
<td>166</td>
<td>第 VI 部 資料：研究、広報など</td>
</tr>
<tr>
<td>1</td>
<td>共同研究および共同利用研究による顕著な業績</td>
</tr>
<tr>
<td>2</td>
<td>機構内連携</td>
</tr>
<tr>
<td>3</td>
<td>自然科学研究機構 新分野創成センター シンポジウム</td>
</tr>
<tr>
<td>4</td>
<td>国際共同研究による顕著な業績</td>
</tr>
<tr>
<td>5</td>
<td>発明出願状況</td>
</tr>
<tr>
<td>6</td>
<td>2013 年 生理科学実験技術トレーニングコースのアンケート</td>
</tr>
<tr>
<td>7</td>
<td>広報活動、アウトリーチ活動</td>
</tr>
<tr>
<td>167</td>
<td>第 VII 部 資料：規則、評価結果など</td>
</tr>
<tr>
<td>1</td>
<td>自然科学研究機構生理学研究所点検評価規則</td>
</tr>
<tr>
<td>2</td>
<td>大学共同利用機関法人自然科学研究機構の平成 24 年度に係る業務の実績に関する評価結果</td>
</tr>
<tr>
<td>3</td>
<td>大学共同利用機関法人自然科学研究機構年度計画 (平成 25 年度) 抜粋</td>
</tr>
<tr>
<td>4</td>
<td>自然科学研究機構 ミッションの再定義 (抜粋)</td>
</tr>
<tr>
<td>5</td>
<td>総合研究大学院大学 ミッションの再定義 (抜粋)</td>
</tr>
</tbody>
</table>
巻頭言

自然科学研究所の研究機関、日本大学共同利用機関の1つとしての研究機関であり、また国立大学法人総合研究大学院大学（総研大）の基盤機関の1つとしての教育機関でもあります。共同利用機関は、自由な発想に基づく創造的な学術研究を効率的・ネットワーク的に推進するための機関であり、我が国独自の優れたシステムです。機関（研究所）の研究者が最先端の学術研究に挑戦するとともに、全国の大学・研究機関の研究者との共同研究の推進にあたります。また配備された大量中型研究装置、システム的な実験プログラムや種々のモデル動物の共有を可能としている研究施設、蓄積された最先端の実験技術や各種データベースなどを共同利用に供しています。

生理学研究所は、“人体・脳の働きとそのメカニズムを解明する”学術研究のための大学共同利用機関です。この2013年度度、創設されて37年目、法人化されて10年目にあたります。本書はその2013年度の点検・評価をとりまとめ、将来計画のための資料とするため、作成したもので、第1部は研究所全体の運営に関する自己点検・評価、第2部は5年毎に3部門を対象として行われる外部評価、第3部と第IV部はそれぞれ研究所全体および各研究系・センター毎の研究活動に関する自己点検・評価、第V〜VII部は関連資料類を収録しています。皆様からの忌憚のない御意見をいただければ、大変ありがとうございます。なお、部門評価にはそれぞれ3名の所外専門委員の方々にあたっていただきました。その内の1名ずつは、日本生理学会並びに日本神経科学会から推薦いただいた国内研究者で、残りの1名は所長を選ばせていただいたそれぞれ著名な海外研究者です。計9名の所外専門委員の方々にはサイトリピットをいただいた上で、評価を文書で提出いただいております。また今年度は、活動・謝辞分子解析センターの行動様式解析室の外部評価も行っていたました。外部評価をいただいた先生方に、この場を借りて厚く御礼申し上げます。

生理学研究所は、第1年に世界トップレベルの生理学・脳科学研究を創発的に推進すること、第2年にこれを基礎にして全国の大学・研究機関の研究者との共同研究・共同利用実験を推進し、全国的なネットワークを形成すること、第3年に学際性・国際性を具えた若手生理学・脳科学研究者の育成、育成すること、これら3つの使命を持っています。第1の使命については、朝日新聞社の「2015年度大学ランキング」によれば2008〜2012年における論文引用度指数において、全分野総合および神経科学分野でそれぞれ国内第4位と第1位であり、国内外にはよく果たしているものと思っております。しかし、トムソン・リターによる最近の調査では、ハードウェア大学をはじめとする外国大学とは、量的な面だけでなく、相対被引用度においても差があります。この第1の使命を良く果たしていくことが、第2・第3の使命の遂行のための不可欠な基盤を与えられるものであり、今後とも研究のレベルアップに努めていきたいと考えています。

第2の使命については、すべての種類の共同利用件数がこの数年間は毎年数十件で、年間末所らされている共同利用研究者数はのべ2千数百名にのぼり、それらの成果は多くの優れた共著論文として結実（第VI部の1参照）しておりますので、よく果たしているものと信じています。第3の使命については、総研大生理科学専攻における大学院生、教育、全国の大学院生を受託の特別共同利用研究員教育、全国の大学から所らされた共同利用研究者に帯同の学部学生・大学院生に対する共同利用研究を通じての教育、全国の若手研究者・大学院生・学部学生に対する「生理科学実験技術トレーニングコース」や「2次元共同脳科学推進センタートレーニングとレクチャー」を通じての若手研究者の育成、未来の若手研究者の発掘を目指した種々の形でのアウトリーチ活動や広報活動、などの取り組みによって果たしております。

2013年度度は、国立大学・大学共同利用機関の改革が強く求められた年でした。2013年11月に文部科学省が発表した大学改革プランによると、2013年度度は第2期中期目標・中期計画の4年目となり第2期の仕上げと第3期への準備を行う時期であり、改革加速期間として機能強化、グローバル化、イノベーション機能強化、人事・給与システムの弾力化を進めるように求められています。これと関連して、研究大学研究者退職率の問題が出て加筆され、自然科学研究機構を含む22法人（17国立大学法人、2私立大学、3大学共同利用機関法人）が採択されました。この事業では、URA(University Research Administrator)という新しい職種を設けて、大学・研究所の活性化を図ることを目的の1つとしています。生理学研究所においても研究力強化戦略室を設置するなどして新しい体制を整えました。生理学研究
研究所では岡田前所長のリーダーシップの下に、既に研究領域の調査・企画立案、広報、アウトリーチなどの事業の体制を整え実施してきたことから、今回の研究大学強化促進事業の考え方自体は新しいことではありませんが、今後更なる質の向上を目指して行きたいと考えています。

また、2013年度は日本版NIH構想が発表されて反響を呼んだ年でした。2013年6月に、革新的な医療技術の実用化を加速するため、医療分野の研究開発の司令塔機能（「日本版NIH」）を創設することが、閣議決定されました。具体的には、一元的な研究管理の実務を担う独立行政法人を創設し、研究を臨床につなげるため、国際水準の質の高い臨床研究・治験が確実に実施される仕組みを構築する、とされています。このような取組をどこから持ってくるかが大切な課題となりましたが、今後、生理学研究所も予算面などで直接的、間接的に影響を受けることは避けられないだろうと思われます。しかしこのような状況にあっても、生理学研究所のミッションは明確であり、将来の応用研究の源となる学術研究の進歩に貢献することが最も重要であると考えます。

本点検評価書の第Ⅲ部では、生理学研究所で行われている研究領域それぞれの現状分析を行い、将来の研究の方向性とその対応策を論じることを目指していま

す。共通してみられる課題は、還元主義的な手法で得られた個々の知見をどのように統合して行くかということです。分子が同定できても、分子複合体の動的な性質を理解するには至っていません。多チャンネル記録で多量のデータを得ることが出来るとするにしても、それらを十分有効に利用できるには至っていません。このような壁を乗り越えるには、どのようにして行けばよいのでしょうか？ステップアップのためのヒントの一つは技術的革新ですが、そのきっかけとなるのは異なる研究分野との連携であると思われます。生理学研究所では様々な研究連携を進めることを目的としていますが、更に異分野連携、国際連携を進めて促進していくことを目指しています。

生理学研究所は、ヒトの体（脳を含む）と心の正常機能を病態との関連において解明することを目的にしています。生理学研究所が、全国の大学・研究機関の研究者と協力しながら研究成果を生み出し、ヒトの体と心の病の問題の解決に向けてどのような貢献を長期的にもたらしていくか、大いに期待していきます。ご意見・ご要望を賜りますようお願い申し上げます。生理学研究所の使命を果たすべく一丸となって歩めてまいりますので、更なるご支援とご鞭撻を賜りますようお願い申し上げる次第です。

2014年3月
生理学研究所 所長 井本 敬二
第Ⅰ部

生理学研究所の現状と将来計画
1 生理学研究所の現状ならびに将来計画

2013年度は4月に生理学研究所の所長が岡田泰伸前
所長から井本敬二（前副所長）に代わり、これまでの岡
田泰伸前所長が築き上げた生理学研究所の研究および
共同研究体制を維持しつつ、新たな体制の取り組みを
スタートさせた年であった。国内の研究環境に関して
は、産業界主導のもと、いわゆる日本版NIH構想が持
ち上がり、その実施が6月に閣議決定された。創薬や
医療機器などの出口志向の医学・医療研究への研究予
算の増額と、その他の研究に対する国家予算が減額さ
れることが想定されるなか、我が国における学術研究
のあり方を文科省や大学を中心に議論されている。
基礎医学研究を研究の根幹とする生理学研究所におい
ても、今後大きな波が来ることが予想される。また、生
理学研究所では明大寺下の足かけ3年にわたる研究
棟の耐震改修が完了し、新しい研究スペースでの研究
がスタートした。

1.1 生理学研究所の現況

生理学研究所は人体基礎生理学を研究する大学共同
利用機関として全国唯一のものであり、人体の生命活
動の総合的な解明を果たす目的を有している。ここでは
分子から細胞、器官、システム、個体にわたる各レベル
において先端的な研究を行うと共に、それらのレベル
を有機的に統合する研究を行うことを使命としている。

生理学研究所では2007年度より所長を務めている
岡田泰伸（現生理学研究所名誉教授）が6年間の任期が
終了したのに伴い2013年3月に退任し、同月から井
本敬二（前生理学研究所副所長）が新所長として就任し
た。また、8月に西田基宏教授が岡崎統合バイオサイエ
ンスセンター（生理学研究所兼任）に就任し、心臓・循
環調節病態の分子機構の解明を目指す研究部門が新
たに発足した。

生理学研究所の目標・使命と今後の運営方針（岡田前
所長のリーダーシップにより）2007年7月にまとめら
れ、2009年と2011年に改訂）では、6つの研究領域を
柱としている。この目標・使命および運営方針は今後
も保持されべきものであるが、具体的な施策は研究
の進展などに伴って柔軟に考慮し実行して行かなくて
はならない。生理学研究所の最終目標はヒトの理解で
あることを掲げ、我が国の基礎医学の推進のために以
下の3つにまとめられている。

1. 世界トップレベル研究推進：生理学研究所は、分子
から細胞、組織、器官、そしてシステム、個体にわた
る各レベルにおいて先端的な研究、世界トップレ
ベルの研究をすると共に、それら各レベルにおける
研究成果を有機的に統合し、生体の働き（機能）と
その主佐（機構:メカニズム）を解明することを第
1の使命とする。この第1の使命の遂行・達成こそ
が、次の第2、第3の使命の達成のための前提条件
となる。

2. 共同利用研究推進：生理学研究所は、全国の国公
私立大学をはじめとする国内外の研究機関との間で
共同研究を推進するとともに、配備されている最先
端研究施設・設備・データベース・研究技術・会議
用施設等を全国的な共同利用に供することを第2の
使命とする。その共同利用・共同研究推進のために
多彩なプログラムを用意する。

3. 若手研究者育成・発展：生理学研究所は総合研究大
学院大学・生命科学研究科・理化学科学分の担当や、
トレーニングコースや各種教育講座の開催によって
て、国際的な生理科学研究者へと大学院生や若手研
究者を育成すること、そして全国の大学・研究機関へ
と人材供給すること、更には人体の働き（機能）と
その主佐（メカニズム）についての初等・中等教
育パートナー活動や学術情報発信活動によって未来
の若手研究者を発掘することを第3の使命とする。

これらの使命をすべて果たすためには、現在の部
門・施設数やスタッフ数ではもちろん充分とはいえな
いが、限られた力を有効的に発揮することによって能
率よく目的達成を果たすことの出来る研究組織体制を
（スクラップ＆ビルドラ的な改組を適宜行いながら）作
るようにしている。

生理学研究所の研究教育活動の概況
現在の生理学研究所の活動状況を上記の使命ごとに
要約した。

1）生理学研究所は分子から個体に至る各レベルでの
研究者を擁し、人体の機能とそのメカニズムに関する
国際的トップレベルの研究を展開し、先端的研究所
としての使命を果たしている。その研究の質の高さは、
論文引用度指数の大学ランキングで、総合で第4位、
神経科学分野で第1位であることからも伺える（朝日
新聞出版発行「2015年度大学ランキング」より引用）。
また、生理学研究所の科学研究費助成事業（科研費）
採択率（新規）もトップクラスである

2011年度: 第2位（大学共同利用機関で1位）
2012年度: 第24位（大学共同利用機関で3位）
2013年度: 第6位（大学共同利用機関で1位）

さらに、生理学研究所は文科省国立大学法人評価委
員会により、生理学の研究活動の状況は「期待される水
準を大きく上回る」と評価された（2009年3月国立大
学法人評価委員会「第一期中期目標・中期計画評価」）。
現在在籍している専任教員14名は、殆どが何らかの
形で脳・神経の研究に携わっており、またバイオ分子
センターの研究に携わるものが9名で、この2つの
主軸に関してが研究している。生理学研究所の特定
領域研究「細胞感覚」（代表永井真夫教授 2006(平成
18年)～2010(平成22年)）や、新学術領域研究「グリ
リアンステリジンによる脳機能変化の制御と病態」（代表
池田一枝教授 2013(平成25年)～2017(平成29年)）を
中心的に推進し、特定領域研究「統合脳」（2010(平成
22年)3月1日）においても重要な役割を果たし、これ
らの研究分野の形成・発展に貢献している。

一方、ヒトや霊長類の一次脳情報処理を対象とした
研究も継続して進行している。新学術領域研究「学際
的研究による認知メカニズムの解明」（代表柴田隆介
教授、2008(平成20年)～2012(平成24年)）が昨年度終
了し、現在「質感認知の脳神経メカニズムと高度質感情
報処理技術の融合的研究所」（代表小松連彦教授、2010(平
成22年)～2014(平成26年)）で進行中である。

更に、2008(平成20年)年度より開始された文部科学省
脳科学研究戦略推進プログラムの推進においても、課
題A「プレイン・マシン・インターフェース（BMI）の
開発」（2013(平成25年)3月1日終了、南部篤教授が参加）、
課題C「独自性の高いモデル動物の開発」（2013(平成
25年)3月1日終了、伊佐正教授が参加）、課題D「社会
的行動を支える脳基盤の計測・支援技術の開発」（南藤
規弘教授が参加）を積極的に推進するとともに、プログラムの事務局を岡崎に置き、全国的な研究の推進を支
えている。

このように最先端の実験装置・技術を配備・駆使しな
がら優れた理学科学研究を行う世界的トップランナー
であり続けることが、大学共同利用機関としてのミッ
ションを真に果たしていくための前提要件である。

2) 生理学研究所の大学共同利用機関としての使命は、
次のように多様な形で果たされている。

第1に、世界唯一の生物専用の超高速電子顕微鏡や、
脳科学研究用に特化改良された全頭型の脳磁計、また
ヒトや実験動物において計測可能な3テラス磁気共鳴
装置である機能的磁気共鳴画像装置 (fMRI) など、他
の機関には配備されていないような優れた特徴をもつ
最高度大型機器を多数（2011年度52件、2012年51
件、2013年43件、公募採択）の「共同利用実験」に供
している。また、2009年度の補正予算で導入された同
時計測用高磁場磁気共鳴画像装置 (dual fMRI) を用い
る本格的な実験が可能となり、以前より保有していた
fMRI とともに共同利用実験に供している。MRI を3
週保有することにより、動物（主にネズミ）を用い
た実験のために共同利用する機会を増やすことができ
た。加えて2012（平成24年度）の補正予算で導入が
許可された超高磁場 (7テラス fMRI) の導入の準備を
行うとともに、我が国における同機器の運用の高度技術
と人材育成のため、同機器を運用中および導入が予定
している機関間の相互ネットワークの形成の準備を開
始した。

第2には、表面から深い部分（1 mm程度まで）にお
ける生体内リアルタイム微小形態観察を可能とした2
光子励起レーザ顕微鏡や、多回波・無染色水を用いるによる
超微小形態観察を世界で初めて可能とした高解像力
等差電子顕微鏡などの装置と、生理学研究所自体が開発
した高度の研究技術を中心に、多数（2011年度84件、
2012年度88件、2013年度87件の公募採択）の「一般
共同研究」および各種「計画共同研究」（遺伝子操作モ
デル動物の生理学的、神経科学的研究、マウス・ラット
の行動様式解析、マウス・ラットの代謝生理機能解析、
先端電子顕微鏡の医学・生物学応用、強光類への遺伝子
導入実験、機能生命科学における分光の研究、脳情報
の階層的研究）に供している。また多数の電子顕微
鏡写真を自動的に撮影可能な電子顕微鏡装置（三元
走査電子顕微鏡 (3DEM)、Zeiss社製 Sigma および
Merlin）を導入し稼働を開始し、共同研究に供してい
る（2013年度13件）。加えて、「日本科学技術協力事業
脳研究分野 (日本鼠) 共同研究」の日本側中核機関とし
て、主体的に参加すると共に、全国の研究機関と米国
研究機関との共同研究（毎年7～8件）を共同利用的に
支援している。
第3には、「行動・代謝分子解析センター」の「遺伝子改変動物作製室」において、遺伝子改変マウスやラットを「遺伝子改変動物計画共同研究」（2011年度6件、2012年度5件、2013年度6件、公募採択）に供しています。また、ウィルスベクター室を設置し、所内外からの申請に応じて遺伝子改変に用いるウィルスベクターの作成とその提供を行っている（2013年96件）。これにより、「ニホンザル・ナショナルハリボールプロジェクト」の中核機関を2002年度より担当し、実験動物としてのニホンザルを全国の実験研究者に供給することを2006年度より開始している。このプロジェクトは2007年度から5年間更新され、さらに2012年度から5年間更新され、供給数を増加させる体制を整えた。実績として2008年度には51頭、2009年度には66頭供給を行った。血小板減少症を起こす感染症のために2010年度は23頭と減少したが、病原ウィルスとその感染経路が明らかにされて、2011年度は83頭、2012年度は65頭、2013年度は63頭となり、これまでに国内の30研究機関に合計418頭のサルを供給してきたことになる。文部科学省および京都大学雲長類研究所とともに、ニホンザルの安定した供給体制の構築のための体制について協議を続ける。

第4には、研究室やシンポジウム開催のための「岡崎コンファレンスセンター」をはじめとする各種会議室、および岡崎共同利用研究者宿泊施設（「三島ロッジ」と「明大寺ロッジ」）をフル稼働させて、多数（2011年度23件、2012年度21件、2013年度20件、公募採択）の「研究会」を全国の大学・研究機関の研究者からの希望を満たして開催している。これらを通じて全国的な共同利用・共同研究の促進を図り、新たな研究分野の創出や特定領域研究や新学術領域研究などの立ち上げを生み出してきた。2008年度からは新たに国際研究集会を発足させ、公募による研究会の国際化（発表者の国際化、外国からも講演者招聘）を図り毎年1～2件（2013年2件）開催している。

第5には、新規の「生理学教育研究・教育情報」を生理学ホームページから発信し、高い国民からのアクセス数（2011年度2,946万件、2012年度約3,175万件、2013年度約3,293万件）を獲得している。2007年度より広報展開推進室を立ち上げ、准教授を1名採用して、広報アウトリーチ活動を積極的に展開している。具体的には、科学冊子「せいりけんニュース」の発行（8,500部を隔月で無料配布）、岡崎市保健所と連携した「せいりけん市民講座」、医師会・歯科医師会における学術講演会、中学校等の出前授業、小学校教員向けの国研セミナー、スーパーサイエンスハイスクール（SSH）への協力などを行っており、こうした活動を通じて市民・医師・歯科医師・小中学校教師・小中高校生に対する学術情報発信に努めている。2008年には広報展示室を開設、年間500名を超える市民や小中高校生の見学の受け入れを行っている。2013年度後半には耐震工事終了により広報展示室の改築を開始した。さらに2010年度には、中高校生向けの理科教材「マッスルセンター（簡易筋電位検知装置）」を開発し、「体の動く仕組み」の体験教材として教育現場で広く活用されている。2012年度には「マッスルセンター」の高機能化を図り「マッスルセンターII」をバージョンアップした。2013年度からは文部科学省研究力強化推進事業に自然科学研究機構が採択され、広報担当准教授が自然科学研究機構本部へ特任教授として転出したが、後任として広報担当の特任教授を採用し、新たな体制に向けて整備を開始した。

岡崎3機能では、一般公開を毎年秋行っており、2018年度は生産廠が一般公開を行った。11月5日(土)に「見て聞いて感じてみよう！床の体の不思議」というタイトルで実施され、これまでの最高である2,058名の見学者が訪れた。来年度（2014年度）は生産廠が10月4日(土)に一般公開を行う予定であり、すでに準備を開始している。

3) 総合研究大学院大学 任命化学研究科 科学化学専攻を担当する化学研究科は、国際的に第一級の化学科学者を育成・供給する使命を果たしている。ちなみに、2012年度は12名の学位得者を生産、2013年度も14名が学位を取得した。毎年2～3名の留学生の入学があるが、従来国豊留学枠で入学する者がほとんどであった。しかし、化学科学研究科が独自に留学生のサポートを充実化したことに伴い、その数が増加している。2013年度には16名の外国人学生（総合研究大学院大学医学専攻15名、他大学大学院生1名）が学んでおり、これらの留学生は課程修了後、化学科学研究所のみならず国内外の研究機関に職を得て国際的化学科学研究者への道を歩んでいる。化学科学研究所は、他大学の大学院生を特別共同研究員として受け入れ（2013年度は16名）、教育・指導を行っている。

また、化学科学研究所では若手化学科学者研究者の育成に重点を置いており、化学科学者研究者のキャリアパスの場としても重要な役割を果たしている。また、生理科学専攻が主体となって総合研究大学院大学より申
理学研究所有の管理運営は、所長が運営会議（所外委員 10 名及び所内委員 11 名より構成）に議題し、その答申を得ながらリーダーシップを発揮して実行している。その実施の役割分担を 2007 年度より改組し、予算・企画立案・労務管理を担当する 1 名の所長と、研究運営を担当する 1 名の研究総幹、また共同研究担当、学術情報発信担当、動物実験問題担当、安全衛生、研究倫理担当、教育担当が 5 名の幹事がその任にあたっている。さらに 2010 年度より総合研究大学院の理学研究専攻融合プログラム等を担当する特別事業担当幹を設けている。研究所の運営、研究及び教育等の状況については、自己点検・評価及び外部評価を行い、研究所の活性化を図っている。

理学研究所有は、点検評価委員会を設置し、評価を実施している。その実施の責任者には、評価担当教授（今年度は南部教授）が担任している。この点検評価報告書に基づき、所長は所長と協議の上、問題点の解決に向けた企画・立案作業を進め、運営会議に諮りながら所長のリーダーシップのもとに評価結果を活かした管理運営を行っている。2013 年から、所長、副所長および総幹主幹が問題を話し合う場を毎週設定し、三役の密接な連携体制の構築とともに、迅速な問題解決体制を構築した。点検評価においてはそのための資料の整理蓄積が重要であり、2007 年度これを強化するため点検連携資料室を設置し（研究総幹主が室長を務める）。また、点検評価結果を中期計画や年度計画にさらに強力に反映させていくために、常設の企画立案委員会を設置し、所長が委員長を務めている。また運営会議の下に任期更新審査委員会を設け、任期更新の審査を行っている。

2013 年秋に、研究大学強化促進事業に自然科学研究機構が採択された。科研の内閣に進めることに、機構の規則として自然科学研究機構各研究所に研究力強化戦略室（所長は副所長）が設置され、理学研究助の研究力推進のための方策を所長と協力して推進する体制を構築した。

現在の研究組織体制

理学研究所有の研究組織体制（図 1）は、研究者コミュニティの要望に応え共同研究をより強力に推進することを目指して、改編されて来ている。2005 年に新設した「行動・代謝分子解析センター」は理学研究所有における遺伝子収集者において、細胞活動や代謝活動などのデータに基づいて行動や代謝機能を解
生理学研究所研究組織体制
2013年度

【研究系・センター】

分子生理研究系
神経機能素子研究部門
分子神経生理研究部門
行動・代謝分子解析センター

細胞器官研究系
神経細胞構築研究部門
脳形態解析研究部門
大脳神経回路論研究部門
心理生理学研究部門
神経機能素子研究部門
生体膜研究部門
認知行動発達機構研究部門
神経細胞構築研究部門
感覚運動調節研究部門

生体情報研究系
神経シグナル研究部門
感覚認知情報研究部門
神経シグナル研究部門
感覚認知情報研究部門

統合生理研究系
計画生理科学研究部門
制御解析研究部門
大脳皮質機能研究系
制御解析研究部門
代謝生理解析室

行動・代謝分子解析センター
行動様式解析室
代謝解析研究室
脳科学領域開始研究室
行動解析研究室
制御解析研究室
生体情報解析研究室
生体情報解析研究室

行動・代謝分子解析センター

脳機能計測・支援センター
フィルモグラフィ解析室
脳機能計測解析室
脳機能計測解析室
脳機能計測解析室

情報処理・発信センター
情報処理・発信センター

技術課
安全衛生管理室

【研究部門・室】

（岡崎共通研究施設）

同時統合バイオサイエンスセンター
バイオセンシング研究領域（細胞生理）

動物実験センター

※印 客員研究部門/室
★印 岡崎統合バイオサイエンスセンターとの兼任研究部門

図 1. 2013年度現在の生理学研究所組織図

解析するとともに、同センターが管理する施設・設備・動物を研究所内外の研究者の共同利用に供することを目的にしている。2005年度に「遺伝子改変動物作製室」、2009年度に「行動様式解析室」、2010年度に「代謝生理解析室」を立ち上げた。これで当初予定していた全室が揃い共同利用体制が整った。遺伝子改変動物作製室では遺伝子改変マウスのみならず遺伝子改変ラットを作製し、計画共同研究「遺伝子操作モデル動物の生理学的、神経科学的解析」を通じて全国大学共通利用に供している。また、行動様式解析室ではマウスの行 動様式を多角的・定量的に解析しているが、2009年度より計画共同研究「マウス・ラットの行動様式解析」を担当している。2010年度に立ち上がった「代謝生理解析室」は、現在行われている遺伝子改変動物の行動解析と同様、その動物の代謝生理機能を解析することによって、標的遺伝子の機能と行動変異の関連を明ら

9
かにする。2011年度より計画共同研究「マウス・ラットの代謝生理機能解析」を担当している。

2008年度に設置した「多次元共通観研究センター」では、多分野の全国の学術研究者とネットワークを組みながら、有機的に多次元的な共同研究を展開する場を提供することを目指している。具体的には、研究動向の調査・把握を行うとともに、特に異分野の若手研究者を対象とした教育活動である多次元脳レクチャー・トレーニングを行っている。

昨年度は多次元脳科学推進センターの脳内情報抽出表現研究室、雲長類脳基盤研究開発室およびNBR事業推進室を廃止し、脳機能基盤研究開発室と社会的脳表現解析開発室を新設した。また脳機能計測・支援センターにウィルスペクター開発室と雲長類モデル動物室を新設した。これらの変更は、多次元脳科学推進センターは主に将に向けた企画立案を行う組織であり、一方、脳機能計測・支援センターは研究や事業を実際に実施する組織である、という考えに基づくものである。

今年度は8月に西田基宏教授が統合バイオサイエンスセンターの教授（生理学関係）として着任したため、生理学系情報研究系に心循環シナリオ研究部門を設置した。また今年度より脳科学研究推進プログラムの事務局を生理学研究室として担当することとなったため、多次元脳科学推進センターにおけるこの業務を担当する脳科学研究推進室を設置した。

生理学研究所の常勤職員としては所長1、専任教授17、准教授20、助手36、技術職員29、計103のポストがあり、現在選考中の教授・准教授・助教若千名をのぞき、殆どどのポストが充実している。更に2005年度から、数名の特任助教を、2007年度から特任准教授を、2008年度より「多次元共通脳科学推進センター」に特任教授1名を採用、また2011年度より位相差電子顕微鏡の開発を目的として特任教授1名採用し、目的に特化した人事を行っている。雇用制度を弾力的に運用することを目的として年俸制が導入され、特任教員（特任教授、特任准教授，特任助教）は2012年6月から年俸制に移行した。年俸制の研究教育職員には裁量労働制が適用される。

技術課は課長の下に研究系と研究施設を担当する2つの班で構成され、課長は各研究部門・施設・センターに出向して技術支援を行うと共に、課として研究所全体の行事の支援等に勤務に力を注ぎ、国の技術者の交流事業の中核を担っている。

現在の財務状況

自然科学研究機構における2013年度の運営費交付金の予算配分額は、研究室、本部、特別費用を合わせて30,371,348千円であり、内二研究室所内へは総計1,422,576千円の配分があった。運営費交付金の人件費と物件費には大学改革促進係数として、1%の減額がなされた。また、当初予算において特別経費については、「ヒトとモデル動物の統合的研究による社会的脳神経基盤の解明」が継続して認められた。さらに、耐震化工事に伴う特殊要因経費も措置された。さらに、補正予算において、『脳磁図情報の取得・解析システムの高度化』のために28,000千円が措置された。運営費交付金に占める研究職員人件費の割合は44%であり、非常勤職員人件費をあわせると人件費が52%を占めた。

実際には各種外部資金や総合研究大学院大学運営費交付金自体においても非常勤職員人件費が支出されているので、人件費総額は更に大きくなるものとなる。

総合研究大学院大学の2013年度運営費交付金からの生理学研究室所へ配分額は70,605千円であり、若手研究者養成のための研究拠点形成費等補助金として、「卓越した大学院拠点形成支援補助金」53,175千円が措置された。この補助金は、優れた大学院教育を行っている大学（大学院）に対して、過去3年間の博士号授与者数に応じて算定されたものである。これらはすべて（大学院生の研究費以外の）大学院教育関係経費に支出された。特に、リサーチアシスタント（RA）経費しと13年度に39,001千円を配分した。

競争的資金

2013年度の外部資金の獲得状況は、寄付金48件、科学研究費助成事業（厚生労働科学研究会）58件、受託研究23件（文部科学省2件、科学技术振興機構16件、その他5件）、共同研究19件、受託事業1件、研究開発施設共用等助成費補助金2件である。なお、生理学研究所（統合バイオを除88）の2013年度の新規科研費の採択率は41.1%であった。（獲得件数は1月現在）

法人化後、競争的資金の比率は増加しており、2004（平成16）年度では、運営費交付金57％、競争的資金43％であったのに対して、2010（平成22）年度では、運営費交付金48％、競争的資金52％と比率が逆転した。2013（平成25）年度は、運営費交付金54％、競争的資金46％であった。競争的資金の獲得は、研究業績の高さを反映しており競争的資金の増加は好ましいことである。
一方、長期的に維持していくべき事業および機器の保有は、短期的な競争的資金では不安定であり、減額が続く運営費交付金では困難になって来ている。

概算要求

継続の特別経費の要求（概算要求）としては、5ヶ年計画の「ヒトとモデル動物の統合的研究による社会性の脳神経基盤の解明」が特別経費（全国共同利用・共同実施分）として認められた（2011〜2015年度）。自閉症および統合失調症の発症に関連する遺伝子異常を持つモデル動物を用い、遺伝子型と表現型をつなぐミクロ表現型を抽出するために、遺伝子・神経回路から行動レベルまで一貫した画像化システムを確立することを目指す。2011年度では、この経費により超高解像度を目指した明光台三流リレーアクセレータの試作と、2012年度にはその高解像度から多点電子活動記録・解析装置の導入が図られた。

2012(平成24)年度の特別経費の要求としては、基地的設備等整備分として「革新的コネクトミクスと超高圧電子顕微鏡による網羅的三次元再構成システム」が認める。この措置により、長期の懸案であった超圧電子顕微鏡画像取得装置のデジタル化が実現され、デジタル化によりこれまで煩雑であった3次元再構成などの処理が格段に迅速化される。また数千枚の電子顕微鏡画像を自動的に得た神経細胞間の線維連絡（コネクトミクス）の網羅的な解析を可能とする電子顕微鏡（三次元走査電子顕微鏡（3D-SEM）、Zeiss社製Merlin）が導入された。研究では先立って下位機種（Zeiss社製Sigma）の導入を進めており、この導入により2台体制となり、2013年は幅広い共同研究を受け入れた。

2012(平成24)年度補正予算で「超高磁場（7テラス）ヒト用磁気共鳴断層画像装置を用いた超高解像度脳情報画像化システム」が取り上げられた。巨大な装置であり、また同装置の国際的な価格の高さのため、付帯備品などの見直し後に入札を行った。2014年度中に設置することを目指す。7テラス fMRI はまだ開発途上の領域であり、これまでの3テラスの機種とは全くレベルの違う知見を得ることが可能になると期待される。

機能をフルに発揮するためには、全国の研究者間の共同利用研究を推進して行く必要があるとともに、我が国における超高磁場MRIを利用した研究の推進のため、同機器の設置済み（新潟大学脳研究所、岩手医科大学、情報通信研究機構・大阪大学CiNet）および設置予定（京都大学）の研究機関と連携して技術構築および人材育成のためのネットワークが急がれる。

なお、従来からの下記の事業も継続して行われている。

1. 「脳科学推進のための異分野連携研究開発・教育中核拠点の形成」（理学研究科）で全国の異分野研究者が参加し、通共の目標に向かって研究と教育を行うネットワーク機構を構築し、研究プロジェクトを推進するとともに人材育成を行うことを目的とする）

2. 「統合ニューロイメージングシステムによる生体機能解析共同利用実験室」（超高圧電子顕微鏡、生理動態画像解析装置（fMRI）、SQUID生体磁気測定システム（MEG）、多光子励起レーザー顕微鏡及び近赤外線分光法に関わる実験施設）

3. 「日本科学技術協力による脳機能の要素的基盤と統合機構の解明」（日本科学技術専門研究に関わる経費）

これらの3事業は2010年度より一般経費化されている。

その他に、自然科学研究機関本部から申請された「自然科学研究における国際的学術拠点の形成」が継続して採択され、その中で理学研究科は「脳神経情報の階層的研究」と「機能生命科学における指摘と決定」の2事業を担っている。

研究大学強化促進事業

2013年度に研究大学強化促進事業Iにより全国21カ所の大学および大学共同利用機関に研究体制構築のための資金が分配された。この経費はUniversity Researcher Administrator（URA）を雇用し、研究力の強化を行うものであり、30機関によるヒアリングの結果、自然科学研究機構が採択された。年間3億円・9年間が分配される予定である。理学研究科では、研究力強化戦略（室長：副所長）を設置し、本経費を用いて広報活動と大学科学研究センターの企画機能の充実、および動物センターの管理強化を行う予定である。

革新的イノベーション創出プログラム（COI Stream）

2013年春に文部科学省（科学技术振興機構）から募集された10年後のを見据えたビジョン主導型の研究開発プログラム“戦略的イノベーション創出推進プログラム”に*2にNTTデータ経営研究所と共同して応募し、複

*1 http://www.mext.go.jp/a_menu/kagaku/sokushinhi/
*2 http://www.jst.go.jp/coi/index.html
数の課題との調整の結果、広島大学とマツダを主査点とする課題のサテライト査点として生理学研究所が参
画するに至った（予定期間：2013～2021）。生理学研
究所は各種感性の脳内基盤の解明を目指して、ヒトおよ
び黒長類の研究グループが中心となり研究を遂行す
る予定である。アウトプットを主査点である広島大学
および自動車メーカーであるマツダにどのように提供
するのかなど、今後の連携について密な議論を行うこ
ととなった。

1.2 生理学研究所における研究の当面の柱

生理学研究所はその第1の使命「世界トップレベル
研究推進」を果たすために、当面の間、次の6つの柱
にして脳と人体の機能と仕組みの基礎的研究を推進し
ていく（図2参照）。

1) 機能分子作動・制御機構解明－主として分子・細
胞レベルの研究によって分子・超分子から細胞への統
合を－

すべての細胞の働き（機能）は分子群の働きとそれら
の協同によって支えられており、生理学研究所では、そ
の詳細の解明を目指している。

特に、チャネル、レセプター、センサー、酵素、細
胞接着分子などの機能タンパク質と、それらの分子複
合体（超分子）の構造と機能及びその動作・制御メカニ
ズムを解析し、細胞機能へ最終結合し、それらの異常・
破壊による病態や細胞死メカニズムを解明する。また、
神経細胞の分化・移動や脳構造形成などに関与する
機能分子を見いだし、その動作メカニズムを解明する。
また、その分子異常による病態を明らかにする。

2) 生体恒常性維持・脳神経情報処理機構解明－主とし
てマウス・ラットを用いた研究によって細胞から組織・
器官・個体への統合を－

生体恒常性維持と脳神経情報処理の働きは、不可分
の関係を持ちながら人体の働きにおいて最も重要な役
割を果たしている。それゆえ、生理学研究所ではそれ
らのメカニズムの解明に、最も大きな力を注いでいる。
特に、心循環調節・摂食運動・疼痛関連行動、睡眠・覚
醒と体温・代謝調節などの生体恒常性維持の遺伝子基
盤及びそれらの環境依存性・発達・適応（異常）の解析
を、そしてシナプス伝達機構とその可塑性や、神経回
路網の基本情報処理機構とその発達、およびニュー

7) 认知行動機能解明—主としてニホンザルを用いた研
究によって脳と他器官の相互作用から個体への統合を－

ヒトの高次脳機能の多くと相対性を示すのは、ニホン
ザルなどのマカクザル以上の霊長類であり、生理学
研究所はニホンザルを用いての脳研究に力を入れてい
る。特に、視覚、聴覚、嗅覚、他者の認知、注意や随意
運動などの認知行動機能の解明には、ニホンザル（など
のマカクザル）を用いた脳と他の感覚器官や運動器官
との相互関係に関する研究が不可欠である。これにより、
バーキンソン病をはじめとする神経難病の病態解明や、
脳粛や大脳皮質一次皮質言語の損傷後の回復機構の解明
や、ブレイン・マシン・インターフェース（BMI）の基
盤技術の開発につながる基礎研究とする。脳機能（ソ
フトウェア）と脳構造（ハードウェア）の対応の因果律
的解明は、生理学の目標の1つであるが、マシン表現
可能な脳内情報抽出の基礎研究や、霊長類動物脳への
変容遺伝子発現法の開発によって、これを実現する大
きなステップを与える。

4) 高度認知行動機能解明—主としてヒトを対象とした
研究によって脳機能から体と心と社会活動への統合を－

より高度な脳機能の多くは、ヒトの脳のみにおいて
特に発達したものであり、生理学研究所では、非侵襲
的な方法を用いて、ヒトを対象とした脳研究を展開し
ている。特に、ヒトにおける顔認知、各種の感覚認知
や多種感覚統合、言語、情動、記憶及び社会能力などの
より高度な認知行動とその発達（異常）についての研究
は、ヒトを用いた非侵襲的な研究によってのみ成され
る。これらの研究によってヒトのところとからの結びつきを解明する。また、ヒトの精神発達過程
における感情性（臨界期）を明らかにし、脳・精神発
達異常解明のための基礎的情報を与える。更には、ヒ
トとヒトの脳機能の相互作用の解明から、ヒトの社会
活動における脳科学的基盤を解明する。

5) 次元脳・生体分子統合イメージング法開発—階層関
間関係イメージング法の開発によって分子・細胞・神
経回路・脳・個体・社会活動の6階層をシームレスに

Rioong-Griar-血管ネットワーク連関などの解析から、脳
の可塑性（とその異常による病態）の解明を、主として
マウスとラットを用いてを行う。
図2. 研究の柱

総合的な統合イメージングを一

生理学研究所では、分子・細胞から脳・人体に至る
可能な各種のイメージング装置を用いて、共同研究
において、脳と人体の働きを解明し、それらを発
現過程や病態変化過程との関連において、その4次元
的(空間的 + 時間的)なイメージング化を進める(図3
参照)。

法人大内の第1期 (2004〜2009年度) においては、超
高圧電子顕微鏡 (HVEM)、極低温位相差電子顕微鏡、
光学顕微鏡、顕微鏡、機能的磁気共鳴断層像計
装置 (fMRI)、近赤外線スペクトロスコピー (NIRS),
SQUID 生体磁気検出システム (脳波計 MEG) 等の最
先端イメージング装置を駆使しての各階層レベルにお
ける研究と共同利用実験を推進してきた。第1期の最
終年度である2009年度には dual fMRI の配備が行
われ、これを用いての “社会脳”研究にも踏み出した。

第2期 (2010〜2015年度) においては、分子、細胞、
脳のスケールを超えた統合的研究を進めていくために、
各階層レベルの働きを見る特異的イメージング法とそ
の間をつなぐ数々の相関法の開発を成し遂げていく(図3
参照)。

具体的には、無固定・無染色標本をサブミクロンで可
視化して細胞・分子活性を光操作しながら観察しうる
多光子励起レーザー顕微鏡を開発し、細胞・シナプ
スレベルから神経回路網レベルの接続を実現する。ま
た、無固定・無染色のレーザー顕微鏡用標本をそのまま
ナノメータ分解能で可視化することができる低温
位相差超高圧電子顕微鏡トモグラフィーを新規開発し
て、分子レベルと細胞レベルを接続させる。一方、分子
レベルからヒト個体レベルを接続するための相関法と
して、分子イメージングを可能とする MRI 分子プロー
プ法を開発していく。分子レベルから脳・神経ネット
ワークレベルへの接続は、当面は動物の神経活動場
式解析によって行い、将来的には(プロトンのみなら
ず炭酸ガスやリンのイメージングも可能な) 超高磁場 fMRI
の導入によって実現することを目指している。これら
の三次元イメージングの統合的時間記述 (4 次元脳・生
体分子統合イメージング)によって、精神活動を含む脳機能の定量化と、分子レベルからの統合化、およびそれらの実時間的可視化を实现する。

世界的な動向としては、脳内部の巨視的・微視的つながりを網羅的に探索する手法が、ネットワークスとして進展しつつある。生理学研究所でも、神経回路の視的つながりを探索するために自動的に多数の画像を取得することができる電子顕微鏡が導入され、共同研究の一つの核となっている。今後、画像の自動解析などの分野での進展が期待されている。また静止時の脳活動の測定データ（fMRIおよびMEG）を用いて、部位間での相関の大規模計算などから脳の局所の機能的結合を可視化する技術が発達してきており、有望な手法として期待されている。

6）モデル動物開発・病態生理機能解析−主として病態モデル動物を用いた研究によって病態生理機能の解明を

統合的な生理学研究を推進していくために、病態基礎研究も組み込んだ研究を進めていく。この研究を、遺伝子変異マウス・ラットや遺伝子導入サルにおける病態表現型を用いて進めるとともに、ヒトの病態に関する知見をも照らし合わせていくことも必要である。これによって、分子からヒトの個体そして社会活動に至る6階層を繋ぐ研究が可能となる。

生理学研究所では、これまで多数のトランスジェニック（TG）マウスやノックアウト（KO）マウスを作製・供給してきたが、これらにおいて病態表現型を示すものが多く見いただされている。生理学研究所ではこれら遺伝子変異マウスの他に、TGラットの作製・供給にも大きな実績があったが、更に2010年には待望のKOラット作製技術の確立も「遺伝子変異動物作製室」によって実現された。今後、これらの遺伝子変異ラットにおいても、病態表現型を示すものが得られるとと考えられる。ラットはマウスよりも認知・学習などの高次脳機能の研究に適しているのに加え、脳が大きいため、in vivo電気生理学的研究の対象とともにやすく、これまでの生理学的研究成果の積み重ねも多いため、病態生理学的研究に優れたモデルとなる。更には、2012年にウィルスペクター室を設置し、遺伝子変異のための各種ウィルスペクターの作成を効率的に行う体制を整備した。このウィルスペクターを用いた前線レベルの遺伝子導入が実現化し、病態モデル開発動物の開発も期待できるようになった。

これらの病態モデルマウス・ラットを用いての行動レベル表現型の解析を「行動様式解析室」で、代謝生理レベルの表現型の解析を「代謝生理
1.3 生理学研究所における共同利用研究

生理学研究所はその第2の使命「共同利用研究推進」を果たすために、次のことを軸にした共同利用研究を推進している。

1）最高度大型および最新開発のイメージング機器による共同利用研究（図4参照）

世界唯一の生物専用機であり、常時最高性能に維持されている超高圧電子顕微鏡 (HVEM) や、脳科学研究用に特化改良された全頭型の脳磁計 (MEG) や、ヒトやニホンザルにおける計測可能な 3 テストラ磁気共鳴装置である機能 MRI 生理動画像解析装置 (fMRI) など、他の国内機関では配備されていないような優れた特徴を持つ最高高度大型イメージング機器を、「共同利用実験」に供する。なお HVEM については、研究者コミュニティからの要望が高く、2013年には名古屋大学医学研究科との研究連携を基に、相互の学術および人的交流を通じてヒトの生理・病態の解明に研究体制を構築した。

解析室」で行っていることが必要である。病院や臨床部門を持たない生理学研究所は、他の臨床医学研究機関との連携や共同研究が必要である。これからの研究は、2011年度開始の特別経費プロジェクト「ヒトとモデル動物の統合的研究による社会性の脳神経基盤の解明」によって支えられているとともに、2013年には名古屋大学医学研究科との研究連携を基に、相互の学術および人的交流を通じてヒトの生理・病態の解明に研究体制を構築した。
が自ら開発した最新のイメージング装置とその周辺技術をコミュニティにオープンし、その使用を特許した形の「計画共同研究」を、全国の研究者からの公募によって実施している。

これら生理学研究所が提供するイメージング技術・設備・装置を通じ、全国の国公私立大学・研究機関の研究者からの公募で実施する「一般共同研究」にも広く供し、発表された問題への解答や萌芽的な研究の育成に資することを努めている。

2) 異分野連携研究ネットワークの中心拠点の形成（図5参照）

「脳がいかに形成され、どのような原理で作動しているのか」という脳研究の中心課題の解明には多くの異分野の研究者による多元連携が不可欠である。このような異分野連携的脳科学研究を推進するために、2008年4月に設立した「異分野連携脳科学研究推進センター」において、全国の多様な分野の脳科学研究者の共同研究・若手研究者育成ネットワークの中心拠点を担っている。

この「異分野連携脳科学研究推進センター」に多数の客員教授と併任教授を迎え、多領域新領域開拓研究室では、わが国における今後の脳科学研究のあり方を考慮して新しい研究領域を開拓する。また「脳情報基盤研究開発室」では、分子から個体・集団にいたる多層にまたがる脳情報を対象とする基盤技術を開発する。

「社会的脳表現解析開発室」では、価値判断やコミュニケーションを実現する脳の仕組みやその発生について、異分野の研究者間の共同研究を実施する。そして更には、「流動連携研究室」において、他機関の研究者が、サバティカル制度等を利用して、客員教授・客員准教授・客員助教として3〜12ヶ月間国際的に在籍し、生理研究の大型機器・研究施設を活用して集中的に共同研究し、新しい切り口での研究に挑み、次なる研究展開を図る機会を得ている。

科学者らは「異分野連携脳科学研究推進センター」の今後の運営方針を決定し、「相互融合的なアプローチによる情動、社会能力などの“これだところの相互関係”の解明を異分野連携的に推進する中核拠点ともなっていく。新しい4次元脳・生体分子統合イメージング法の開発によって、分子からところへと脳機能を統合的に理解し、脳科学に求められている種々の社会問題・教育問題からの要請にも異分野連携的共同研究の展開で応えていくことができる。

若手研究者育成のために、具体的にはレクチャー&トレーニングというプログラムを実施するとともに、相互的にメリットのある研究教育機関同士の提携を進めていく。

図5. 異分野連携共同研究ネットワーク
連携協定を締結し、新潟大学脳研究所と合同シンポジウムを開催するなど、交流を深めている。また岡崎ら3機関としても、名古屋工業大学と一連の合同シンポジウムを開催しており、2012(平成24)年に「連携・協力の推進に関する基本協定書」を締結した。

また、生理学研究所は、「岡崎統合バイオサイエンスセンター」の一翼を担い、基礎生物学研究所、分子科学研究所並びに連携協力しながら「分子-分子間相互作用と分子-環境間相互作用による生命体機能形成の統合的研究」を推進し、更には「機構内分布野連携事業」を積極的に担い、更に広い研究領域を含む連携して異分野連携共同研究を推進している。

3) モデル動物の開発・供給とその行動様式・代謝生理機能解析システムの共同利用（図4参照）

「ニホンザル・ナショナルバイオソース（NBR）プロジェクト」の中核機関として、脳科学研究所実験動物としてのニホンザルを全国の研究者に供給しており、今後のさらなる安定供給のための体制構築を京都大学霊長類研究センターと協議している。これまでは「九州元脳科学推進センター」NBR事務局を担当していきたが、昨年度からは、より広い研究分野での利用を視野にした脳機能計測・支援センター「霊長類モデル動物室」を設置した。繁殖・供給業務等を推進するとともに、長期的な繁殖飼育施設の設置に向けて検討を重ねている。

更には、ウィルスペクターを用いたニホンザルやマーモセットの脳の特定部位への遺伝子発現法が確立され、その技術と研究リソースを全国の研究者に提供するため脳機能計測・支援センターに「ウィルスペクター開発室」を設置した。専任の准教授がウィルスペクターの開発を進めており、2012年度よりウィルスペクターの供給を開始し、2013(平成25)年度には提供を一層加速させた。

「行動・代謝分子解析センター」の「遺伝子変異動物作製室」において、遺伝子変異マウスのみならず、遺伝子変異ラットを共同で作製して供給するための「計画共同研究」を推進している。更には、それらの遺伝子変異マウス/ラットの行動様式と代謝生理機能の網羅的な解析システムを「行動様式解析室」と「代謝生理解析室」に配備し、「計画共同研究」に供している。

4) 研究会・国際研究集会、国際シンポジウムの開催

保有している各種会議、共同利用研究者宿泊施設をフル稼働させて、多数の「研究会」、「国際研究集会」、「国際シンポジウム」を全国の国公私立大学・研究機関の研究者からの公募・審査採択によって開催している。これらを通じて、新しい人材の生理学・神経科学分野への参入の促進と、全国的・国際的共同研究の更なる促進をはかると共に、全国の研究者が新たな研究分野の創出にも寄与している。

5) 長期滞在型国内共同利用研究の推進

他機関の研究者がサバイタカル制度等を利用して、「流動連携研究室」の客員教授・客員准教授・客員助教として3〜12ヶ月間岡崎に滞在し、生理学研究所の大型機器・研究施設を活用して密に共同研究し、新しい切り口での研究に挑み、次なる研究展開を図る機会と場を提供している。

6) 長期滞在型国際共同利用研究の推進

諸外国研究機関においてボストを有する優れた研究者を、サバイタカル制度等を利用して、外国人研究職員として3〜12ヶ月間岡崎に滞在し、国際的共同利用研究を密に推進している。さらなる国際共同研究の推進のため、外国人研究者が、独立した研究グループを構成し2〜3年度程度の期間滞在で研究を行う国際連携研究室（仮称）の設置を検討している。

7) 日米脳科学共同研究の推進

「科学研究における研究発表のための協力に関する日本国政府とアメリカ合衆国政府との間の協定」に基づき、日米科学技術協力事業の非エネルギー分野の一つとして、脳科学に関する共同研究を実施し、わが国の脳科学分野の研究水準の向上と、日米間の共同研究関係をさらに発展させるために、共同研究者派遣、グループ共同研究、情報交換セミナーの3事業を、全国からの公募によって推進する。

8) 各種研究技術・データベースの共同利用の供給

生理学研究所が持っている最先端で高度の研究技術や研究手法や研究ソフトウェアなどをすべてデータベース化してウェブサイトで公開している。今年度、データベースの件数は100件を越えた。また、脳と人体の動きその仕組みについての正しい教育情報についてもデータベース化していく。
1.4 若手理学研究者・若手脳科学者の育成

生理学研究所は、その第3の使命「若手研究者育成・発掘」を果たすために、多様なプログラムを提供して、次の5つの取り組みを推進していく。

1) 総合研究大学院大学生命科学研究科理学専攻としての大学院教育

総合研究大学院大学の基盤機関として、めぐまれたインフラとマンツーマン教育を可能とする豊富な教員数を生かして、5年一贯制大学院教育を行い、国際的生理科学・脳科学研究者を育成し、全国・世界に人材を供給している（図6参照）。脳科学専攻間融合プログラムを中心的に担い、他専攻（基礎生物学、遺伝学、情報学、統計科学、生命共生体進化学、メディア社会文化等）の協力を得て、新たなカリキュラムを作成・実施し、分野を超えた脳科学教育を推進している（図6参照）。更には、他大学からの受託によっても多数の大学院生の教育・指導を行っていく。

総研大を含む日本の大学院生の多くは、経済的問題を抱えている。特に外国人の入学者は、日本学生支援機構の対象とならないため、さらに問題は深刻である。生理学研究所では、大学院生をリサーチアシスタント（RA）として雇用し、また生理学研究所奨学金の制度を設け、大学院生への経済的支援を行ってきた。今後、奨学金を寄附金として受け入れる制度を進めるなどして生理学研究所奨学金制度の安定継続を如何にはかるのか今後の問題である。

2) 博士研究員制度の充実

生理学研究所独自の博士研究員であるNIPSリサーチフェローを各部門・施設に1名配置し、特任准教授、特任助教などの若手研究者も配置し、毎年公募採択の形で若手研究者育成のための研究費や研究発表のために旅費（国内外）の支援を行っている。日本学術振興会特別研究員や、海外費やJSTなどの外部資金雇用の特任助教（プロジェクト）やプロジェクト博士研究員とも、同様の若手育成措置を講じている。

3) 異分野連携若手研究者育成・大学院生脳科学研究プログラムの中心拠点の形成

多様な分野に精通した若手脳神経科学者の育成のため、全国の国立私立大学・研究機関に分散した、基礎神経科学、分子神経生物学、工学、計算論的神経科学、計算科学、臨床医学、心理学などの異分野の脳科学研究者を集約して、大学の枠を超えたネットワーク的「異分野連携脳科学研究者育成プログラム」を推進する中心拠点を担っていく。そして、本プログラムの成果や評価に基づき、全国の大学との意見調整によって必要となれば、その発展線上に総研大における「脳神経科学専攻」の新設も目指していく。

4) 各種トレーニングコース・レクチャーコースの開催

生理科学実験技術トレーニングコース」を毎夏開催すると共に、「バイオ分子センサーレクチャーコース」も開催する。また、「多学科共同脳科学研究センタートレーニングレクチャー」も開催する。これらによって、全国の若手研究者・大学院生・学部学生の教育・育成に多彩な形で取り組んでいく。

5) 最新の生理科学・脳科学研究・教育情報の発信と未来の若手研究者の発掘

「広報展開催推進室」を中心に、生理研ホームページから「人体と脳のはたらきとそのしくみ」についての正しい情報の発信を行い、「せいいけんニュース」を通じて市民・小中学校教師・小中高校生にも最新の学術情報をおわかりやすく発信している。また岡崎市保健所との共催によるせいいけん市民講座を定期的に開催し、岡崎市医師会や岡崎歯科医師会との共催による医師会講演会を開催し、岡崎市民や医師・歯科医師へと最新の生理科学・脳科学学術情報を発信している。3年に1回「一般公開」を開催している。研究棟の耐震改修工事のために閉鎖していた「広報展示室」は、2013年度には改修工事終了後直ちに再開した。更には、岡崎市内の小中学校の「出前授業」や、岡崎高校の「スーパーサイエンスハイスクール」への協力や、岡崎市内小学校理科授業を対象とした「国研セミナー」の担当などを積極的に引き受けていき、未来の若手研究者としての子供達を発掘・育成している。一方、これまでほとんど行われてこなかった研究者コミュニティへの情報発信や、生理研総研大同盟会への情報提供が今後の課題である。

1.5 今後の生理学研究所の運営の方向

生理学研究所の運営の方向は、これまでに整理されており、下記の6つの点に留意して運営していくことが明文化されている。国立大学のミッションの再定義
が求められたことに関連して、大学共同利用機関においてもミッションの再定義に向けての作業が行われた。従来の理学研究科の運営の方向に大きな変更はないが、これまで以上に「国際化」および「社会への情報発信・社会との連携」が重要視されている。自然科学研究機構のミッション再定義を基盤として第Ⅲ部 pp ??-??に掲載した。生理学研究科の使命を果たし、その目標に近づくために、今後の体制において
1) 生理学研究科は、研究者個人の自由発想に重きをおいて問題発掘的に研究を進めていくという研究態度においても、そして全国の国公私立大学・研究機関から萌芽的研究課題提案を広く受け入れて共同研究を行うという研究所方針においても、ボトムアップ的な形を中心に研究を推進していきたい。
2) 本研究、生理学は閉鎖的な学問ではなく、多くの異なる分野との交流によって絶えず自身を革新してゆくべき学問である。また、事実これまでの「ノーベル生理学・医学賞」の対象となった研究の多くは、異分野との交流や、異分野における研究、実験手法の導入によって成し遂げられてきた。特に最近は実験で得られるデータ量が巨大化してきており、それらを適切に扱う情報科学との共同作業が不可欠となってきている。従って、生理学や生理学研究所の将来の発展の道は、様々な異分野との交流によって切り拓かれるものと考える。今後、自然科学研究機構新分野開発センターとともに、異分野連携の全国的なネットワークを構築し、その中心拠点を担っていきたい（図5参照）。異分野連携の接点の場として、「脳タンパク質研究」や「バイオ分子センサー研究」などの分子レベルの研究分野のみならず、新しい“4次元脳・人体分子イメージング法”の開発というイメージングサイエンスの領域（図3参照）や、更に広く、”脳の形成や作動原理の解明”に広び、特に “BMI開発のための基礎研究”、“脳科学機能発現技術開発”、“社会行動神経基盤研究”、“精神精神疾患の病態理解のための基礎研究”などの脳科学研究にも求めていきたい（図5参照）。
さらに研究の発展には国内だけの連携にとどまるべきではなく、国際的研究機関の機能を一層強化してはならない。そのために、外国人教授等による国際連携部門（仮称）の設置や、アジア諸国を中心とした研究者を対象としたトレーニングコース等を実現化していく予定である。
3) 生理学研究科はヒトの脳の非侵襲的研究のために
MEG・fMRI・NIRSなどのイメージング装置を先駆け
で導入・配備して来た。これに加えて、最近、低位
相差電子顕微鏡法の開発に成功し、更にこれを発展さ
せて低位相差超高圧電子顕微鏡法の開発へと歩を進め
ている。また、2光子励起レーザー顕微鏡法を用い
て、生体内で生きたままの脳のイメージングを世界最
高深部において可能とする技術を開発し、更にこれを
発展させて人体の任意の組織・器官における生体内イ
メージングと生体機能光操作を可能とする新しい多光
子励起レーザー顕微鏡法の開発へと進みはじめている。
今後は更に、人体や動物個体の非侵襲的生体内分子イ
メージングを可能とする MRI 分子プローブの開発や、
また新たに開発された装置から得られる大量のデータ
を用いて生体の様々な信号を読み取り解読する技術の
開発も行っていきたい。これらの開発と、マルチな装
置や技術の整備とその共同利用化によって、生理学研
究所を我が国における脳・人体の生体内分子イメージ
ングの大本営として確立したい（図3参照）。
4) 生理学研究所の3つの使命の遂行が、コミュニティ
や国民からよりよく見える形で行われるように、学術
情報の発信や広報活動に力を入れて行きたい。その対
象の第1はコミュニティの研究者であり、第2は他
分野を含めた大学院生や若手研究者であり、第3は生
理学を学ぶ種々の学部の学生であり、第4は未来のサ
イエンティストを育成する初等・中等・高等学校の理
科・保健体育の教員であり、第5は納税者としての国民
である。いずれの階層をも対象とできるように、ホー
ームページを多層化して充実させ、人体と脳の働きとそ
の仕組みについての最新で正確でわかりやすい学術情
報発信をして行きたい。それらの広報をより効率的か
っ視覚的なものとするために、各種の研究・教育・技
術情報をデータベース化する取り組みを進めてい
る。更に将来的には空間軸に時間軸を加えた4次元脳
イメージングをまず構築し、それをステップにして4
次元人体イメージングの構築を目指したい。
5) 生理学研究所は、広範な生理科学分野や脳神経科学
分野の研究者コミュニティによって支えられている。
研究所運営は、これまで通りこれらの研究者コミュニ
ティの意向を踏まえて行っていく。更には、研究者コ
ミュニティによる今後の学術研究の方向やプロジェクト
の発想し、並びに新しい研究資金の獲得方法の構築な
どにおいても、生理学研究所は合意形成の場・プラッ
トホームとしての役割やハブ機能としての役割を果た
していきたい。
6) 生理学研究所の使命の遂行は、研究者のみによって
成し遂げるものではなく、技術サポートを行う人々、
事務サポートを行う人々、そして大学院生の方々など、
研究所を構成するすべての職種の人々の協力によって
はじめて成し遂げられるものである。全ての構成員が、
それぞれの職務に自覚と誇りをもしながら、お互いに
協力できる活気に満ちた職場環境を作り、広く研究者
コミュニティに開かれた運営を行っていきたい。
2 岡崎統合バイオサイエンスセンター

岡崎統合バイオサイエンスセンター（統合バイオ）は、2000（平成12）年に岡崎3研究所の共通施設として設立されて以来、新たなバイオサイエンス分野の開拓という過程のもと、質の高い研究を展開してきた。一方、この10年余りの間に、各種生物における全ゲノム配列の決定などの網羅的研究手法が大きく発展し、生物学の新たな発展の可能性が期待されている。すなわち、生命現象に関わる素子としての分子や細胞の同定を主とし、これまでの還元論的な方法論に加え、同定された分子や細胞群に関する情報を統合することにより、生命現象の本質の理解に新たに迫ることへの期待である。このことは同時に、生命という複雑な階層構造を持つ対象を各階層に分断し、それぞれを詳細に調べるという戦略に沿って進んできたこれまでの研究に対して、階層を超えたさまざまな視点からの統合的なアプローチによる研究方法の確立と展開が求められていることを意味する。

このような状況は、分子科学から基礎生物学、生理学までをカバーする幅広い分野の研究者が結集する岡崎統合バイオサイエンスセンターの存在意義をより高めるものである。また、このような学問的要請に本センターが応えるためには、生命現象を理解する上で本質的に重要ないくつかの問題について焦点を当て、それらに統合的な研究方法と組み入れるとともに、階層を超えた研究協力体制を確立することが必要である。そこで、2013（平成25）年度には、「次世代生物現象研究領域」戦略的基盤技術研究領域、生命環境研究領域の3研究領域を、「バイオセンシング研究領域」「生命環境研究領域」「生命活動研究領域」に統合研究領域へと発展的に改組した。

「バイオセンシング研究領域」では、分子から個体までのシステム構築を駆使して生活体が生命システムのダイナミズムの解明に迫るために、環境情報の感知に関わるバイオセンシング機器開発を推進する。分子、細胞や個体が環境情報を感じ知する機関は、様々な細胞種や生物種におけるバイオセンシング構造の普遍性と相違性を明らかにするとともに、センスされた環境情報を統合機能も明らかにする。そのために、バイオセンサーの構造解析やモデリング解析、進化解析も含めた多層的なアプローチを実施する。

「生命環境設計研究領域」では、生命現象の諸階層における時間と空間の規定と制御に関する仕組みを統合的に理解することを目指す。短時間で起きる分子レベルの反応から生物の進化までの多様な時間スケールの中で起きる生命現象や、分子集合体から組織・個体に至る多様な空間スケールでの大きさや空間配置の規定制御に関する仕組みを研究する。そのために、分子遺伝学、オミックスによる網羅的解析、光学・電子顕微鏡技術を活用したイメージング、画像解析を含む定量的計測、などによる研究を展開し、さらに数理・情報生物学を駆使した統合的アプローチを実施する。

「生命活動秩序形成研究領域」では、生命体を構成する多数の素子（個体を構成する細胞、あるいは細胞を構成する分子）がダイナミックな離合集散を通じて柔軟かつロバストな高次秩序系を創出する仕組みを理解することを目指す。さらに、生命システムの開発を進めるとともに、生物関係の多分野的生化学・定量生物学・数理生物学を展開し、さらに超分子科学・合成生物学を統合したアプローチを実施する。

また、それぞれの領域（プロジェクト）に対して、プロジェクトリーダーを決定し、オンライン計画研究を開発した。また、岡崎3機関との連携を強め、3機関研究者がオンラインプロジェクトに参加するオンライン公募研究を開始した。さらに、特任准教授を新たに募集・採用してオンライン特别研究を予定しているが、特任准教授の採用・着任が遅れたため現時点ではまだ稼働していない。しかし、2014（平成26）年度前半には全て開始できる状況にある。

なお、これまで統合バイオのセンター長は統合バイオの教授から選ばれていたが、大胆なセンターの改編を目指して強力なリーダーシップを発揮できるように、センター長の岡崎3機関の教授をセンター長とし、任期を1期2年、2期まで再任可とした。今年度より池中・裕生理研教授がセンター長を務めている。
3 中期計画・年度計画・評価

3.1 はじめに

生理学研究所では、下記の点検評価作業が行われている。

1. 文部科学省国立大学法人評価委員会による評価
 (a) 事業年度の業務実績に関する評価
 (b) 中期目標・中期計画期間の評価
2. 外部評価を含めた自己点検評価
3. 研究教育職員の業績調査および任期更新審査

3.2 文部科学省国立大学法人評価委員会による評価

前年度にあたる 2012(平成 24) 年度の業務実績に関する評価は、ほぼ例外通りに行われた。この評価は主に研究以外の業務の評価を行う。業務実績報告書とその付属資料は、自然科学研究機関の評価に関するタスクフォース（担当理事 藤山正雄国立天文台台長、座長 南部生理研教授、生理研教授、九州大学教授）が中心となって作成され、機関の会議で審議・改訂された後、6 月末に文部科学省に提出された。8 月 27日に文部科学省評価委員会のヒアリングが行われた。11 月 6 日付けで評価結果が公表された（評価結果の全文を第Ⅶ部 p. 191 に資料として掲載）。自然科学研究機関の評価は、「業務運営の改善及び効率化に関する目標」、「財務内容の改善に関する目標」、「自己点検・評価及び当該状況に係る情報の提供に関する目標」、「その他業務運営に関する重要目標」の 4 項目で、いずれも「中期計画の達成に向けて順調に進んでいる」(5 段階評価の上から 2 番目) という評価であった。

内容的には、機関全体の取り組みとして、目標達成に向けて機構長のリーダーシップの下、「新分野創成センター」の充実、分野間連携研究プロジェクトの推進、若手研究者の交流の支援など、「法人の基本的な目標」に沿って計画的に取り組んでいることが認められる、と評価されている。さらに、優れた人材の流動化・活性化を目指した戦略的・意欲的な計画を定めて積極的に取り組んでおり、2012(平成 24) 年度においては、新たに 102 名（うち女性 28 名、外国人 4 名）の年俸制職員（任期付）を採用しているほか、国立天文台では研究教育職員に対してプロジェクト長・センター長が活動目標を設定する達成度評価を開始するとともに、分子科学研究所では、「若手独立フェロー制度」により若手研究者を特任准教授として採用し、独立した研究室の立ち上げに係る経費を措置するなどの取組を実施していることが評価された。具体的には、公募制、内部昇格禁止、任期制、年俸制職員制度等を活用して研究教育職員の流動化・活性化を図ることにより、最先端の研究を推進するための人材の確保に取り組んでいること、国際学会論文調査会社から日本の研究機関ランキングにおいて、大学と比較して少数の研究者数でありながら、機関全体の論文の総数引用数は 167,649 件(2011(平成 23) 年度は 163,608 件)で総合 15 位、平均引用数では 18.45(2011(平成 23) 年度は 17.5)で第 3 位となり、高いレベルを達成していること、などが取り上げられた。

2013(平成 25) 年度は第 2 期中期目標・中期計画期間の 4 年目である。年度計画を第Ⅷ部に資料として掲載した。文部科学省国立大学法人評価委員会が今後行う評価については、第 2 期中期目標・中期計画期間の評価は、法律の改正がない限り今までの枠組みで行われるが、実際の業務運営はかなり軽減されている。毎年の年度評価は、報告書の記載事項が簡素化され、終了時における評価の記載が必要となる。研究業界に関しては、第 1 期に同様に大学評価・学位授与機関が評価を行うことになる予定である。評価の制度が適切に簡素化されることを研究者の負担を軽減するという観点からは好ましいことであるが、研究に関してもは 6 年間という長期の評価を一度に行うこととなり、必要なデータを着実に整理・蓄積して行く必要がある。

3.3 ミッションの再定義

2012 年 6 月、文部科学省は「大学改革実行プラン」を公表した。わが国は急激な少子高齢化や国際的な競争激化に面しており、持続的発展を求める社会を目指すには、変革を成し遂げなければならない。そのためには、急速に変化する社会における大学の機能の再構築と大学ガバナンスの充実・強化が求められる、という内容である。これに応える形で国立大学法人で「ミッションの再定義」の作業が開始された。国立大学
の動向を追って大学共用利用機関法人でも「ミッションの再定義」の作業が2012年の秋より開始された。自然科学研究機構では評価に関するタスクフォースが中心となり、各研究所が考えているミッションの取りまとめ作業を行った。ミッションの再定義の作業は一時期中断したが、その後文部科学省は各国立大学法人・大学共同利用機関法人と協議を重ねた上、2013年12月18日に、医学分野及び工学分野、2014年4月8日には理学分野、農学分野、人文科学分野、社会科学分野、4月21日には保健系分野（歯学、薬学、看護学・医療技術学）に係るミッションの再定義結果を公表した。自然科学研究機構は理学分野に分類されている。自然科学研究機構の「ミッション再定義」の抜粋を、第Ⅶ部p.199に掲載した。

3.4 生理学研究所の点検評価

本点検評価書がこれに当たる。この点検評価作業は1993年より毎年行われている。基本的には2つの内容から構成されているが、評価内容の詳細は状況に応じて変化している。その一つは、研究所全体の活動を通話、問題点の抽出と解決策の模索を行うことである。所内の研究教育職員等が課題を分担して報告書を作成し、点検評価委員会ならびに運営計算にて審議していただく。生理学研究所で行われている研究の概要および方向性を把握しやすいように、研究活動を総括する章を設けている。

もう一つは、外部評価者による研究部門の業務評価である。毎年、3研究部門の外部評価を行うので、それぞれの研究部門は4～5年毎に外部評価を受けることになる。外部評価者は、1研究部門あたり国内有識者2名、国外有識者1名を基本としている。国内の外部評価者の選択においては、日本生理学会、日本神経科学学会に推薦を依頼している。海外の外部評価者に関しては、招聘費用を考慮し、学会等で来日する有識者に依頼していることが多い。今年度は、客員教授の研究席である行動様式解析室も、当室の今後の方向性を検討するために外部評価をしていた。

3.5 研究教育職員の任期更新審査

生理学研究所では、2002年より任期制をとっているが、2004年4月の法人化の際に任期制の制度が変わったため、2004年から現在の任期制が行われている。生理の任期制は、採用される教授、准教授、助教授に適用され、任期は5年とする。任期が更新された場合は、任期を定めない採用とする。

2013年度は、生理研運営会議の委員5名（所外3名、所内2名）により構成される任期更新審査員会において、2名（准教授1名、助教1名）の審査を行った。審査対象者の研究発表を含めた委員会を開催し、審査結果を所長に報告した。

なお、これまでのいろいろな場での議論を踏まえて、2011（平成23）年6月29日付で1回目の任期更新に任期を2年と定めて更新することを可能としたが、改正労働契約法により5年間を越えての契約が困難になったことから、2年延長の制度は2012年3月31日をもって廃止された。2013年度末に大学の教員等の任期を5年より10年に延ばす法律が決定されたので、再度、早急に議論をする必要がある。

任期更新の判断基準は、明文化してウェブサイトにも掲載しているが、実際の審査では判断が難しいことがある。これまでの審査の積み重ねを活かして、今後必要に応じて、現行制度の見直しを更に検討して行くことが望まれる。

*3 平成25年12月13日法律第99号：研究開発システムの改革の推進等による研究開発能力の強化及び研究開発等の効率的推進等に関する法律及び大学の教員等の任期に関する法律の一部を改正する法律
4 共同研究等

4.1 概要

大学共同利用機関である生理学研究所は、一般共同研究、計画共同研究（必要に応じて適宜、最も重要と思われるテーマを選択して集中的に共同研究をおこなう）および各種大型設備を用いた共同利用実験を行ってい
る。別表に示すように、毎年多くの共同研究が行われており、着実な成果を挙げている。2013年度も表1に示すように計87件の一般および計画共同研究と、計43件の共同利用実験を採択し、実施した。

生理学研究所の共同利用研究のもう1つの重要な柱は生理研研究所である。2013年度は計20件が実施あるいは予定されている。岡崎3機関の中でも、生理学研究所の研究会の数は飛びぬけて多い。通常の学会とは異なり、演題が主体で発表時間と質疑応答時間が余裕を持って取られており、また少人数であるため、非常に具体的で内容的な議論が行われている。この研究会が母体になって科学研究費の研究班が構成された場合や、学会として活動を開始した場合もあり、その意義は大きい。2008年度からは「国際研究集会」が開催された。海外の研究者を招き英語で研究会を開催しており、その成果に期待が寄せられている。2013年度は、2件が実施された。

4.2 一般共同研究

「一般共同研究」と「計画共同研究」は、所内の大学及び研究機関の常勤研究者が、所内の教授または准教授と共同して行う研究であり、2013年度は合計で87件が採択された。

4.3 計画共同研究

計画共同研究は、研究者の要請に基づいて生理学研究所以が自らテーマを設定する。2007年度までは「遺伝子操作モデル動物の生理学的、神経科学的研究」と「バイオ分子センサーと生理機能」の二つが行われた。2008年度からは、「多光子励起法を用いた細胞機能・形態の可視化解析」と「位相差低速電子顕微鏡の医学・生物学応用（2011年度から「先端電子顕微鏡の医学・生物学応用」に改題）」が、2009年度からは「マウス・ラットの行動様式解析」が開始された。また、2011年度から「マウス・ラットの行動代謝解析」が、2012年度からは、「聾長類への遺伝子導入実験」、「機能生命科学における握らぎの研究」及び「脳情報の階層的研究」が新設された。さらに、2013年度からは「ウィルスベクターを用いた神経系への遺伝子導入」も新設され、また、「先端電子顕微鏡」の中に、新しく導入された連続ブロック表面走査型電子顕微鏡を使用する研究課題の採択を開始した。いずれも現在最も高い関心を寄せられている領域であると同時に、生理学研究所が日本における研究の最先端を示している分野である。多くの共同研究の申請を期待している。

一般共同研究、計画共同研究の問題点は永年続く申請課題をどのように評価するかである。2012年度にこの問題を教授会および運営委員会で話し合った結果、以下のことが決定された。2013年度分は、この決定に従って採否が決定されたものである。

1) 申請課題は5年以内に終了する計画とし、明確な目的と実施計画を求める。ただし、5年間の進捗状況によりさらに延長は可能である。

2) 申請課題名は具体的なものとし、大きなテーマではなく採択しない。

3) また、部門ごとに受け入れ件数が限る。一般共同研究：各研究部門・研究施設ごとに5件以内とすることが望ましい。計画共同研究：担当課題ごとに5件以内とすることが望ましい。

計画共同研究の詳細は、次回の報告である。

1.「遺伝子操作モデル動物の生理学的、神経科学的研究」

生理学及び脳科学の研究を推進する上で個体レベルでの解析は重要であり、遺伝子操作モデル動物は非常に有効な実験材料となる。モデル動物開発のための発生工学技術の革新は近年とくに目覚ましく、日々、発展・進歩を遂げている。生理学・脳科学及び発生工学の両方に精通した行動・代謝分子解析センター 遺伝子改変動物作製室が遺伝子操作モデル動物の作製技術を全国の研究者に提供することは、他機関の同種事業に比べても当該研究分野の発展に大きく貢献できる。共同利用研究に供するため、ラットとマウスにおいて、トランスジェニック (TG) 動物やノックアウト（KO）動物のような有用モデルの開発を支援している。2013年度
は所外 6 件、所内 4 件の計画共同研究を行い、Tg マウス 4 系統、KO マウス 16 系統を作製し共同研究先へ提供した。最近、ジンクフィンガヌクレアーゼ（ZFN）や TAL エフェクタヌクレアーゼ（TALEN）を利用したゲノム編集（任意の遺伝子の補入や欠失）の成功率が、哺乳動物や培養細胞において報告され、標的配列の選択が可能であることから次世代の KO/KI 作製技術として注目されている。同作製室においても、迅速的かつ効率的に KO 個体を作製する目的で、ZFN や TALEN を利用した新しいゲノム編集技術による KO ラット・マウスの作製に取り組み、数種類の遺伝子を対象にその欠失効果を検証した。2014 年度からは、これらの技術を用いて迅速的かつ内在性遺伝子を変換したラットとマウス個体を提供できると考えている。

2. 「マウス・ラットの行動模式解析」

遺伝子変換動物を用いて、遺伝子と行動を直接関連づけられることが明らかとなった。このような研究においては多種類の行動実験を一定の方法に則って再現性よく行うことが要求される。このような実験を各施設で独立して行うことは極めて困難であり、無験が多い。生理学研究では動物の行動模式のシステムティックな解析を全国の共同利用研究に供するため、行動・代謝分子解析センターに行動模式解析室を立ち上げ 2009 年度から計画共同利用研究「マウス・ラットの行動模式解析」を継続して行っている。将来的にはラットの解析を行う予定であるが、現在はマウスの解析を実施している。

2013 年は、地震工事のため一時移転していた山手地区より明大寺地区への再移転があった。移転作業中はマウスを維持することができなかったため一部のマウスについては連携先の藤田保健衛生大学へ移動して実験を継続するなどの対応を行った。本年度は、研究所外 10 件、所内 1 件の共同研究を行った。マウス系統数としては、6 系統のマウスに対して綿綿の行動テストバッテリーによる解析を行ったのに加え、7 系統の遺伝子変換マウスあるいは薬物投与マウスについて、複数の行動テストによる解析を行った。また、行動様式解析室では、脳情報基盤センターの支援を受け、論文出版されたマウス系統の行動データを登録するマウス表現型データベースを運営している。このデータベースには、これまでに 46 系統、3492 匹分のデータが登録されている。さらに、このデータベースのウェブサイトでは行動解析用のソフトウェアを公開している。本年度は明暗選択箱（ImageLD, Takao et al., JoVE 2006）、T 字型迷路（InateTM, Shoji et al., 2013）および恐怖条件づけ（ImageFZ, Shoji et al., in press）に対応した行動解析用のソフトウェアを新たに無償公開した。各ソフトウェアは以下の URL から入手することが出来る：URL4。これらのソフトウェアを利用することで、取得画像に基づいた客観的な行動評価が手軽に行えるようになり、行動解析の効率化・標準化が進むことが期待される。

3. 「マウス・ラットの代謝生機能解析」

代謝生理解析室では、2010 年に発足、2011 年より計画共同研究「マウス・ラットの代謝生機能解析」を開始した。同室では、生理研究の研究者が作成、保存する遺伝子変換動物を用いて以下の項目を測定している。

1) 運動系を中心とした覚醒下での単一ニューロン活動などの神経活動の計測。

2) 自由行動下における脳内特定部位での神経伝達物質の分泌計測。

3) フラビン及びヘモグロビン由来の内因性シグナルを利用した脳領域活動と膜電位感受性色素を用いた回路活動のイメージング。

4) 自由行動下における摂食、エネルギー消費の計測。

5) 自由行動下における体温、脈拍数、血圧の計測。

本年度は、外部機関と 8 件の共同研究、生理研究室において 1 件の共同研究を実施した。成果を順調に発表されている。しかし、遺伝子変換動物では代謝・生機能に多くの変化が観察されるにもかかわらず、その解析は個別実験の検討に留まっている。今後、これらの変化を統合的に解析し、共通の分子基盤を明らかにする解析システムの開発が課題である。

4.「先端電子顕微鏡の医学・生物学応用」

細胞や組織標本のナノスケールの超微細構造観察を行うためには、電子顕微鏡を用いた電子顕微鏡が必要である。しかし、従来の電子顕微鏡法には大きく 2 つの弱点が存在する。①サブミクロン以下の非常に薄い試料でないといけないことと、②生（なま）の状態では観察できないことである。本計画共同研究では、他に類のない最先端の電子顕微鏡技術を用いてこれらの弱点を克服し、先進的構造研究を国内外で公募して推進する。その核となる先端機器が、連続ブロック面走査型電子顕微鏡（以下 3D-SEM）と低温位相差電子顕微鏡（以下位相差顕微）である。

*4 http://www.mouse-phenotype.org/software.html
3D-SEM は、ウルトラミクロトームを備えた走査型電子顕微鏡で、現在、欧米地区を除けば生理研究にしか用いられていません。これは、試料を含む樹脂ブロックの表面をダイヤモンドナイフで削りながら、その表面に現れる像を連続的に自動で記録する装置で、これまで厚くて解析できなかった細胞内の二次元構造や生理回路網の様子を立体的に可視化することができる。一方、低温相差電子顕微鏡は、生理学研究所で独自開発された電顕用 Zernike 位相板を用い、無染色・無固定の生（なま）に近い状態の生物試料に十分な位相コントラストを与えることで、1 nm 以下の分解能で構造解析する。本年度は、3D-SEM の課題が 8 件、位相差電顕の課題が 4 件採択して実施した。

「多光子励起法を用いた細胞機能・形態の可視解析」
2 光子励起蛍光顕微鏡システムは、非侵襲性で組織深部の微細構造を観察する新しい方法である。近年、光学メーカー各社が 2 光子システムを販売したことにより、国内外で急速に導入が進んでいる。しかしながら、2 光子顕微鏡システムを使うに当たり、顕微鏡システムだけでなく特殊な試料処理や試験が必要なケースが殆どである。このような事情から、顕微鏡システムだけでなく、試料準備やプローブ選択を含めた高度な技術提供ができる生理学研究が、共同利用可能な機能としては国内随一となっている。現在、3 台の 2 光子励起顕微鏡 (in vivo および組織切片実験用) と 2 台の 2 光子蛍光寿命イメージング顕微鏡が安定的に稼働している。その性能は世界トップクラスであり、レーザー光学系の独自の改良により、生体脳において約 1 ミリメートルの深部構造を 1 ミクロメートル以下の高解像度で観察できることのみならず、分子間の相互作用や活性化をイメージングすることも可能となる。このほかに、Q dot を利用した 1 分子イメージング観察システムの導入も可能になっており、蛍光顕微鏡を利用した多彩なイメージングの共同研究への供与に取り組んでいる。

特に、これまでに、生体内 Ca²⁺ イオンイメージング技術の確立および同一個体・同一微細構造の長時間繰り返し観察の技術の確立に成功しており、これらを利用し、脳、血管、骨組織における生体分子や細胞の可視化について共同研究を実施している。その他、生体常温機能発達機構研究部門及び多光子顕微鏡室が研究部門での共同研究を受け入れている。本年度は 3 件の計画共同研究を行った。さらに、将来の共同研究の可能性を検討するための予備実験を 7 件行った。また、多光子励起顕微鏡システムの購入・自作の相談、および共同研究の可能性についての詳細な相談を多数行った。また、多光子励起顕微鏡システムの見学には 20 件を超える来所者があった。

今後は更に共同研究申請数の増加が見込まれるが、顕微鏡、および研究レベルを世界最高レベルに保つために、共同研究に対応できる人員と維持管理費の確保および高精度画像処理システムの構築を行うことが大きな課題である。

6. 「雲長類への遺伝子導入実験」
ウイルスベクターを用いて雲長類の脳に遺伝子を導入し、機能分子の発現を制御したり神経活動を変化させる技術は有望であり注目されている。しかしこのような研究を遂行するには、ベクターの開発、ベクター注入のための実験室など、多くの技術、設備を要する。これらの技術、設備を共同利用に供することにより、高次脳機能やその病態の解明を目指し、2012 年度から計画共同研究を開始した。

2013 年度は 5 件の計画共同研究を行っている。前年度より開始されている「PET 分子イメージングによる雲長類脳遺伝子発現抑制実験におけるターゲット蛋白の発現変化、発現部位の非侵襲測定法の構築」では、プロマーセットを用い、ウイルスベクターを用いた RNA 干渉による遺伝子発現抑制を PET で観察する実験を継続・発展させた。「光遺伝学的手法によるマカップサルニューロン活動の操作法開発」については、サル運動の光遺伝学的制御効果を解析した。この「オープンデータ・ファクトリックスを用いたマカップサル感覚運動機能の解析に関する基盤的研究」はその前段階でのウィルスベクターの動作を確認した。さらに遺伝子変化サルモデルの用いた大脳基底核の機能と病態の解明「マカップサル運動皮質損傷後の機能回復にともなう代償的運動出力経路の解明」については、年明けに実験が計画されている。

7. 「機能生命科学における挙ざりの研究」
機構の「自然科学研究における国際的学術拠点の形成」プロジェクトの一つとして、生理研究が主として担当する「機能生命科学における挙ざりと決定」が開始された。
その目的は以下の通りである。ヒトの意思決定や進化をイメージすると「安定・平衡を保つこと」と「時折変わることを持つこと」の両方が重要である。「挙ざり」は、「安定」と「時折の変化」の両方を可能とする有効
なシステムと考えられる。本プロジェクトでは、単分子、多分子相互作用系から細胞系、生体システムまでの世界を「揺らぎと決定」というキーワードで捉え、生命の各階層に存在する揺らぎを知り、また揺らぎの果たす役割を明らかにすることにより、機能生命科学における「決定とその跳舞」に関する原理を探究。これにより、生体機能分子の揺らぎとそれらの相互作用がいかにして複雑な生命現象を生み出し、そして究極的にはヒトの思索の創発をもたらすのか等の理解を目指す。2013年度は、新たに、統合バイオサイエンスセンターの1研究室の参加を得て、活動を行った。
また、このプロジェクトの一貫として、2012年度より計画共同研究「機能生命科学における揺らぎの研究」を開始し1課題を探択したが、2013年度はその規模を拡大し、3課題を探択して実施した。

8.「脳情報の階層的解析」
本課題は、自然科学研究機構事業「自然科学研究における国際拠点形成」の中で生理学研究所が担う2課題のうちの1つとして2010年度から開始された。目的は、人や各種モデル動物を用いて分子一細胞一回路一脳の階層をつぎながら脳神経系の情報処理過程について研究を行なう。そのために、イメージングなどの階層レベルの動物のシュミレーションに近い実験の手法を用いて、脳神経の情報処理機能を、脳の構造と機能の相関として明らかにする。さらに、各国の研究者との交流を通じて、脳の情報処理の理解を推進する国際拠点を形成する。2013年度は生理研における7部門、室と生理研外の研究室（基生研、分子研）に参加。また、著名な海外研究者の招聘と生理研究者の海外派遣を行った。機構外からの招聘研究者を含めてシンポジウムを開催した。2012年度から、計画共同研究を実施している。

9.「ウイルスベクターを用いた神経系への遺伝子導入」
ウイルスベクター開発室は、2012年度に新設された研究室であり、各種血清型のアデノ関連ウイルスベクター、従来のレンチウイルスベクター、神経系特異的な機能操作を可能にする高密度逆伝達レンチウイルスベクターなどを提供することによって、共同研究を推進している。また、より有用な新規ウイルスベクターを開発するための共同研究にも取り組んでいる。
2013年度は、理学研究所内外の研究室に延べ数で100件を超えるウイルスベクターの提供を行い、現在、共同研究を推進しているところである。すでに、非常に興味深い研究結果が得られつつある共同研究も出て来ており、来年度のさらなる進展が期待される。また、2件の計画共同研究を行い、こちらに関しても興味深い研究結果が得られつつある。
今後は、本研究室で大量精製された高品質なウイルスベクターをより多くの研究機関に提供することによって、さらに活発な共同研究を推進する予定である。

4.4 研究会
研究会も毎年件数は増加しており2013年度は20件が採択され約1,000名の研究者が参加した。各研究会では、具体的なテーマと絞った内容で国内の最先端の研究者を集め活発な討論が行われており、これをきっかけとして新たな共同研究が研究所内外で進展したり、科学研究費助成金「特定領域」「新学術領域」が発足したりすることも多い。たとえば、1994〜1996(平成6〜8)年に「グリア研究若手の会」として行われた研究会はその後、特定領域(B)「グリア細胞による神経伝達調節機能の解明」へと繋がり、その後「グリア神経回路網」の特定領域と発展した。また、バイオ分子センサー関係の生理研研究会が2008年度から発足した特定領域研究「セルセンサー」に繋がった。この他、毎年行われるいわゆるシンポジウム研究会や痛みに関する研究会、それぞれの日本の研究者コミュニティを形成する上で大いに役立っている、新分野の創成にも貢献している。
研究会に関しても同じ内容で毎年開催されることが多い事情について論議された。その結果、2013年度開催申請分から下記の共催要項の下記部分を改訂した。2014年度分についても同様な基準で審査を行って、採否を決定する予定である。
1) 研究会：本研究会をとおして、新分野の創成と新技術の創出を目指す比較的小人数(100名程度以内)の研究討論集会で、メンバーのうち少なくとも1名は理学研究所の教授又は准教授の参加が必要です。
2) 期間：3日間を限度として。
3) 開催場所：自然科学研究機構岡崎地区において実施していただきます。なお、岡崎コンファレンスセンターを利用することが可能です。
4) 研究報告書：研究会終了後、30日以内に提案代表者から所長へ提出していただきます。
5) その他：同一課題の研究会の継続は、3年で見直し、さらに継続をご希望される場合は、討論内容に新たな展開があることを求めます。
4.5 国際研究集会

生理学研究所研究会のより一層の国際化と充実を図るため、2008年度から海外の研究者を数名招待して、英語による研究集会、「国際研究集会 (NIPS International Workshop)」を新たに設置し、広く募集を行った。2013年度は「Frontier of Cognitive Neuroscience Mechanisms of Metacognition」および「大脳皮質神経回路の機能的作動機構」の2件を採択し、活発な議論とともに国内外研究者の密な交流の場を提供した。

「Frontier of Cognitive Neuroscience Mechanisms of Metacognition」は2013年10月18 - 19日に岡崎コンファレンスセンター中会議室で開催された。3人の海外からの講演者および5人の国内からの講演者を招待し、合計58人の参加者で活発な議論が行われた。メソ認知というテーマについてさまざまなバックグラウンドを持つ講演者を選定し、その結果として、比較的認知、オルタネーション、脳機能イメージング、連合学習理謳などの分野からの講演が行われた。国際研究集会の終了後に参加者にアンケートを採ったところ(回答率55%)、95%の回答者が講演内容を「たいへん素晴らしい」「素晴らしい」と回答し、好評であったことが明らかになった。

4.6 超高圧電子顕微鏡共同利用実験

生理学研究所では共同利用大型機器の一つとして国内唯一の医学・生物学専用超高圧電子顕微鏡(H-1250M)を設置し、これを利用した共同利用実験を国内外から募集し実施している。加速電圧1000kVの超高圧電子顕微鏡は分解能が高いことに関じて、数ミクロンを越える厚い試料の観察が可能であるため、神経細胞間の入出力や細胞内小器官の形態を試料を傾斜させることによって三次元的に構造解析することができる。凍結した試料の直接観察も可能である。昨年度からはこれにデジタルカメラが導入され、トモグラフィーによる三次元解析、凍結試料によるクリオ観察が効率よく行えるようになった。現在この性能を生かして、「神経細胞構造の三次元解析」「生物試料の高分解能観察」「生物試料の自然状態における観察」の3つのテーマで共同研究を推進している。運用開始以来全利用日数の半数を所外からの研究者が使用しており、1,000kV級超高圧電子顕微鏡の医学生物学領域におけるセンター的役割を果たしている。本年度は海外からの3課題を含む17件の課題が採択され実施されている。

4.7 生体機能イメージング共同利用実験

生理学研究所の大型生体機能イメージング機器は磁気共鳴装置と脳磁場計測装置があり、2011年度までにはそれぞれ独立して共同利用実験申請を受け付けて審査していた。しかし、両方の機器を使用する利用者が多いこと、また審査を共通する方が効率的であることから、2012年度からは両共同利用実験を統合して生体機能イメージング共同利用実験とすることが決定された。

磁気共鳴装置については「生体内部の非破壊三次元観察」と「生体活動に伴う形態及びエネルギー状態の連続観察(含む脳活動検査)」というそれぞれの研究テーマを設定し募集している。現在の装置は2000(平成12)年に導入されたもので、3テスラという高い静磁場により通常の装置(1.5テスラ)に比較して2倍の感度をもち、特に脳血流計測による脳機能活発実験においては圧倒的に有利である。また、特別な仕様を施してサルを用いた脳活動実験をも遂行できるようにした等、他施設にない特色である。さらに、実験計画、画像データ収集ならびに画像統計処理にいたる一連の手法を体験的に整備しており、単に画像撮影装置を共同利用するにとどまらない、質の高い研究を共同で遂行できる環境を整えて、研究者コミュニティのニーズに応えようとしている。2010年度には2台を動かせ、コミュニケーション時の脳活動を計測可能なdual systemを導入し、社会脳の研究への適用条件を吟味した上で共同利用研究を積極的に行っている。さらに、2012年度補正予算により超高磁場(7テスラ)ヒト用磁気共鳴装置の導入が決定され、設置プロセスが進行中である。高い静磁場のもたらす高解像度画像により新たな研究分野の開拓が期待されている。

生理学研究所は1991(平成3)年に37チャンネルの大型脳磁場計測装置(脳磁計)を日本で初めて導入されて以来、日本における脳磁図研究のパイオニアとして、質量共に日本を代表する研究施設として世界的な業績をあげてきた。同時に、大学共同利用機関として、脳磁計が導入されていない多くの大学の研究者が生物学研究所の脳磁計を用いて共同利用研究を行い、多くの成果をあげてきた。現在、脳磁計を共同利用機器として供用している施設は、日本では生理学研究所のみである。2002(平成14)年度には基礎脳科学研究用に特化
した全頭型脳磁計を新たに導入し、臨床検査を主業務として使用されている他大学の脳磁計では行い得ない高レベルの基礎研究を行っている。今年度は、2013(平成25)年度補正予算で、データ取得・解析を行うコンピュータシステムの更新が認められたため、最新のソフトウェアとハードウェアを近く導入する予定である。時間分解能、空間分解能を飛躍的に高められると期待される。脳磁図の有する高い時間分解能という最大の長所をさらに改良し、無意識下(サブリミナル)での脳機能活動の解析を進めていく予定である。脳磁計を用いた共同利用研究としては「判断、記憶、学習などの高次脳機能発現機序」「感覚機能及び随意運動機能の脳磁場発現機序」という2つの研究テーマを設定し募集している。また今後は、他の非侵襲的検査手法である、機能的磁気共鳴画像(IMRI)、經頭蓋磁気刺激(TMS),近赤外線スペクトロスコピー(NIRS)との併用をいかに行っていくことが重要となると考えられる。
<table>
<thead>
<tr>
<th>年度区分</th>
<th>一般共同研究</th>
<th>計画共同研究</th>
<th>研究会</th>
<th>国際研究集会</th>
<th>超高速電子顕微鏡共同実用実験</th>
<th>生体機能イメージング共同利用実験</th>
<th>環境共創装置共同利用実験</th>
<th>生体磁気計測共同利用実験</th>
<th>特別プロジェクト</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002年</td>
<td>探索件数</td>
<td>33</td>
<td>4</td>
<td>20</td>
<td>11</td>
<td>1,116,280</td>
<td>1,777,100</td>
<td>2,030,420</td>
<td>847,040</td>
<td>26,241,620</td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>206</td>
<td>17</td>
<td>470</td>
<td>26</td>
<td>50</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>11,091,700</td>
<td>975,080</td>
<td>10,100,000</td>
<td>1,116,280</td>
<td>1,777,100</td>
<td>1,200,000</td>
<td>2,030,420</td>
<td>847,040</td>
<td>26,241,620</td>
</tr>
<tr>
<td>2003年</td>
<td>探索件数</td>
<td>28</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>16</td>
<td>5</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>233</td>
<td>33</td>
<td>364</td>
<td>30</td>
<td>79</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,800,000</td>
<td>1,312,740</td>
<td>9,199,100</td>
<td>1,120,000</td>
<td>2,130,000</td>
<td>1,200,000</td>
<td>24,581,840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004年</td>
<td>探索件数</td>
<td>28</td>
<td>1</td>
<td>21</td>
<td>12</td>
<td>16</td>
<td>5</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>194</td>
<td>41</td>
<td>271</td>
<td>27</td>
<td>90</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,406,000</td>
<td>2,285,000</td>
<td>8,500,000</td>
<td>1,120,000</td>
<td>2,130,000</td>
<td>1,200,000</td>
<td>24,614,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005年</td>
<td>探索件数</td>
<td>24</td>
<td>29</td>
<td>26</td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>201</td>
<td>126</td>
<td>439</td>
<td>29</td>
<td>42</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>856</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,453,040</td>
<td>6,117,180</td>
<td>10,650,000</td>
<td>1,304,800</td>
<td>2,046,020</td>
<td>1,352,000</td>
<td>30,922,540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006年</td>
<td>探索件数</td>
<td>26</td>
<td>10</td>
<td>21</td>
<td>12</td>
<td>16</td>
<td>5</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>194</td>
<td>41</td>
<td>271</td>
<td>27</td>
<td>90</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,607,554</td>
<td>3,690,802</td>
<td>11,500,000</td>
<td>1,639,180</td>
<td>1,520,440</td>
<td>1,404,400</td>
<td>29,421,836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007年</td>
<td>探索件数</td>
<td>25</td>
<td>13</td>
<td>26</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>212</td>
<td>108</td>
<td>449</td>
<td>41</td>
<td>45</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>934</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>7,658,620</td>
<td>1,983,710</td>
<td>10,769,300</td>
<td>1,562,180</td>
<td>357,720</td>
<td>1,040,000</td>
<td>23,371,530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008年</td>
<td>探索件数</td>
<td>25</td>
<td>30</td>
<td>26</td>
<td>12</td>
<td>16</td>
<td>7</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>204</td>
<td>124</td>
<td>495</td>
<td>41</td>
<td>45</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,355,910</td>
<td>5,118,530</td>
<td>11,926,400</td>
<td>1,959,040</td>
<td>2,975,400</td>
<td>1,069,446</td>
<td>33,145,766</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>4,500,000</td>
<td>4,200,000</td>
<td>-</td>
<td>-</td>
<td>650,000</td>
<td>650,000</td>
<td>350,000</td>
<td>10,350,000</td>
<td></td>
</tr>
<tr>
<td>2009年</td>
<td>探索件数</td>
<td>27</td>
<td>37</td>
<td>25</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>186</td>
<td>114</td>
<td>422</td>
<td>32</td>
<td>53</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>8,603,200</td>
<td>6,272,913</td>
<td>10,079,660</td>
<td>2,225,400</td>
<td>1,923,024</td>
<td>938,140</td>
<td>32,851,417</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>5,400,000</td>
<td>5,550,000</td>
<td>-</td>
<td>-</td>
<td>750,000</td>
<td>550,000</td>
<td>350,000</td>
<td>12,500,000</td>
<td></td>
</tr>
<tr>
<td>2010年</td>
<td>探索件数</td>
<td>24</td>
<td>32</td>
<td>22</td>
<td>13</td>
<td>21</td>
<td>6</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>165</td>
<td>127</td>
<td>365</td>
<td>36</td>
<td>75</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>8,456,670</td>
<td>7,617,008</td>
<td>10,788,180</td>
<td>3,422,100</td>
<td>2,995,060</td>
<td>912,740</td>
<td>750,000</td>
<td>35,691,758</td>
<td></td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>4,950,000</td>
<td>7,156,000</td>
<td>-</td>
<td>-</td>
<td>1,050,000</td>
<td>750,000</td>
<td>300,000</td>
<td>-</td>
<td>14,206,000</td>
</tr>
<tr>
<td>2011年</td>
<td>探索件数</td>
<td>41</td>
<td>43</td>
<td>23</td>
<td>19</td>
<td>16</td>
<td>7</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>187</td>
<td>151</td>
<td>386</td>
<td>10</td>
<td>98</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>939</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>8,654,774</td>
<td>8,714,130</td>
<td>11,982,360</td>
<td>450,000</td>
<td>3,035,450</td>
<td>3,759,700</td>
<td>1,246,160</td>
<td>450,000</td>
<td>38,292,574</td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>4,950,000</td>
<td>6,942,000</td>
<td>-</td>
<td>-</td>
<td>850,000</td>
<td>950,000</td>
<td>350,000</td>
<td>-</td>
<td>14,042,000</td>
</tr>
<tr>
<td>2012年</td>
<td>探索件数</td>
<td>42</td>
<td>44</td>
<td>21</td>
<td>18</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>183</td>
<td>158</td>
<td>356</td>
<td>15</td>
<td>70</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>912</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>9,246,760</td>
<td>10,541,760</td>
<td>10,127,680</td>
<td>750,000</td>
<td>3,250,714</td>
<td>6,314,550</td>
<td>-</td>
<td>-</td>
<td>40,231,464</td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>5,700,000</td>
<td>9,952,000</td>
<td>-</td>
<td>-</td>
<td>900,000</td>
<td>1,400,000</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>2013年*</td>
<td>探索件数</td>
<td>34</td>
<td>53</td>
<td>20</td>
<td>2</td>
<td>17</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>共同研究参加人員</td>
<td>171</td>
<td>162</td>
<td>298</td>
<td>19</td>
<td>92</td>
<td>92</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>消費予算実績</td>
<td>7,372,710</td>
<td>10,697,270</td>
<td>8,783,860</td>
<td>1,560,000</td>
<td>3,007,200</td>
<td>4,375,910</td>
<td>-</td>
<td>-</td>
<td>35,740,550</td>
</tr>
<tr>
<td></td>
<td>消耗費配分額</td>
<td>4,950,000</td>
<td>11,302,000</td>
<td>-</td>
<td>-</td>
<td>850,000</td>
<td>1,200,000</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

*2014年３月１日現在
5 機構内研究連携

5.1 新分野創成センター

5.1.1 イメージングサイエンス研究分野
現在、バイオイメージングおよびそのデータ解析は生命科学にとって不可欠な手法となりつつある。しかしそ先端的顕微鏡は高価であることなどから大学等研究機関では部局内に施設（室）を設置し、共通利用することが一般的となっている。しかしながら、顕微鏡の開発は日進月歩であり、最先端研究の維持・発展に必要な機能更新は、予算面からままならないのが現状となっている。また、複雑な生物体の事象を数値的、定性的に理解するためには、様々な画像処理理論に基づくデータの解析が必須となるが、個々の施設で、画像取得から解析までの諸過程を一貫して行うことは事実上困難な状況であるといえる。効率的な研究発展のためには、各々のバイオイメージング施設の機能を強化することのみならず、各施設の特徴を生かし、それぞれの機能を相補するような、全国的なネットワークの形成が必要とされている。自然科学研究機構・新分野創成センター・イメージングサイエンス研究分野においては、生物学、医学科等、複数の研究分野を横断する、新規の画像解析概念やアルゴリズムを創出する機会となることを目指して、イメージング手法の開発やMathematical morphologyなどの定量化または、可視化技術研究が進められている。そこで、現段階での主たる大学等バイオイメージング研究施設の担当者およびユーザを対象として、新分野創成センターをコアとしたバイオイメージング施設の連携ネットワーク構築に向けた情報・意見交換会（全国大学等バイオイメージング連携体制の今後のあり方を考える会）を開催した（2014年3月5日〜3月6日、岡崎コンファレンスセンター）。今回は、第1回目として、施設の管理・運営に関する問題点、画像処理・解析技術に対するニーズや課題、さらにはユーザへの計測手法や開発技術の提供方法等について、現状把握ならびに情報共有を行い、将来的なネットワーク構築の必要性について議論を行った。

5.1.2 プレインサイエンス研究分野
脳神経科学の研究対象や研究手法が多様になってきており、新しいコンセプトの研究テーマが今後も生まれる状況となっている。こうした流れについて、全国の様々な視点を持ち研究者が集まるプレインスリーニングの場を形成するために、理研多機能元共同脳科学推進センターと自然科学研究機構新分野創成センターがイメージング研究分野の連携による脳科学新分野探索フォーラムを企画・実施している。【共同脳科学推進センター、p.35参照】

プレインサイエンス研究分野では、こうした新しいコンセプトの探索の中から、主にヒトの高次脳機能や精神・神経疾患にゲノムもしくは遺伝子がどのように関与するかを明らかにしようとする研究分野として「認知ゲノミクス」に着目し、それに対応してその取り組みを実施している。その取組の一つとして、プレインサイエンス研究分野の福興広務担当教授は理研研究所において、マクサル100個体の全エキゾン配列の配列解読や表現型解析を行い、早老症様、自閉症様、多系統萎縮症様の表現型を有していると考えられる3個体や、ヒトの神経疾患等に関与している遺伝子候補に対応する遺伝子の変異を有する家系などを見出している。

一方で、自然科学研究機構若手研究者による分野間連携研究プロジェクト（平成25年度）年度採択分「ヒト精神・神経疾病病態解明を目指した脳組織の構造・機能の解析」の研究者で、国立精神・神経センターの株式会社の担い手のうちの1人である藤原義信（国立精神・神経センター）が実施している。藤原義信は、ヒト脳との形態的・機能的類似性を持ち高次認知機能課題の遂行に優れており、マクサル、また、高度の社会性・認知機能を有し、かつ世代間の差異や個体差を対象として、がっせん類のヒトでも行えないエピデンスベースの因果関係の解明を目指した脳組織の形態・機能モデルの作成を行う事を目的としている。

2013年（平成25年）年度は、第1回（2013年9月30日〜10月1日）と第2回（2014年3月29日）「脳組織認知ゲノミクス」ワークショップを理研にて開催した。
5.2 自然科学における国際的学術拠点域形成

5.2.1 脳神経情報の階層的研究

機構の中期目標の1つとして開設した「自然科学における国際的学術拠点域形成」プロジェクトの一つとして「機能生命科学における摂ぎと決定」とともに「脳神経情報の階層的研究」を生理学が中心となり実施している。今年度は4年目にある本研究の概要を以下に記載する。

生理学は人や各種モデル動物を用いて分子-細胞-回路-脳の階層をつなぎながら脳神経系の情報処理過程について研究を行っている。しかし、階層間のギャップを埋めるほどの異なる手法間の相関はまだ十分にとれていない。本提案では階層レベルをシームレスにつなぐ実験的手法を開発し、脳神経情報過程を、脳の構造と機能の相関として明らかにすること。これらの研究は、新たな手法の開発や、若き自由な発想を取り入れた体制が必要とされる。そこで、生理学研究所とアジアを中心とした各国（中国・韓国・インド・ウズベキスタン、タイなど）の大学との間で学術交流協定を締結しており、日本がアジア内で指導的立場になることが求められており、生理学一般を含めて国際学術拠点形成を行う。

今年度は、2013(平成 25)年 10 月 10～11 日研究連携協定締結機関であるドイツ国 Tübingen 大学から 11 名の教授・研究員・大学院生が来日し、改訂版が発行された明大寺地区生理学研究一際会議室において 3rd NIPS/CIN Joint Symposium を開催し非常に活発な議論が行われた。さらに、日独間の雲大類研究の交流協力体制の強化、本シンポジウム終了後、10 月 12 日に京都大学雲大類研究所の説明を受け、その後、3 研究機関の主要研究者による「日独における雲長類研究の現状と連携強化フォーラム」を自由討論方式で開催した。活発な議論が行われ、今後大学院教育の連携も視野に入れた幅広い機関交流を目指すことになった。

2013(平成 25)年 10 月 21～22 日には、同様に研究連携協定締結機関であるタイ王国チュラロンコン大学薬学部を生理学から教授・研究教育職員、研究員および大学院生計 12 名が訪問し、1st CU-NIPS Symposium: Frontier in Physiological Sciences Research: From Basic Research to Diseases and Treatments が開催された。生理学からの参加者全員の講演発表とチュラロンコン大学を中心にタイ国の神経科学や脳科学リサーチナビゲーションに携わっている研究者の講演が行われ、同大学の大学院生や学部学生も多く参加し、非常に活発な交流が行われた。次回は日本での開催を予定している。

加えて、昨年同様、生理学および所外から本目的の趣旨に合致した研究課題公募を行い、生理学から 7 課題、基礎生物学研究所から 2 課題、および分子科学研究所から 1 課題を採択し、研究を開始した。各研究課題名と参画研究室は以下の通りである。

また、本プロジェクトを国際的に推進するために、共同研究のための海外派遣支援、および最先端の外国人研究者の招聘支援の公募を行い、外国人招聘 3 件、海外派遣 1 件を採択した。

さらに、2014 年 2 月 27 日に本研究課題参画者による研究成績報告および、所外研究者による招聘講演を行った。（プログラムを第 VI 部 p.171 に掲載。）

1. 採択した研究課題

(生理学研究所)

・「各種神経イメージング手法を用いた顔認知機構の解明」感覚運動調節研究部門（柿本隆介教授研究室）
・「新皮質抑制細胞による興奮性階層結合の制御」大脳神経回路論研究部門（川口泰雄教授研究室）
・「脳神経情報の階層的研究：複数個体同時行動計測並びに神経活動計測による個体間相互作用の神経基盤解明」心理生理学研究部門（定藤規弘教授研究室）
・「二重感染体による選択的な遺伝子導入法を用いた特定神経回路の機能解明とその操作」認知行動発達機構研究部門（伊佐正教授研究室）
・「位相差電子顕微鏡による AMPA 型グルタミン酸受容体機能構造の可視化」形態情報解析室（村田和義教授研究室）
・「大脳皮質の活動依存的再編機構の解析」神経分化研究部門（吉村由美教授研究室）
・「慢性疼痛形成にかかわる大脳皮質感覚野の神経回路再編メカニズムの解明」生体恒常機能発達機構研究部門（風間泰一教授研究室）

(基礎生物学研究所)

・「大脳運動野における情報処理の階層的研究」光脳回路研究部門（松崎政紀教授研究室）
・「高速・広視野・深部視察を可能にする光シート顕微鏡 2 光子 DLSL の開発」時空間制御研究室（野中茂紀教授研究室）

(分子科学研究所)

・「生体接着に向けてのマイクロチッププレーザーの最適化」先端レーザー研究部門（平野拓志教授研究室）
2. 採択した短期派遣外国人研究者
 - Douglas P. Munoz 教授 (Queen’s 大学 カナダ)(伊佐正教授研究室)
 - Thongchai Sooksawate 博士 (Chulalongkorn 大学 タイ王国)(伊佐正教授研究室)
 - Desdemona Fricker 博士 (Pierre et Marie Curie 大学 フランス)(川口泰雄教授研究室)

3. 採択した短期海外派遣者
 - 窪田芳之 (准教授 大脳神経回路研究部門)(Pierre et Marie Curie 大学 R. Miles 教授研究室)

5.2.2 機能生命科学における揺ざぎと決定
2010年度より、機能「自然科学研究における科学的学術論点の形成」の第一として、「機能生命科学における揺ざぎと決定」を主導が実施することとなった。その目的は以下の通りである。

ヒトの意思決定や進化をイメージすると「安定・平衡を保つこと」と「時折変わるとすることができる」の両方が重要である。「揺ざぎ」を用いた実証的な決定プロセスは、一見日常で無視が多いもののように見え、実は、「安定」と「時折の変化」の両方を可能とする有効なシステムであると考えられる。このプロジェクトでは、未解明、多分子相互作用系から細胞系、生体システムまでの世界を「揺ざぎと決定」というキーワードで捉え、生命の各階層に存在する揺ざぎを知り、また揺ざぎの果たす役割を明らかにしてことにより、機能生命科学における「決定とその跳躍」に関する原理を突く。これによって、生体機能分子の揺ざぎとそれらの相互作用がいかにして複雑な生命現象を生み出し、そして究極的にはヒトの意思の創発をもたらすのかを理解することを目指す。

4年目となる今年度は以下の活動を実施した。(1) 統合バイオ (生理研) からの参加を拡張し、以下に記すように、このプロジェクトの趣旨に合致する研究課題を生理研から 12 課題、岡崎統合バイオから 2 課題、基生研から 1 課題、分子研から 2 課題の合計 12 課題を採択した。そして、外国人客員教授を含む外国人研究者の参加を得て、分子からシステムまでの機能生命科学の多様な観点から「揺ざぎ」に関する研究を推進している。(2) さらに、2011年度に開始した、国際研究拠点の形成に向けた国際共同研究の企画立案と推進等を目指し、海外で活躍している外国人研究者の短期派遣、およびプロジェクト内研究者の海外派遣を、今年度も継続して実施した。寄せられた提案を審査し、下記の 3 名を派遣し、また下記の 1 名を派遣した。(3) 2012年年度より、生理研計画共同研究「機能生命科学における揺ざぎの研究」を開始したが、2013年度は、継続の 1 件に加え新規に 2 件、合計 3 件を採択して実施した。(4) タイ・プラクラコン大学で、2013年10月21-22日に実施された合同シンポジウムに「揺ざぎ」プロジェクト研究グループのメンバー 3 名を派遣し、生命科学における揺ざぎに関連する内容を含めて、情報交換を行った。(5) ドイツ・Tübingen 大学との第3回合同シンポジウムを、生理研にて2013年10月10-12日に関催し、脳神経科学における揺ざぎに関連する内容を含めて、情報交換を行った。(6) 第5回 Asian Pain Symposium と題した生理研国際シンポジウムを開催し、神経研究分野における揺ざぎに関連する内容を含めて、情報交換を行った。さらに、2014年2月27日に、プロジェクト内メンバーに加え、2 名の国際「揺ざぎ」研究者を招いて、機能プロジェクト「脳階層」と合同で、成果発表および情報交換の会を開催した。プログラム第 VI部 p.171に掲載。
研究部門 (富永真琴教授研究室)
・「レドックス場形成による細胞内シグナリングの揺らぎと決定」岡崎統合バイオサイエンスセンター (生理研) 心循環シグナル研究部門 (西田基宏教授研究室)
(基礎生物学研究所)
・「マウス胚の着床する子宮の場の揺らぎと決定」基生研・初期発生研究部門 (藤森俊彦教授研究室)
(分子科学研究所)
・「膜蛋白質の構造揺らぎと機能変調の解明に資する各種分光計測法の開発」分子研・生体分子情報研究部門 (古谷祐二教授研究室)
・「時計タンパク質の機能・構造揺らぎ検出」分子研・生体分子情報研究部門 (秋山修志教授研究室)

2. 採択した短期派遣外国研究者
・ Eitan Reuveny 教授 (Weizmann Institute of Science, Israel) (久保篤弘教授研究室)
・ Tibor Rohacs 博士 (New jersey Medical School, USA) (富永真琴教授研究室)
・ Bruce Trapp 博士 (Cleveland Clinic, USA) (池中一裕教授研究室)

3. 採択した短期海外派遣者
・ 加塚麻紀子 (NIPS リサーチフェロー・富永真琴教授研究室) (University of Southern California, USA)

4. 採択した生理研・計画共同研究
・ 研究課題：「メラノプシンの構造揺らぎと機能発現の相関研究」研究代表者：古谷祐二 (分子研・生体分子情報研究部門・准教授), 所内対応者：久保篤弘 (生理研・神経機能素子研究部門・教授)
・ 研究課題：「脳流動性と細胞信号伝達に関する研究」研究代表者：高木昌宏 (北陸先端科学技術大学院大学・教授), 所内対応者：富永真琴 (総合バイオ (生理研)・細胞生理研究部門・教授)
・ 研究課題：「アノールトカゲにおける TRP イオンチャネル受容体活性化温度閾値の種間比較」研究代表者：河田雅圭 (東北大院・生命・教授), 所内対応者：富永真琴 (総合バイオ (生理研)・細胞生理研究部門・教授)
6 多次元共同脳科学推進センター

6.1 概要

脳科学は分子から細胞、神経回路、個体などの多層からなる幅広い階層を対象としており、また、専門分野の枠組みとして從来の生命科学の範囲から情報学やロボティクス、心理学や経済学などの様々な分野との連携、融合研究が活発になってきている。これに知識の統合が必要でされている脳科学研究を我が国において推進すること、多次元共同脳科学推進センター（以下、多次元センター）では、このような全国の脳科学に関わる研究者とネットワークを組みながら、有機的に多次元的な共同研究を展開するため、活動を行っている。

2013年度においては、下記の事業を行った。
1. 流動連携研究室を活用したサブティカルの制度を利用した共同研究の実施
2. 脳科学戦略室の新設による脳科学研究戦略プログラム事務局活動の実施
3. 自然科学研究機構新分野創成センターとの連携による脳科学の将来の重要分野を探るプレインストーミングおよびシンポジウムの実施
4. 多次元トレーニング&レクチャー「ヒト、サル、ラットの脳解剖学から学習・認知の理解へ」の開催

まず、研究テーマの転換を図ろうとする研究者や新たな技術を習得して研究の展開を図ろうとする研究者を支援するために、サブティカル制度等を活用し長期間（3ヶ月から1年）生理学研究室に滞在して共同研究を実施する流動連携研究室の客員教授・客員准教授、及び、客員助手を募集した。本年度は1名がこの制度を活用し、共同研究が実施された。

本年度から組織改編により脳科学戦略室が新たに発足し、文部科学省脳科学研究戦略プログラム事務局として、プログラム内及びサポートを展開するシンポジウムやサイエンスカフェなど一般国民向け行事の企画・運営、成果に関するプレスリリース支援、広報冊子の発行などの活動を行った。

また、年間を通して多様なセンターと自然科学研究機構新分野創成センターの連携強化を進めた。将来の脳科学研究の方向性を探るため、全国の様々な専門家（のべ77名）からインタビューを行い、そこで得られた情報にとづき以下のプレインストーミング「大規模脳神経回路機能マップ」、「脳全体のシステムの理解」、「自己発性脳活動」を実施し、さらに、若手研究者を中心とした243名のシンポジウム「大規模脳神経回路機能マップのその先」を共催し、日米欧で急速に展開されようとしている大規模な神経回路解析の現状と展望について活発な議論の場を形成した。

異なる複数の視点から研究に取り組める若手人材育成として、公募により全国から15名の若手研究者を選抜し、多次元トレーニング&レクチャー「ヒト、サル、ラットの脳解剖学から学習・認知の理解へ」を開催し、歯歯類、ヒモザル、ヒトの脳のマクロ・ミクロの解剖に関する講義及び実習、Voxel-based morphometry (VBM)に関する基本的原理の概説とデータを用いた解析の実演、fMRIの原理とそれを用いた言語機能研究や視覚認知に関する講義、動物行動解析の見学とウィルスベクターによる特定神経回路の標識・操作技術に関する講義を実施した。

6.2 プレインストーミング

「大規模脳神経回路機能マップ」
1月13日開催、参加者20名
「脳全体のシステムの理解」
1月25日開催、参加者13名
「自己発性脳活動」
3月10日開催、参加者16名

6.3 シンポジウム

「大規模脳神経回路機能マップのその先」
1月12日開催、参加者243名
プログラムを第VI部 p.172に掲載。
6.4 多次元脳トレーニング＆レクチャー

日程：2014年3月11日～14日
参加者：公募による15名の若手研究者

3月11日（火）
講義「大脳の進化：神経科学の解剖学的基礎と機能別の神経路の概要」
実習「げっ歯類・サルの解剖（マクロ）」

3月12日（水）
講義「MRIの原理に関する概説」
講義「MRIによる参加者1名の一人のT1画像の撮像」
実習「Ultra high-field MRIによる脳画像研究」

3月13日（木）
講義「人間の脳機能イメージングの基礎」
講義「言語：人間の最高次の脳機能」

3月14日（金）
講義「大脳の主要な神経束と神経心理的知見（盲視・半側空間無視を含む）」
講義「行動解析室」
実習「視覚情報表現の単一ニューロン活動記録による分析」
講義「大脳皮質の機能と神経回路」
講義「ウィルススペクターによる神経回路の標識と制御」
実習「げっ歯類・サルの解剖（ミクロ）」
7 国際交流

7.1 国際戦略本部と国際連携室

生理学研究所を含め自然科学研究機構の各機関は、国際的な研究機関として実績があり、国際交流も盛んに行われている。自然科学研究機構は、2005年7月17日、年度に開始された文部科学省「大学国際戦略本部強化事業」(2009年7月21日、年度までの5年間)で大学共同利用機関法人として唯一採択された組織であり、この事業の実行にも当たった。

自然科学研究機構では、機構長、理事、副機構長により構成される国際戦略本部と、その下部に実行組織としての国際連携室が設けられて、機構としての国際交流の推進を図ってきた。2013年(平成25年)年度に機構本部において国際関係がなされ、新たに、小森彰夫理事(核融合科学研究所長)を委員長とする国際連携委員会が設けられ、生理学研究所は、久保義弘教授、伊佐正教授が委員として加わっている。また、機構本部には、新規に、研究力強化戦略会議、そしてその中、研究力強化推進本部が立ち上がった。小森理事を室長とする国際連携室は、推進本部に属している。国際連携委員会は、国際交流及び国際連携に関する企画の立案を業務とし、国際連携室は、具体的計画の策定と実施を業務としている。

小森理事を中心として、国際戦略に関するアクションプランの作成が進められてきたが、2012年(平成24年)度末に完成した。その中では、「(研究)国際的な学術拠点として研究交流協定等を通じた包括的な学術機関・研究拠点活動の促進」、「(人材)国際研究協力と推進するための人材交流及び人材育成の制度、体制、整備」、「(環境)国際研究拠点としての環境整備及び国際的な情報発信力の強化」を柱としている。

2013年(平成25年)年度は、このアクションプランに立脚し、次期計画等の今後の具体的な実行目標が計画された。今年度は、日本語および英語の2言語の公文語化、主要規程等の英訳、サバイティカル制度の整備等が、開始された。

さらに自然科学研究機構では、研究連携委員会及び研究連携室(担当理事:岡田清孝)において、2012年(平成24年)年度より自然科学分野の研究の進行及び分野間交流を国際的な人材交流の活用化により促進することを目指し、共同研究者国際交流事業を実施している。この事業では、1か月以内の緊急性の高い共同研究の実施・(研究者派遣・招聘)について随時募集、迅速な審査によって対応することによって支援することを旨としている。2013年(平成25年)年度については、2014年(平成26年)1月14日の時点で、各研究所からあった12件の申請(派遣8件、招聘4件)のうち、8件を採択している(3件不採択、1件審査中。生理学研究所からは1件応募があり審査中。)

7.2 国際交流協定

生理学研究所は現在、ウズベキスタン科学アカデミー生理学・生物物理科学研究所、韓国Hanyang大学医学部とYonsei大学医学部、ドイツTübingen大学Werner Reichtardt総合科学センター及びタイ国Chulalongkorn大学と相互交流協定を締結している。平成25年度は新たな協定の締結はなかったが、下記7.3項に記載しているように2013年(平成25年)年度はTübingen大学及びChulalongkorn大学とのジョイントシンポジウムを開催し、交流を深めることができた。

7.3 生理学研究所の国際交流活動

自然科学研究機構の各機関は、いずれも国際的研究機関として実績があり、国際交流も盛んに行われている。生理学研究所には外国人研究職員客員分2年を含む(合計24ヶ月)を含む分野交流プログラムがあり、この制度を利用して世界を問う多くの研究者・学生が共同研究を行っている。外国人研究職員(客員分)には共同研究の傍ら、若手研究者の教育や研究の評価活動にも協力していただいている。その他に日本学術振興会特別研究者等の制度を利用して、外国人研究者・留学生が在籍している。また、近年は総合研究大学院大学に留学する留学生が次第に増加している。生理学研究室の国際交流活動としては、生理学国際シンポジウムがあげられる。毎年1ないし2回開催され、多くの場合研究会首席がオーガナイザーとなり、通常は海外より10〜20名、国内からもほぼ同じ数の当該分野の一流研究者を招聘して行うものである。総参加者は100〜200名程度である。第44回生理学国際シンポジウムは、「5th Asian Pain Symposium」と題して、
2013年12月18日より12月20日までの3日間開催された。
また、2008（平成20）年度より生理研研究会の国際版である国際研究集会が公募・採択によって開催され、2013（平成25）年度は6月24-26日の3日間、「Functional mechanism of Cortical Microcircuit」（オーガナイザー：金子武嗣教授（京都大学医学系研究科）第6回国際神経所回路会議と関係）及び、10月18-19日の2日間、「NIPS international workshop for metacognition and uncertainty」（オーガナイザー：小村豊博士（産業技術総合研究所））が開催された。また国際共同研究も極めて盛んである。また、上記の外国人研究員制度を利用して、外国人研究員として共同研究に当たるほか、短期および長期（サパティカル的）に外国人研究者が生理研に滞在し、優れた多くの国際共同研究を推進している。代表的な研究成果を第Ⅵ部p.173以下に掲載した。職員のリストおよび研究研を訪問した研究員リスト等を第Ⅵ部p.174以下に掲載した。現在も多くの研究室に常に外国人研究者や留学生が滞在しており、今後も外国人留学生の占める割合は増加していくものと予想される。

7.3.1 ドイツTübingen大学Werner Reichardt統合神経科学センターとの学術協定締結に基づく交流活動
協定の内容は、

1. 学生の交流
2. 相互に関心のある研究領域での共同研究
3. 研究職員の交流
4. 両機関が相互に同意した他の活動

である。
この協定に基づき、2013年度は、Tübingen大学より11名の参加を得て、10月18-19日に、第3回のJoint Symposiumを以下のように生理学研究所において開催した（写真参照）。
The 3rd NIPS-CIN Joint Symposium
Data: October 10 (Thu) - 11 (Fri), 2013
Venue: Conference Room 1, NIPS (Myodaiji Campus) 1F
Program:
Oct 10 (Thu)
12:00-13:00 Opening remark — introduction of speakers with lunch Junichi Nabekura (Vice Director, NIPS) Peter Thier (Director, CIN)
13:00-13:25 The Primate Insular Cortex: A neuroanatomical insight into interoception, emotion and self-awareness Henry Evrard (CIN)
13:25-13:50 Inter-individual neural synchronization during eye-contact and joint attention Norihiro Sadato (NIPS)
13:50-14:15 Towards the underpinnings of joint attention: studies in monkeys and man Peter Thier (CIN)
14:15-16:30 Poster Session Preceded by Flash Talks (1min for each presenter)
16:30-16:55 Designing ECoG-based brain-computer interfaces Tadashi Isa (NIPS)
16:55-17:20 F5 mirror neurons encode the subjective value of an observed action Dan Aronstein (CINS)
17:20-17:45 Motivational regulation of functional recovery after spinal cord injury Yukio Nishimura (NIPS)
17:45-18:10 On the visual response properties of superior colliculus neurons and how they may be modulated by eye movements Ziad Hafed (CIN)
18:30- Reception
Oct 11 (Fri)
8:30-8:55 Twenty cortical neuron types over 20 years Yasuo Kawaguchi (NIPS)
8:55-9:20 Dynamic representation of saccades in mouse frontal cortex Takashi Sato (CIN)
9:20-9:45 Remodeling of Synapses in somatosensory cortex of chronic pain model mouse Junichi Nabekura (NIPS)
9:45-10:15 Break
10:15-10:40 Lateral migration of adult-born GABAergic interneurons in the glomerular layer of the mouse olfactory bulb Yajie Liang (CIN)
10:40-11:05 Glutamatergic and GABAergic control of pallidal activity of behaving monkeys Nobuhiko Hatanaka (NIPS)
11:05-11:30 Structural determinants of spatial representations in the rat medial entorhinal cortex
Andrea Burgalossi (CIN)

11:30-11:55 Sporadic premature aging in a Japanese monkey Takao Oishi, Hiroo Imai, Hirohisa Hirai, Masahiko Takada (Primate Research Institute Kyoto University)

11:55-13:00 Discussion on future collaboration with lunch

13:00-13:25 Neural mechanisms underlying material perception in humans and monkeys Naokazu Goda (NIPS)

13:50-14:15 Face perception in humans Ryusuke Kakigi (NIPS)

14:15-14:45 Break

14:45-15:10 Causal contributions of parietal cortex to perceptual selection and spatial binding Natalia Zaretskaya (CIN)

15:10-15:35 Auditory evoked magnetic fields Hidehiko Okamoto (NIPS)

15:35-16:00 Cortico-striatal coordination through coherent phase-amplitude coupling Constantin von Nicolai (CIN)

16:00-16:10 Closing Remark Keiji Imoto (NIPS, Director)

7.3.2 タイ Chulalongkorn大学薬学部との学術協定締結に基づく交流活動

タイ国 Chulalongkorn大学薬学部とも、2011年9月30日に締結した相互交流協定に基づき、2013年10月21日-22日に第1回のジョイントシンポジウムをバンコクのChulalongkorn大学にて開催した。理工学部は（敬称略）鍋倉副所長、池中教授、柿木教授、南部教授、伊佐教授、西村准教授、古江准教授、清水助教、知見助教、山脇助教、細村特任助教、柳非常勤研究員の12名が参加した。多くの大学スタッフ、大学院生の参加を得て、シンポジウムは盛況に終えることができた。
1st Joint CU-NIPS Symposium
“Frontier in Physiological Sciences Research:
From Basic Research to Diseases and Treatments
October 21-22, 2013
Room 1002, 10th Floor, Pharmaceutical Sciences Innovation Building
Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

第1回ジョイントシンポジウム（チュラロンコン大学にて）

きた。滞在期間中、Chulalongkorn大学側の中心的なオーガナイザーだったThongchai Sooksawate博士をはじめ、多くの方に大変親しそうに対応していただいた（写真参照）。プログラムは以下の通り。

1st Joint CU-NIPS Symposium
“Frontier in Physiological Sciences Research: From Basic Research to Diseases and Treatments”
Monday, October 21, 2013
08.00-08.30 Registration
08.30-08.50 Opening Ceremony Dean, Faculty of Pharmaceutical Sciences, Chulalongkorn University Prof. Dr. Junichi Nabekura, Vice Director, National Institute for Physiological Sciences
08.50-09.15 Group Photo and Coffee Break
09.15-10.00 Special Lecture I: Regulation of oligodendrocyte development by proteoglycans Professor Dr. Kazuhiro Ikenaka, NIPS
10.00-11.30 Symposium I: Glial cells and neural development Analysis of gliotransmitter release from astrocytes Assistant Professor Dr. Naoko Inamura, NIPS
Molecular mechanisms that function in myelination and demyelinating disorders Assistant Professor Dr. Takeshi Shimizu, NIPS
Choroid plexus development and neurogenesis Dr. Weerapong Prasongchean, CU
11.30-12.15 Special Lecture II: Neural plasticity during recovery after spinal cord injury Professor Dr. Tadashi Isa, NIPS
12.15-13.00 Lunch
13.00-13.45 Special Lecture III: Painful and itchy brain Professor Dr. Ryusuke Kakigi, NIPS
13.45-15.15 Symposium II: Pain Endogenous control of pain transmission Associate Professor Dr. Hidemasa Furue, NIPS
Some Thai herbal medicines for the treatment of pain and inflammation Assistant Professor Dr. Pasarapa Towiwat, CU
Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity
Dr. Yiming Zhou

15.15-15.30 Coffee Break

15.30-17.30 Symposium III: Motor functions and disorders
Pathophysiology of movement disorders: lessons from electrophysiology
Professor Dr. Atsushi Nambu, NIPS
Restoring volitional control through artificial neural connection
Associate Professor Dr. Yukio Nishimura, NIPS
What is dopamine telling striatal neurons through D1 and D2 receptors?
Assistant Professor Dr. Satomi Chiken, NIPS
Potential herbal medicines for the treatment of Parkinson disease
Dr. Rachanee Rodsiri, CU

Tuesday, October 22, 2013

08.00-08.30 Registration

08.30-09.15 Special Lecture IV: Long term plasticity of cortical circuits and glia
Professor Dr. Junichi Nabekura, NIPS

09.15-10.15 Symposium IV: Synaptic modulation and synaptic plasticity
Cholinergic modulation of the crossed tecto-reticular neurons
Associate Professor Dr. Thongchai Sooksawate, CU
New insights into Ca\(^{2+}\)/calmodulin-dependent protein kinase II function in learning and memory revealed by kinase-dead knock-in mouse
Assistant Professor Dr. Yoko Yamagata, NIPS

10.15-10.30 Coffee Break

10.30-11.30 Symposium V: Frontier in cancer research Roles of caveolin-1 on metastatic behavior of lung cancer cells
Assistant Professor Dr. Pithi Chanwora-chote, CU
Ouabain suppresses migratory behavior and sensitizes lung cancer to TRAIL-induced apoptosis
Dr. Varisa Pongrakhananon, CU

11.30-12.00 Discussion on Future Collaboration between Chulalongkorn University and National Institute for Physiological Sciences

12.00-12.15 Closing Ceremony
Dean, Faculty of Pharmaceutical Sciences, Chulalongkorn University
Prof. Tadashi Isa, Chief Chairperson, National Institute for Physiological Sciences
12.15-13.15 Lunch

7.3.3 今後の取り組み

今後も上記のような高いレベルの国際交流を継続し、さらに発展させていくために、今後、Tübingen 大学とは、連携大学院を設立するための公的支援を得るために、2013(平成 25)年度に文部科学省より採択され、開始された自然科学研究機構の研究力強化促進事業の URA 制度などを活用する方策を検討しなくてはいけない。一方で、このような大きな枠組みでの交流の発展とあわせて研究者あるいは研究室レベルで行われることが多い活動を組織的にサポートすることが重要である。その一助として、研究所レベルあるいは機構レベルで諸外国の大学あるいは研究所全体を対象とした国際交流の枠組みが必要となるだろう。しかし外国人研究者にとって生活しやすく研究しやすい環境の整備は、事務手続きを含めた様々な事柄の英語化と関係しているため、実現化にはかなりの労力と出費が予想される。生涯研では英語化を推進しており、総研大の講義は原則的に英語を使用することにしている。現在、通常の研究セミナーも英語化を進めている。今後事務的な書類を含めて、このようないろいろな事項について、英語化へのアクションプランを推進することが必要であると考えられる。
7.4 生理研国際シンポジウム

第44回 生理研国際シンポジウム（5th Asian Pain Symposium）開催日程：2013年12月18日（水）～20日（金）

2013(平成25)年12月18日(水)～20日(金)の3日間、岡崎カンファレンスセンター大会議室で第44回生理学研究所国際シンポジウム（5th Asian Pain Symposium）を開催した。参加者は国内95名、国外14名の計109名であった。国外からの国別内訳は、中国6名、韓国3名、台湾2名、カナダ1名、ドイツ1名、イギリス1名であった。講演24題（うち外国人10題）、ポスター31題（外国から1題）の発表であった。国際痛み雑誌Molecular PainのEditor in ChiefであるProf. Min Zhuoのカナダからの参加も得た。

講演リストは以下のとおりである。
日本人講演者（14名）
1. Takayuki NAKAGAWA 'Roles of TRPA1 in oxaliplatin-induced peripheral neuropathy'
2. Kazue MIZUMURA 'Muscle pain and neurotrophic factors'
3. Seiji ITO 'Bifurcate roles of nitric oxide in neuropathic pain'
4. Koichi NOGUCHI 'Pronociceptive lipid mediators in spinal cord in neuropathic pain'
5. Makoto TOMINAGA 'Molecular mechanisms of nociception through TRPA1 activation'
6. Yasushi KURAISHI 'Involvement of oxidative stress in herpes-associated acute pain and itch in mice'
7. Emiko SENBA 'Exercise training attenuates neuropathic pain by modulating microglial activation'
8. Makoto TSUDA 'Microglial transcription factors and neuropathic pain'
9. Junichi NABEKURA 'Remodeling of synapses in somatosensory cortex in chronic pain mouse'
10. Hiroshi UEDA 'Roles of amplification of LPA synthesis through microglial activation in neuropathic pain'
11. Masabumi MINAMI 'Role of the bed nucleus of the stria terminalis (BNST) in pain-induced aversion'
12. Hidemasa FURUE 'Spinal GABAergic excitation by optogenetic activation of descending noradrenergic system'
13. Ryusuke KAKIGI 'Pain and itch perception in humans'
14. Fusao KATO 'Nociceptive amygdala in various chronic pain models'

外国人講演者（10名）
1. Lan BAO 'The trafficking regulation of Nav1.8 in primary sensory neurons'
2. Seog Bae OH 'Role of neuro-glia and neuro-immune crosstalk in the pathogenesis of chronic pain'
3. Xu ZHANG 'Role of FXYD2, γ subunit of Na+, K+-ATPase, in inflammatory pain'
4. Min ZHUO 'Long-term potentiation of descending facilitation in chronic pain'
5. Bai Chuang SHYU 'Differential mechanisms of P2X7 and BDNF in central post-stroke pain'
6. Yong-Jing GAO 'Chemokine-mediated astroglial-neuronal interaction in neuropathic pain'
7. Xinaguo LIU 'Cytokine environment hypothesis for chronic pain'
8. We-Zen SUN 'Awake or asleep? Behavioral correlates of the brain metabolic activity and functional connectivity by alpha-2-delta agonist, pregabalin in an awake neuropathic pain model'
9. Guangyin XU 'Epigenetic regulations of chronic visceral pain in functional gastrointestinal disorders'
10. Jun CHEN 'Painful neuropathy and the environment - Prediabetes and Metabolic syndrome, risks of a western lifestyle'

アジアにおける痛み研究のレベルは高く、多くの痛み関連論文が特に日本、中国、韓国、台湾から出ている。生理学研究所にも分子からヒトの解析まで痛み研究者が多い。そうしたアジアの痛み研究を牽引する研究者の最新の研究成果報告とディスカッションを受け、今後、アジアで痛み研究がますますことが期待される。
7.5 生理研国際研究集会

大脳皮質神経回路の機能的作動機構
Functional Mechanism of Cortical Microcircuitry
2013 年 6 月 24 日 - 6 月 26 日
代表・世話人：金子武嗣（京都大学）
所内対応者：窪田芳之（大脳神経回路論研究部門）
大脳皮質とその関連する神経核では、中枢神経系の
最も高度な情報処理を行っており、認知・感情・思考・
記憶・意識など、科学的立場から未だに神経的に見え
る機能を実現している。そうした機能は、どのような
作動原理によって実現されているのか、大きく興味が
もたれる。
近年、多くの新しい技術が導入され、大脳皮質や海
馬の局所神経回路の作動原理と、生理的意義が明らか
にされつつある。本国際研究集会では、平成 25 年 6 月
24-26 日に、愛知県岡崎市の岡崎コンファレンスセン
ターにて開催し、世界的にトップレベルの研究者 18 名
に、最新の研究成果を紹介していただいた（下記参
照）。国内から 80 名、海外から 17 名（米国 8 名、ドイ
ツ 3 名、スイス 2 名、オーストリア 1 名、フランス 1
名）の参加があった。さらに若手研究者の為に、ポス
ターセッションを設け、27 のポスター発表があった。
18 演題のシンポジウム発表は、いずれも、非常に活発
な議論や意見交換があり、非常に意義深い国際会議で
あった。
8 大学院教育・若手研究者育成

8.1 現状

生理学研究所は、総研大生命科学研究科生理解学専
攻の基盤機関として、5年一貫制および後期博士課程
（3年）における大学院教育を行っている。2013年度の
在籍者は、51名（2014年3月5日現在、うち5年一
貫制23名、後期博士課程28名）である。このほか他
大学より、毎年10名程度（2010年度10名、2011年
度8名、2012年度8名、2013年度16名）の神経科
学や生理学を志す大学院生を特別共同利用研究者とし
て受け入れている。2004年度に5年一貫制が導入され
て10年が経過するが、この間、生理学専門科目や神
経科学や細胞感受覚学などのe-learning科目を新たに追
加し、修士レベルの教育の充実を図ってきた。しかし
入学者のバックグラウンドが多様で必ずしも生物系の
基礎知識を習得していないことや、一般的な知識レベ
ルの低下などから、現時点においても研究者を養成する
という総研大の目的に沿う基礎教育が十分達成できている
とは言い難い。また、生理学専攻の中心的な分野であ
る脳科学分野では、医学生理学をはじめ、より広範
な生物学、工学、薬学、情報学、社会科学などの基礎
知識と広い視野を持つ研究者を求められている。この
ような状況に鑑み、2010(平成22)年度から、脳科学に
ついて、生理学以外にも基礎生物学、遺伝学、数理
統計学など、脳科学の基本となるべき基礎科目の充実
と新たな共通専門科目の開発を行うために、「総研大脳
科学専攻間融合プログラム」を生理学専攻を中心と
なって発足させた。さらに、本コース受講者を中心に、
博士（脳科学）を2015(平成27)年3月から授与できる
ようになった。本プログラムが発足してから5年が経
過し、今後、どのように発展させていくか、検討が始
まっている。また、2011(平成23)年度からは、生物学
のみならず、物理科学、数理科学、情報科学などに
通じる学際的かつ統合的な生命観を育てるために、「統
合生命科学研究プログラム」が発足し、生理学専攻
が一翼を担っている。総研大全体としては全学教育科目
開発表が作成されつつあるが、生理科学専攻としても、
さらなる講義等の見直し、整理をする必要がある。

8.2 「総研脳科学専攻間融合プログラム」

本プログラムは生理学専攻が中心になって実施さ
れているプログラムである。発足には重本隆一教授が
尽力されたが、重本教授が転出された後は、富永真琴
教授がこのプログラムを運営する総研大脳科学特別委
員会の委員長を務めている。本プログラムでは、脳科
学に関する広い分野から、総研大内外の専門家に講義
や演習を担当していただいている。生理学専攻、基
礎生物学専攻、遺伝学専攻、生命共生体進化化学専攻、統
計科学専攻、情報学専攻が加わっている。また「高い
専門性と国際的活躍できる能力を養成する」という
総研大教育の基本理念もあるとおり、英語でこれらの
広い領域を理解・議論・表現する能力を涵養するた
めに、本プログラムでは原則としてすべての講義・演
習は英語で行われる。本プログラムでは、各専攻で行
われている脳科学関連の共通科目や専門科目を活用す
るとともに、様々なバックグラウンドを持つ学生の参
加を促すために、ほとんどの予備知識のない学生を対象
としたWeb教材「一歩一歩学ぶ脳科学」を提供してい
る。また、各方法論の原理を理解して専門領域外の
研究も批判的に解釈できることを目指す「脳科学の基
礎と研究法」（主に日本語で講義）、脳科学を取り巻く
社会や倫理的問題を視野にいたる「脳科学と社会」な
どの新しい科目も行われている。今年度も各講義や演
習が各専攻で開講され、集中講義として「脳科学と社
会」(2013年12月13日、2014年2月26日、生理学
研究所)、「生命科学のための統計入門」(2014年3月
3日~4日、生理学研究所)が行われた。講義は原則的に
遠隔講義システムによって受講生のいる機関に配信し
た。また講義履修に際しキャンパス間の移動により所
用の経費がかかる場合は、学生移動経費による支援と
して交通費（宿泊を伴う場合は宿泊費の一部を含む）の
サポートを行った。さらに、本コース受講者を中心に、
博士（脳科学）を2015(平成27)年3月から授与でき
るようになった。本プログラムが発足してから5年が経
過し、見直しの時期に来ている。今後、どのように
発展させていくか、検討が始まっている。

なお本プログラムは2013年度に発足した。このプ
ログラムにデータ解析に関係する講義などをふくめて
新たなプログラムを2014(平成26)年度の概算要求を
8.3 「統合生命科学教育プログラム」

本プログラムでは、生命科学に関する広い分野から、総研大内外の専門家に講義や演習を担当いただいている。構造分子科学専攻、機能分子科学専攻、基礎生物学専攻、生理科学専攻、遺伝学専攻、生命共生体進化学専攻、統計科学専攻、情報学専攻、極域科学専攻が加わっている。プログラムを運営するための統合生命科学特別委員会の委員長は加藤晃一・分子研・統合バイオ教授、プログラム長は藤澤敏孝・総研大・学融合推進センター特任教授である。遠隔講義システムを用い、本プログラムでは原則としてすべての講義・演習は英語で行われる。教育科目は、数理生物学、生体分子科学、シミュレーション科学、イメージング科学などの専攻担当教育科目、分子細胞生物学、生体エネルギー酸化などの専攻間融合教育科目、生物情報学、生命起源論、定量生物学、統合生物学などの研究科を越えた融合教育科目がある。講義・演習に加えて、国内外の大学院生と若手研究者を対象とした統合生命科学サマースクールも1年に1回実施している。2013年度は8月22～24日に「生命システムの動秩序」を開催した。また、IRC(Interdisciplinary Research Collaboration Grant)を設置し、大学院生の自由・自主的な発想・企画に基づいた異分野融合の研究プロジェクトをサポートしている。

なお本プログラムは来年度が最終年度にあたるため、長期的な教育プログラムの確立をめざして検討中である。

8.4 他専攻、他大学との交流

総研大は全国に散らばっており、基礎生物学専攻以外との交流の機会は少なくないがちであるが、以下のような機会を設け、他専攻、他大学との交流を行っている。①在校生が中心となって入学式後に学生セミナーが企画され、同時期に入学した学生同士の交流を越えた交流が行われている。②生命科学リトリートを開催し、基礎生物学専攻、遺伝学専攻、生命共生体進化学専攻の大学院生、教育職員が一緒に集まり、研究成果について発表・議論し合い、相互の交流をはかっている。

8.5 入学定員の見直しなど

生理科学専攻の定員は現在5年一貫制が学年3名、後期博士課程(3年次编入)が学年6名である。少子化や各大学の学生奨学金に伴う受験者の争奪合戦もあり、一時期、受験者の減少が見られたが、広報や修学条件の改善など対策をうち、ほぼ毎年のように定員を超える入学者数を受け入れている状況である。現在、総研大全体として定員を見直すことになっており、生理科学専攻としても今後10年を考えた5年一貫制の増員などの定員変更を検討している。また、今後も入学者志望者を増やす対策が必要であり、具体的には以下のことが行われている。①春、夏の大学院説明会、②体験入学：国内の生理科学専攻受験希望者に対して、旅行や滞在費をサポートするうえで1週間程度、生理研に滞在し研究活動を体験する。実際に体験入学に参加した学生から数名が受験した。③修学条件の改善（以下の経済的サポート参照）

8.6 経済的サポート

日本文部科学省への経済的サポートとして、全年度の大学院生についてRA雇用として年間100万円を支給している。またこれらの分野について、学部料相当額が生理学研究所奨学金から支給される。また特に優秀な学生に対するインセンティブを高める目的で、入学試験第1位および第2位の合格者については、初年度の半分授業料が免除されている。さらに顕著な業績を挙げた大学院生には、生理学研究所若手科学者賞が授与され、生理学研究所の博士研究員としてのポジションが一定期間保持される。一方、奨学金の原資の確保に苦労している。

8.7 国外からのリクルート

最近は、国外から優秀な大学院生をリクルートする必要がますます高まっている。生命科学研究所では国費外国人留学生(研究留学生)の優先配置を行う特別プログラムが実施されてきたが、2011(平成23)年度で打
ち切りになり、深刻な事態に陥っている。しかし、以下の様々な措置をとり、国からのリクルートに努めている。①海外からの体験入学：海外の理学専攻受験希望者に対して、旅費と滞在費をサポートしたうえで2週間程度、理学研滞在し研究活動を体験する。②理学科学独占の奨学金：優秀な私費留学生に対して、国費留学生と同等のサポートをする。③理学科学独占の奨学金：優秀な私費留学生に対して、入学金免除、授業料の半額と年間140万円の奨学金を支給する。④英語による教育。⑤チューターによるサポート：日本での生活がスムーズに行えるよう、上級生によるサポートを行う。⑥英語ホームページによる宣伝。⑦学術交流協定：海外の大学からの優秀な学生の推薦依頼やアジアの一流大学にとれた海外でのリクルート活動を行い、さらに多くの優れた留学生を集めるために大学との学術交流協定を積極的に締結する。今後、新たな留学生プログラムに申請していく必要がある。

8.8 若手研究者の育成

大学院を修了した若手研究者の育成については、従来より各部門におけるボスタと雇用（NIPS リサーチフェロー）を研究所としてサポートしてきた。また、若手研究者の独自のアイディアに基づく研究をサポートすると同時に外部研究費獲得を支援するため、理学研究所内の若手研究者によるプロジェクト提案の申請募集を行っている。2013年度は、若手研究者育成支援・若手研究者支援（年齢制限なし）、総研大学院生育成支援に分けて応募を行ったところ、若手研究者18名、一般研究者9名、大学院生37名の応募があった。若手研究者、一般研究者は発表会形式による審査・指導、大学院生は書面により審査を行い、支援額に差をつけて全員を支援することになった（若手研究者：35〜15万円、一般枠：30〜20万円、大学院生：12〜8万円）。

そのほか、外部の若手研究者の育成については、多様化が進正在着効果のためにあるトレーニングとレクチャー、理学科学実験技術トレーニングコースなどを通じて行い、詳細については、それぞれの項を参照されたい。

8.9 総研大をとりまく状況について

総研大も他の国立大学同様、変革を求められている。例えば、大学院教育の実質化（文科省中央教育審議会の大学院答申）のひとと、コースワークおよび修士学位取得資格の認定の充実が迫られ、総研大全体として、どのように取り組んでいくべきか議論がされている。その結果、理学科学専攻としても、5年一貫制における2年次から3年次への進学資格の認定、修士号取得認定が制度化された。また、現在果たしていのある役割とともに、将来ビジョンに立って、特色や強みを伸ばし、社会的機能を今後どのように果たしていくかの方向性を明確にするための「ミッションの再定義」についても、議論の結果、総研大と文部科学省との間で、設定された（抜粋を、第VII部 p.201に掲載）。一方、総研大と基盤機関との関係についても、将来を見越して、より一層の相互理解が必要とされている。
9 技術課

9.1 技術課組織

技術課は、「生理学研究所の現状ならびに将来計画」に示される「使命と今後の運営方向」のもと、(1) 研究所の推進する先端的研究所とその共同研究の技術的支援、(2) 共同利用実験等を行う大型実験装置の維持管理及び運用支援、(3) 図書室・シンポジウム及び研究会の運営支援、(4) 研究基盤設備等の維持管理、(5) 研究活動の安全衛生管理を行うとともに、これらの支援業務等を高度に、円滑に進めのある技術課独自の活動を行う研究支援組織である。

技術課は、課長、課長補佐、班長、係長、主任、係員の職階制による運営を行い、研究系を担当する研究系技術班 (16 名) と、施設・センターを担当する研究施設技術班 (11 名) の 2 班で構成されている。課長は各部門・施設・センターに現職、各自の専門性を背景に研究顕在で大型実験装置（超高圧電子顕微鏡、フラッシュ電子顕微鏡、磁気共鳴画像装置）の維持管理、遺伝子・胚操作、細胞培養、各種顕微鏡、生化学分析、実験動物管理、ネットワーク管理、電気回路、機械工作等の研究支援業務に従事している。

こうした組織形態のもとを研究支援の運営を進めており、近年の研究および研究体制の高度化、多様化に対応するため、課内人事異動、業務のデータベース化の促進により課組織の活性化と技術課運営体制の整備を行っている。今年度も引き続き、組織運営体制の充実、研究活動への技術的支援の強化、奨励研究等による研究技術開発、安全衛生体制の向上、自然科学研究機構との連携、大学等と連携による新たな技術拠点形成、職場体験の受入事業、アウトサード活動の積極的支援を推進した。また、技術課のイメージング技術を向上させるため、2010 年度より四次元人体機能イメージングプロジェクト活動を開始し、2011 年度はその成果を生理研一般公開で展示した。2012 年度からメンバーを変更し、新しい表現手法の検討などを行った。

9.2 課内人事異動

研究所の研究体制に従事させるため、研究支援業務の専門性と技術職員のスキルを考慮した課内人事異動を実施してきた。技術職員のスキルについては、すでに習得しているものばかりでなく、すべてもしくは新入社員として必要な能力を提供している。最近、研究支援として求められている専門性と技術職員の持つ専門性（大きく分類工学系と生物系）が不均衡となり、適材適所の見直しも困難となっている。今後も配置の検討が必要である。

今年度は、退職者にもなる新任者採用と、心循環シグナル研究部門、新分野創成センターのマイナサイエンス研究分野への技術職員業務付加による対応を行った。

9.3 業務成果のデータベース化の促進

技術課の出向先研究部門での業務成果は、技術課内での業務報告会による共有化、技術課主催の生理学技術研究会、出向先部門での学会発表により所外に発信されているが、より広く活用され、即時的に活用するために、優れた業務成果をデータベース化する事業を技術課が研究部門と進め、現在、生理学研究所ホームページ上に広く公開されている。その編集は技術班長により更新が進められており、今年度 5 件の新規登録がありデータ数は 105 件となった。こうした事業の推進のなかで、優れた実験技術データベースにはデータベース化、技術評価等の分析を所長より行っている。これら事業の推進により、研究者との連携を深め、業務の活性化を進めた。

9.4 組織運営体制の充実

技術課の業務は、出向先での日常研究支援業務が主であるが、その業務を組織的、機動的に進めるため、(1) 技術課ミーティング、(2) 技術課業務報告会、(3) 三省会議、技術課会議、係長会、主任会、(4) サプライショップ運営、(5) 共通機器運営により体制の充実を図った。

技術課ミーティングは毎月開催、明大寺地区で 8 時 40 分より全員が出席し、研究所の動向の報告、課の組織運営上の情報交換、技術情報交換や技術研修を行う場として、活動した。今年度も月一度、山手地区で 9 時 20 分より同様に実施した。

技術課業務報告会では、全員の出向先における 1 年間の主要業務報告および技術報告を行い、全員の技術情報の共有化と研究支援力の向上を図り、課内の情報

47
業務評定を行った。昨年度も同様に報告会に、研究総主幹、共同研究担当主幹、点検連携資料室の准教授に出席を依頼し、研究者側からの業務評価と助言による課外評定も行い、個々の業務の理解と活用が研究所内でさらに進むように努めた。その報告内容を技術課業務報告集として編集した。ただし、未発表データが含まれるなどの理由により、報告書は所外へ公開していない。技術職員の多様多様な業務のなかで、より公平に評定するために、課長、課長補佐、班長、係長、主任に評定担当を割り振り、より客観的な業務の評定を進め、業務の点検と向上を行った。今年度から課長、課長補佐、班長による三頭会議を開き、人事や技術課経費などの検討を行った。技術課会議、係長会、主任会では、課の組織運営の課題や企画立案について意見交換、審議、決定を行っている。技術課会議を月一回程度、係長会および主任会を随時開催し、議論を進めた。サプライショップでは20年を超える実績のもと、利便性の高い運用を技術課と短時間契約職員で引き続き行った。2011(平成23)年度と2012(平成24)年度に行われた耐震改修工事において研究室等の配置が見直されたが、サプライショップ室も配置場所が変更になり狭くなったため扱う物品の見直しが必要となっている。

9.5 研究活動への技術支援の強化

研究技術開発や技術力の充実向上と研究活動への展開を推し進めるため、(1) 第24回生理学実験技術トレーニングコース担当、(2) 各種研究費の申請、(3) 放送大学受講を実施した。

研究所主催の第24回生理学実験技術トレーニングコース(7月29日ー8月2日)では、生理学実験のための電気回路・機械工作・プログラミングコース『生体アンプとパースチェンバーの作製』と『C言語によるPICプログラミング』を企画し、各コースに3名と1名の若手研究者を受講があり、指導にあたった。

各種研究費の申請について、研究支援力の強化を目的に、課員が自ら企画して技術開発等を行うために、課員が科学研究補助金等の申請を行うことを積極的に奨励している。2013(平成25)年度日本学術振興会・科学研究費補助金・奨励研究に技術課職員20名が申請し、次年度の課題で採択された「前橋市松根線サブスの動作機能を調べるための光伝導電検の開発」が採択された。技術職員の専門性の向上と研究活動の拡充への対応を進めるため、放送大学を活用した研修として次の科目を講義した。実践英語10(1名)、都市と防災(3名)。

9.6 安全衛生体制の向上

生理学研究所の安全衛生は技術課が担当し、安全衛生に配慮した職場環境の実現が進められている。安全衛生の基本である環境は、明大寺、手取地区に10名の安全衛生管理者で毎月行っている。また、月一回程度技術課安全衛生会議を開き、巡視内容や注意点の確認と意見交換を行っている。安全衛生管理室では、室長(安全衛生担当主幹)、管理室技術職員(衛生管理者)、技術課長による月一回の安全衛生に関する打合せが行われ、安全衛生の充実に努めている。

最近は特定化学物質や麻薬の見直しなどにより、多くの知識や高い専門性が必要となっており、安全衛生管理室から時的な事例が発信されている。また、年に2回毒物薬管理週間を設け、毒物とその管理に関する資料を改訂している。安全衛生に関する情報は安全衛生管理室ホームページにまとめられ、今年度も更新と見直しが進められた。

生理学研究所職員の安全衛生に対する意識を高めるため安全衛生講習会を開催した。各部門の安全衛生担当者には安全衛生に対する知識と意識を高めるため、安全衛生小委員会を開催し、年間の巡視報告と意見交換などを行った。

9.7 自然科学研究機構の連携事業

自然科学研究機構において在籍する異分野の技術職員による連携を図り、異分野の技術や考え方を取り入れながら、技術支援体制を充実向上させるため、(1) 岡崎3機関技術課長会、(2) 自然科学研究機構技術系職員代表者会、(3) 自然科学研究機構技術研究会を実施した。

岡崎3機関技術課長会では、月1回、3研究機関技術課長、岡崎統合事務センター主務課長、各課課長補佐を交えて、岡崎3機関技術課の活動等に関する意見交換会を行った。自然科学研究機構技術系職員代表者会では、核融合科学研究所(技術部長)、国立天文台(技術職員会議代表)、岡崎3機関(技術課長)による各種機関の動向、企画事業等の意見交換をTV会議で月1回行った。自然科学研究機構技術研究会では、自然科学研究機構の技術組織の連携事業である第8回の本研究会を、核融合科学研究所担当により、21演題、参加者80名
で行い（6月6日、7日）、各機関の技術職員の業務内容について理解を深めることができた。またその報告書を刊行した。次回は基礎生物学研究所で開催予定である。

9.8 大学等と連携による新たな拠点形成

大学等の技術職員との技術交流と技術拠点形成を目指し、第36回生理学技術研究会・第10回奨励研究採択課題技術シンポジウムを2014（平成26）年2月20～21日に開催した。第36回生理学技術研究会は基礎生物学研究所技術課と合同で、教育講演（1題）、ポスターブラシ（48題）、口演発表（13題）、参加者145名で行う、課から6題の発表があった。また、第10回奨励研究採択課題技術シンポジウムを口演発表（11題）、参加者60名で行い、課から1題の発表があった。

東海北陸地区大学等の技術職員との連携、技術研修拠点形成、技術組織の確立を進めるため、東海北陸地区技術職員研修会の企画や実施などの意見交換や、本研修会に積極的に参加している。本年度は、北陸先端科学技術大学院大学で情報処理コース（10月30日～11月1日）研修会に課から1名が参加した。

9.9 中学生職場体験の受入れ

地域活動支援として広報展開推進室と協力し、岡崎周辺の中学校生徒（5校、13名）の職場体験を受入れ、ネットワーク管理室、機器研究試作室、動物実験センター、遺伝子改変動物室等の技術職員が指導した。生徒に研究現場を体験させたいが、試験室には危険物や動物を扱う現場が多く、容易に入室させられない。今後も体験内容について検討が必要である。

9.10 今後の課題

(1) 技術課の業務単位は、研究系に対応した技術系で構成されているが、3研究センターの設置や研究部門の明大寺・手山両地区への分離により、従来の研究系単位で構成された技術系が実状に合わなくなっている。研究体制の実情に応じた技術系の再編にと技術系の名称の見直し、職階制、特に係長の位置づけの見直しによる業務遂行の明確化、引き続き検討が必要となっている。

(2) 技術職員の平均年齢は上がっており、そうだ点を踏まえた人材活用に再教育を行うことや、研究支援業務とも技術職員のスキルに関する内部異動が今後の課題である。

(3) 最先端の研究を支えるための新技術の習得は必須である。現在、生理学研究所が推進する研究の多くにバイオイメージング技術が登場する。バイオイメージングについてはハード、ソフトを含めて技術課として取り組むべき分野であり、将来、生理学研究所のひとつとして、脳・人体の生体内化学イメージングの一大センターを確立していくことを考えれば、それぞれを担える技術を習得し、技術力を向上していくことが重要である。

(4) 生理学研究所の研究支援体制は、技術課の技術職員以外に、研究部門に配置され、技術補助業務に従事する技術支援員（26人）と研究所の経理や共同研究、研究会の事務を行う事務支援員（12人）にも支えられている。こうした短期間契約職員の最近の雇用の傾向として、扶養手当支給範囲内での雇用希望が高いため、労働内容と勤務時間調整しながら雇用契約を進めている。しかしながら、研究所が必要とする雇用時間数の確保が難しくなり、労働内容や労務形態の見直しは今後も必要である。

49
10 労働安全衛生

10.1 概要

生理学研究所では、安全衛生管理者や産業医による巡視と、安全衛生講習会開催と安全衛生職員教育の実施で安全衛生管理を進めている。今年度の巡視は、明大寺地区が市川担当、前橋担当、伊藤(嘉)担当、竹島担当、山本担当、山手地区は小原課長補佐、山口係長、森係長、福田係長、神谷係長らによる衛生管理資格者10名で実施した。産業医による巡視は、昨年に引き続き、後藤敏之先生にお願いした。

生理学研究所では2004年の法人化以後、岡崎3機関安全衛生委員会の下、生理学研究所安全衛生小委員会が、職場環境や労働状況の改善を通じて、職場における職員の健康を確保するように努めてきた。労働安全の諸規則は、生理学研究所のようないく種の機器が含まれ、個々の作業が多様な職場で実践するには難しい面が多々あった。しかし、安全衛生管理者の努力や職員の協力により、研究現場での安全衛生は着実に向上してきている。現在のところ安全衛生活動は順調に行われている一方、ここ数年に対応すべき問題が多様化してきている。例えば、行動アルデヒドや酸化ポリブレノンの特定化学物質への暴露、ケタミンの麻薬指定、レーザーを使用した機器の増加などが挙げられる。また、特殊健康診断を出さなかった問題点も含みやかに対応する必要がある。これらの安全衛生管理業務は、主に技術職員によって行われている。技術課に属する技術職員の主要な業務は実験のサポートや機器開発などである。研究支援業務を行う技術課と、それに伴った事故・障害を防止する業務を統括する部署は、組織上分かれていた方が望ましいと考えられ、多様な安全管理業務に対応でき、技術課と独立した安全衛生管理室を2011年より設置した。安全衛生管理室では以下の業務を行う。

1. 研究所内の安全衛生管理体制、作業環境などの点検、および改善の支援
2. 安全衛生関係の法令の調査および安全衛生に関する効果的な情報の運用
3. 各部署の安全管理担当者へのアドバイスや情報の提供
4. 研究所全構成員を対象とした各種安全衛生教育の企画、実施、啓発

5. 機構内の他部局や監督官庁との連絡調整
6. 安全衛生監視ほか作業環境測定など法令遵守に必要な技術支援
7. 法令遵守などでの迅速かつ、効率的な対処
8. 安全衛生情報の蓄積、整理、公開、周知、長期保管情報の管理
9. 職場の安全衛生レベルの向上と意識改革、入社育成
10. 構成員全員で作る安全な職場を積極的にアピール

10.2 活動状況

安全衛生管理室技術職員と巡視担当者および技術課長が、技術課安全衛生会議で、年間巡視計画、巡視結果を踏まえた指導や見直しなどの打合せを行った。安全衛生管理室長（安全衛生担当主幹）、安全衛生管理室技術職員、技術課長は、随時打ち合わせを行いながら、安全管理を進めている。今年度の主要な活動を以下にあげる。

1. 生理研オリエンテーションにおける安全衛生職員入門時の教育2013(平成25)年4月11日に岡崎コンファレンスセンターで行い、65名が出席した。「安全衛生の手引き」「危機管理・対応マニュアル」「Guidance of “Health and Safety” Affairs」を配布し、「研究・実験を安全に行うために」、「組換え DNA 実験について」、「アイソトープ実験センター・廃棄物処理室概要」、「動物実験センターの利用について」などの講演を行った。

2. 安全衛生講習会の開催
2013(平成25)年7月24日に岡崎コンファレンスセンターで行い、155名が出席した。安全衛生概論（安全に実験を行うために）の講演、2012(平成24)年度安全衛生巡視に基づく注意事項の講演の後、「サルを飼育・実験する上でのヒトとサルの健康管理」と題して京都大学医学部研究室 人類進化モデル研究センター准教授の鈴木樹理先生に特別講演をしていただいた。

3. 安全衛生に関するホームページの充実
労働安全、作業環境管理、巡視計画などの情報、規則、マニュアルなどの掲載および申請書類の改訂を行った。また、安全衛生関連情報のデータベース化についても充実させ、巡視結果による指摘事項や改善要請、転居などの情報の閲覧機能なども加え、安全衛生
に関する広範な情報の登録、閲覧、編集などをホームページ上から可能とし、業務の効率化を図った。

4. AED(自動体外式除細動器)の設置
緊急時の応急処置を行うように生理研実験研究棟
玄関、山手地区2号館玄関と4号館2階、三島ロッ
ジおよび明大寺ロッジのエントランス、コンファレン
スセンターのエントランスにAEDを設置している。

5. 防災関係
2013(平成25)年10月28日に、明大寺地区、山手地
区に於いて防災訓練を実施し、放送、避難・誘導、救
護、初期消火、消火器取扱等の訓練を行った。その他、
救急救命講習、自衛消防講習などに積極的に参
加している。

6. 毒物物管理週間
試薬管理毒物物管理に対する意識を高めることを目
的に、本年度より毒物物管理週間を設け、保有する
毒物への認識と理解を深めるとともに、定期的な
保有量照会を促進させた。本年度は、6月及び12月
に実施した。
11 研究に関わる倫理

11.1 ヒト及びヒト由来材料を対象とする研究に関する倫理問題

以前は、ヒトを対象とした研究は研究者自身の判断に任されていた。ある意味では規制無しの放任状態であった。そのため、様々な問題が起こっていた可能性があるが、それらは、余程の事が無い限り、表面に出ることは無かった。しかし、1964年にフィンランドのヘルシンキにおいて開かれた世界医師会第18回総会で、医学研究者が自らが規制する為に採択された人体実験に対する倫理規範が採択された。正式名称は、「ヒトを対象とする医学研究の倫理的原則」であるが、一般的にはヘルシンキ宣言と称されている。そのきっかけとなったのは、ナチスドイツによる人体実験であったが、その後、時代の影響を受け何度か修正、追加が加えられ、現在ではより一般的なものとなっている。さらに、2000年10月に、ヒトゲノム計画に関して、エディンバラでの総会で改定された。現在では、日本の全ての大学医学部、医科大学、および主要な研究機関に倫理審査委員会(Institutional Review Board)が自主的に設置されている。

生理学研究所では、動物実験と同じくヒトに関する実験も、所内及び所外の専門家で審査・承認された上で実施されている。このために、二つの専門機関が設けられている。一つは、ヒト由来材料の遺伝子解析実験を審査する、岡崎3機関共通の生命倫理審査委員会である。文部科学省・厚生労働省・経済産業省の3省から選出された「ヒトゲノム・遺伝子解析研究に関する倫理指針」(2001年平成13年3月)に対応して作られた。岡崎3機関でヒトゲノム・遺伝子解析に関する研究を行う場合には、所定の計画書を提出し、この委員会の審査を受ける。委員には内部の研究者以外に、機関外から医師、弁護士、学識経験者の3人の方に入っていただいており、女性の委員の方もおります。岡崎3機関でヒトゲノムを扱う場合は、試料は匿名化されて外部の機関から送られてくるので、元の機関で実験手続きが的確に行われているかと、そこから岡崎3機関への移送許可が取られているかが審査の要点となる。

11.2 臨床研究に関する倫理問題

生理学研究所内での倫理委員会は、生理学研究所で活発に行われているヒト脳活動研究の実験計画と審査している。審査対象実験の主なものは、脳磁誘、磁気共鳴画像装置による脳イメージングである。この委員会では、遺伝子解析以外の、ブレインバンク等から提供される脳の標本等を用いた実験審査も行っている。生理学研究所倫理委員会には、外部委員として岡崎市医師会会長の先生及び弁護士に、女性の委員として吉村教授に入っている。

本年度は、臨床研究に関する講習会を2014(平成26)年1月15日に開催した。倫理委員長(南部篤教授)から、研究上の倫理問題について説明し、以下のような基本方針を示した。また、浜松医科大学教授 森下直貴先生に「研究倫理のリテラシー：現代の複雑性に耐える思考」というタイトルで講演をいただいた。

11.3 倫理委員会の役割と実験の基本規則

1. 動物実験と、人間を対象とした研究は、全く異なることを周知徹底する。
2. 必要不可欠な実験であるか否かを議論する。「研究者の野心」に基づく「実験のために実験」であってはならない。また、身体にダメージを残す可能性のある研究は、徹底的に議論の対象とする(特に健常児、成人の場合)。
3. 生理学研究所は病院を有しない。したがって、緊急治療が必要となる可能性のある実験は、必ず病院(できれば大学病院)で行う。
4. 被験者の身元の特定がされる行為は、本人が了承している場合以外は絶対に許されない。
5. 心理的負荷も重要な審査の対象となる。
6. インフォームド・コンセントを徹底する。すなわち、実験内容をできるだけわかりやすく被験者に説明し、拒否する権利があることを周知徹底する(たとえ実験開始後でも)。その上で実験同意書を得る必要がある。
7. 健常乳児、幼児、児童を対象とする場合には、保護者の同意が必須。
8. 患者が対象の場合には、主治医ないしそれに準
11.4 研究活動上の不正行為の防止
自然科学研究機関では、2008年2月に「大学共同利用機関法人自然科学研究機関における研究活動上の不正行為への対応に関する規程」及び「大学共同利用機関法人自然科学研究機関における研究活動上の不正行為への対応に関する規程」を作成し、不正行為に対応することになった。具体的には、研究活動上の不正行為に関する通報窓口を各研究所に設置するなどとしている。告発が起きた場合には、自然科学研究機関不正防止委員会において、専門家を入れて慎重に調査することになっている。2013(平成25)年度は、幸いなことに、不正行為が疑われる事例は起きていない。今後も、研究を行う意義について各人が自覚を持つことが大切だと考えられる。

11.5 研究費不正使用の防止
生理学研究所の研究は、多くの研究費補助金によって支えられている。その多くは税金によりまかなわれている。大学共同利用機関法人自然科学研究機関における競争的資金取扱規模を作成し、不適切な研究費使用が行われる事を事前に防ぐよう周知徹底している。具体的な研究費の不正使用防止の仕組みとして、4年前に、新たに物品検収室を設置し、全ての納入される物品を第三者である事務官がチェックするシステムを作り、検収を行なっている。実質的に、研究費の不正使用ができないシステムを確立し、効果を上げている。

11.6 ハラスメントの防止
セクシュアル・ハラスメント防止のために、岡崎3機関のセクシュアル・ハラスメント防止委員会が設置されており、生理研の富永真理教授、定藤源弘教授、山脇葉子助教の3名が委員として参加している。生理研内では、研究部門およびセンター等の各部署にセクシャル・ハラスメント防止活動協力員を配置するとともに、明大寺地区および山手地区に各1名の相談員を設置している。また、セクシャル・ハラスメント防止活動として、生理研に新規採用となった全職員に対し、ハラスメント防止のためのパンフレットを配布し、セクシャルハラスメント防止活動説明会を実施した。また、セクシャル・ハラスメントに限定せず、アカデミックハラスメントとパワーハラスメントも含めたハラスメント防止研修会を、以下のように行った。

第1回
日時：2013(平成25)年10月10日木13:30〜15:30
会場：岡崎コンファレンスセンター 中会議室
講師：株式会社フォーブレーン 稲原智子氏
題目：『知らないうちに、ハラスメントに巻き込まれないために』

第2回
日時：2014(平成26)年1月20日月13:30〜15:30
会場：岡崎コンファレンスセンター 中会議室
講師：株式会社フォーブレーン 栃原朗太氏
題目：ハラスメント防止とコミュニケーション〜快適な職場づくりはあなたから〜
12 男女共同参画推進

12.1 背景

現在、社会の至るところで男女共同参画が進められているが、その基礎となっている法律は、男女共同参画社会法(1999年(平成11)年法律第78号)である。その前文には、日本国憲法の“個人の尊重と法の下の平等”の実現化という原則的な考え方とともに、”少子高齢化の進展、国内経済活動の成熟化”という社会経済情勢の変化に対応するための必要性が述べられている。条文には、”政策等の立案及び決定への共同参画”が明記されており、その対象は国・地方公共団体のみならず民間の団体（これには企業も含まれる）における方針の立案及び決定に際しても共同して参画する機会が確保されることを求めている。

政府内では2001年に内閣府に男女共同参画局が設置されている。また政府は、男女共同参画基本計画を2000年より5年ごとに定めており、第3次の計画が2010年12月17日に閣議決定された。第3次計画では計画内容がより具体的なものとなり、特に、第2部施策の基本的方向と具体的施策では、15の分野における具体的な施策を示している。その中で研究関係の分野が「第12分野 科学技術・学術分野における男女共同参画」として取り上げられている。＜基本的な考え方＞は次の様に述べられている。

科学技術・学術は、我が国及び人類社会の将来をもたらす発展のための基盤であり、「知」の獲得をめぐる国際的な競争が激化している。我が国が国際競争力を維持・強化し、多様な視点や発想を取り入れた研究活動を活性化するために、性研究者者らの能力を最大限に発揮できるような環境を整備し、その活躍を進めていくことが不可欠である。また、科学技術・学術の振興により、多様で独自的な最先端の「知」の資産を創出することは、男女共同参画社会の形成の促進にも資する。

しかしながら、我が国の研究分野での参画状況は、他の先進国と比べて依然として不十分である。女性研究者の比率及び普及・研究機関への参画のための環境づくりや、子ども、学生、生徒の研究分野への進路選択の支援を図り、各研究機関における先導的な取組の成果の全国的な普及・定着を進めることによって、研究機関が実態に応じて積極的改善措置（ポジティブ・アクション）を推進することを支援するなど、科学技術・学術分野における女性の参画拡大を積極的に推進する。

さらに第3次計画では、成果目標として、女性研究者の採用目標値(自然科学分野)を現在の23.1%から2015年(平成27)年までに30%を目指すことがあげられている。また具体的施策1「科学技術・学術分野における女性参画の拡大」として、女性の政策・方針決定への女性参画の拡大、審査員への女性の登用や、日本学術会議の女性会員比率の向上などがあげられている。具体的施策2「女性研究者の参画拡大に向けた環境づくり」では、女性研究者ネットワークの構築、勤務環境の整備等が図られている。ここでは出産・子育て期間中の研究活動を支える研究・実験補助者などの雇用の支援などが述べられている。さらに具体的施策には3「女子学生・生徒の理工系分野への進学促進」が含まれている。

12.2 自然科学研究機構および理學系研究所での取り組み

女性も男性も研究と家庭が両立できる環境整備、男女共同参画推進に向けたアクションプランを計画的に実施するために、「男女共同参画推進委員会」（座長 大 峰裏理事、理学研からは鶴倉副所長、吉村教授が参加）が設置されており、昨年度に引き続き、意識改革、雇用・評価制度改革、人事応募促進、就労支援環境整備の4つの柱をとしたアクションプランに従い、長期的なビジョンでその実現に向けて努力している。本年度採択となった研究大学強化進歩事業では、自然科学研究機構は女性研究者の比率の数値目標を5年後に10%、10年後に15%と定めている（現在、本務者の比率は機関全体で6.9%）。本年度は佐藤勝幸機構長のリーダーシップの下、女性に限定した研究職員の公募を実施した。生理研は特任准教授（場合によっては特任助教）の公募を行い、現在選考中である。また、機構内意識改革を促す目的でバンフレットを作製しており、来年度に配布する予定である。岡崎地区の取り組みとしては、東京大学大学院総合文化科学研究科 瀬地山角 教授を招き、「家族としての研究者とワークライフパラシス」というタイトルで講演会を実施した。全体で93名、生理研からは19名の参加があった。
13 基盤整備

研究所の研究基盤には様々な施設・設備があり、それらの設置、保守、更新にはいずれもかなりの財政的措置を必要とするため、基盤整備の計画は長期的な視野をもって行われなくてはならない。しかし、特に最近は財政も逼迫し、研究の進歩にともない新施設整備が十分に進められなくなってきている。

13.1 中長期施設計画

生理学研究所 (生理研) は 6 つの柱として示された研究テーマと、6 つの階層を研究対象に生理学基礎研究を推進している。これらの研究方針に沿うように施設整備に取り組んでいる。また、全国の国立私立大学をはじめとする国内外の研究機関と共同研究を推進するために、最先端研究施設、設備、データベース、研究手法、会議用施設等を整備している。生理研究実験研究棟の耐震改修工事と設備改修工事が完了し、研究室と実験室の整備が完了した。今後、「四次元脳・生体分子統合イメージング法の開発」のために、神経情報のキャリアーである神経電流の非侵襲的・大域的可視化を行う。またサブミルメートル分解能を持つ新しい fMRI 法や MEG 法 (マイクロ MRI 法/マイクロ MEG 法) の開発を中心に、無定型・無染色標本をサブミクロンで可視化する多光子励起レーザー顕微鏡法を開発し、レーザー顕微鏡用標本をそのままノートメーター分解能で可視化することができる極低温位相差高圧電子顕微鏡・モグラフィを開発する。これらの 3 次元イメージングの統合的時間記録 (4 次元統合イメージング) によって、精神活動を含む脳機能の定量化と、分子レベルからの統合化、およびそれらの実時間的可視化を実現する。これらの開発に合わせて、脳・人体の生体内外分子イメージングの大センターとなるような施設の拡充も必要である。

13.2 図書

図書購読料の毎年の上昇のため、契約雑誌以外のエルゼビア社が出版している全雑誌を閲覧できるフリーダムコネクション契約から、総研大の各専攻が購読契約を結んでいるジャーナルのみ無料で閲覧できるコンプリートコレクションと購読形態の大きな変更を 2011(平成 23) 年度に行って、今年度は 3 年目を迎え、総研大で 1 専攻が購読契約を結ぶと全専攻で購読できるため、生命科学 3 専攻および総研大との調整のうえ、生理研で購読契約を結ぶ雑誌を慎重に選定したため、現在まで大きな混乱は起きていないように思われる。しかし、現在も雑誌購読料の上昇は続き、研究府の限られた図書予算をどのように適切に図書資源の導入に割り当てるかという問題に対処するためには引き続き厳しい選択が求められる。来年度に向けて、新しく生理研に立ち上がり研究部門が関係する分野に対応するために新規雑誌購読を行うと共に、利用頻度の低い雑誌は購読を中止するなどの措置を、研究所内でアンケートを実施した上で進めた。このような状況は全国的に生じていると考えられ、他の大学研究機関と情報を共有することも重要であると考えられる。

13.3 電子顕微鏡室

電子顕微鏡室は、生理学研究所と生物物理学研究所の共通実験施設として設置され、各種電子顕微鏡、生物試料作製のための実験機器、電子顕微鏡等にて取得したデジタルデータの編集・加工に必要な機器が設備され、試料作製から電子顕微鏡観察、デジタルデータの編集・加工までの一連の工程を能率的に行える施設である。明大寺地区電子顕微鏡室は今年度改築工事が開始され、この地区に設置されていた機器の多くは明大寺地区超高圧電子顕微鏡や山手地区電子顕微鏡室に移設された。山手地区電子顕微鏡室 (山手 2 号館 3 階西電子顕微鏡室) には透過型電子顕微鏡が 4 台 (うち電子顕微鏡室所有の電子顕微鏡は 2 台)、走査型電子顕微鏡が 1 台、三次元再構築用走査型電子顕微鏡が 2 台設置され、研究目的に応じて利用できるようになっている。

電子顕微鏡室の変更点としては、先述のとおり明大寺地区電子顕微鏡室の改築工事が始まったため同地区に設置されていたすべての機器を移設し、利用頻度の高い電子顕微鏡本体や同付属機器は他の場所で利用可能な状態とした。また利用頻度の低い機器に関しては分子科学研究所の一室を倉庫として借用し、そこに移設した。山手地区電子顕微鏡室には、電子顕微鏡 (SIGMA/VP, MERLIN) の 2 台体制が整備されており、これに伴い多くの利用が見られたが、同時に故障が頻発し 2 台同時に稼働できるのは非常に問題があった。
常に稀であったという問題が生じている。加えて、本年度で MERLIN の保証期間が切れるため、今後の故障に伴う費用の捻出をどこから行うかも大きな問題となっている。

電子顕微鏡室の活動としては、電子顕微鏡室講習会の開催、液体窒素取り扱い講習会の開催、電子顕微鏡室所有機器のマニュアル作成等を行った。

また明治大学地区電子顕微鏡室においては機器の搬出、不要物品の廃棄等を行うとともに、新しい電子顕微鏡室の設計の作業も引き続き行っている。

最後に前年同様、三次元成長を利用した電子顕微鏡に関しては、所内の利用者も多いが、現在電子顕微鏡室の技術職員 2 名でのサポートでは、不在または他の業務との関係から本装置に対する迅速な対応が行き届かなくなっている点等は改善されていない。今後の三次元成長を利用した電子顕微鏡の円滑な運営のために、専門の技術職員と研究教育職員の配置が必要である。

13.4 機器研究試作室

機器研究試作室は、生物医学研究室および基礎生物学研究室の共同施設として、生物科学の研究実験機器を開発・試作するために設置された。当施設は、床面積 400 m² で規模は小さいが、生物医学系・生物科学系大学の施設としては、日本でも有数の施設である。最近の利用者数は年間延べ約 1,000 人である。また、旋盤、フライス盤、ボール盤をはじめ、切削、横切盤等を設置し、高度の技術ニーズにも対応できる設備を有しているが、機器の経年劣化を考慮して、今後必要な更新を進めていく必要がある。

最近では、MRI や SQID 装置用に金属材料を使用できない装置や器具も多々あり、樹脂材料や新素材の加工への対応に迫られ、エンジニアリングプラスティックの調査と 3D プリンターの利用方法の検討を行っている。しかし、技術職員数は近年非常に限られているため、1996(平成 8) 年 4 月以降は技術職員 1 人で研究支援を行っており、十分に工作依頼を受けられないという問題が抱えている。そこで、簡単な機器製作は自分でと言う観点から「ものづくり」能力の重要性の理解と機械工作ニーズの新たな発掘と展開を目指すために、当施設では、2000(平成 12) 年から、医学・生物学の実験研究に使用される実験装置や器具を題材にし、機械工学の基礎知識を実習主体で行う機械工作基礎講座を開講している。これまでに 200 名を超える受講があり、機器研究試作室の利用拡大に効果を上げている。

2013(平成 25) 年度も、安全講習とフライス盤及び旋盤の使用方法を主体に簡単な器具の製作実習を行うコースと CAD コースを開講し、合わせて 34 名が参加した。講習会、工作実習や作業環境の整備の成果として、簡単な器具は自分で製作するユーザーが多くなり、ここ数年も起こっていないことが挙げられる。また、所内のユーザーだけでなく、生産研究室が実施している生産科学実験技術トレーニングコースにも「生理学実験のための電気回路・機械工作・プログラミング（生体アンプとパステッシャーの作製）」というテーマで参加し、3 名の受講者を受け入れた。さらに、生理学研究室広報展開催推進室が進めのアウトリーチ活動にも積極的に協力し、一般市民向けデモンストレーション用機材の開発も行っている。

13.5 ネットワーク管理室

インターネット等の基盤であるネットワーク設備は、研究所の最重要インフラ設備となっている。ネットワーク設備の管理運営は、岡崎 3 機関の岡崎情報ネットワーク管理室を中心に、各研究所の計算機室と事務センターの情報サービス係が連携し、管理運営に当たっている。管理電子情報処理センターのネットワーク管理室の技術職員 2 名が、ネットワークの保守、運用などの実際的な業務を担当している。

ネットワークのセキュリティに関しては、岡崎 3 機関で共通で、「大学共同利用機関法人自然科学研究機構 ORION サイバーセキュリティ基本方針」及び「大学共同利用機関法人自然科学研究機構 ORION サイバーセキュリティ運用基準」を定め、ユーザーの管理、接続端末コンピュータの管理、ファイアウォールの設置、セキュリティソフトの配布、各種プロトコルの使用制限などの対応をとっている。2011 年度にはネットワーク増強の補正予算を頂き、ネットワーク機器の増強と老朽化機器の更新が行われた。これにより、例年問題となっていた下記のネットワーク機器に関する問題点 (1)-(5) は解消されつつある。しかしながら、(6) に示される個人の増強は措置されないままである。

(1) ネットワークの増速ができない。PC は通信速度 1Gbps 対応にもかかわらず、提供しているネットワークは 100Mbps で 10 分の 1 の速度にしか対応していない。(2009 年度末に 1Gbps 対応のエッジスイッチに内部位置で更新) しかし、エッジスイッチ
13.6 老朽対策と耐震改修工事

明大寺地区には生理研究実験研究棟、超高圧電子顕微鏡棟、共通施設棟Ⅰ（電子顕微鏡室）、共通施設棟Ⅱ（機器研究試作室）、動物実験センター棟、MRI実験棟がある。これらの多くは築後30年を越え、建物、電気設備、機械設備、防火・防災設備も老朽化が進み、大型改修または設備の更新が必要になっている。しかし、その経費の確保が難しく、事故や故障への一過性の対処対応に終始している。生理研究実験棟については2011（平成23）年度から2期に渡り耐震工事と設備の改修工事が行われた。共通棟Ⅰは今年度、改修工事が行われた。また、動物実験センター棟については建て替えを含む改修計画の検討を進めた。

設備の処理対応や今後の課題は次の通りである。

(1) 建物全般

建物に関わることでは、地震に対する耐震補強と雨水の浸水や漏水がある。耐震補強は、岡崎3機関の耐震診断調査の結果に基づき、2012（平成24）年度に生理研究実験研究棟北側半分の耐震改修工事が実施され、岡崎3機関すべての耐震改修工事が完了した。浸水や漏水については、今年も台風ばかりでなく激しい降雨の後に実験研究棟の実験室や廊下で浸水や漏水が見られた。特に地下通路では雨降りのたびに漏水が見られ、その都度対応している。生理研究実験研究棟では耐震改修工事により解消されたと思われるが、他の建物では老朽によるこうした問題は今後も顕著が懸念され、その場合の経費の確保が引き続き問題となっている。

(2) 電気設備

電気設備においては、施設課が担当する研究所等の基盤設備として生理研究実験研究棟地階変電設備の更新工事、照明設備老朽化と省エネ対策のための工事、データ通信対応の配線工事などが進められ、その必要性、重要性、優先度を考慮して順次計画的に進められている。生理研究実験棟では耐震改修工事により解消されたと思われるが、他の建物では老朽による問題は今後も顕著が懸念される。老朽化が大きな課題となっていた特高変電設備は今年度、2回線化工事が行われた。また、実験研究における重要な設備として、停電時に稼働する緊急用電源供給設備としての非常用バックアップ発電機がある。研究試料を保管する冷蔵庫や実験動物の換気などに使用されるもので、2011（平成23）年度に発電機が更新された。発電機に過荷をかけないように今年度も引き続き、非常用バックアップ発電機に接続されている機器の調査を行い、適正な運用を図った。

(3) 機械設備

機械設備の経年劣化が進行している。各実験室には、空調機用の冷却水配管や水道管が引かれる。今年度も、水道管や冷却水配管からの漏水が発生したが、応急処置で対応した。配管の改修工事は相当な経費を必要とするため、面倒な補修が手伝う場所での一時的対応となりがりとする。老朽化した配管は深刻な問題となっているため、早急な対応が望まれる。生理研
実験研究棟では耐震改修工事により解消されたと思われるが、他の建物では今後も劣化による問題が引き続き懸念される。

空調機は、基本的設備として居室を含め実験研究棟だけでなく300基近くが設置されている。これまでは基幹整備により順次交換されてきたが、経費のこともあり計画的な交換が進んでいない。そうした中で、経年劣化による故障修理と部品供給の停止による一式全交換を行っている。2013(平成25)年度は、明大寺地区と山手地区を合わせて修理を8基、全交換を1基、行った。

こうした経費も大きな負担となっている。また、劣化した配管の漏水事故問題があったパッケージ型空調機は、耐震改修工事に合わせて撤去を進めた。

明大寺地区動物実験センター棟では、空調機の劣化がひどく、その都度対応を取っている。特に動物飼育室では温度制御が不安定で、現在も一時対応で済んでいる。これらも経年劣化によるもので、居室と実験室及び動物飼育室における空調機の計画的な更新が必要であるが、実発的な故障の対応も今後の検討事項である。共通施設棟1及びⅡでも古くなった設備は、そのメンテナンスもままならない。こうした設備についても年次的な交換計画が必要となっている。

(4) 防災・防火設備

建物の防災・防火設備として自動火災感知器、防火扉、消火栓、消火器、非常照明、非常口誘導灯が備えられている。これらは管理を担当する施設課により毎年定期的に点検整備され、維持管理されているが、こうした設備の劣化も進んでおり、更新計画が必要となっている。今年度も研究室の模様替えによる防火防災設備の見直しが行われた。

13.7 スペースマネジメント

研究活動の変化に対応した円滑な利用とその効率的な活用が実験室使用に求められているが、研究所ではスペース委員会を設け、室の効率的な利用を進めてい

13.8 省エネ対策

岡崎3機関は省エネルギー法に基づき明大寺地区と山手地区が第1種エネルギー管理指定工場に指定されているため、これらの地区においてエネルギーの使用量単位年平均1%以上の改善を義務付けられている。このことから、施設課では改修工事において計画的に各種の省エネルギー対策の実施、また、省エネルギーの意識向上の一環として毎月の所長会議において明大寺、山手地区における電気、ガス、水の使用量の報告、毎月1日を省エネルギー普及活動の日として省エネルギー対策事項を機構オールで配信及び省エネ看板の掲示を行っている。研究所では、夏、冬のエネルギー負荷を抑制し、省エネルギーを実施している。また、実験研究棟以外でも、廊下の照明設備に人感センサーを設け、省エネ対策を推進している。

13.9 生活環境整備

明大寺地区では耐震改修工事期間中は整備できないが、工事後の休憩室整備などを進める予定である。山手地区では、研究支援センターや施設の見通しがつかないが、山手地区職員の生活環境整備が山手地区連絡協議会で議論され、進められている。今年度も引き続き、研究棟周辺の環境整備が行われた。

13.10 伊根実験室

本施設は建設以来24年により数多くの共同研究者に利用され、海生生物のための临界実験室として活用されてきたが、2010(平成22)年度をもって生理学研究所施設としての役割を終了した。2011(平成23)年度に施設の再利用が検討され、2012(平成24)年4月から「自然科学研究機構伊根実験室」として共同利用が開始された。

58
14 環境に関わる問題

14.1 省エネルギーについて

二酸化炭素・温室効果ガス排出抑制とも関係して、事務センター施設課が電気・ガス・水道の使用量を把握して、毎月の場所ごとの使用状況を把握し所員に通知し、省エネ目標を達成するように努力している。その結果は、年度末に環境報告書にまとめている。『温室ガスの排出抑制のために実行すべき措置に関する計画』への取り組みとしては、(1) 冷暖房温度の適切な調整、(2) 昼休みの一斉消灯、(3) O.A 機器等の不使用時のシャットダウン、(4) エレベータ使用の節減、(5) 帰宅時に部屋や廊下の電灯および冷暖房機器等の電源オフ等を日常的に行うようにしている。2009年度末より、明大寺地区の廊下及びトイレ等の照明器具を、人感センサーによる自動点灯式に交換し、節電を行った。2007年度からは、夏季に節電休暇日を設けている。2013年度も、8月15日を節電休暇日(全日エアコン原則使用禁止)、8月13〜14日を定時退所日(17時半から翌始業開始時間までエアコン原則使用禁止)として、職員に協力をお願いした。その結果、節電休暇日の電力消費量はある程度削減され、節電効果が得られた。例年、山手地区の研究室単位のデータでは、研究室により節減の程度に大きくばらつきが見られる。来年度以降も、さらなる努力が必要と考えられる。

14.2 廃棄物処理

岡崎3機関では、2009年度に、山手・明大寺・3研究所の間でゴミの分別方法を、次のように統一した。(1) プラスチック類；(2) 食用油カン・ビンペットボトル；(3) 古紙類；(4) 可燃類(生ゴミを含む)；(5) 不燃類(ガラス・金属・陶器及び飲料用以外のカン・ビンを含む)；(6) 蛍光管乾電池類。統一化と分別基準を周知したことで、分別は現在のところ順調である。実験廃棄物プラスチック・感染性廃棄物の処理については、別途収集し、安全な分別処理が現在行われている。家電および使用済みパソコンのリサイクルについても、代行業者を通じて行うようにしている。

14.3 駐車場問題

岡崎地区の3研究所では(そして全国の大学においても)，駐車場問題は最も頭の痛い問題の1つである。山手地区の設置や、「駐車場のワークインググループ」の努力によって、駐車場問題はかなり改善された一方、モラルの低下による違反駐車が目立っていた。すなわち、やや遠距離となるものの、分子研周辺や三島ロッジ地区には余裕がある時間帯さえ、生理研の近くに平気で違反駐車する車両が目立っていたのである。人身事故の防止や、災害時に緊急車両が容易に進入できるようにするためには、これらの違反駐車車両は速やかに排除しなければならない。そこで、駐車問題の重要性を考慮し、2009(平成21)年度からは「駐車場のワークインググループ」(岡崎3機関構内交通規制管理運営委員会)を名称を改めて(格上げされて)活動を行っている。その結果、駐車スペースの増加が図られ、同時に規則の再確認と見回りの徹底、さらに罰則の実施が行われてきた。そうした努力の結果、違反駐車は目立つよう減少してきた。しかし、駐車問題は永遠の課題であり、今後もいっそうの努力が必要であることは言うまでもない。

14.4 防犯一般

岡崎3機関では機構内および研究所内への不審者の侵入を防止する目的で、機構内関係者全員にネームカードの着用を義務づけてきた。ネームカードの着用率は次第に上がっている。特に山手地区では、カードキーシステムが採用されているため、明大寺地区に比較してネームカードの着用率が高いようである。さらに防犯効果を上げるため、明大寺地区および山手地区ともに玄関に防犯カメラが設置され、不審者の侵入を防いでいる。今後は明大寺地区において、セキュリティの向上を検討する必要がある。
15 動物実験関連

15.1 動物実験委員会

1) 動物実験計画等の審査

2013年度4月から新規あるいは継続して行う動物実験に関しては、実験計画書を2013年1月31日に締め切り、2月27日に審査を行った。また、その後も含めて申請・承認された動物実験計画は200件（うち生理学研究所133件）である（2013年12月末現在）。また、苦痛度スコア別では、B: 58件、C: 101件、D: 16件、F: 25件（うち生理学研究所B: 38件、C: 77件、D: 15件、F: 3件）である。

2) 施設等の承認

設置承認された実験動物飼育保管施設及び動物実験室（施設等）は、5年ごとに新たに承認することとなっており、2013年4月からの新規分も含めて、実地調査を経たのち5月1日以降6回の審査を行った。特に、明大寺生理学研究所研究棟の耐震改修が2013年3月に終了して各研究室の実験室レイアウトが変更になったために、多くの新規分審査を行った。現在、認可されている飼育保管施設は50（うち生理学研究所32）、動物実験室は122（うち生理学研究所79）である（2013年12月末現在）。

3) げっ歯類の家庭内飼育保管状況調査

家庭内飼育ペット（げっ歯類）が有するかもしれない感染症の病原体が動物実験センター及びモデル生物研究センター内飼育げっ歯類へ伝播する可能性があることから、啓発の意味も兼ねて実態を調査した。実験動物の飼育保管施設を有する研究部門だけでなく、動物実験センターや基礎生物学研究所のモデル生物研究センターを利用する研究部門も対象とした。若干名が家庭内でモルモット、ハムスターを飼育しているが、その研究員は研究所内で動物と接していないことが分かった。

4) 明大寺地区動物センター地下SPFへの導入方法の見直し

クリーン度を高める目的で、明大寺地区動物センター地下SPFへ、凍結受精卵の導入のみとすることになった。

5) 教育訓練講習会

2013年度には4月19日（参加者16名）、4月24日（参加者13名）、5月29日（参加者10名）、7月17日（参加者19名）、8月9日（参加者20名）、9月18日（参加者12名）、11月11日（参加者14名）、12月17日（参加者8名）の8回行った（2013年12月末現在）。

6) 山手地区動物関係コミコミ取引方法

山手地区の各研究部門で出たマウスは、山手地区に設置したコンテナに各研究部門の責任で処理することになった。

7) 各飼養保管施設における実験動物飼養保管状況に関する調査

各飼養保管施設における実験動物飼養保管状況に関する調査を2013年度5月に実施したところ、記録簿の写しの添付を要求したために、2012年度中の実験動物の授受の記録簿及び2012年度中の飼育日報・月報などの飼育保管に関する記録簿がない研究部門が複数みられたために、指導を行い、改善を確認した。

8) 感染対策

感染対策の強化のために、動物実験委員会として2012年度に以下のことを計画して実施してきた。

① 各部門の飼育保管施設に対する強制力を持つ微生物モニタリング。
② モニタリング結果の公表。
③ 個別案件に関するワーキンググループの設置。

2013年度中（2013年12月末現在）に融解移植したマウスを飼育するために動物実験センターが使用する山手の部屋での緑膿菌感染が発覚した。繰り返し検査の実施、消毒、抗菌剤による除菌等を行い、陰性化を確認した。

15.2 動物実験コーディネータ室

「動物実験コーディネータ室」では、岡崎3機関における動物実験の管理・指導を行うとともに、教育訓練のための講習会を開催し、新規動物実験開始者や3年更新を迎える動物実験実施者への便宜を図るとともに、より適正な動物実験の遂行に努めた（22年度8回：受講者数135名、23年度7回：受講者数194名、24年度11回：受講者数202名、25年度8回：受講者数110名「12月末現在」）。

例年行っている実験動物飼養保管状況調査を今回も5月に実施した。調査内容は、従来からの調査内容である①飼養保管施設のスケジュールの有無、②飼養保管マニュアル作成状況と掲示並びに関係者の周知徹底の有無、③実験動物の逸走防止対策の有無、④実験動物実験関連
物の授受記録簿の整備状況，⑤飼育日報・月報，実験ノートなどの飼養保管記録簿の整備状況，⑥ 25 年 5 月時点での飼育中の実験動物種類と飼育頭数，⑦ 2012（平成 24）年度中の実験動物の逸走・咬傷・重度のアレルギーなどの発生状況，⑧ 管理中の飼養保管施設における施設・設備の改善必要事項に追加して，⑨飼養保管施設の飼育槽の転倒防止，⑩ケージ・水槽等の落下防止対策であった。④と⑤に対しては実際の記録簿の写しも今回求めることとした。これらの調査結果は動物実験委員会に報告されうえ，足正措置の必要がある施設等については全て改善を図った。

15.3 動物実験等に関する 2012 年度の自己点検・評価について

「動物愛護管理法」，「実験動物の飼養保管等基準」，文部科学省の「基本指針」，日本学術会議の「ガイドライン」の法令等の整備を受け，自然科学研究機構においても 2007 年度から「大学共同利用機関法人自然科学研究機構動物実験規程」を制定施行して適正な動物実験の遂行に努めている。『環境省所属の「動物愛護管理法」及び「実験動物の飼養管理等基準」が改正され今年 9 月より施行されたが，動物実験や実験動物に関しては大きな改正がなかった。』

文科省の基本指針や規程第 9 章「自己点検」，第 10 章「情報の公開」に基づき，前年度に引き続き 2012 年度の実験動物飼養保管状況，自己点検・評価を行った。主たる点検評価項目は，1）規程及び体制等の整備状況，2）動物実験実施状況，であり，2012 年度も文部科学省の基本指針に則し概ね適切に遂行されたと自己点検・評価された。これらは自然科学研究機構岡崎 3 機関動物実験委員会として，機構ホームページ上に公開した。

http://www.nins.jp/information/animal.php

15.4 前年度問題点とされた事項に関する対応策について

2012 年度は，上記の項目において，文部科学省の基本指針に則し問題なく適正に遂行されたと自己点検・評価されたが，下記の問題点が残った。

1）飼養保管状況調査に関連して，授受記録簿や飼養保管記録簿の実際の確認がまだ実施されておらず，それらの確認について

2）生理学研究所の耐震改修工事への対応について

3）動物実験計画書申請の際の使用動物数の記載について

4）動物実験結果報告書について

などである。

1）については，実験動物飼養保管状況調査時に今回は記録簿の写しの提出を求めた。その結果，動物実験委員会として改善措置が必要である部門があり，足正を求める。2）に関しては，第 2 期目の耐震改修工事（明大寺地区実験棟北側部分・約 7 ヶ月間の工事期間）が終了したことから，飼養保管施設および動物実験室の再立ち上げに対応した。3）については，動物愛護管理法に謳われている 3R の一つの配慮事項であることから，使用数をなるだけ削減する指導として，25 年度に計画書を改訂したうえ実施した。4）についても，様式 2（動物実験結果報告書）を改訂した上，当年度の殺処分数の記載も求めるべく実施した。

15.5 本年度の問題点と対応について

1）エーテル，ハロタンの使用

2）ベントバルバフィール単剤の使用

3）「動物の愛護及び管理に関する施策を総合的に推進するための基本的な指針」の一部改正に伴う事項について

4）動物実験委員会構成メンバー，主な飼養保管施設名，教育訓練の内容，並びに特定期間の飼養数の公表等情報公開に関する更なる取組みについて

などであり，前年度より上げられた事項も含まれている。

1）については，エーテル使用による引き火性と気道刺激性の問題，さらに医薬品でなく工業製品であること。また，ハロタンの人の肝毒性保有であることから，岡崎 3 機関ではドライフ使用，または換気を義務付けたが，代替法としてのソフトラン，セボプラロンの使用を普及させることにした。実際には，動物実験計画書が提出された際に使用を控えるよう指導しているところである。2）については，吹水におけるガイドの改定もとくになって，ベントバルバフィールの単剤使用は鎮痛効果が少なく安楽死用の薬剤であるという理解が主流になっているが，海外の論文等を参考にした際にリジェクト又は説明を求められる例が生じている。このことから鎮痛剤を併用したバランス麻酔へのシフトを推奨している。また，吸入麻酔法への転換も行われつつある。その他，トリプロモエタンノール（ア
検出することができず、SPF 施設から排除できたものと判断した。また、SPF3 号室から搬出された動物を用いた実験を行った研究部門の実験室や飼育管保施設も消毒の協力を得られ、2013年6月5日以降手地区全体からも P. aeruginosa は根絶できたと論証できた。

P. aeruginosa の侵入経路を特定することはできず、約3ヶ月間、動物の授受に規制がかかり、動物実験に大きな妨げとなってしまった。

2. 山手地区 SPF6 室における Psedomonas aeruginosa（緑膿菌）の検出と対策

（1）経緯

SPF6 室は融解移植したマウスを飼育するためにセンターが使用する部屋であるが、3腹の仮親を検査に出したところ、1匹が陽性であった（検査日 2013年8月20日、報告日 2013年9月4日）。SPR6 室で使用するレシピエント、里親等をセンターが飼育管理する施設である SPF10 室は、8月の検査ではマウスは全て陰性であった。

（2）対策

全体の対策方針を定めて、各対策を進めた。

1）全体の方針

a. SPF6 室と SPF10 室は、動物を清浄化して各研究部門に送り出すための飼育室であり、最も高い清浄度が要求される。そこで、SPF6 と SPF10 両室の汚染検査を行い、以下の 3点を軸として Psedomonas aeruginosa を清浄化した。

① P. aeruginosa 検査（マウス個体、糞便、飲料水）
②抗生物質による除菌
③部屋の消毒

b. SPF6 と SPF10 において飼育管理中のマウス、前回の検査（7月）から現在までに部門に移動したマウスを検査対象とした。移動した動物については、各部門から飼育を取扱・供給してもらい自家検査によって P. aeruginosa の有無を調査した。

c. P. aeruginosa は感染力が強い菌ではないので、SPF6 室と SPF10 室に対して動線規制はかけなかった。

SPF6 室で使用した器具・機材は分けて消毒した。

d. SPF6 室と SPF10 室の清浄化が確認できるまでには、SPF6 室を用いた豚操作関係の仕事を停止した。

2）各対策

① P. aeruginosa 検査

i）検体を外部検査機関に送付し P. aeruginosa を
再検査した。精度を高めるため、出来るだけ SPF6 室と SPF10 室において飼育中のマウス個体を用い、動物個体を出させた場合、胃便検査をした。
ii) SPF6 室と SPF10 室の全ケーキから胃便を採取し自家検査を実施した。
iii) マウス飲料水、シンクの周囲、排水口を自家培養検査を行った。
②抗菌剤による除菌
i) ニューキロロン系抗菌剤 (エンロブロキサシン) を飲水投与した。
③部屋の消毒
i) SPF6、SPF10、融解移植室の 3 室について、動物がいなくなった時点で、消毒専門会社による消毒処置を行った。SPF6 室のモニタリングで P. aeruginosa が 1 頭より検出された以外、P. aeruginosa は動物および胃便からまったく検出されなかった。P. aeruginosa の感染経路は解明できないまままで終わっていた。SPF6 室の様々な動物実験センタースタッフだけが出入りする部屋でも感染経路がつかめないことから、感染症の侵入経路を明らかにすることは非常に難しいことが改めて感じられた。
3. 山手地区一時保管室の浄化
昨年度に引き続き、残りの部屋を一時除去後、光触媒を部屋の壁と天井にコーティング加工を施した。光触媒 (二酸化チタン) に光を照射することによって、ウイルス、細菌及び真菌などの微生物を分解する自浄システムを完成させた。
4. 外部獲得資金による負担金の徴収
実験動物の負担金の支払いに、外部獲得資金：科研費などの適用をするために、「自然科学研究機構岡崎共通研究施設動物実験センターの使用に係わる経費の負担に関する規則」を改正し、適用 3 年目の年度を迎えた。本年度も各実験動物の負担金を変更し、教授会、運営委員会および 3 所会議にて、審議・承認の手続きをとって進めた。8 月より派遣社員を雇用することにより、マウス・ラットの負担金も 8 月 1 日を節目に切り替わる二段階の金額体系となった。
5. その他として、教育訓練
教育訓練 Part 2 として、本年度も「げっ歯類系（マウス、ラット）の麻酔および疼痛管理」の教育訓練を行った。山手地区利用者講習会も毎年通り毎月開催し、受講者数は約 40 名で推移している。

15.7 2014 年度以降の課題
この 2 年間感染症の被害を受け、SPF 施設においても定期モニタリングで病原体を検出するようになった。今後は、凍結胚での搬入やマウスの微生物学的クリーニングなどの処置をして、動物をセンター内に導入することを実施しなければならない。
2013(平成 25)年度末を目途に、動物実験センターの改修・改築工事の計画を立てている。本館をマウス・ラットの SPF 施設に、新館を中型・大型実験動物施設にする予定である。新館の改修から手がけ、次いで本館の SPF 施設化を目指す。
16 知的財産

16.1 知的財産とは？

近年の特許申請数の増加には目をみはるものがある。それにともない、特許に関する訴訟も急速に増えてきた。大学や研究所においても、工学系学部が以前より特許申請が大きなウエイトを占めていたが、最近は生物系学部においても同様の傾向が顕著となってきている。

知的財産の取り扱いは、社会の動向に大きく影響を受ける問題である。最近の動向で注目されているのは、研究開発のオープン化である。研究・開発の迅速性はいずれの分野でも重要な要素であるが、特に国際的な市場で競争している企業にとって、市場の獲得につながる迅速な商品開発は企業戦略の根幹となっている。そのため、過去においてはすべてを社内で（もしくはグループ企業内で）開発を行うことが主流であったのに対し、他社や大学・機関が持つ技術・特許や研究成果を基礎研究から商品開発まで生かし、開発期間の短縮とコスト抑制を狙うものである。この手法は、「オープンイノベーション」と呼ばれる。さらに進んだ戦略としては、無償で開発リソースを提供することにより市場の占有を企てる手法も使われるようになってきている。このように状況の変化の激しい現在において、知的財産をどのように扱うかについては、常に検討して行く必要があると思われる。

16.2 自然科学研究機構知的財産委員会

発明届の審議は基本的に機関で行い、機構委員会ではチェックを主としている。そのため、今年度も発明届の機構委員会での審査はメール会議により行われている。機構委員会で慎重な審査をすべき事案は、現在のところ生じていない。

16.3 生理学研究所での状況

2013 年 1 月から 12 月までの特許申請状況は第Ⅵ部の別表の通りである。申請は年々増加しており、知的財産委員会の役割は次第に増えている。生理学研究所ではこれまで発明・特許に関しては、現実的な対応を行ってきた。すなわち、特許出願は企業との共同研究をするための環境整備であり、特許収入を過度に期待しない。実際的には、JST の専門家による特許相談室を利用し、特許の可能性がある発明については出願し、共同研究等を実施する企業等を探す。もし審査請求までに共同研究等を希望する企業等が現れない場合、学術的な価値が極めて高い場合を除いては、それ以上のコストをかけて権利の保全を追求しない。これまでの例では、企業と出願を行っている場合が多い。この様な考え方を含めて管理方針を整理し、2011 年 2 月 14 日開催の知的財産委員会で「生理学研究所知的財産管理方針」を定めた。

今年度の発明出願状況は、第Ⅵ部 p.175 に掲載した。

16.4 技術課データベース

特許に該当するものではないが、生理学には、実験技術のノウハウを含む様々な研究のリソースが蓄積されている。これらのリソースを活用するために、技術課が主体となって、様々なリソースのデータベース化を進めてている。広く活用されるために、昨年度から日本語と英語のバイリンガル化を進めており、かなりの部分で英文仮名が記された。今後、イメージング関係のデータを一層整備して行くとともに、研究教育職員の実験技術に関するデータ、ソフトウェア等も含めたデータベースにして行くかの検討が必要である。
17 生理科学実験技術トレーニングコース

17.1 概要

生理学研究所の生理科学実験技術トレーニングコースは、今年で24回目を迎え、7月29日（月）より8月2日（金）までの5日間、生理学研究所の明大寺、山手両キャンパスで開催した（担当：川口泰雄）。生理学研究所は、シナプスから個体行動レベルまでの各階層を縦断する研究を行い、大型共同利用機器を保有している。これらの利点を生かして神経科学に関する多様な技術の普及や、それらを使った研究レベルの向上が、このコースの目的です。今年度も、生理研究実験棟が耐震改修工事に入り、コースや募集人員（約110名）は、例年より若干少なかった。しかし、それでも、194名の応募があり、117名の方々が採択され実際の下記のコースを受講されました。受講者の5割程が大学院生で、他は学部学生と大学や企業の研究者の方でした。開催にあたっては、日本生理学会と日本神経科学学会からご賛助をいただきました。実習指導には生理研究職員を中心として、他大学からの講師の先生も含めて、80人程の研究者があった。

プログラム
生理学研究所 第24回 生理科学実験技術トレーニングコース
“生体機能の解明に向けて”
－分子・細胞レベルからシステムまで－
日時 2013年7月29日（月）～2013年8月2日（金）
講演（1）：7月29日（月）13:35～14:10
「ウイルスベクターを用いた摂食行動発現機構の解明－代謝センサー AMPK の研究から－」
篠越靖彦（生理学研究所 生殖・内分泌系発達機構研究部門 教授）
講演（2）：7月29日（月）14:10～14:45
「私たち」の脳科学に向けて：2個人同時計測 MRI 研究」
定藤規弘（生理学研究所 心理生理学研究部門 教授）
7月29日（月）14:45～
生理学研究所の紹介
伊佐正（生理学研究所 認知行動発達機構研究部門 教授）
7月29日（月）15:00～15:10

総合研究大学院大学の紹介と説明会の案内
久保義弘（生理学研究所 神経機能素子研究部門 教授）
講義：7月29日（月）15:40～16:10
「動物実験教育訓練－生体実験と動物実験－」
佐藤浩（生理学研究所 動物実験コーディネーター室 特任教授）
（動物実験を行うコース参加者を対象）
交流会：7月31日（水）18:00～
（立食形式の懇親会で、各部門がポスターを使って研究内容の紹介を行った。）
コース実習：7月29日（月）～8月2日（金）
1. in situ hybridization 法
2. ジーンターゲティングマウス作製の基礎から応用へ
3. 2光子顕微鏡による細胞内分子活性化の FRET イメージング
4. TEM トモグラフィーおよび連続ブロック表面 SEM による細胞の三次元形態解析
5. 2光子励起顕微鏡による生体内微細構造・細胞活動イメージング
6. in vitro 発現系を用いたイオンチャネル・反応体の機能解析
7. パッチクランプ法
8. スライスパッチクランプ法
9. In vivo 標本およびスライス標本からのプライドパッチクランプ法
10. 神経性代謝調節研究法入門
11. 色と質感知覚の脳内マニュアルの実験的解析
12. 脳磁図によるヒト脳機能研究の基礎
13. ヒト脳機能マッピングにおけるデータ解析入門
14. 生理学実験のための電気回路・機械工作
15. 生理学実験のためのプログラミング
各コースの具体的内容は、生理学研究所のホームページに公開しています。

17.2 アンケート結果
トレーニングコース終了時には、例年参加者からアンケートをいただいている。主な質問項目に対する回

*5 http://www.nips.ac.jp/training/2013/courses3.html
17.3 今後の課題

日本では、米国と比べて、実験手技を実際に学ぶコースはあまり多くないの故、生理研のこのコースは、実際に研究に用いられている実験設備をきいて、専門家が指導するという点で、生理学や神経科学の手法の普及に重要な役割を担っていると思われる。今後も、生理学会や神経科学学会と連携して、このような比較的大規模な教育的コースを開くことは、日本の生理学・神経科学にとって有意義であると考えられる。

昨年度に引き続き、アンケートを見ると、生理研の知名度は未だにあまり高くなっていないことがわかる。これからもトレーニングコースを継続して実施する事が重要である。今年度は、初日の一部を実習の導入にあてる時間を無む。コースやテーマごとに、指導するのに必要な時間を講ずるので、全体でどのくらいの実習時間をとるかは、今後検討する必要がある。

* http://www.nips.ac.jp/training/2013/questionnaire/TC2013Q.pdf
18 広報活動・社会との連携

18.1 概要

かつては大学や研究所、特に自然科学系の施設は「象牙の塔」と称され、世間には隔絶された存在であった。しかし、研究に対する倫理観が厳しく問われるようにになり、また税金をもって行われている研究は、当然ながら国民に対する説明責任を有している。それはいわゆる「評価」または別の次元における公的研究施設の責務である。この点に関しては「広報活動」・「社会との連携 (アウトリーチ)」が2つの大きな柱となる。

以下 2013年度の活動の概要を示す。

岡崎げんき館 (岡崎市保健所) との提携にもとづく「せりけん市民講座 “からだの科学”」を4回開催、岡崎市民だけでなく愛知県下より毎回100〜200名が参加している (第Ⅵ部参照)。また、2008年1月より創刊したかぐ情報誌「せりけんニュース」は、隔月で8,500部無料配布し、地元岡崎市民だけでなく全国からの問い合わせが増えるなど、科学情報誌としての役目を大きく期待される冊子となった。また、2013年度は年間280名を超える見学があった。他の2研究所と共に発行している市民向けの広報誌「OKAZAKI」は近隣高校とのアウトリーチ活動をアピールする冊子に改編され、岡崎高校や岡崎北高校と岡崎3研究所の取り組みを紹介した。また、2009年11月に開発した簡易筋電位検知装置「マッサルセンサー」は、中学校における理科教材として、全国で累計250台を超えて販売され、教育現場で使用されている。

機構との広報・アウトリーチ活動の連携についても、広報展開推進室の室長および専任准教授をコーディネータとして、精力的に行われてきた。機構に設置された「広報委員会」を中心として、自然科学研究機構の存在と、そこで行われている研究内容を、どのように世間にアピールしていくか、について引き続き討議している。秋と春に行われる自然科学研究機構シンポジウムは、一定の成果をあげている。また2010年より毎年秋に開催されている大学共同利用機関全体でのシンポジウムを開催 (東京・国際フォーラム) し、大盛況を博した。愛知県・岡崎市の連携については、2008年度設置された岡崎3研究所「アウトリーチ活動連絡委員会」を中心に、愛知教育委員会や岡崎市教育委員会との協力を進め、小中学生の科学的な視点を育み奨励する「未来の科学者賞」の設立や、中学校における出前授業、職場体験の受け入れ、2013年度で5回目となる「科学探検 in あいち」への参加など幅広い活動を展開している。2013年10月に広報専任准教授が自然科学研究機構本部に異動となり、後任に選考された特任助教が着任し活動を開始している。

18.2 個別活動報告

広報展開推進室の具体的な業務内容は以下のように、極めて多岐にわたる。

1. ホームページを用いた情報発信

各研究室の紹介、最新の研究内容の紹介、プレスリリース、総合研究大学院大学の紹介と大学院生の入学手続きに関する情報、人材募集、各種行事の案内などを行っている。最近は研究者のみならず一般の方からのホームページを利用しての生理学研究所へのアクセスが増加しており、2004年度に年間1,000万件を超え、2008年度には年間2,000万件を超えた。2013年度のアクセス数は3,300万件に達する見込みである (図7参照)。

過去10年間に生理研究ウェブサイトへのアクセス数は急激な増加を示している。ここでは Successful requests の数を示した。2013年度の数値は、4月から10月までの数値からの予測値。

図7. 1996年からの生理研究ウェブサイトへのアクセス数 (Successful requests x 10k) 単位は requests。

2. 施設見学の受け入れ

大学共同利用機関として10回以上行われた。

3. 研究成果のWEBによる発信

最新の研究成果をプレスリリースや研究報告として報告している。

67
4. 年報・要覧・パンフレット作成
年報・要覧作製を行った。
5. 外部向け科学情報冊子「せいいけニュース」発行
隔月で8,500部を発行。岡崎市をはじめとする小中学校や高校、一般市民に対して、無料で配布している。
医師会や歯科医師会との提携に伴い、岡崎市内のクリニック等にも寄せてもらっている。さらに、中央官庁やファサードエンジジェシー、全国の教育機関、個人からのHPを通じての購読申込に郵送での配布も行っていている。
6. 内部向け「せいいけニュースオンライン版」とメールリリストによる研究所内情報共有
研究所の所内向けの情報共有を目的としたメール配信を行っている。
7. 機構関係者への定期情報提供
8. 機構シンポジウム対応
2013年度は、10月および3月の機構シンポジウムにおいてブース展示を行い、2012年度より新設された「宇宙・生命・脳・物質・エネルギー」若手研究者によるRising Sun II ー自然科学研究機関若手研究者研究記念講演ーでは受賞者が講演を行った。
9. 大学共同利用機関シンポジウム対応
2013年度は、11月に大学共同利用機関全体のシンポジウムを東京・国際フォーラムにて行った。物理学会3D-SEMや最新研究ブース展示を行った。
10. 岡崎市スーパーサイエンススクール事業
岡崎市は、2013年度より、市内の小学校3校、中学校3校をスーパーサイエンススクール推進校として、自然科学研究機構、岡崎高等学校（文部科学省スーパーサイエンスハイクル事業指定校）、岡崎北高等学校（コスモサイエンスコース設置校）、岡崎工業高等学校との連携、地元企業などの地域科学資料を活用した理科教育（授業や行事など）を実践している。理科作品展において、市内学術機関のブースなども設けて、市内の小中学生が、最先端科学や日常生活に触れる機会を持つように努力している。生化学研究所も積極的に協力し、六ッ美中学校、福岡中学校、愛宕小、岩津中で出前授業を行った。
11. 岡崎3機関広報誌OKAZAKI編集
2008年より、岡崎高校・岡崎北高等学校を中心とした近隣の高校への教育アウトリーチを全面に押し出した編集方針に変更し、10,000部を配布している。
12. 岡崎医師会等地域との連携
医師会や保健所、歯科医師会との提携に基づき、学術講演会等の各種事業を行った。岡崎南ロータリークラブとの連携も行った。
13. メディア対応（新聞・TVなどの取材、記者会見など）
実績については資料（第6期の広報裏面）p.181参照。月1-2回の研究成果プレスリリースを行ってきた。
14. 自然科学研究機構「広報委員会」への参加
15. 機構内他研究所一般公開への協力
16. 岡崎3機関アウトリーチ活動連絡委員会への参加
分子科学研究所・基礎生物学研究所とともに、岡崎市内の中学校を対象とした出前授業や、科学者の眼である小中学生に対して「未来の科学者養」の授与を行っている。
17. 広報展示室の整備と見学会受け入れ
2008年度開設の広報展示室は、生理学研究室耐震工事を終え後、公開に向けて整備中である。
18. 日米科学技術協力事業「脳研究」分野の広報への協力
日本生理学会、大学、科学者など国際連携の機関において、アカデミアブース展示とプレゼンテーションを行い、生理学研究所が主体となっている日米脳領域の宣伝活動を行った。
19. 文部科学省への情報資料提供
新報記事等はじめ、せいいけニュース等、生理学研究室の情報資料提供を行った。また8月から11月まで文部科学省の情報広場において、生理学研究所のイメージング技術をテーマとした展示を行った。
20. 出前授業
県内高校への出前授業は1回、岡崎市近郊の小中学校への出前授業は14回行われた（資料参照）。
21. 教育機材マッスルセンサーの開発と販売
小中学生向け教材である簡易筋電図検知装置「マッスルセンサー」を開発し、「マッスルセンサー」を商標登録。2013年度までには、計250台を超えて販売され、全国の教育現場で活用されている。また、全国科学館連携協議会を通じて科学館などでの実験機材としても利用されている。またマッスルセンサーを実際に体験してもらうため、出前授業や各種イベントでのブース展示を積極的に展開した。
22. 愛知県教育委員会「科学三昧 in 愛知」へのブース展示出展
愛知県下のスーパーサイエンスハイスクール（SSH）を中心とした「あいち科学技術教育推進協議会」のイベントである「科学三昧 in あいち」にブース展示を出展（2013年12月26日）。愛知県下の高校生や高校理科教員に対しての科学情報の提供を行った。

68
19 日米科学技術協力事業「脳研究」分野

19.1 概要

相手国機関としては、国立保健研究所 (NIH) 傘下の国立神経病院研究所 (NINDS) が代表機関となり、NINDS を含めて脳科学に関与する NIH 傘下の11研究機関が参加している。日本国内においては、大学共同利用機関である生理学研究所が取りまとめを行っており、生理学研究所と NINDS の間で取り交わされた覚書により密接に連携を取って事業を進めている。

日本側から毎年3名程度の若手研究者派遣、グループ共同研究を毎年6件程度、情報交換セミナーを毎年1～2件開催している。2000年度から2013年度までに計151件の研究申請が認められた。予算規模は年間予算1,400万円前後であり、研究者の旅費・会議費が主たる事由である。事務経費は生理学研究所で負担している。助成受領研究者の成果報告書は、英語版日本語版共にウェブサイト*7にて公開している。

協力によるメリットとしては、研究者派遣により若手研究者がアメリカ側の研究に参加することが新しい考え方・技術を学ぶよい機会になり、また日米共同研究開始のきっかけとなった。複数年度サポートであるグループ共同研究は安定した研究協力関係を形成するのに大きく役立った。情報交換セミナーは新たな研究領域の開拓と共に、様々な研究交流のきっかけとなった。

講演者1 高橋英彦 先生 (京都大学大学院医学研究科 腦病態生理学講座精神医学教室)
2012-2014年度 グループ共同研究事業
Prof. Colin Camerer. Division of the Humanities and Social Sciences, California Institute of Technology)
「日米間の意思決定に関する学際的神経科学研究」
Interdisciplinary neuroscientific studies on decision making between Japan and US.

*7 http://www.nips.ac.jp/jusnou/
講演者 2 重本隆一 先生 (IST Austria と生理学研究所
兼任)
2012-2014年度 グループ共同研究事業
Prof. James Trimmer Department of Neurobiology, Physiology and Behavior, University of California, Davis)
「凍結割断レプリカ標識法による神経細胞膜上のイオンチャンネルクラスタリングの解析」
Freeze-fracture replica labeling reveals ion channel clustering on neuronal membranes

神経科学研究者コミュニティーに対して、助成を受けた研究者自身にその研究内容を発表いただくことにより、本事業の成果をアピールすることができた。特に、日本財団助成により研究の大きな展開がみられたことが報告され、本事業の神経科学学会員へのアピールは十分行われたと想定する。

19.3 将来展望

日本科学技術協力事業「脳研究」分野の覚書は日本政府間協定が満了する2014年まで有効であり、事業継続のため日本政府間協定の延長・更新が必要である。今後もNINDSが米国側の事業担当を継続していく予定であり、3年毎の予算獲得も含めて日米双方の事業担当機関の緊密な連携により準備が進む中である。その延長・更新を念頭において長期的な展望を試みるに、日本の脳科学研究の発展のため本事業の必要性は高まっている。脳科学が近年大きく発展する一方この領域において極めて高い学問水準を有する米国へ留学する研究者が減り、国際的な研究の動向の変化に必ずしも迅速に対応できていないことがしばしば起きている。このような状況を克服するために、若手の共同研究者派遣、グループ間の交流強化、最新の情報を共有するためのセミナーは大変有用である。実績ある本事業の枠組みを利用した交流支援規模の拡大により、次世代を担う基礎科学研究者の育成を進めると共に、日本の基礎科学研究の競争力を高めることが期待される。基礎脳科学研究の成果は、認知症克服、卒中後リハビリテーションや発達障害の解明等、複雑化・高齢化社会の安心安寧に大きく寄与するものであり、極めて有効な投資である。米国側には、同様の脳研究に関する二国間協定の申し込むが他国よりも多く寄せられてきたが、従来このような二国間協定は日本だけであった。しかしあ最近、米国はインド・中国と脳研究に関する二国間協定を結び協力事業を開始している。一方、日本の協力事業は、毎年の事業費の削減により、規模は縮小して来ている。 SpaceXの脳研究の発展のために不可欠な本事業の予算規模拡大が求められる。具体的には、予算規模を3,000万円程度に拡張し、若手研究者を対象とした共同研究者派遣の適用を常勤研究者から大学院生に拡大すること、及早宜しくなる方策と考えられる。

<table>
<thead>
<tr>
<th>年度</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>共同研究者派遣</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>グループ共同研究</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>情報交換セミナー</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>分子・細胞</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>発達・修復・可塑性</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>行動・システム・認知</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>疾病</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>

表1 日米科学技術協力事業「脳研究」分野における日本側の研究申請数
ナショナルバイオリソースプロジェクト「ニホンザル」

20

実験的研究に使用される動物種の中で最もヒトに近縁であるサル類の中でも、ニホンザル（Macaca fuscata）はとくに我が国の高次脳機能研究に欠くことのできないモデル動物とされてきた。人間共通感染症リスクの回避や個体情報などの付加価値がますます求められるようになった昨今の状況を踏まえ、有志の神経科学者が霊長類研究者と共同で日本国内に研究用ニホンザルの繁殖・安定供給を行うシステムの確立を求めめる運動を展開した結果、2002（平成14）年開始の文部科学省新世紀重点研究創生事業（RR2002）の中のナショナルバイオリソースプロジェクト（NBRP）に本事業はフィージビリティスタディとして採択され、2003（平成15）年度より本格的な稲作体制に移行した。当初は文部省科学からの委託事業であったが、2009（平成21）年度から補助事業となった。これまでの経緯から、生理学研究所の伊佐教授が代表申請者となり、代表機関である自然科学研究所（生理学研究所）と分担機関である京都大学（霊長類研究所）が共同で業務を行っている。今年度NBRPは12年目（第3期2年目）を迎えだが、ニホンザル事業は中核的拠点整備プログラムとして継続され、2013（平成25）年度事業経費として、生理学研究所（代表機関）は1億2331万、霊長類研究所（分担機関）は9771万の予算配分を受けている。

飼育繁殖事業の成果として、2014（平成26）年1月末時点で、生理学研究所（一民間繁殖施設に委託）と霊長類研究所、それぞれに276頭と215頭のサルが繁殖用母群として保有され、今後提供対象になる育成個体については、生理学研究所158頭、霊長類研究所168頭を飼育するに至っている。

提供事業に関しては、利用者のニーズに応え、申請回数を年2回、出荷回数を年2回と昨年より回数を増やした。提供対象も引き続き、ライフサイエンス全般に解放し、その結果、眼科、感染症の分野に提供した。出荷個体も希望する年齢や性別に可能な限り対応した。今後、試料提供も視野に入れて、さらなる事業展開を図っていく。

提供実績は、事業開始から今年度までで、累計418頭、申請件数164件、申請者数77人、提供先機関29機関となった。提供個体が貢献した研究の成果として、他者の失敗の認知（Nat Neurosci）、微細観察視、金屬光沢の感受、競争の勝敗の認識（J Neurosci）に関与する神経細胞群の発現、遺伝子導入によって特定の神経回路を操作可能にする手法の開発（Nature, PLoS One）など、論文掲載報告も次々とでている。

委員会活動においては、運営委員会を4回開催し、現状と将来の方向性について審議した。供給検討委員会では、応募書類を審議すると共に申請書類の訂正・質問をとおして申請者のニホンザル実験・飼育環境の改善に貢献した。出荷検査に関連して疾病検討委員会の委員の意見を聴取して、提供動物の品質の維持・向上に努めた。これらの委員会活動を通じ、課題に向けて一定の成果が達成できたと考える。

サルを用いる実験的研究は、成果が期待される反面、動物実験反対団体からの抗議運動の影響とされやすい。こうした運動に対しては、適切な実験動物管理、感染症対策を推し進めるべきアピールし、広く社会の理解を得ることが重要である。また、医学・生命科学研究の発展には霊長類モデルが必要不可欠であること、動物実験の3R（Replacement, Reduction, Refinement）にもとづいた動物実験の推進に力点を置いていることを広く理解していただくため、公開シンポジウム開催（11/22）、関連学会におけるポスター展示などの広報活動にも力を入れ、冊子「ニホンザルの感染症について」、ニュースレター、パンフレットなどの作成・配布、ホームページ*8による情報発信と情報公開に努めている。

このように事業は安定化してきており、実際の提供頭数が当初予定を下回っているという現実があり、目標を再設定することをNBRP推進委員会より求められている。そこで現在生理研と霊長研でそれぞれ実施しているリソース事業の集約化を進める方向で協議を進めている。このように集約化していくことにより、さらなる効率化を図り、年間80〜90頭を生産して年間70頭を出荷する体制へと移行したい。このようにしてこれまで培われてきた日本での霊長類を用いた研究を発展させつつ、様々な領域との研究交流も含め、より安定的に継続的ある事業の推進に努めていきたい。

*8 http://www.macaque.nips.ac.jp/
21 文部科学省 脳科学研究戦略推進プログラム

高齢化、多様化、複雑化が進む現代社会が直面する様々な課題の克服に向けて、脳科学に対する社会からの期待が高まっている。このような状況を踏まえ、『社会に貢献する脳科学』の実現を目指し、社会への応用を明確に見据えた脳科学研究を戦略的に推進するため、文部科学省では、2008(平成20)年度より「脳科学研究戦略推進プログラム」を開始した。そして2013(平成25)年度までに、以下の課題A-Gが実施された。A、B、Cは既に終了しており、6年目の2013(平成25)年度からは、新たに「BMI技術を用いた自立支援、精神・神経疾患等の克服に向けた研究開発」を推進する研究開発プロジェクト、「雲母類モデル動物の創造・普及体制の整備」を推進する研究開発プロジェクトが開始された。生理学研究所では現在、課題D(定藤規弘教授が参加)と「BMI技術を用いた自立支援、精神・神経疾患等の克服に向けた研究開発」(西村幸男准教授が参加)に参画するとともに、事務局が設置され、脳科学研究戦略プログラムの活動全体を支援している。

・課題A ブレイン・マシン・インターフェース (BMI)の開発 (拠点長：川人光男)
・課題B ブレイン・マシン・インターフェース (BMI)の研究 (個別研究6件)
・課題C 独創性の高いモデル動物の開発 (拠点長：伊佐正)
・課題D 社会的行動を支える脳基盤の計測・支援技術の開発 (拠点長：狩野方伸)
・課題E 心身の健康を維持する脳の分子基盤と環境因子 (拠点長：水澤英洋)
・課題F 精神・神経疾患の克服を目指す脳科学研究 (拠点長：尾崎紀夫、山崎成人、武田雅俊)
・課題G 脳科学研究を支える集約的・体系的な情報基盤の構築 (拠点長：貞山弘三)

尚、プログラムの詳細についてはホームページ*9を参照されたい。

21.1 研究開発拠点整備事業 (課題D)「社会的行動を支える脳基盤の計測・支援技術の開発」

現代社会において、社会的行動の障害が大きな問題となっている。これらに対する客観的な生物学的指標を開発し、適切な支援策を講じることが喫緊の課題である。「社会的行動の基盤となる脳機能の計測・支援のための先端的研究開発」(課題D)拠点整備事業については、2009年度に東京大学の狩野方伸教授を拠点長とするグループが採択された。課題Dでは、分子、神経回路、脳システムに関連する多次元の生物学的指標 (ソーシャルブレインマーカー)の候補を開発することで、社会性・社会的行動の基盤となる脳機能を理解し、その機能を計測・評価し、さらにはその障害や異常の克服の支援に貢献することを全体の達成目標とする。この目標を達成するために、

1. 社会性を制御する分子と社会性・社会的行動の機能
発達に関する研究、
2. 社会性を制御する報酬・情動系に関する研究、
3. 社会性障害の理解・予防・治療に向けた先導的研究、
という3つの研究項目を設定し、代表機関である東京大学と7つの参画機関 (生理学研究所、理化学研究所、大阪大学、東京医科大学、玉川大学、横浜市立大学、及び大阪バイオサイエンス研究所)で研究・開発を行うこととなった。

研究項目1では、(1)個休間の認識とコミュニケーション、及び(2)生後発達過程における他者との関係の樹立に着目し、社会性・社会的行動の要素的に側面の分子的基盤を研究することによりその生物学的指標の候補を同定し、さらには発達過程においてそれらを制御する方策について研究開発を行う。

研究項目2では、情動とその記憶、嗜好、及び報酬・意志決定にかかわる神経回路とその分子基盤を明らかにし、その制御方策と新たな生物学的指標の候補を開発する。

研究項目3では、広汎性発達障害 (自閉症スペクトラム) や統合失調症の脳画像解析、遺伝子解析及びモデル動物での研究を推進して、社会的行動障害の克服へ

*9 http://brainprogram.mext.go.jp/
の道筋を明示することを目的とする。

生理学研究所 (代表分担者 定藤規弘教授) では、「社会能力の神経基盤と発達過程の解明とその評価・計測技術の開発」との題目の下、実際のヒト社会行動における社会能力計測技術として、集団の脳機能・視線・行動計測法を開発することを目指す。詳細は以下のとおり。

【目的】
① 社会能力要素過程の神経基盤解析
(1) 自己認知 (2) 模倣 (3) 心の理論 (4) 共感 (5) 信頼について、機能的MRIなどで実行可能な課題を作成し、脳機能計測を行うことにより、自他相対性、自己認知、心の理論、共感に関わる領域を明らかにする。
さらに、ヒトの対面コミュニケーションにおいて重要な顔表情処理の神経基盤とその発達過程、ならびに顔情報と聴覚情報の統合過程について、ヒトの脳機能イメージングを用いて検討する。
② 集団の視線・行動計測法および複数個体の脳機能同時計測法の開発
頭部と手の動きを連続的に計測できる光学反射式3次元動作解析装置（モーションデータキャプチャ）と、視線を連続的に計測するための眼球運動計測装置により、複数個体の動作と視線を同時計測する。まず、個々人の視線と頭部、ならびに手の動きを表す時系列データ間の関係性を、多変数自己相関モデルを用いて定量化する。さらに2個体同時計測MRIシステムを用いて社会的相互作用時の脳機能計測を行う。
③ 東京大学精神科・大阪大学社会経済研究所・大阪バイオサイエンス研究所との連携
東京大学の笠井グループと共同して、機能的MRIを自閉症患者群に対して、社会能力に関与する神経基盤の違いを明らかにする。生理学研究所グループは、顔表情を用いた相互模倣課題を作成し、健康群での検証を進めるとともに、東京大学の笠井グループが疾患群へ適用する際に必要な調整を行う。これに加えて両グループにより、①で開発された課題の疾患群への適用可能性・適切性を検討していく。

【進捗状況】
① 社会能力要素過程の神経基盤解析
(1) 自己認知
他者との相互作用により生じる高次社会的感動の一つである恥ずかしさの神経基盤を理解するために、「他者の目」を導入することで自己頑によって惹起される恥ずかしさ感情を操作し、その情動変化に応じた脳活動について機能的磁気共鳴画像法（fMRI）を用いて調べた。右側皮質の活動が自己意識情動と相関することから、自己顔認知に伴う自己意識情動の神経基盤として島が重要であることが判明した。
(2) 模倣
前年度までの検討で、Extrastriate Body Area（EBA）の活動が他者の動作が同じ時に（模倣／被模倣）、自他の動作が異なるときに比べ高くなること（同一性効果）が判明し、EBAで他者の動作が比較されていることが示唆された。EBAの機能をより詳細に検討するためagency detectionとsocial contingency detectionをそれぞれ行う時のEBAの活動性を、同一被験者内での比較可能な課題を開発し、健常者に適用して機能的MRI実験を行った。実験参加者はfMRI撮像中、音声指示に従って手を動かす課題を行ない、その間、手指運動の最中に事前に撮影した自己動作ほか他者動作が視覚フィードバックとして提示された。視覚フィードバックは動作の内容（一致、不一致）と呈示のタイミング（遅延なし、遅延あり）を制御した。その結果、EBAはいずれの場合でも同一性効果を示したが、左下前頭葉の活動は社会的文脈を反映していた。このことから、mirror neuron systemを形成するこれらの領域は、自他区別において機能的階層を形成しているものと考えられた。
(3) 向社会行動に関わる心の理論と共感
共感と温情効果の関の関係を調べるため、男女の被験者2人が他の男女の2人とボールを仮想的にトスし合うタスク（cyberball task）を課し、異性の一人がトスから排斥される状況を実験的操作により作り出した。
共感が親密度によることについて目指し、fMRI実験参加者として交際者を選定した。交際相手でも見知らぬ人々で、排除されている相手へのトスが増えるとともに、側線体の有意な活動が見られるものを確認した。差別行動の実線体の活動は、親密者では感情共感度と、非親密者では認知的共感度と相関した。このことから、向社会行動がその行為の伴うポジティブな感情（温情効果）により生起すること、温情効果が報酬系の一部である線体活動で表象され、その程度は共感と正相関することが明らかとなった。
(4) 顔表情処理の発達
乳幼児における顔認知の神経基盤を、脳波よりも脳神経活動の空間的な定位に優れるNIRSを用いて検討した。アルチンポルド画像（正立像では顔に見えるが倒立像
では顔に見えない高メジカル）を提示し、選択好視神経および近赤外分光法（Near-infrared spectroscopy; NIRS）によって検討した。その結果、生後7-8ヶ月児は正常
のアルチンボルド画像を有意に選択した（つまり倒立
のアルチンボルド画像よりも注視時間が有意に長かっ
た）が、生後5-6ヶ月児ではいずれの画像に対しても選
択を示さなかった。生後7-8ヶ月児において、正常の
アルチンボルド画像観察時には左右側頭部の脳血流
反応の有意な増減が認められた。一方、倒立のアルチ
ンボルド画像観察中には、左右側頭部において、有
意な増減は示されなかった。このことから、アルチン
ボルドの高メジカルであっても生後7ヶ月以降になると
乳児は顔を検出することが可能であること、さらにその
処理には左側頭部が関与していることが示唆され
た。

②集団の視線・行動計測法および数個体の脳機能同時計測法の開発
(1) 2個体間の相互作用の定量
向かい合う2者の体動を同時計測する数個体計測シ
ステムを開発し、これを用いて収集したデータに多変
数自己回帰モデルに依拠した時系列解析手法 (Akaike
Causality) を適用することにより、アインコントクトに
よる他者との「絆」を定量計測する手法を開発した。
そのパラメータが自閉症傾向を表す autism spectrum
quotient (AQ) の値と関相することから、他者との同調
性のバイオマーカー候補となりうると考えられた。さ
らに、同システムを用いて対戦ゲームを行っている2
者を視覚聴覚的に記録したデータに、社会能力を定量
するための行動分析手法（かわり指標）のフルバージ
ョンと短縮バージョンを適用し、短縮バージョンが
実用に耐えることを実証した。
(2) 2個体同時計測 MRI システムによる共同注意の神
経基盤解明
共通注意の神経基盤を明らかにするために、眼球計測
機能を含む2個体同時計測 MRI システムを用いて脳
機能計測を行った。共通注意課題の遂行により、アイ
コンタクト中の“脳活動共鳴”は mirror neuron system
(MNS) として知られる領域の前方、特に右下前頭葉
へ進展し、この右下前頭葉における共鳴は被験者ペア
特異的で課題特異的であり、なおかつ共通注意課題に
より賦活する領域であった。このことから右下前頭葉
は自他の注意共有とその記憶形成に関与すると考えら
れた。

(3) 複数個体同時脳機能計測の簡易化
神経活動計測のポータル化を視野にあてる脳波計
測を MRI 計測と同時に行うシステムを導入し、dual
EEG-fMRI を施行した。
③東京大学精神科・大阪大学社会経済研究所・大阪パ
イオサイエンス研究所との連携
(1) 東京大学精神科と共同で、顔表情による相互模倣課
題を用いた機能 MRI を自閉症患者群へ適用して、社
会能力に関与する神経基盤の違いを明らかにした。よ
り広汎な神経疾患に適用可能な Social Brain Marker
を開発する目的で、静止時脳機能画像 (resting-state
MRI) を使用する可能性について検討を行った。
(2) 大阪大学社会経済研究所と共同で、価値を数値で評
価する条件 (上限あり) と基準で評価する条件 (上限無
し) を含む機能的 MRI 課題を考察し、MRI データを生
理学研究所において収集し、主観効用 (幸福度) の神
経基盤を明らかにした。
(3) 大阪バイオサイエンス研究所と共同で、匂い物質を
用いた学習反応の神経基盤解析の標準として、ヒトを
対象とした機能的 MRI を実施した。恐怖に伴う未梢
体温変化の神経基盤は明らかにするために、恐怖映画
視聴時の未梢体温変化を計測しつつ脳血流変化を機能
的 MRI で計測し、自然環境映画視聴時のそれと対比す
るという課題を設計した。恐怖に伴う体温変動は扁桃
体から前部帯状回への機能的結合により表象されるこ
とがわかった。

21.2 BMI 技術を用いた自立支援、精神・神経
疾患等の克服に向けた研究開発 (BMI 技術)

[目的]
「BMI 技術を用いた自立支援、精神・神経疾患等の克
服に向けた研究開発（BMI 技術）」は慶應義塾大学の里
宇明元教授が発案長となり、大阪大学 吉崎俊樹教授代
表のグループの「BMI を用いた運動・コミュニケーション
機能の代替」が本年度（2013/平成 25 年度）11 月に
採択され、生理学研究所の西村幸男教授のグループが
、その分担機関として研究に参加することとなった。

本研究課題では医工連携と基礎臨床連携により、低
侵襲・非侵襲 BMI 技術を応用した運動・コミュニケーション
機能を代替するための機器・技術・システムの
開発し、その技術を用いて動物実験による前臨床試験・
臨床試験を行い臨床応用につなげる。更に技術開発の
過程で得られるデータの解析により、脳情報処理過程・
神経疾患の病態生理を解明し、脳科学の進歩に貢献する。生理学研究所では「BMI による運動・感覚の双方向性機能再建」を担当する。

【進捗状況】
2013(平成 25) 年 12 月から新規に本研究課題がスタートした。双方向性機能再建を実証するための運動・体性神経麻痺モデルサルを開発する目的で、外科的に前脳被動運動を結紮し、脳梗塞モデルを作成した。その結果、脳梗塞モデルサルは梗塞の反対側の頭を含む上下肢の運動麻痺を呈した。同様に体性感覚も減弱していた。双方向性機能再建を達成するための、体性感覚電気刺激システムを開発し、ベンチ上でテストした。

21.3 脳科学研究推進プログラム事務局
脳科学研究推進プログラムの活動全体を支援する事務局が、生理学研究所に設置され、プログラムの運営やアウトリーチ活動に力を発揮している。特に、2013(平成 25)年度より事務局は公募に決めることがとなり、生理学研究所として応募して採択された。今年度は以下の業務を実施した。

● 内部向け会議の運営
 • MRI プロトコール会議 (2013.5.9 東京)
 • 第 11 回運営委員会 (2013.5.16 東京)
 • 2013(平成 25)年度脳プロ成果報告会 (2013.11.4-6 東京)
 • 第 12 回運営委員会 (2013.11.5 東京)
 • 新規課題 (BMI 技術・神長類モデル) キックオフ会議
● 外部向け行事の開催
 <研究者向け>
 • 第 54 回日本神経学会学術大会 アカデミア展示 (2013.5.29-6.1 東京)
 • 第 54 回日本神経学会学術大会 ホットトピックス「BMI の神経疾患治療への応用」(2013.5.31 東京)
 • 生命倫理課題 第 1 回研究倫理ワークショップ (2013.5.31 東京)
 • Neuro2013 教育講演「精神神経の双方向性トランススレーション研究 ～Bridging the gap between bench and bedside～」(2013.6.22 京都)
 • 第 11 回世界生物学的精神医学会国際会議 アカデミア展示 (2013.6.23-27 京都)
 • 2013(平成 25)年度包括脳ネットワーク 夏のワークショップ アカデミア展示 (2013.8.29-9.1 名古屋)
 • 生命倫理課題 第 2 回研究倫理ワークショップ (2013.8.30 名古屋)
 • 脳科学研究推進プログラム・包括脳合同企画「生活習慣病 - 生涯に亘る脳と心の健康のために－」 (2013.8.31 名古屋)
 • 第 36 回日本分子生物学会年会 アカデミア展示 (2013.12.3-6 神戸)
 <一般向け>
 • 第 11 回世界生物学的精神医学会国際会議 市民公開講座「自閉症スペクトラムについて考えていること 今後水かる必要があること」(2013.6.27 京都)
 • 第 7 回サイエンスカフェ「考える魚の脳を見る - 行動と神経活動を可視化する -」(2013.7.7 東京)
 • 公開シンポジウム in NAGOYA「分子が生み出す心のしくみ - 最新テクノロジーから脳機能を司る分子 - 遺伝子に迫る -」(2013.9.14 名古屋)
 • 第 8 回サイエンスカフェ「私たちはどのようにして「決める」のか - 意思決定の脳内メカニズムを探る -」(2013.10.19 大阪)
 • サイエンスアゴラ 2013 プーズ出展「脳科学を支えるニッポンの技術」(2013.11.9-10 東京)
 • 出張授業「動く細胞たちが構成する脳の形づくり」(2013.11.19 東京)
 • 第 6 回公開シンポジウム「つながりの脳科学」(2014.2.1 東京)
 • 第 9 回サイエンスカフェ「柔軟な脳のしくみを探る - 神経と神経のつながり目：シナプスの不思議～」(2014.3.11 横浜)
● 冊子物発行
 • ニューズレター - 第 6 号 (2013.5)
 • 成果報告書 課題 A・B (2013.6)
 • 成果報告書 課題 C (2013.6)
 • 第 5 回公開シンポジウム報告書 (2013.9)
 • ニューズレター - 第 7 号 (2013.9)
 • ニューズレター - 第 8 号 (2013.11)
 • 公開シンポジウム in NAGOYA 報告書 (2014.2)
 • ニューズレター - 第 9 号 (2014.2)
● ホームページの維持・管理、更新
● 特許に関する取組の支援
● 成果発表 (プレスリリース) に関する支援 (17 件)
22 革新的イノベーション創出プログラム（COI STREAM）

今年度（2013年度）より、生理学研究所は、革新的イノベーション創出プログラム（Center of Innovation Science and Technology based Radical Innovation and Entrepreneurship Program；COI STREAM）にサテライト拠点として参加することとなった。本プログラムへの参加が契機となり、生理学研究所の学術的成果が産業界に提供されて活用されることが期待される。

22.1 COI STREAM の概要

本プログラムは、現在潜在している将来社会のニーズから導き出されるあるべき社会の姿、暮らしの在り方（ビジョン）を設定し、このビジョンを基に10年後の見通しを含む革新的研究開発課題を特定した上で、企業だけでは実現できない革新的なイノベーションを産学連携して実現することを目指したものである。このプログラムは、文部科学省科学技術・学術政策局のプログラムであり、科学技術振興機構（JST）を通じて実施されている10。ビジョンには次の3つが設定された。

ビジョン1：子育て高齢化先進国としての持続性確保
コンセプト function（Medical health, Mental health, Motivation, Sports, Food, Tires）＝Happiness ⇒ 健全な心身の実現及び自己実現による安寧
ビジョン2：豊かな生活環境の構築（繁栄し、尊敬される国へ）
コンセプト function（Thinking, Active thinking, Serendipity, Six senses）⇒ 新しい思考方法が導く革新的な価値創造
ビジョン3：活気ある持続可能な社会の構築
コンセプト function（Personalization, Resilience, Sustainability, Functionalization, Flexibility）⇒ Waste ⇒ 多様・分散・無駄の徹底的排除による持続的新生産システムの実現

本プログラムの公募は、2013年6月から8月にかけて行われ、10月に12拠点、14トライアル拠点、16サテライト拠点の採択が発表された。公募の段階では、予算規模は1件あたり10億円×9年間とされていた。

22.2 応募に至った経緯

NTTデータ経営研究所は、ITの活用を得意とするコンサルティング会社であり、以前より産業の産業応用に注目し11、応用科学コンソーシアム（Consortium for Applied Neuroscience, CAN）を立ち上げて、産学の連携を図っている。生理学研究所の研究者の多くがCANに講師として関与していたことから、企業と大学が共同で応募するCOI STREAMに、NTTデータ経営研究所と生理学研究所が組んで、横浜国立大学（「感性脳情報科学研究拠点」）、岩手医科大学、島根大学医学部とともに、ビジョン2に“心の豊かさと健やかさを目指すSmart Harmonic Innovation”を課題名として応募することとなった。

22.3 審査結果

審査の結果、NTTデータ経営研究所・生理学研究所チームは、マツダ・広島大学チームの“精神的価値が成長する感性イノベーション拠点（以下、感性イノベーション拠点）”のサテライトとして採択された。感性イノベーション拠点は、プロジェクトリーダーが農村隆秀マツダ技術研究所長、リサーチリーダーが山田成人教授（広島大学大学院医学部保健学研究科）であり、感性を定量化することにより、従来、困難に思われていた製品開発をより効率的に行うとするものである。具体的なターゲットの一つは、ワクワク感のある車づくりである。感性イノベーション拠点には、NTT、生理研のサテライト拠点の他に、浜松ホトニクス、静岡大学、浜松医科大学、光産業創成大学院大学がチームとなった“時空を超えて光を自由に操り豊かな持続的社会を実現する光創生イノベーション研究拠点”がサテライト拠点として採択された。年間予算はサテライト拠点を含めて全体で5億円となった。

22.4 その後の活動、および今後の方針

生理学研究所では、感覚の可視化を進めることとし、伊佐研究室、小松研究室、柿木研究室、定藤研究室がこ
のプログラムを推進することとなった。これまでに特にマツダの技術者との意見交換が行われている。他の企業との連携は、NTT データ経営研を通して拡大していく予定である。

企業との共同研究で留意しなくてはならないことの一つに、秘密保守と知的財産の取扱である。特に複数の企業が関係する場合、秘密保守をどのように行うかは重要な問題である。文書として秘密保守を契約することが先ず重要であるが、具体的にどのように実行して行くかは、討論や共同研究を行いながらその度に秘密事項の取扱を確認し、実例を積み重ねて行く必要があると思われる。

学術研究を行っている生理研の研究者と企業の研究者とは、目的とするところが異なっており、共同研究を行うことは必ずしも容易ではない。一方、国の政策として国立大学・大学共同利用機関は産業界のイノベーションへの協力を求められている。今回、NTT データ経営研というコンサルティング会社と連携することにより、生理研の有する様々な研究成果や測定技術を効率的に産業界に提供することができると期待される。
第 II 部

所外専門委員による外部評価
Introduction

I am pleased to submit this external review of Professor Tadashi Isa’s laboratory. I am an Associate Professor at Duke University in the United States, where I oversee a laboratory that studies circuits in the primate brain for vision, cognition, and movement. I have known Dr. Isa by reputation, and followed his publications closely, for my entire career (PhD in 1995; Faculty position since 2004). It was an honor to visit his laboratory in October, 2013, to tour his facilities, talk with him and his scientific personnel, and learn about the details of his program. It is clear to me that, during the past 5 years, Dr. Isa’s research program has expanded into exciting directions. His current research program builds logically on his prior successes while incorporating the latest technologies. Particularly impressive is his ability to tackle complex questions of systems neuroscience using a masterful combination of approaches from genetic manipulation, to electrophysiological documentation of neuronal signals, to biomedical engineering. Compared with laboratories in the USA, Dr. Isa’s group is at the top level; I cannot think of another systems neuroscience laboratory in the world, in fact, with such an impressive combination of depth and breadth.

Research Overview

The big question that Dr. Isa has been trying to answer is, “How does the primate brain generate highly precise movements?” He focuses on the two modalities of action that, taken together, set primates apart from other animals and contribute to their ecological success: their rapid eye movements ("saccades") and their dexterous digit (finger/thumb) movements. The saccadic and digit movement systems are widespread in the brain but depend critically on two structures that Dr. Isa focuses his research on. For the saccadic eye movement system, the crucial structure is the superior colliculus (SC). For the digit movement system, it is the primary motor cortex (M1). Dr. Isa’s research in the early 2000’s probed the fundamental circuits and functions of the SC and M1. Since 2009, his research has built on that foundation, to examine the SC and M1 in the context of larger circuits. Specifically, Dr. Isa and his scientific personnel are studying the inputs and outputs of the SC and M1 and examining how the areas contribute to higher level behavior. As the culmination of these studies, Dr. Isa’s laboratory is now asking the questions that are most compelling to society at large: how can we use our knowledge from basic research to help patients who suffer from impaired visual, oculomotor, psychiatric, or motor functions?

Circuits for Eye Movements

In my own field – the study of vision, cognition, and eye movements – Dr. Isa is best known as a leader in the study of SC function. He was a pioneer in taking a more reductionist approach to investigating the SC. Whereas his peers examined neuronal activity in the SC using extracellular recordings and manipulations in vivo, Dr. Isa designed novel methods for parsing the microcircuitry of the structure in vitro. With an interdisciplinary approach that includes anatomical tracing, optical imaging, electrophysiology, and genetics, his laboratory has revealed the structural basis for interactions between the layers within the SC as well as the spatiotemporal dynamics of signal transformations within and between those layers. During the past several years, Dr. Isa’s group has advanced this work into a more sophisticated realm, asking the provocative, circuit-specific question, “What can the SC do by itself?” Answering that question would have important implications for understanding what the SC does in conjunction
with the areas with which it connects. As usual for Dr. Isa, his approach to answering the question involves multi-scale techniques, from in vitro slice work to whole-animal and human subject behavioral experiments. In the slice preparation, Dr. Isa is using novel genetic methods for identifying inhibitory (GABA-ergic) neurons in the living tissue, and documenting the spatiotemporal interplay between those neurons and surrounding microcircuits during stimulation that mimics the events that occur in vivo. At the behavioral level, Dr. Isa is testing what happens when the circuit that natural dominates visual processing, the retino-geniculo-striate pathway, is destroyed by injury at the striate (primary visual cortex) level. After such injury, Dr. Isa and other researchers have shown that residual visuomotor abilities often remain. These abilities, collectively known as "blindsight", are almost certain to depend critically on the SC. Dr. Isa and his colleagues are examining monkey models of blindsight, as well as human patients, to document the extent of these putative SC-mediated abilities and how they can be enhanced by various forms of training including classical and operant conditioning. This highly innovative approach to studying cortically blind patients could lead to new approaches for combining brain-machine interface technology with sensorimotor rehabilitation training to help optimize residual vision.

Circuits for Dexterity

While Dr. Isa’s work on the visual and eye movement systems are impressive, in my opinion his studies on dexterous digit movements (fine scale reaching and grasping movements of the hand) are even more important. This work has the potential to revolutionize both our understanding of the basic circuits that mediate hand movements, and our ability to convert that knowledge into tools for improving the quality of life for motor-disabled patients. The range of techniques that Dr. Isa employs in his studies on motor control is astonishing; I can think of no other laboratory in the world that uses such a broad span of methodologies, from genetic, to anatomical, to electrophysiological, to pharmacological, culminating in the development of cutting-edge prosthetics for both research and assistive purposes. Since 2009, Dr. Isa’s group has focused on the connections between the hand area of M1 and the muscles that control precision grip via the digits. Those connections run through circuits of the spine, so the examination of corticospinal tract structure and function has been central to Dr. Isa’s new experiments. A main distinction is between the projections that run directly from M1 neurons to motor neurons that control muscles, and the projections that run from M1 indirectly to motor neurons via a spinal relay that consists of propriospinal neurons (PNs). In a highly influential study published in Nature (Kinoshita et al. 2012), Dr. Isa’s group used genetic techniques in an ingenious way that is beyond the scope of what I can describe here. Suffice to say, however, that they demonstrated conclusively that the indirect, PN-mediated pathway is critical for adaptive plasticity of precision grip after spinal cord injury. The results have far-reaching implications for the treatment of spinal cord injury and the development of new brain-machine interfaces that are modeled on the circuits of normal, and adapted, corticospinal tracts. In addition to this spinal-focused approach, Dr. Isa’s group is performing novel experiments that combine whole-brain imaging (positron emission tomography, PET) with invasive pharmacological manipulation to understand the extent, and characteristics, of cerebral cortical plasticity after spinal cord injury and during subsequent adaptive recovery. They plan to extend this direction of research into studying the circuits and behaviors that support normal motor function, including motivation and reward networks. Moreover, they are working on elegant biomedical engineering techniques for helping patients. Clearly, it will take a large-scale synthesis of all of these levels of research – from spinal studies to brain-machine interface design – to solve the problem of how to get paralyzed patients moving again, but Dr. Isa’s laboratory is uniquely qualified to tackle that problem at every single level, rather than with the piecemeal approach of most other motor control laboratories.
Conclusion

Dr. Isa continues to run an energetic, highly productive laboratory that is both well-grounded in basic research and visionary in its plans for applying that research. During the past several years, he and his scientific personnel have published prolifically, in the highest-tier international journals. From my visit to his facilities, I believe that his work could be even more productive if he could be offered more space. Dr. Isa seems to be highly efficient in motivating his personnel to perform as many experiments as possible, but the consequence of this productivity is that his rooms are packed from wall to wall with experimental rigs and supporting equipment such as computers, microscopes, etc. Dr. Isa is both well established in the field of systems neuroscience and remarkably, still well into his upward trajectory of success. I do not foresee him reaching a plateau any time soon. I recommend with highest enthusiasm that his laboratory be supported to the fullest extent possible.

(和訳)

序

伊佐正教授の研究室の外部評価をお送りします。私は米国デューク大学の教授で、視覚、認知、運動に関わる延長類の神経回路を研究する研究室を主宰しています。私は伊佐教授の評価を知っており、私の全経歴（1995年博士号、2004年からファカルティに就いています）を通じて伊佐教授の発表論文を詳しくフォローしてきました。2013年10月に伊佐教授の研究室を訪問し、施設を見学し、伊佐教授とその共同研究者と話をし、その研究計画の詳細について知ることができたのは名誉なことでした。特に印象的だったのは、伊佐教授がシステム神経科学の複雑な問題に対応して、遺伝子操作から神経信号の電気生理学的記録・解析、そして医工学的なアプローチを上手く組み合わせて取り組む能力でした。米国の研究室と比べても伊佐教授のグループはトップレベルにあります。実際、世界中システム神経科学の研究室で、このような深さと幅広さをもって研究を行っている研究室を他に私は知りません。

研究の概要

伊佐教授が答えようとしている大きなクエスチョンは「延長類の脳がどのようにして高精度に正確な運動を生成できるのか」という問題です。彼は延長類を他の動物種と明確に分かち、かつ延長類の生態学的な成功に貢献している2種類の行動、すなわち急速眼球運動（サッケード）と手指の巧緻運動に注目しています。サッケード運動と手指の巧緻運動を制御するシステムは脳全体に広く分布していますが、特に伊佐教授が研究で注目している2つの脳の構造に強く依存しています。サッケード運動について、それは上丘であり、手指の運動については、それは一次運動野（M1）です。伊佐教授は2000年代前半の研究で、上丘と一次運動野の基本的な回路と機能を明らかにしました。2009年以降の彼の研究はその基盤の上に築かれ、大規模回路という文脈で上丘と一次運動野を調べています。特に、伊佐教授とその共同研究者達は上丘と一次運動野の入出力を研究し、これらが、より高次の行動でどのように寄与しているかを調べています。伊佐教授の研究室は、現在社会一般に対して最も重要な課題、すなわち、我々がどのようにして基礎研究の知識を視覚や眼球運動、精神機能、運動機能に障害をかかえる患者を助けるために用いることができなのかという問いに対する答えを追究しています。

眼球運動に関する回路

私自身の研究分野一視覚、認知、眼球運動において、伊佐教授は、上丘の機能研究のリーダーとして最もよく知られています。彼は上丘を研究する上でより還元論的な手法をとったバイオニクスでした。同じ分野の他の研究者達がインピボで細胞外活動記録法や機能操作法を用いて上丘の神経活動を調べる一方で、伊佐教授はインピボでその機能の詳細回路を調べる新しい方法をデザインしました。神経解剖学的トレーシング、光学的イメージング、電気生理学と分子遺伝学的手法を含む多様な方法論を組み合わせたアプローチによって彼の研究室は、上丘内の異なる層の間の相互作用の構造基盤を明らかにし、これらの層
内および局間の信号変換の時空間的ダイナミクスを明らかにしました。過去数年の間、伊佐教授らのグループはより洗練された研究領域、つまりより挑戦的な「上丘はそれ自体で何ができるのか？」という問いに答えようとする研究を進められてきました。この問題に答えることは、上丘が、連続している脳領域との共同作業で何をしているのかを理解するために重要な意味を持つでしょう。伊佐教授の常として、この問題に答えるための彼らは、スライドから個体としての動物やヒトの行動実験まで多様のスケールの技術を利用してアプローチします。スライド標本においては、伊佐教授は生体標本においてGABA作動性の抑制性ニューロンを同定する分子遺伝学的方法を用い、インピボで起きている出来事に対する捕質を用いた際のこれらのニューロンと周囲の微妙な回路との時空間的な相互作用を明らかにしています。行動レベルの研究では、伊佐教授は自然な状態で優位に機能している視覚経路である視覚一外側副視覚系一線条体皮質経路が、皮質レベルで破壊された場合に何が起きるかを調べています。このような損傷の後でも、伊佐教授や他の研究者達は視覚運動機能が残存していることを示してきました。これらの能力はまとめて「盲視」と呼ばれていますが、それはほとんど確実に上丘の機能に依存するとされています。伊佐教授とその共同研究者たちは、ヒトの患者だけでなく、盲視のサルモデルで用いて、これらの上丘を介するであろうと考えられる機能の範囲を記述し、これらが古典的条件付けやオペラント条件付けを含む様々な訓練によって機能強化されるかを調べています。この皮質盲の患者を調べるための高度にイノベーシブなアプローチは、残存視覚機能を適切に作動させるための感覚運動インターリヒバレーション訓練を伴うブレイン・マシン・インターフェースと組み合わせる新しいアプローチへつなげることも可能と思われます。

手指の巧緻運動を制御する回路
伊佐教授の視覚と眼球運動系に関する研究も印象的ですが、伊佐は、彼の手指の巧緻運動（手の到達把持運動の細やかな制御）はより重要だと思います。この研究は手指の運動を媒介する基本的な神経回路についての我々の理解を根底的に変え、さらには、この知識によって我々は運動障害のある患者の生活の質を改善するための道具の開発につなげる可能性があります。伊佐教授が運動制御に関する研究において用いる技術の範囲は驚異的です。私は世界的他のどの研究室でも、分子遺伝学、解剖学から電気生理、薬理学、そして研究と補助的な目的で用いるものの最終的な神経補綴技術開発という、このような広い範囲の方法論を用いている研究室の思い当たりません。2009年以降、伊佐教授のグループはM1の手の領域から指の精密把持運動を制御する筋に至る経路に注目してきました。それらの結果は脊髄の回路を通じて繋がっています。従って、皮質脊髄の構造と機能を調べることが伊佐教授の新しい実験の中心的課題でした。M1から筋を制御する運動ニューロンへの直接投射経路とM1から脊髄固有ニューロンによって構成される脊髄内によって中間される接続的な投射経路の間には違いがあります。Nature誌に発表された非常に影響力の強い研究(Kinoshita et al. 2012)において、伊佐教授らのグループは分子遺伝学的な技術を、私がここで書くことができる範囲を越えた巧緻さをもって用いました。このことは、彼らは脊髄損傷後の精密把持運動の適応的機能回復に脊髄固有ニューロンを介する間接経路が重要であることを明確に証明することを挙げるだけでも十分でしょう。この成果は脊髄損傷の治療、さらには正常及び学習によって変化した皮質脊髄の回路に対して設計される新しいブレイン・マシン・インターフェースの開発に対して大きな意味を持っています。この脊髄の焦點を当てた研究に加えて、伊佐教授のグループは脊髄損傷後それに引き続く適応的機能回復過程での大脳皮質の可塑性の範囲と特性を理解するために、全脳イメージング技術（陽電子断層撮影装置）を用いた粒状体の機能操作実験と組み合わせる新しい研究を行っています。彼らがこの方向性の研究を正常な運動機能からモチベーションや報酬回路の基盤なる神経回路と行動の研究に広げようとしています。さらに彼らは患者を助けるための洗練された医工学的技術の開発にも取り組んでいます。どのようにして麻痺した患者が再度身体を動かすことができるようにするかという問題を解決するためには、脊髄研究からブレイン・シン・インタフェースの設計といった全てのレベルの研究を、大規模に融合させる必要があるかもしれません。しかし、伊佐教授の研究室は、他のほとんど全ての運動制御研究を行っている研究室のような個別のアプローチだけでなく、全ての個別のレベルにおいてこの問題を取り組む能力を極めてユニークに有しています。

結論
伊佐教授は、大変しっかりと基礎研究に根差しつつ、
そのプランを応用に活かす展望を持つエネルギッシュで非常に生産性の高い研究室を運営し続けています。過去数年間の間に彼とその共同研究者たちは、最も評価の高い国際誌に、大変豊富な研究成果を発表してきました。彼の研究施設を訪問した経験から、彼の研究はしより広いスペースが提供されればさらに一層高い生産性を発揮するようになると言私は確信します。伊佐教授が彼の共同研究者をして可能な限り多くの実験をするように動機づけを与えることに大変長けているように見えます。しかし、この生産性の高さの結果として、彼の部屋は壁から壁まで実験装置やコンピューター、顕微鏡といった支援施設であるべきだと言っています。伊佐教授はシステム神経科学の研究領域において十分に名声を確立しているだけでなく、顕著なことに、さらに一層の成功の上昇軌道に乗っています。私は彼がすぐに定常状態に至るとは思えません。私は最大級の熱烈さをもって、彼の研究室を最大級にサポートすることを推奨します。
1.2 坂上雅道 教授 (玉川大学脳科学研究所)

伊佐正研究室、サイトビジット報告書

2013年10月24日、認知行動発達機構研究部門の
伊佐正教授の研究室を訪れ、サイトビジットを行った。
経済産業省 Innovative Technologies 2013 特別賞の授賞式で欠席した西村幸男准教授とその大学院生を除く
ほぼ全員の研究スタッフ・大学院生から話聞くことができた。全体の印象としては、現代の基礎神経科学
の重要な問題（神経機能回復、視覚意識、運動出力のマ
イクロサーキット）を最先端の技術を駆使して精力的
に研究しており、1研究室としては世界トップクラス
の業績をあげていると感じた。これは、伊佐教授の並
外れた能力とリーダーシップのみならず、准教授、助
教クラスに、すぐれた人材を配していることが理由で
あると考えられる。加えて、伊佐教授の知名度と信用
により、世界トップクラスの研究室との間で、実質的
に機能している共同研究が行われており、このことは、
新技術の早期の導入と研究の質の高いレベルでの維持
に貢献している。実験環境としても、業績に比して決
して広いとはいえない実験スペースを、工夫して、極
めて有効に利用している。以下、伊佐研究室の研究活
動についてと研究室運営について、私が感じたところ
を報告する。

＜研究活動＞

伊佐研究室の主な研究テーマは、①神経機能回復、②
視覚意識（盲視）、③運動出力のマイクロサーキットで
ある。

①：昨年 Nature に発表された盲視回路における
ウイルスの移植実験は、ウイルスを使って特定
回路の遮断を行い、それに伴う機能変化をマクロ系の
サルで観察した世界初めての研究であり、盲視回路の
研究にとどまらず、神経科学の新しい方向性を実証的
に示したという意味で、神経科学研究全体に極めて大
きなインパクトを与えた。また、盲視障害後の機能回
復における大脳皮質の可塑性の変化を、サルを使って示
した研究は、PET なども用いたオプチカルイメージの高
い研究である。運動関連領域以外の脳部位（たとえば、
報酬系）の関与も視野に入れた研究は、スケールが大
きく、今後の発展が楽しみなプロジェクトである。さら
に、これらの基礎的課題をベースにして、盲視障害
患者の機能回復につながる応用研究も質の高いレベル
で行われており、着実に成果を出しつつある。

②：V1

損傷ザルを使った盲視（blind sight）の研究でユニーク
な発見を世界に発信している。意識という、脳科学で
最も重大かつ困難な問題に真剣面から取り組む姿勢は、
すぐに成果を求める最近の神経科学研究の傾向に流さ
れず、極めて評価できる。ただ、意識に関わる様々な現
象の神経科学的根拠を積み重ねていくという意味
では評価できるが、果たしてこのような方法だけで
意識の脳科学的メカニズムの解明が可能なのか、熟考
する必要がある。その意味で、強制選択課題に加えた
刺激検出課題の採用は、この研究の新しい展開であ
り、盲視領域に提示された刺激を使った二次条件付け
の研究も興味深い。2013年度に着任した小川特任助教
は、これまでにも刺激の salience に関してユニークな
研究を行っており、新しい光技術を駆使して高次機能
の解明を目指している小川特任助教のような人材の研
究への参加は、その展開が大きく期待できる。③：他
の二つのテーマに比べて、新興にかかわるが、伊佐
教授が長年にわたって築き立てた蓄積と2光子技術に
よる新しい展開をはかろうとしたものであり、盲視回
路のウイルス技術と合わせて、極めて興味深い。精緻
な実験ゆえに、計算理論的視点の導入なども有効であ
ろう。

＜研究室運営＞

伊佐教授から研究室の組織についての説明を受け、研
究スタッフ・大学院生とも個別に話をする機会もあっ
た。多岐にわたる研究テーマにもかかわらず、研究室
メンバーが、それぞれの役割を良く理解しており、着
実に研究を進めているという印象であった。国内・国
外の研究室との共同研究も、若手メンバーにとって得
難い国際経験の場となっており、名前だけの共同研究
ではなく、実質的、有効に機能している。ただ、この
ことは、いくつかの問題に繋がっているようにも思わ
れる。ひとつは、ポストドク・学生の指導に割く伊佐教
授の時間の問題である。伊佐教授は、生理研以外にも、
コミュニティーの中で多くの重要な役割を果たしてい
る。共同研究のための出張も多い、彼らの研究の相談・
指導に十分な時間をとれるのだろうか？実際、ポストド
ク・学生とのインタビューで、このことに関わる者も
あった。ふたつめの懸念は、伊佐研究室がカバーする
研究領域の広さである。伊佐研究室としては、カバーする研究領域が広いからと言って、それぞれの研究のクオリティは、決して落ちていない。しかし、ポストドク・学生の中には、研究室内の異なるテーマの研究を行う研究者との、研究に関わる会話が深まらないということを話す者もいた。研究室で互いの研究について話し合い自分の専門領域以外の知識を深めていくことは、若手研究者にとって得るものが多いはずである。それも目的とするセミナーなどを聞きことを考えても良いのではないでしょうか？生理学研究所の場合、他にも生理学に関係する多くの部門があり、若手の中には部門横断的な研究会などを自主的に開いているという声もあった。

最後に、優秀な若手研究者の在籍期間の長期化についての懸念である。他では得難い研究環境のため、逆に若手研究者が独立する機会を通じている可能性ないだろうか？熟練と長い研究期間を必要とするシステム神経科学においては、研究テーマが一致する優秀な研究者の長期在籍は、伊佐研究室全体としては業績の向上に繋がるが、若手研究者にとって、そのことが次の就職の障害になることがあるかもしれない。現在、生理学研究所では昇進について制約が多いようだが、優秀な研究者については、腰を落ち着けた長期プロジェクトのためにも、現在の制限を撤廃することも検討してよいのではないかと思われる（特に准教授から教授への昇進）。

（2013年12月31日）
1.3 西条 寿夫 教授（富山大学大学院医学薬学研究部）

平成 25 年 10 月 24 日に医学研究所認知行動発達機構研究部門を、外部評価委員として訪問し、伊佐正教授、吉田正俊教授および小川正徳教授とはじめ、3人の研究員（渡辺秀典、加藤利佳子、筍井昌也）と1名の大学院生（澤田直宜：出張中の西村幸男准教授の代理）からこれまでの研究成果と、今後の研究展開について説明を受けた。本研究室では、1）巧緻運動の制御に関与する神経回路の基本構造と機能ならびに同神経回路の損傷後の機能代償機構に関する研究、および2）後頭葉を介さない皮質下視覚回路（網膜-上丘系）の機能解明を行なっている。以下に、同研究室における研究の概要と私見を述べさせて頂く。

1. 巧緻運動の制御機構

伊佐研では、サルにおいてもネコと同様に、皮質前頭回（前頭回）だけでなく、皮質背側から頭頂の脳脳固有ニューロン（C3-C4 PN）を介して背側前角運動ニューロンに至る 2 級神経系のバイパス経路が存在することを明らかにしている。この C3-C4 脳脳固有ニューロンを介した経路により運動を制御することになる。この損傷サルを用いて、手指で小さな餌を捕えることを行う機能運動実装を調査した結果、切断後 1～3 週間で小さなものをつかむことが可能になり、1～3ヶ月でほぼ完全に回復することを報告した。

ついて、同研究室では、本研究結果において明らかになった C3-C4 脳脳固有ニューロンの機能を、健常サルを用いて詳細に解明するため、ウイルスベクター二重感染法を用い、Tet-ON システムをサルに応用する遺伝子工学的手法をを開発している。本 Tet-ON システムでは、テトラサイクリン誘導体であるドキシサイクリンをサルが摂取すると、二重感染した脳脳固有ニューロンにおいて一方のベクターのプロモーター領域に存在する TRE (tetracycline responsive element) に他方のベクター由来のテトラサイクリン依存性転写調節因子 (rtTA) が结合することにより遺伝子の発現 (enhanced Tetanus Neurotoxin, eTeNT) が誘導される。以上の過程により、サルがドキシサイクリンを摂取している間のみ脳脳固有ニューロンにおいて eTeNT が発現し、脳脳固有ニューロンのシナプス伝達をブロックする。
3. 総括

このように伊佐研究では、巧緻運動と盲視の神経機構に
おいて、独創的な業績を上げており、Nature, Science,
Current Biology, Journal of Neuroscienceなどの国
際誌に数多くの論文が発表されている。同研究室では、
多くの研究が平行して行なわれているが、全体計画の
もとに個々の研究が有機的に統合されており、深みの
ある研究となっている印象を受けた。とくに、巧緻運動
の研究では、これまでの研究成果に基づいて BMIな
ど臨床的応用へ向けた研究も精力的に行われており、リハビ
リテーション医療への貢献が大いに期待される。これ
らの研究は国内だけでなく、米国、ドイツならびにタ
イの研究者と共同研究が積極的に進められており、今
後とも、生理研究において日本だけでなく国際的にも神
経科学的研究を牽引していかれることが大いに期待し
ている。

最後に、伊佐教授以外の研究員と個別に懇談したが、
各研究員は研究環境に非常に満足しており、実際に研
究室を見学させて頂いたが、非常にうまく整備されて
いる印象を受けた。尚、生理研究における5年の任期に
ついて、5年では短過ぎてリスクな研究を行なえない
という意見と5年の期間は十分であるという意見が
半々であり、研究者の間でも意見が割れているようで
あった。生理研究では、国立の研究所として最先端の研
究を要求されている事実もあり、任期についても臨機
応変に対応できるよう検討して頂きたい。
2 Review and Evaluation of Division of Endocrinology and Metabolism
National Institute for Physiological Sciences
Okazaki, Japan

Reviewer: Dr. Tamas L. Horvath
Jean and David W. Wallace Professor of Biomedical Research Chair of Comparative Medicine
Professor of Neurobiology and Ob/Gyn
Director-Yale Program in Integrative Cell Signaling
And Neurobiology of Metabolism Yale University School of Medicine

To Whom It May Concern:

This evaluation is based on my visit to the laboratory of Professor Yasuhiko Minokoshi in Okazaki City on September 6-7, 2013. My expertise lies within the central regulation of energy homeostasis with particular emphasis on molecular underpinnings of neuronal circuit responses to changing peripheral energy balance and consequent alterations in behavior and autonomic functions. All of the presentations I discuss below fell within the boundaries of my own interest in integrative physiology. Below I will first comment on the principal investigator, Professor Minokoshi, and then make remarks on the individual presentations. Finally, I provide a summary view on the entire laboratory.

Evaluation of Principal Investigator: I have been following the pioneering work of Dr. Minokoshi for more than 10 years. I met him in person 5 years ago attending the Japanese Neuroscience meeting. His groundbreaking work on cellular adaptations to shifts in energy balance has impacted the field tremendously. His work on AMPK revolutionized the way we conceptualize cellular and circuit responses to low energy availability and added important new insights to the mechanisms via which leptin regulates the brain and peripheral tissue functions. I would like to note that his pioneering work resulted in many high impact papers, including several of them published in Nature. Those works, while carried out at Harvard University, were derived from his own previous work and hence he deserves all the credit for the conceptual and technical aspects of those studies. Since his return to Japan, he has been continuing to pursue in depth those crucial biological pathways in the brain and peripheral tissues. He has been asking critical questions and approaches them with state-of-the-art studies. In my view, he is one of the most accomplished researchers in the field of metabolic regulation with continued research endeavor at the highest possible level and rigor. His ongoing studies, detailed below, provide excellent examples of his approach.

Presentation 1: Shiki Okamoto
Dr. Okamoto has been pursuing the role of AMPK in the hypothalamic paraventricular nucleus in relation to food selection/preference. He is specifically interested in the switch between fat dense and carbohydrate dense foods. His studies show that expression of constitutively active AMPK in the PVN delivered by lentivirus makes animals fatter on normal chow but leaner on high fat diet. Specifically they find that in these animals there is a shift to preference of carbohydrate dense foods from high
fat foods. Hence, they are heavier on normal chow but leaner on high fat diet. On the other hand, when ahRNA was used to decrease AMPK levels by 50%, it impaired switches in food preference after fasting. It is yet unclear whether that switch affects refeeding on high fat diet as well as on normal chow. They also show that the neuronal cell type most likely responsible for this AMPK-related alteration is that, which expresses corticotropin releasing hormone (CRH). Cell-selective alteration in CRH neurons of AMPK and/or optogenetic control of these neurons will deliver conclusive outcomes. Furthermore, it will be insightful to learn what governs AMPK in CRH neurons in physiological conditions. Overall, this is excellent work. I suggested to slightly change the sequence of the developing story to easier convince reviewers of the great significance of this work.

Presentation 2: Shigefumi Yokota

These studies aim to better understand the role of AMPK in muscle with particular emphasis on type 1 diabetes. They show that suppression of AMPK activity in muscle in diabetes induced by streptozin improves outcome. Expression of dominant negative AMPK in muscle leads to less loss of weight and no increase in food intake as in controls when type 1 diabetes is induced by STZ. Potentially more critical, no death of mice was recorded after STX in first 2 weeks after induction of diabetes. This is a remarkable outcome with huge clinical implications! Plasma parameters are also improved or less ruined by type 1 diabetes in these mice! The exception from this was glucagon. Overall, these animals with non-functioning beta cells show better glucose tolerance tests. How this is accomplished is not fully understood, but autophagy may have a role to play. They also show that some miokynes are less induced with dominant negative AMPK in the muscle. This is an outstanding work with potential transformational impact on treatment of type 1 diabetes.

Presentation 3: Dr. Minokoshi

presented the studies of a graduate student, Ms. Tang. This work focuses on TNFa centrally and peripherally to explore the relationship between central regulatory mechanisms in fat tissue homeostasis. First they observed that intracerebroventricular injection of AgRP suppresses sympathetic activity and norepinephrine turnover in epididymis but not inguinal fat, which itself has much higher sympathetic tone. Intriguingly while macrophage markers are not affected, TNFalfa is induced in macrophages but not in adipocytes. It is accomplished by suppressed b2 adrenergic tone. But what is the role of TNF alpha in the tissue is yet to be explored. This is a very intriguing line of new investigations, which may deliver fundamental new insights for adipose tissue regulation by the central nervous system, more specifically the hypothalamus.

Presentation 4: Tatsuya Sato

These studies focus on AMPK in CRH neurons as this system relates to stress. They are analyzing social defeat on feeding behavior and how hypothalamic AMPK and activity of the HPA axis is affected. They interfere with AMPK levels using shRNA while overexpression of AMPK is accomplished using time controlled (tet-on) cre-lox system induces expression of constitutive AMPK. These studies have not delivered data yet. But they are underway and will likely generate critical new information regarding AMPK and stress.

Presentation 5: Eulalia Coutinho

This work focuses on VMH-specific SF1 neurons in glucose and energy metabolism. Remote control of these neurons is accomplished by using the DREADD approach through which membrane potential of VMH neurons can be controlled. DREADDs are delivered to the VMH using a floxed construct. Glucose clamp will then be used to analyze the effect of changing VMH neuronal activity on peripheral glucose homeostasis. These are very novel and important studies that utilize new technology in remote control of neuronal populations in an elegant and straight forward manner. I suggested checking the accuracy of the approach using slice electrophys-
Presentation 6: Masahiro Kamijo
Here the goal is to explore the effects of nutrient availability on brain fatty acid metabolism. They utilize autoradiography of labeled palmitate administered peripherally, and, they analyze uptake of labeled material in various sites in the brain. They already showed selective uptake of labeled palmitate in different brain sites. This is a remarkable finding as very few researchers pursue the idea of lipid metabolism by neurons. It will be important to address the cell types that actually pick up the palmitate; whether they are neurons and/or glia cells. It will also be useful to further test the sensitivity of visualization and consider film autoradiography to increase the resolution. This is a very important and excellent study!

Presentation 7: Kazuyo Takagi
This work is exploring the relationship between brown adipose tissue and muscle function as it relates to whole body energy metabolism. This is accomplished by using transgenic mice in which UCP1 is knocked out and the muscle expressed dominant negative AMPK. They are analyzing diet-induced thermogenesis. They are measuring energy expenditure, food intake, respiratory quotient and body weight. Diet induced thermogenesis was decreased in double knockouts. They have elevated RQ. The double knockout mice eat the same but gained more weight and had impaired glucose metabolism compared to controls. The individual knockouts did not show the phenotype. These are very novel and intriguing results. It will be critical to determine where and how these two tissues, the muscle and brown adipose, interact to affect integrative physiology in this remarkable synergistic fashion.

Overall Assessment of the Program and Recommendations
I was very impressed by the overall level of science at the Minokoshi lab. He has been pursuing excellence at the highest level with cutting edge tools and very important questions. I found lab members to be up-to-date not only on their own projects but also they were very much aware of projects run by the other members. There was a general enthusiasm about the workplace and the overall goal of the laboratory. Professor Minokoshi has successfully maintained an outstanding laboratory both from the perspective of science and education of young scientists. I believe that the National Institute for Physiological Sciences provides a superb environment to enable Dr. Minokoshi’s outstanding work. I rate his laboratory among the best in Japan as well as in the world in the field of metabolism regulation.

Should you need further information, please do not hesitate to contact me.
Sincerely yours,
Tamas Horvath, DVM, PhD

Sincerely yours,
Tamas Horvath, DVM, PhD

(和訳)

外部評価（生理学研究所生駒・内分泌系発達機構研究部門）
Tamas K. Horvath 教授（米国 イエール大学医学部）

本評価は、2013年9月6日と7日に箕越研を訪問した時の結果に基づいて行った。私の専門は「エネルギー代謝の中枢性制御」であり、末梢エネルギー代謝を調節する神経回路と、それによって制御される行動と自律機能の調節機構に関する研究を実施している。私は、私の専門分野から箕越研の評価を行うことにする。まず始めに、箕越教授に関する私の評価を述べ、次いで箕越研の各自研究者が行っている各研究について評価を述べる。最後に研究室全体について評価を述べたい。
代表研究者の評価：箕越教授の研究内容について

私は5年前の日本神経科学会において箕越博士と初めて会ったが、10年以上前から箕越博士の先駆的な研究についてすでに注目していた。博士による生体エネルギーバランスの変化に伴う生体適応とその分子機序の発見は、我々の分野に多大なインパクトをもたらした。特に、AMPKに関する研究は、エネルギー飢餓への生体適応に関する新しい概念を提供し、特にレプチンがどのようにして脳及び未梢組織を調節するかを分子レベルで明らかにしたことは大きな発見である。

彼のこの研究は、Nature を含む、その後の重要な多くの論文を生み出した。これらの仕事をハーバード大学で行われたものであるが、彼自身がこれまで日本で行ってきた仕事が基盤となっており、日本に帰国後も、この分野に関する根本的な問題について取り組んでいる。以下に述べる箕越博士の研究は、何れも、生体エネルギー代謝の調節機構に関する重要かつ基本的な問題である。これらの研究は、彼が当該研究分野において最先端を進む研究者であることを示している。

発表1：岡本土穂博士の研究について

岡本博士は、食物嗜好性に及ぼす視床下部室傍核AMPKの役割について研究している。彼は、特に、脂肪食と炭水化物食の食物選択性行動について研究を行っている。彼は、室傍核ニューロンに活性型AMPKを発現させると、炭水化物食に対して過食となり、その結果、肥満すること、逆に高脂肪食では過食となりず肥満しないことを示した。一方、shRNAによってAMPKの発現を低下させると、絶食後の再摂食時に起こされる炭水化物食摂取が抑制される。さらに彼は、炭水化物食と脂肪食の食物選択性行動に、室傍核CRHニューロンに存在するAMPKが関与することを示した。この仕事を通じて、AMPKの新規の生理的意義を明らかにした大変優れた研究である。今後の研究として、光刺激などによってCRHニューロンを選択的に活性化し食物選択性が変化することを示す。またAMPKがどのようにしてCRHニューロンの神経活動を制御するかを明らかにすることが必要であろう。我々は、この研究の重要性をレビュアーに不明確に示すため、論文作成において論旨を若干変更することを助言した。

発表2：横田繁史博士の研究について

本研究は、1型糖尿病における骨格筋AMPKの調節作用に関する研究である。彼は、活性抑制型AMPKを骨格筋選択的に発現させると、STZによる糖尿病の代謝異常が改善することを見出した。STZを投与してもこのマウスが全匹生存することは驚くべき。血中インスリン値は低値であるにも関わらず、血中代謝因子も改善していた。メカニズムについてはまだ不明な点が多いが、骨格筋から分泌されるマイオカインが関与することも示された。この研究は、1型糖尿病に対する新しい治療法の発見につながる可能性がある。

発表3：唐麗君博士の研究について

本研究は、脂肪組織のTNF-alpha発現に及ぼす中枢神経系、交感神経系の調節作用を調べた。博士は、AgRPを脳室内に投与すると、副腎脂肪組織を支配する交感神経活動を抑制することにより、TNF-alphaの発現が増加することを見出した。興味深いことに、TNF-alphaの発現は脂肪組織にすでに存在するマクロファージに由来しており、脂肪組織外のマクロファージが新たに脂肪組織内に浸潤したためではないか。また、その作用はbeta2受容体を介することも明らかだった。現在のところ、交感神経活動の低下によってTNF-alphaの発現が高まる生理的意義は不明であるが、本研究は、中枢神経系、特に視床下部が脂肪組織の炎症反応に調節作用を及ぼすことを示した全く新しい研究である。

発表4：佐藤達也大学院生の研究について

本研究は、社会的ストレスに伴う摂食異常、視床下部AMPKがどう関わるかを調べている。彼は、ストレス条件などを詳細に検討し、社会的ストレスによって摂食異常を引き起こすモデルマウスの作成に成功した。今後、活性型AMPKを視床核CRHニューロンに発現させたマウスと、shRNAによってAMPKの発現を抑制したマウスを用いて社会的ストレスの効果を調べる予定である。これらマウスを用いた実験結果はまだ出ていないが、本研究は、社会的ストレスによる摂食異常の発現機構に新しい知見をもたらす可能性がある。

発表5：Eulalia Countinho大学院生の研究について

本研究は、DREADD法を利用して視床下部腹内側核SF1ニューロンを選択的に活性化し、糖代謝への効果を調べるものである。箕越研では、視床下部腹内側核が糖代謝の調節に重要であることを報告しており、この手法は、これまでの研究成果をより発展させる有効な手段である。私は、この手法が、SF1ニューロン
発表6：上條真弘大学院生の研究について

本研究は、脳の脂肪酸代謝が栄養状態によってどのように変化するかを調べる研究である。RIでラベルした脂肪酸アナログを末梢に投与し、脳への取り込みをオートラジオグラフィーで調べた。その結果、絶食・再摂食によって脂肪酸アナログの取り込みが変化すること、さらに脳の部位によって取り込みが全く異なる、という驚くべき結果が得られた。今後の研究として、脂肪酸アナログの取り込みがニューロンなのかグリアなのかを示すことが重要である。

発表7：高木一光大学院生の研究について

この研究は、個体エネルギー代謝に及ぼす骨格筋と褐色脂肪組織の役割を調べる研究である。本研究では、UCP1のノックアウトマウスと骨格筋特異的に不活性型AMPKを発現させたマウスを用いた。UCP1をノックアウトし、且つ骨格筋特異的に不活性型AMPKを発現させたマウスは、摂食に伴う熱産生が低下して体重が増加し、糖代謝にも異常を来たした。UCP1をノックアウトしただけのマウス、骨格筋特異的に不活性型AMPKを発現させただけのマウスでは変化は無かった。この研究は、骨格筋AMPKと褐色脂肪組織UCP1の両方がエネルギー代謝調節に関与することを示した初めての研究成果で、大変重要である。近年、エネルギー代謝の調節に関与する細胞間相互作用の重要性が明らかとなっている。骨格筋AMPKと褐色脂肪組織UCP1がどう相互作用するかを明らかにすることは、今後の重要な研究テーマである。

部門全体の評価

私は、箕越研究が高い学術レベルを有していることに大変感銘した。箕越教授は、最先端の技術を用いて当該研究分野における重要なテーマに挑んでいる。研究室のメンバーも、自らのプロジェクトのみならず他のプロジェクトにも興味を持ち、研究に取り組む姿は印象的である。箕越教授が、高い研究レベルを保ちつつ、且つ若い研究者の教育を行っていることが良く理解出来た。さらに、箕越教授が十分に仕事を進めることができるよう、生理学研究所が多大なサポートを行っていたことも分かった。箕越教授の研究室は、日本のみならず世界においても当該分野におけるトップクラスの研究室である。

Tamas Horvath, DVD, PhD
2.2 上田陽一 教授（産業医科大学医学部）

生理学研究所 生殖・内分泌系発達機構研究部門 評価報告書

評価者 上田陽一 産業医科大学医学部第1生理学講座・教授
訪問日 2013年（平成25年）11月26日
提出日 2013年（平成25年）12月20日

1. はじめに

生理学研究所生殖・内分泌系発達機構研究部門を外
部評価委員として訪問し、当該研究室内を見学後、所
属メンバー（助教、研究員および大学院生）から主に現
在進行中の研究内容についての発表を聴取した。また、
生殖・内分泌系発達機構研究部門の過去5カ年におけ
る概要、在籍者リスト、研究業績（2008－2013年）、
研究費取得状況および研究職員・学生の略歴と主な研
究内容についてまとめた小冊子が用意されており、外
部評価のための参考資料とした。

2. 研究室内設備等について

当該研究室は、建物の耐震工事のため2回の引っ越し
を経て現在の研究室に移動したとのことであった。見
学時には、研究室内における実験設備等のセットアッ
プを終えて十分に稼働している様子が伺えた。実験室
内はよく整理整頓されており、壁の少ない広々とした
雰囲気の研究室作りがなされていた。

実験動物のための飼養施設が研究室内に併設されて
おり、効率的に動物実験が実施できる環境が整えられ
ていた。動物実験に関する相互検証（第三者検証）プ
ログラムもすでに運行、動物実験に臨む体制は整え
られていて。

3. 研究内容について

箕越靖彦教授のもと、一貫して生体のエネルギーバ
ランスの調節機構の解明に取り組み、多くの成果を挙
げている。具体的には、摂食行動、脳や末梢組織（肝
臓、脇肉、脂肪等）のエネルギー消費機構を対象とし
てAMPキナーゼの機能を中心として実験動物（マウス）
を用いて解析している。食べ蠕性（特に碳水化物）を
調べる行動実験、アデソ・レシチニウイルス
を用いた遺伝子導入実験、遺伝子変動実験（ノックアウトマウス・トランスジェニックマウス）を用いた実
験など、最新の研究手法を駆使してin vivoとin vitro
の実験系を有機的に結びつけた研究を展開しているこ
とは特筆に値する。

当日、箕越教授および研究室メンバー7名から主に
現在進行中の研究内容についてのプレゼンテーション
を聴取した。新しい研究手法を果敢に取り入れ、新知
見が得られつつあることに感銘を受けた。特に、若い
研究員が新しい研究にチャレンジしている姿勢がよく
伝わってきた。

4. 最近5年間の研究業績、外部資金獲得状況などに
について

現在の在籍者は、箕越教授のもと助教、研究員、大学
院生などから構成されており、全体的に若々しい研究
室のイメージであった。また、これまでの主な5名の
在籍者は、他大学講師、研究員や海外留学などキャリ
アップしている様子が伺える。

最近5年間の論文リストによると25冊の英文論文
を発表しており、中でもDiabetologia, Diabetes, Cell
Metab といった糖尿病や代謝研究のトップジャーナル
や Science にも掲載されており、十分な業績を挙げて
いると評価できる。

また、2－デキサミルコースの代謝速度の測定方
法において知的財産権を得ている。外部資金において
は、箕越教授を始め、研究室員も文部科学省科学研究
費を最近5年間において継続して獲得しており、外部
資金獲得状況も良好である。

5. まとめ

箕越教授が2003年11月に着任して約10年が経過
した。生体のエネルギーバランス機構の解明を基本命
題とし、その破綻としての肥満や糖尿病の発症機序の
解明へ向けて更なる努力が注がれている。当該研究室
の立ち上げは道路が乗車、耐震工事のための引っ越し
を経てリニューアルした研究室においては新たな段階
へステップアップしており、更なる飛躍が期待できる。

特に、箕越教授のもと若い研究員が明確な目的を
持って新しい課題に取り組んでいる様子が大変印象的
であった。
2.3 岡村 均 教授（京都大学大学院薬学研究科）

生理性研究所 生殖・内分泌系発達機構研究部門（箕越靖彦 教授）の評価

平成 25 年 11 月 26 日に生理学研究所生殖・内分泌系発達機構研究部門を、外部評価委員として訪問し、箕越靖彦教授、岡本毅教授、横田繁史研究員、唐麗君研究員、上條真弘大学院生、高木一代大学院生、Eulalia A Coutinho 大学院生、佐藤達也大学院生から、現在最新の研究成果について説明を受けた。

生殖・内分泌系発達機構研究部門は、2003 年 11 月に箕越靖彦教授が、Harvard 大学より異動して発足しており、現在は、教授 1 名、助教 1 名、ボストク 2 名、大学院生 4 名、技術職員 1 名、秘書 1 名、計 10 名で研究室が構成されている。今回、その構成員全員から、最新の研究成果をスライド発表の形式で説明を受け、その誠実な対応と、しっかりとした研究意識の高さが印象的であった。

生殖・内分泌系発達機構研究部門では、摂食行動とエネルギー消費機構からなる生体エネルギーバランスの調節機構についての研究を行なっている。そのテーマの下に、視床下部が、他未梢組織と相互作用しながら生体のエネルギーバランスをどのように調節しているかを明らかにすることに最大の力点を置いている。視床下部が制御する組織として、骨格筋と脂肪組織もその研究のターゲットである。全体としては、視床下部を中心とする臓器間連携とその破綻が、肥満や糖尿
病の発症とうだく関わるかの解明を目指している。

例えば、視床下部の室傍核 AMPK の食物傾向性における役割を検索する研究は、多種の神経細胞群からなる室傍核の機能を、AMPK により解明しようとする意欲的な研究である。また、骨格筋の AMPK を実験的糖尿病モデルより解析する試みは、臓器連関を示すものとして大変興味深い。また、視床下部腹側核とグルコース代謝とエネルギーホメオスタシス、脳における脂質代謝の研究は、新しい手法で、新事実を明らかにしつつある。また、交感神経による脂肪組織の制御機構の研究は、代謝変動や遺伝子誘導を指標にして、交感神経の新しい側面を明らかにしている。

いずれの研究も、特徴的であるのは、箕越教授の発見された、レプチンによる摂食・代謝調節作用における AMP-activated protein kinase (AMPK) の作用解明を基軸として、現在の研究が展開されていることである。箕越教授らは、これまで、脂肪細胞から分泌されるホルモンであるレプチンの働きを追求し、レプチンが脂肪細胞から分泌された後、血流に乗って脳の視床下部の神経細胞と骨格筋を作用する機構を、細胞レベル、分子レベルで解明してきた。その結果、脂肪細胞、脳、骨格筋、そして肝臓や脾臓などのさまざまな臓器が、レプチンのような生理活性物質と自律神経を介して複雑な臓器間ネットワークを形成していること、これによって体重、脂質代謝、血圧、血糖が正常に保たれていることを示している。しかし、このシステムが破綻すると、最も徐々に、そして最後には雪崩のように崩壊し、糖尿病などを引き起こすと説明している。今回の研究発表は、その成果が順調に展開されていることを示している。

生殖・内分泌系発達機構研究部門の研究は、現代の食生活にあずかる生活に伴う肥満とそれが引き起こす病態（糖尿病など）の分子メカニズムの解明という、現代社会にとって重要な研究である。動物は基本的に食べるために行動し、満腹になれば行動を行わない。ところが、現代生活は、安易にエネルギー補給ができるため、過食になる。その生活習慣のため、肥満、インシュリン抵抗性糖尿病、メタボリック症候群などの生活習慣病が生まれてきた。疾病まで至るか否かは、実際は、個体により遺伝的に差があるが、その予測を含め、肥満や摂食の分子メカニズムの解明が求められている。この研究領域は、基礎研究、臨床研究の接点に位置する研究である。その意味で、医学および社会にとっても重要な研究と言える。

生理性研究所発達機構研究部門では、摂食の中枢である視床下部の細胞特異的な分子メカニズムの解明とともに、骨格筋、脂肪細胞の分子機構の解明を、MPK を中心に解明しようとしている。印象的であるのは、AMPK というキーワードがパズルのように、多くの生理機構を説明できることである。このように、物質を武器に研究を行うことは、肥満と摂食という視床下部の植物機能を説明するには、非常に有益な方法論であると思われる。それは、視床下部一自律神経というは脳機能の中でも、何れもの制御機構が入る組んだ超雑然システムで出来ており、生化学的分子生物学的手法はこれを解き明かすものと期待されるからである。
視床下部は、従来は生理学的手法で研究されてきた。それにより摂食中枢、飽食中枢が明らかになったが、複雑な多重制御を行なっている視床下部では、少しの実験条件の差でも、正反対の事象が起こる危険が有り、その解釈が問題になることが少なからずある。しかし、本グループのように物質としての AMPK という実体を相手にしていると、その検証が可能で有り、例えばそれが予測どおりで無くても、すぐに次の具体的に検証可能な研究が立てられ、さらに深く研究を進めることが可能になるという利点がある。この視床下部研究の新しさに感銘を受けた。

その新しさはどこから来ているのであろうか。考えると、代謝研究が、生命科学全体の中で占める重要性が、近年飛躍的に増大している。それは、RNA-Seq や DNA マイクロアレイでの遺伝子発現・メタボロームによる物質同定という、ヒトゲノムの同定が終わった後のポストゲノム時代に開発された、生体の包括的な理解が可能な研究機器や手法が相次いで開発されたからであろう。これらの手法と成果を利用できる代謝研究や代謝疾患研究は、先端生命科学研究のまきにリード役と言える。これに、代謝を実際動かしているタンパク質の化学修飾（リン酸化など）を加え、遺伝子変異や遺伝子導入法により解析することは、機能変化を実証するという利点がある。

本グループは、このような代謝研究の良い点を取り入れ、さらに従来の生理学的手法も十分駆使しながら研究を進めていることが好感を持てる。この研究分野は魅力的だだけに、競争の多い分野であるが、今後とも新しい研究方法を取り入れ、新たなメカニズムの解明を目指して欲しい。
March 19, 2014

To whom it may concern,

It is my honor to write the evaluation report for Prof. Makoto Tominaga. I am a neuroscientist who has been working on the basic mechanisms for synaptic plasticity and chronic pain for last twenty years. The main focus of my research is on the molecular and synaptic mechanisms of excitatory transmission, as well as long-term plasticity (such as long-term potentiation, LTP; long-term depression, LTD) of synaptic transmission in chronic pain status.

I have known Prof. Makoto Tominaga for almost more than ten years. Although we work on different parts of brain, his work provides key information for pain perception and peripheral sensitization in chronic pain conditions. I am always impressed by his beautiful work on TRP channels. A few years ago I had invited him to publish one of his key papers in Molecular Pain and this paper has gone on to be cited numerous times since its publication, Prof. Makoto Tominaga received the Molecular Pain award at the International Conference for Neurons and Brain Disease in Montreal for this work.

From Prof. Makoto’s CV it is clear that he is highly productive and innovative. He has consistently published in high-impact professional journals with an average of ten publications per year. This year however, in the first three months of 2014 his publications have already reached seven which is indicative of the ongoing importance and relevance of his work.

While his work has mainly focused on TRP channels, some of his work has extended beyond sensory transduction and provided key implications of these channels in different physiological and pathological conditions. For example: in 2008 he and his colleagues showed that a functional interaction of PAR2 and TRPA1 in dorsal root ganglion (DRG) neurons could contribute to the sensation of inflammatory pain. This work indicated that the increased TRPA1 sensitivity may have been due to the activation of PLC, which releases the inhibition of TRPA1 from plasma membrane PIP(2). These results identified – for the first time to our knowledge – a sensitization mechanism of TRPA1 and a novel mechanism through which trypsin or tryptase released in response to tissue inflammation which might trigger the sensation of pain by TRPA1 activation. Furthermore, his focus on TRP has continued to be productive. In his recent paper publication Nature Communication (2013), he has identified an alternative splice variant of the mouse Trpa1 gene. His works suggest that TRPA1 may be regulated through alternative splicing under pathological pain conditions.

One strongest piece of evidence for his continued success in the research area of ion channels and sensory transduction/pain is his frequent invited talks at international conferences. His work is always at highest quality among other speakers and always accompanied by novel discoveries of signaling mechanisms. His results are novel, fundamental, and highly clinically related.

I recently visited his laboratory in 2011 and 2013 following my regular annual tour in Japan for research conferences including the Asia Pain symposium which was organized by him in 2014. I was very impressed by his team of excellent young investigators and students working in his laboratories. The posters presented in the Asia Pain meeting were among the first class studies I have seen in other international conferences related to ion channels and pain. I am confident that Prof. Makoto Tominaga will continue his successful career, and provide novel mechanisms for sensory transduction and basic
molecular mechanisms for pain and chronic pain.

In sum, I strongly respect prof. Makoto Tominaga as a researcher and mentor and sincerely recommend the highest institutional support for his current and future research projects.

Sincerely yours,

Min Zhuo
Fellow of Royal Society of Canada

Canada Research Chair Tier I in Pain and Cognition
EJLB-CIHK Michael Smith Chair in Neuroscience and Mental Health
Professor of Physiology, Faculty of Medicine University or Toronto

Editor-in-Chief, Molecular Pain
Founding and Executive Editor, Molecular Pain
Deputy Chief Editor; J Neurochemistry
同定が報告された。彼の研究は TRPA1 が病的痛み状態においてオルタナティブスプライシングを介して制御される可能性を示唆している。

イオンチャネルや感覚/痛み情報伝達の研究領域における彼の持続的な成功の一つの最も強い証拠は、彼の国際学会の招待講演数が多いことである。彼の研究発表はいつも講演の中で最も高い質を有しており、シグナリングメカニズムについて新しい知見が盛り込まれている。

私は、2011 年と 2013 年にリサーチカンファレンスに出席したときに彼の研究室を訪問した。うち1つは彼が 2013 年にオーガナイズしたアジアイベントシンポジウムである。私は彼の研究室で実験する優秀な若い研究者や学生の研究チームにとても感銘を受けた。アジアイベントシンポジウムで発表されたポスターは、イオンチャネルや痛みに関連した国際カンファレンスで私が見た中でも最もよいものである。私は、冨永真琴教授が今後も成功を続け、急性疼痛や慢性疼痛の感覚情報伝達や基礎的な分子メカニズムについて新しい知見を報告するであろうと確信している。

まとめると、私は冨永真琴教授を研究者および指導者としてとても尊敬し、彼の現在および未来の研究プロジェクトに対して研究所からの最高の支援があるよう心から推薦するものである。
3.2 井上隆司 教授（福岡大学医学部）

富永真琴研究室に関する外部評価
平成 25 年 12 月 16 日実施

平成 25 年 12 月 16 日の午後に、富永研究室にお伺いし、研究施設・設備の案内後、過去 4 年余りの研究の成果・進捗に関する懇切な説明を受け、続いて研究員 4 名との面談を行った。以下はそれに関する報告である。

富永真琴教授は 2004 年に生理学に移っているが、現在のラボは約 4 年半前に立ち上げられ今日に至っていると伺っている。現在の研究室は、15 名の研究員（内訳：助教・特任助手 4 名、博士研究員 3 名、総研大学院生 7 名、交換留学生 1 名、受託大学院生 1 名）、及び技術職員 1 名、技術支援者 1 名、秘書 1 名で構成されている。また、ウズベキスタン、インド、中国から各1名ずつ留学生を受け入れている。

大学院生の研究に関しては、基本的、TRP と温度感受性の生理学）の枠内で各学生 1 テーマを設定し、専従することになっている。現在研究テーマは学生自身が指導者と相談の上決め、mentor との 1:1 の指導体制のもと実験を進めている。一方、ラボ内では、学生が孤立することなく、屋根瓦方式で、上下の学生間で柔軟に教えるシステムが出来上がっている。研究に従事する時間も基本的にはフレックス制で、アウトカムを重視している。すなわち、学生が active に参加する自由な研究環境であり、ポトムアップ的な研究組織であると言える。研究全体制全共通の活動としては、週一回当たり、ジャーナルの紹介が 1 名、プログラレスレポートが 2 名のペースで行われている。後者は、全体で 15 名いるので、1か月に一回の進捗状況報告であり、ほぼ理想的な研究スケジュール管理が行われている。

4名（助教 1 名、リサーチフェロー 1 名、ポストドク 1 名、総研大学院生 1 名）へのインタビューでは、（1）本人のモチベーションとプレッシャーのバランスが適度に取られており、4名とも研究に対する高い意気を維持できている。（2）全体に研究の進捗における自由度が高く、アイディアを出せばチャレンジさせてもらえるという環境にある。（3）分子生物学から個体行動まで一線でつながった研究ができるのが魅力である。（4）研究のハード及びソフトの環境が非常に良好で、妥協なく研究を進めることができることがある。（5）学位取得に論文公表が条件でないで落ち着いてじっくりと研究を進めることができるが、将来のキャリア形成に関してやや無頓着になるリスクもある。などの意見を頂いた。富永教授の大学院生の殆どは学位取得後、助教・特任助教・ポストドクに採用されており、キャリア形成支援の面では問題がないと思われる（しかし、外部でのキャリア形成に対しては、今のところ積極的な支援は行っていないとのことである）。

富永研究室では、環境を感知して情報伝達を行う機構について、分子から個体行動までを網羅する実験手法を駆使し、明らかにすることを目指している。現在主なるテーマは TRP シャネルの温度感受性・温度による活性化制御を基盤とした生理刺激や侵害刺激に対する応答の機械解明であり、これまで温度感受性の報告のある 10 種の TRP のうち主に 5 種について（TRPA1, TRPV1, TRPV3, TRPV4, TRPM2, TRPM8）温度による活性化・活性修飾メカニズムとその生理学的・病態生理学的意義を、様々な組織を用いて探索している。また、変温動物から恒温動物まで温度感受性 TRP のクローニングを行い、未梢における環境温知機構の分子進化についても詳しく調べている。

特筆すべき発見としては、（1）短波長スプライスパリント（TRPA1b）による侵害刺激感受性 TRPA1 チャネル（TRPA1a）膜発現促進を介した炎症性疼痛・神経障害性疼痛の発生、（2）インスリンやインクリチオン放出に依存した耐糖能における酸化ストレス感受性 TRPM2 チャネルを介した Ca2+ 流入の寄与、（3）酸化ストレス増加（メチオニン残基酸化を介した温度感受性增加）による TRPM2 チャネル活性亢進とその結果生じるマクロファージ機能の増強、（4）皮膚バリア機能維持における TRPV4, β - カテニン, E カドヘリン複合体形成による細胞間接着の増強、（5）膜リン脂
質 PIP2 に依存した TRPM8 活性化温度閾値の変化と環境温による温度感覚の変化の関係、など枚挙に暇がない。また、ユーハリ油成分の 1,8-cineole がメントールによる TRPA1 チャネルの活性化を阻害するという発見を男性化薬品男性化薬品の副作用軽減法として応用したり、消炎鎮痛薬イブプロフェンによる副作用の一部が TRPA1 の活性化抑制をはかると考えられている。辛味のないトウガラシ成分カプシエイトにも TRPV1 や TRPA1 を活性化し痛みなどの侵害刺激応答を惹起することを世界で先駆けて明らかにしたのも豊永研究室の功績であり、今後、その作用とサブリメントとしてのカプシエイトの脂肪燃焼促進効果との関連も検証されていることを考えると大変興味深い。このように豊永研究室がとられた成果は産業界の活動と密接に結びつく研究も多く、その功績に対して豊永教授は 2011 年度の第 16 回「安藤百福賞」を授与されている。そして上記の成果は 4 年の間に 28 編（及び共同研究論文 15 編）もの原著論文の発表として結実している。

このような幅広い豊永研究室の関心は、豊永教授自身の臨床内科医としての豊富な経験に密接に結び付いているように思われる。すなわち、単純な生命現象の探求や解明に留まらず、生体機能やその破綻とのつながりを重視した、分子から細胞へと横渡しする研究（すなわち分子臨床生理学）を指向しているようである。この傾向は、分子レベルでの還元論的生物学が隆盛を極めている状況に対するアシテーゼとして 2009 年の国際生理会議（IUPS）で採択された言語、”logic of life: from gene to life or malady” にも端的に表されている。相対的な潮流と無縁ではないと思われる。しかし少し難を言えば、研究の各々が大変興味深いもののに、既存の知識や概念を組み合わせた「発見的」or「応用的」or「経験的」なコンテンツを示しており、分子細胞-個体-階層間を繋ぐ全く新しい「論理」の探索や、同じ階層内であっても一見極めて多様に見える現象（例えば温度感受性）を包括的に説明する「論理」の探索が、十分に行われているとは言えない。基本的には、「生物物理的」および「構造解析的」な研究手法による情報が不足している感がある。例えば（評価発表中のディスカッションでも話題となった）、温度感受性を考える際には、分子生物学的手法と組み合わせた現象論的 Arrhenius 解析では不十分であり、詳細な熱力学的考察に基づいた解析（例、パッチクランプ法による単一電流解析によるチャネル活性分子等の温度感受性の検査、カロリメトリによるエネルギーや・エントロピー・エントロピー変化の測定）や、NMR、AFM を用いた蛋白質間的相互作用解析なども積極的に行っていく必要があると思われる。これらは、国内外のコラボレーション等を通して、比較的すぐに着手できるアプローチである。TRP チャネルは安定した炭素構造をとりにくい天然蛋白質としての性質が強いと考慮されているので、研究対象とする現象（蛋白質-間相互作用による機能変化）が、「エンタルピー駆動型」か「エンタロピー駆動型」というのを知るだけでも、今後の研究の進展に重要なる手掛かりが得られるとと思われる。そしてこれらのメカニズムに基づいたチャネルの活性化・非活性化機構の詳細な理解によって、新たなブレーキスルーが得られる可能性もある。

温度は、圧力等の機械刺激と共に、生体内で普遍的に作用する「示性強因子」であり、蛋白質や脂質などすべての生体構成分子等のエネルギーランダムスケープを劇的に変化させる極めて重要な因子である。しかしその微小進化に従って組み合われているが故、これをどのように生体が効率的に利用する「しくみ」を進化させてきたのか、殆ど解明されていない。評価者が自身も TRP チャネル研究に関わる一人として、今後の 10 年間の豊永研の研究が、上述の若き力に後押しされ、この謎を大きく解明してくれることを心から期待している。
3.3 吉原 良浩 シニアチームリーダー (理化学研究所脳科学総合研究センター)

自然科学研究機構生理学研究所および岡崎統合バイオサイエンスセンターにおいて富永真琴教授が主宰される細胞生理研究部門の外部評価委員として、2013年12月9日にサイトビジットを行った。まず富永教授に部門内の各実験室を案内していただいた。次に、2010年から2013年までの研究成果および研究室運営の状況等について、富永教授に詳細な説明をしていただいた。その後、研究室のメンバー4名と個別の面談を行い、各々の研究内容の紹介とともに細胞生理研究部門の現状について話すのがない意見を述べてもらった。本報告書では、1. 研究成果、2. 富永真琴教授、3. 研究室メンバー、4. 研究室と設備、5. 若手研究者育成、6. 外部評価の方法、7. 総括の順で私見を述べさせていただく。

1. 研究成果
細胞生理研究部門は、温度及び侵害刺激の受容とシグナル伝達機構の解明を目指し、これらの感覚において重要な役割を果たすTRPチャネルスーパーファミリー分子群に主に焦点を絞って精力的的研究を行っている。Transient Receptor Potential (TRP) チャネルは、ショウジョウバエの光受容応答変異体の原因遺伝子として1989年に発見されたが、その研究領域を大きく発展させる契機になったのは、富永教授が共著者として1997年に発表されたカプサイシン感受体（TRPV1）の同定に関する論文であった。その後、脊椎動物においても様々な TRP チャネル分子群が次々と発見され、哺乳類においては約30種類の TRP 遺伝子が存在することが分かった。それぞれの TRP チャネルは異なったリガンドの刺激や細胞外環境（温度、pH、塩濃度、浸透圧など）の変化によって開閉が調節されるセンサー分子であり、私たちの身体の様々な器・組織・細胞において重要な生理機能を担っている。

2010年から現在までの4年間に、富永教授が著者となる43報の英語原著論文が発表されている。それぞれのうち細胞生理研究部門からのオリジナル論文（筆頭著者あるいは責任著者が細胞生理研究部門のメンバーである論文）は28報である。その中には、Journal of Neuroscience 5報、Journal of Biological Chemistry 4報、PNAS 1報、Nature Communications 1報、Journal of Physiology 1報、PLoS Genetics 1報、Diabetes 1報などが含まれている。このような神経科学・生理学分野のトップジャーナルに継続的に質の高い論文を発表していることが、細胞生理研究部門の活発なアクティビティーを如実に示している。以下にそれらの業績についての私見を簡単にまとめる。

1-1. 侵害刺激受容における TRP チャネル分子群の機能に関する研究
痛みを惹起する侵害刺激は、温度刺激、化学刺激、機械刺激に分けられ、いずれにおいてもTRP チャネルファミリー分子群（TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, TRPA1）などがある研究が果たしている。最近4年間に富永教授のグループは痛み刺激受容の細胞・分子メカニズムの理解を大きく前進させた。特に、マウス発現ニューロンに存在する新規 TRPA1 スプライスパリアント（TRPA1b）の発見と炎症性疼痛および神経障害性疼痛への関与の証明（Nat. Commun., 2013）は、TRP チャネルの新たな機能調節メカニズムの概念を示した特筆すべき研究成果である。また、オリーブオイルの主成分オリコスタンール、消炎鎮痛薬イブプロフェン、唐辛子の成分カプシエライト、ワサビに含まれる2つのイソフラボナート成分などによる TRPA1 活性化機構（J. Neurosci., 2011; Br. J. Pharmacol., 2011; Chem. Senses, 2012）を見出し、TRP チャネルの神経薬理学的研究に新たな方向性を打ち出した。

1-2. 温度受容における TRP チャネル分子群の機能に関する研究
富永教授のグループは TRP チャネルの温度受容メカニズムの研究についても、飛躍的進展をもたらしていた。特に、細胞外温度依存的なTRPM8活性化温度閾値変化が細胞膜リン脂質のphosphatidylinositol 4,5-bisphosphate（PIP2）依存であることを示し、暴露されていた温度によって同じ温度の水を冷たく感じたり、温かく感じたりする現象（ウェバーの3ボトル実験）の分子メカニズムの解明へと向かった論文（J. Neurosci., 2013）は秀逸である。また、昆虫（ミツバチ）の TRPA、両生類（ニホンメガエル）の TRPA1、TRPV1、TRPV3、爬虫類（グリーンアノールトカゲ）の TRPA1 の遺伝子クローニングと温度受容センサーとしての機能解析を行い、各生物種に特有なTRP チャネルの機能を解明するとともに、TRP チャネル遺伝子の

1-3. TRP チャネル分子群のその他の生理機能に関する研究

2. 富永真実教授
富永教授は、カプサイシン受容体（TRPV1）の発見（Nature 1997）以来、TRP チャネルの生理機能についでの研究を飛躍的に発展させ、現在ではその分野におい David Julius（UCSF）、Bernd Nilius（KU Leuven）らを含む世界の第一人者となっている。また、平成 18 年から 22 年までの 5 年間、文部科学省科学研究費特定領域研究「セレンセンターの分子進化とモダルシフト」の領域代表者として、「モダルシフト」という新たな概念を確立し、国内における感覚研究を牽引するとともに、若手研究者育成に取り組んでいる。さらに、TRP チャネル、温度受容、痛み刺激受容などのテーマで、数多くの国際シンポジウム、ワークショップや研究会を主催された。以上のような貢献から富永教授は現在、日本の生理学・神経科学分野において中心的役割を果たしている。

3. 研究室メンバー
面談を行った 4 名の研究室メンバー（助教 2 名、研究員 1 名、大学院生 1 名）はいずれも自分及び研究室のテーマの重要性を深く理解しており、積極的かつ意欲的に研究に取り組んでいる様子がうかがえた。また、3 名のメンバーは、研究室の一番の特色として「自由な雰囲気」を挙げ、自主性を重んじる富永教授による研究者教育の方針が明確に捉えられた。さらに、研究スペースの広さ、研究機器の充実、研究費の潤沢さ、研究室メンバーの多様なバックグラウンド、外部研究者への実験材料リクエストにおける富永教授の迅速な対応など、細胞生理研究部門の秀でた特徴であるという意見が聞かれた。

現在、細胞生理研究部門には 5 名の外国人研究者（中国人 2 名、インド人 1 名、ウズベキスタン人 1 名、フランス人 1 名）が在籍している。全員の約 4 分の 1 を外国人研究者が占めるという、これほどまでに国際性豊かな研究室ではある。部屋内での共通語や語は英語を使用し、異なった文化・背景を持つ外国人研究者たちと積極的に議論することは、若き日本人研究者たちにとってかけがえのない貴重な経験となり、将来多くの研究者に生き延びる思いを生み出すと思う。細胞生理研究部門のみならず、生理学研究所および岡崎統合バイオサイエンスセンターのすべての研究室や施設（例えば動物飼育室）においても、英語を公用語として国際化を図り、外国人研究者にとってもさらに快適な研究生活を過ごすことのできるような環境に整備する努力が望まれる。

4. 研究室と設備
富永教授に実験室を案内・説明していただいた、そのスペース・設備・実験機器の充実性を認識した。各実験室には、電気生理学、細胞生物学、イメージング、分子生物学、行動学、組織学などの実験を行うための機器が効率よく配備されていた。しかしながら居室を兼ねた大実験室については、あまりに広すぎるという意見がメンバーから聞かれた。確かに冷暖房の効率などを考えると、大実験室中の居室スペースには間仕切りを入れるなどの工夫をした方がよいかかもしれないと私が感じた。

5. 若手研究者育成
細胞生理研究部門における若手研究者の成長については今を見据えるものがある。最近の 4 年間に、山中和弘教授が名古屋大学環境医学研究所の教授に、柴崎貴志助教が群馬大学医学研究科の准教授に、稲田仁特任
助教が東北大学医学系研究科の講師に栄転された。大学や研究所におけるポスト不足が問題となっている昨今において、このように優秀な人材を育成して適所に輩出された富永教授の手腕に敬意を表する。

6．外部評価の方法
生理学研究所の外部評価の方法について少し意見を述べさせていただく。今回の細胞生理研究部門の評価については、合計3名（国内2名、国外1名）の所外専門委員が異なる日程でサイトビジットを行うとのことであったが、3名の訪問日を合わせて一度に集約して行ったほうがよいのではないかと考える。そうすれば、教授および研究室メンバーにとっての負担が軽減されること、評価委員どうしが議論によってより正確かつ客観的な評価が可能となること、などのメリットが得られるであろう。デメリットとしてはスケジュール決定の困難さがあるかもしれないが、早め（例えば1年前）に依頼すれば調整可能であろう。

7．総括
以上、2010年から2013年において細胞生理研究部門は、非常に高いレベルの数々の研究論文を発表し、国内のみならず世界的にもTRPチャネルの生理的役割解明へ向けた研究を牽引してきた。また生理学研究所への貢献、研究室運営、人材育成においても申し分ない成果を挙げている。将来、細胞生理研究部門がさらに高い研究レベルに達するためには、TRPチャネル幅広い生理機能を横断的に解析する現在の研究戦略を推進するとともに、よりミクロな構造生物学的視点から温度変化によるTRPチャネル開閉様式メカニズムの蛋白化学レベルでの解明や、よりマクロな行動学的視点からTRPチャネルの個体レベルにおける機能解明などの縦断的・横断的方針を採り入れることが望まれる。細胞生理研究部門の今後のより一層の発展を期待する。

2013年12月9日
4 行動・代謝分子解析センター 行動様式解析室 (宮川 剛 教授 (客員)) の評価
4.1 職場 篤 教授 (東京大学大学院医学系研究科)

このたび、外部評価委員として、行動様式解析室の研究内容とその進捗状況を問かせたいただく機会を得た。行動様式解析室は、2007年に遺伝子変異マウスの行動様式を多角的に定量的に解析し、全国の共同利用研究者に提供するため、宮川剛客員教授を室長として立ち上げられた。行動様式解析室には、宮川客員教授の他、高雄啓三特任准教授、特任専門員1名、特別研究員1名、技術支援員4名、事務支援員1名の計9名の在籍者がある。

施設の見解については、映像によるパーソナルツールにより行った。施設では個別換気ケージを用いて最大300ケージの収容数で、SPFレベルでのマウス飼育を行っている。さらに、ウイルス感染を用いた動物実験も可能となっている。行動解析については、8棟の防音室で、独自に様々な実験ができる。遺伝子変異マウス等に対して、知覚・感覚、運動機能、情動性等から記憶学習や注意力等の高次認知機能まで、幅広い領域をカバーした行動テストパッケージを利用して解析を行う。2009～2013年度に、行動様式解析室では、55件の共同研究（内、47件は計画研究で生理研究からの予算配分があったもの）を行い、70系統、3759匹のマウスを解析してきた。共同研究では解析に必要な遺伝子変異マウスおよびコントロールマウスの準備方法・実験計画の立案、行動テストパッケージを用いた実験、実験データの解析、論文の投稿に至るまでの全てのステップに関して実践および助言を行ってきた。遺伝子変異動物を持ちながら行動実験を独自に行えない、もしくは行動実験を行ったが有意な表現型を得られない研究者に対して非常に大きな貢献をしてきた。藤田保健衛生大学等の他施設を含めてこれまで宮川客員教授のグループは150系統のマウスの行動を網羅的に解析し、それらのデータについては、論文出版後でデータベースに公開している（36系統3552匹分の生データが公開済み）。各行動テストのプロトコルをホームページからダウンロード可能にするなど、実験の再現性等を担保する試みが積極的になされており、データ改ざん等による不正防止のためにも理想的な研究結果の公表方法を取っている。以下では、当日の発表とそれに対する評価委員の印象を記す。

1. 大規模な行動解析から分かったこと（行動様式解析室・高雄啓三特任准教授）

行動様式解析室ではデータの多くは遺伝的背景がC57BL/6J系である遺伝子変異マウスから取得してきた。このためコントロールとして用いられた野生型C57BL/6J系マウスのデータが大量に蓄積されている。C57BL/6はいくつかの亜系統があり、代表的な亜系統としては、米国のジャクソン研究所由来のC57BL/6Jや米国NIH由来のC57BL/6J等があり、さらに日本のブリーダーに導入された繁殖が繰り返された結果、数多くの亜系統が存在する。行動様式解析室ではこれまで1万匹以上のマウスを解析した結果、これらの亜系統間に行動特性の差があることを明らかとしました。例えば、オープンフィールドテストではC57BL/6Jの活動量が高い。これらの実験データは多数の動物を解析した結果、初めて明らかになったもので、遺伝子操作動物の解析の際にこれらの亜系統にも注目する必要があることを示す重要な知見である。また、混合要因（実験の順番、時刻、日齢）についても多数データの解析からその行動解析に対する影響が明らかとなった。例えば、行動実験の際には、実験群としてコントロール群では順番をカウンターバランスし、あらかじめ決定しておく必要があることを示す重要性や、時刻の個々の行動実験に対する影響の違い、等が示された。今後の展望としては、引き続き、共同利用のニーズに応えていくと共に研究室独自の個別研究も発展させていく、自由行動下での光刺激等の新たな技術を開発していくことであった。

2. 共同研究者の立場から（名古屋大学・木下専修教授）

細胞骨格を構成するセプシンの欠損マウスの行動解析について、木下教授から発表があった。当該マウスの研究開始当初、名古屋大学理学研究科では、満足な動物実験施設もしくは、行動解析実験を同大学でセットアップし、行うことは不可能であった。Sept4, Sept3ノックアウトの解析では、当初予測できないようなセプシンの機能が行動解析実験の結果を切り口に明らかにすることにでき、Neuron誌等への発表がなされたとのことであった。木下教授からは、行動様式解析室では共同研究を行う際に、人的、物的、時間的負担が非
常に大きく、担当者の献身的な努力で維持されている、という印象を持つことが報告された。また、生理学に
派生した学生の教育にも大きく貢献してくる、どのこ
とであった。

3. 精神疾患の中間表現型候補としての成熟脳（行動
様式解析室・宮川剛客員教授）

個別研究の成果として、宮川客員教授から、マウス
の精神疾患を見つけ、その脳内の中間表現型を同定
し、ヒトでその中間表現型に対応する疾患を見つける
試みについての発表があった。このアプローチでは従
来行われてきた、ヒトの精神疾患と類似する表現型を
示すマウスを探すという方法ではなく、まず精神疾患
様の表現型を示すマウスを探すという方法に独自性が
ある。αCaMKII ヘテロ変異マウスは生後 1 年以内に
兄弟をほとんど殺してしまい、攻撃性の亢進、新規環
境下での適応、果作りの異常等マウスの精神疾患と
思わわれる表現型を示す。このマウスでは、海馬歯状回
で成熟神経細胞のマーカーである calbindin が顕著に
減少し、一方で、未成熟細胞のマーカーが増加してい
た。正常動物からの遺伝子発現の変化のパターンは、
ヒトの統合失調症で見られる正常個体からの変化と類
似していた。海馬歯状回の神経細胞が電気生理学的に
も未熟で、αCaMKII ヘテロ変異マウスは成熟脳の中
に未成熟な海馬歯状回を持つことが明らかとなった。
一方、このマウスと同様の表現型を持つ変異マウス
をこれまで解析した 150 系統のマウスから網羅的に
探すと、Schnurri-2 ノックアウトマウスの行動異常が
αCaMKII ヘテロ変異マウスの行動異常と類似し、その
後の解析で遺伝子発現の変化のパターンも類似してい
た。さらに電気生理学的解析により、Schnurri-2 ノッ
クアウトマウスの海馬歯状回が成熟であることが確
認され、これらの変異マウスの行動異常は、海馬歯状
回が未成熟であることにより引き起こされていると示
唆された。また、Schnurri-2 ノックアウトマウスでの
遺伝子発現パターンは炎症細胞の遺伝子発現パターン
と類似していること、抗炎症薬の投与で、成熟細胞
のマーカーの発現が抑制され、一部の異常が改善さ
れたことから、Schnurri-2 ノックアウトマウスでは、脳
に慢性的な炎症が起きているため、海馬歯状回が成熟
になり、ヒト統合失調症のような行動を示すことに
なる、という仮説を提唱した。

この仮説は、評価者にもとても魅力的に感じられ、さ
らに多くの変異動物での再現実験が期待されるところ
である。

まとめ

行動様式解析室は、これまで 55 件の共同研究を行
い、日本の神経科学に多大な貢献をしてきたと評価す
る。生理研との計画研究では、対象となる変異マウス
の飼育等に補助が研究所より得られ、この貢献を大き
く後押ししている。標準化された設備・プロトコルで、訓練された人員が行動解析を行うことで、多くの
変異動物の異常を正確に比較することが可能になり、
今後もこの大きいデータから行動の基盤およびその異
常の分子基盤が明らかになることが期待される。一方
で、この施設を運営する際の人的資源の雇用には、行
動様式解析室の教員の得た外部資金が充てられること
が多く、その点でのサポートも生理研が考慮していた
だけはより安定した運営が行えると感じた。行動様
式解析室のミッションとしては新たな行動解析を加え
る試みよりも、これまで確立した同一のパッテリーで
より多くの変異動物の解析を行い、その解析結果に基
づいた新しい知見を得ることに力を入れるべき、であ
ると感じた。
4.2 小川園子 教授 (筑波大学人間系心理学科)

行動・代謝分子解析センター行動様式解析室の外部評価にあたり、1）共同利用施設の利用・運営状況および研究成果の概要、2）共同施設を利用して行われた研究の成果、3）宮川剛客員教授が進めておられる個別研究の進捗状況・成果、の3点についての報告があった。

報告会（2014年2月24日）での発表、質疑、および配布資料に基づく評価は以下の通りである。

行動解析室は、2013年度現在、客員教授1名、特任准教授1名の研究職員と特任専門員1名、特別訪問研究員1名に加え、計5名の技術・事務支援員で構成、運営されている。一般、計画の2種の共同研究を受け入れており、2009年度からの5年間に毎年、10件（8〜14件/年）程度の共同研究を実施したとの報告があった。

分子生物学的技術の洗練により、特定遺伝子の操作自体は日常的に行えるようになったものの、個々レベルでの機能解析には様々な困難が伴う。なかでも、脳の発現する遺伝子の機能を、その最終アウトプットである行動の解析を通じて同定することの重要性は明白であるが、行動解析を専門としていない研究者が個々に行うことは、設備的にも経済的にも、ほぼ不可能と言ってよい。この問題に長年取組まれてきている宮川教授が、その経験を活かして「行動様式解析室」を生理学研究所の共同利用施設として運営され、着実に共同研究を推進されていること、高く評価される。解析室には、遺伝子操作による行動変容・異常を検出すために必要である標準的な行動解析装置が常時稼働可能状態に置かれており、ことこの、70系統、3750匹のマウスを用いた解析が行われているとのことである。

その一例として、利用者である名古屋大学、木下専教授からの成果報告があり、実験計画立案、マウスの搬入・飼育、行動実験、データ解析、結果の解釈・考察まで、研究職員、支援職員の綿密なサポートを受けて、レベルの高い行動解析が行われたことが示された。また、同一の実験室環境において、同一の測定装置を使用して行動テストバッテリーを行い、その解析データを集約することにより、異なる遺伝子変異マウス間での比較・検討が容易となり、その結果、行動データの基づき、より説得力のある精神疾患モデルマウスの発見に繋がっていることは極めて重要であると言える。

実際、宮川教授の研究室で進められている個別研究では、alpha-CaMKIIヘテロマウスとschnurri-2ノックアウトマウスの行動解析をもとに、これらのマウスが統合失調症モデルマウスとして有効であることが示され、さらに統合失調症の分子、薬理、組織基盤に踏み込んだ研究成果が得られてつよいことは注目に値するものである。宮川教授は、すでにalpha-CaMKII遺伝子欠損マウスが未成熟な海馬曲面回を持ち、長期増強（LTP）にも異常を示すことを報告されている。今回、成果報告会では、行動テストバッテリーを用いた網羅的行動解析データから、schnurri-2ノックアウトマウスが、working memory、pre-pulse inhibitionの低下、ストレス反応や抑うつ指標の亢進など、統合失調症の症状に酷似した表現型を示すことに着目し、現在進めておられる解析の結果についての発表があった。

Gene-chip解析からは、alpha-CaMKIIとschnurri-2の遺伝子欠損により変異している遺伝子や、その変異率に共通性が高いことを基盤に、海馬や脳機能の未成熟マーカーと成熟マーカーの発現を発達の追跡し、統合失調症の理解に迫ろうとする挑戦的研究について、現時点では学会発表にとどまっているものの、今後の展開が大きいに期待されるところである。

全体として、共同研究施設としての「行動様式解析室」の存在意義には疑問の余地はなく、共同研究の受入れも順調に進んでいることは評価される。しかしながら、我が国の神経科学研究における行動テストバッテリーを用いた網羅的行動解析の今後の展開を考えた場合に、現状維持ではなく十分であると改めて得られた。第1に、実際の行動実験には、かなりの熟練と経験が必要であり、マウスを搬入して、実験者（場合によっては、実験の浅い大学院学生である者すら）が来しさえすれば、即、実験を開始できるというわけではない。

共同利用施設という性格と、最適条件で信頼性の高い行動データを得るという点での折り合いをどのようにつけていくか、大きな課題であるように思われる。報告会の質疑では、研究職員の高橋准教授や、技術支援員への負担がかなり大きいことが問われた。研究職員の増員や、運営・支援体制の見直しを含め、生理学研究所として前向きな検討を期待したい。

第2に、現在の行動テストバッテリーの妥当性について、幅広い領域の行動科学研究者の協力を得て、再検討していただくことを要望する。前述したように、同一の測定装置を使用して行動テストバッテリーを行い、その解析データを集約することは意義のあることではある。しかしながら、現状の行動テストだけでは見落
とされたり、誤って結論づけられる行動特性が全くないとは言い切れない。共同利用施設である以上、利用研究者により広い視野に立脚した行動解析を常に提供できる体制整えていただきたい。
第 III 部

本年度の研究活動 — 総括 —
1 機能分子の働きとその動作制御メカニズム

1.1 研究の現状

ヒトの体の生理機能、イオンチャネル、トランスポート、レセプター、センサー、酵素などの機能分子と、それらが形成する分子複合体が基盤となり営まれている。したがって、これら機能分子の機能とその制御メカニズムの解明は人体の生理機能、および様々な病態機構を理解する上で必要不可欠である。生理学研究では、分子生理研究系（神経機能要素研究部門、分子神経生理研究部門）、細胞器研究所（生体膜研究所、細胞生理研究部門）などにおいて本分野の研究が発展に進められている。今年度の特筆すべき研究成果および取り組みとして、以下が挙げられる。

(1) G タンパク質共役型受容体と G タンパク物質の相互作用様式は多様である

神経機能要素研究部門では、イオンチャネル、受容体、G タンパク質等の細胞機能の基盤となる機能分子の構造と機能に関する研究を進めている。本稿では「G タンパク質共役型受容体と G タンパク質の相互作用様式の多様性に関する研究」に焦点を当て紹介する。G タンパク質共役型受容体はリガンド分子と結合するとそのシグナルが 3 量体 G タンパク質を介して細胞内に伝達されることはよく知られているが、逆に G タンパク質が G タンパク質共役型受容体に結合した際に受容体にどのような影響を与えるかに関しては不明であった。当部門では、最先端の光技術（FRET プローブ）を開発し、G タンパク質共役型受容体の一つであるアセチルコリン受容体 M1 の活性化構造が Gq と結合することにより安定化されることを FRET 効率を指標に明らかにしてきた。今年度はさらに、本手法を別の G タンパク質共役型受容体であるアセチルコリン受容体 M3 と代謝型プリン受容体 P2Y1 に応用してその多様性、普遍性に関して検討を行った。M3 受容体 M1 受容体の場合と同様に、Gq 結合により FRET 効率の減少は有意に増大した。一方、P2Y1 受容体は FRET 減少には影響を与えない。以上の結果から、G タンパク質によって受容体活性化構造の安定化作用は受容体の種類により異なることが示され、G タンパク質と受容体の相互作用の多様性が証明された (Physiol Rep)。

(2) シスタチン F を中核とする触覚再生メカニズムの解明

分子神経生理部門では、脱髄性疾患の脱髄果において触覚再生が起きるか起きないかがシステムとして決定されている点に着目し、その決定を司る細胞、およびその時に細胞内で起きる分子メカニズムに関して研究を展開している。昨年度までに触覚再生が起きている時にのみ発現している機能分子、シスタチン F(CysF)を発見し、その遺伝子発現を自由に操ることのできるマウス作製に関して報告してきた。今年度はこのマウスを使って実際にこの分子がシステムとして触覚再生を行うかどうかの決定に関わるのかについて検討した。CysF は中枢神経系ではミクログリアにのみ発現するシテインプロテアーゼ阻害因子であり、主なターゲットとしてカテプシン C(CatC) を抑制する。CatC にもクロロリアに発現し、炎症性サイトカイン産生を促す活性を有する。まず触覚再生を伴う脱髄が自然に発症し、最終的には触覚再生が停止し慢性脱髄果が出現するマウス (PLP 遺伝発現マウス) を用いて CatC 発現を抑制すると触覚再生が続いた。また CatC の発現をミクログリアで過剰発現させると、CysF 発現を抑制すると触覚再生が早期に停止した。これらのことからミクログリアの遺伝子発現変化がシステムとして触覚再生の可否を決定することが明らかとなり、その中でも CysF と CatC 発現のバランスがそのキー分子であることが分かった。

(3) ポストシナプス膜ドメインの形成、再構築機構の解明

生体膜研究部門では、神経細胞における興奮性シナプスの代表的な足場タンパク質である PSD-95 を継続して「シナプス伝達制御機構」、および「てんかん発症の病態機構」の解明を目指して研究を行っている。今年度は PSD-95 のポストシナプス膜 (PSD) への局在化に必須なパルミトイル化脂質修飾を生神経細胞レベルで可視化するためのプローブの開発に成功した。この可視化プローブと STED 超解像顕微鏡により、これまで一つの薬と考えられてきたポストシナプス膜ドメインがナノメートルサイズの数個のナノドメインの集合体であることを発見した。また、この PSD-95 ナノ
ドメインはポストシナプス膜に局在するパルミトイル化酵素 DHHC2 と脱パルミトイル化酵素からなるパルミトイル化サイクルにより形成、維持、再構築されていることを見出した（J Cell Biol 誌）。現在は長らく不明である脱パルミトイル化酵素の同定に向け研究を進めている。また、体細膜研究部門では PSD-95 複合体の構成タンパク質として報告してきた“てんかん関連タンパク質 LGII”が記憶障害やいびき発作を主徴とする自己免疫性脳炎系脳炎の主要な標的抗原であることを見出した。そして、抗 LGII 自己抗体が LGII とその受容体 ADAM22 の結合を阻害して、正常なシナプス伝達を乱すことがその病態機構であることを見出した（J Neurosci 誌）。

(4) TRP チャネルによる温度受容・痛み刺激受容・機械刺激受容 - 体温調節機能の解明

細胞生理研究部門では、温度受容・痛み刺激受容・機械刺激受容 - 体温調節の分子機構に関して TRP チャネルファミリーに焦点を当て研究を展開している。今年度は TRPM8 の冷刺激による活性化温度閾値が細胞外周囲温度に依存して変化することを発見した。すなわち、細胞周囲温度が 30 度のときには TRPM8 の冷刺激による活性化温度閾値が約 28 度で、40 度のときにその活性化温度閾値が約 35 度まで上昇することを見出した。また、この閾値変化がPIP2 の作用により制御されていることを見出した（J Neurosci 誌）。また、細胞生理研究部門では痛み刺激受容を担う TRPA1α のスプライスバリエント (TRPA1b) を新たに発見し、TRPA1b が TRPA1α に結合することにより TRPA1 の機能を増強させることを、この TRPA1b の増強作用は炎症性疼痛および神経障害性疼痛発症をもたらすことから、鎮痛薬開発にも大きい貢献できると考えられた（Nature Commun 誌）。当該部門では温度受容に関わる TRPM5 の機能抑制因子として亜鉛イオンを見出し、その作用点を突き止めた（J Biol Chem 誌）。さらに、哺乳動物の TRP チャネルの解析のみならず、トカゲやニワトリといった種が離れた生物の TRP チャネルの解析にも精力的に取り組み、TRP チャネルによる外界環境の感受機構の原理に迫ろうとしており、それぞれ Pfliigers Archiv Europen J Physiol 誌と Molec Biol Evolution 誌にその研究成果を発表した。

1.2 将来に向けての展望

今後も個々の「機能分子」の働きとその制御機構を世界最高水準の研究技術を駆使して解明し、人体の生理機能、病態機構の解明に貢献していく。一方、ヒトをはじめ多くの生物の全ゲノム解析が終了し、われわれは全遺伝子産物の 1 次構造と、かなりのタンパク質の 3 次元構造を知ることができるようになった。このような状況を踏まえると、脳研究における次のステップ (次世代分子脳科学) は、これら遺伝子産物がシステムの中でどのような機能を発揮して、脳機能発現に関与しているか明らかにすることであると言える。今後は個々の機能分子の働きを解析するだけではなく、一つの機能分子が神経細胞や神経回路網といったシステムの中で時空間的にどのようにその機能が制御され、どのように振る舞っているのかを研究することが重要と考えられる。そのための研究方法論として以下のような先進的研究技術の導入、開発、活用が急務と考えられる。

(1) 分子活性を自由に光操作可能な分子プローブ群の開発

近年、チャネルロドプシンやハロロドプシンの普及により、光操作で特定の神経細胞や神経回路を興奮させたり、抑制したりすることが可能となってきている。このように光で自由に目的のイオンチャネルやレセプター、酵素などの機能分子の活性を操作することができれば、神経細胞や神経回路網の中での機能分子の役割を解明するにあたり、極めて有用と考えられる。しかし、光操作可能な機能分子としては Lovastatin (LOV) を活用した低分子 G 蛋白質 Rh1 や Rac といった少数の分子に限られている。今後、これら光操作可能な分子プローブを飛躍的に充実させ、細胞内シグナル伝達を自由に操作することで、複雑な細胞機能や神経回路機能における個々の分子の役割をより高い時空間制御レベルで解明していくことが期待される。

(2) 超解像顕微鏡による生細胞イメージング技術の活用

近年、電子顕微鏡 (分解能約 0.2 nm) と光学顕微鏡 (分解能約 200 nm) の中間の分解能を有する超解像顕微鏡 (分解能約 20 nm) の出現により、これまで見逃されていた微細構造や、分子の局在が生細胞レベルで明らかになってきている。特に神経細胞のシナプスのような微細で、複雑なダイナミクスに構造変化をきたす細胞構造の解析においてはその威力は絶大であり、
次々と新たな微細構造が報告されてきている。今後は現在用いられているPALM, STORM, STED, SIMに留まらず、更なる顕微鏡システムの開発および、活用が期待される。

(3) 膜機能タンパク質の構造と機能の動的側面の解析
イオンチャネル・受容体等の研究は、cDNAクローニングの時代、構造機能連関研究の時代を経て、困難とされた結晶構造解析も行われるようになり、進展を遂げている。この分野の目的は作動原理の理解もあり、それに向けて、構造解析の与える薬剤情報の解明が極めて重要である。しかし、絶対体状の静的なものであるという限界ゆえ十分とは言えず、昨今の流れは「スナップショットから動画へ」にあるといえよう。生理学研究所においても、電気生理学的手法に加え、種々の分光学的手法、さらに、近年開発が進められている高速原子間干渉顕微鏡観察等により、機能する姿の解析を、特に分子レベルで進めることが目指す。さらに、これら研究を、より機能している姿に近い、分子複合体を対象とした研究を進めて行くことを目指す。

(4) ゲノム編集技術を駆使したノックイン細胞の充実化
最近のCRISPR/CASやTALENといったゲノム編集技術の活用により、種を問わず簡便にノックアウト個体の作成が可能となってきている。さらに、タグや遺伝子変異を導入したノックイン個体やノックイン細胞の作成も報告されている。本技術により、これまで抗体作製が困難であった蛋白質の細胞内局在や発現解析が可能となりつつある。本手法をゲノムワイドに展開することにより、全タンパク質の発現レベルや細胞内局在が一気に解明されることが期待できる。本知見はモデル・シミュレーション研究といった異なる階層の研究に対してもその基盤となる情報を提供でき、その波及効果は極めて大きいと予測できる。

これらの個々の機能分子の振る舞いを明らかにする研究技術の開発と平行して、機能分子と神経回路網、脳機能の各階層を埋めるような研究方法論の開発が今後より一層期待される。

2 生体恒常性維持機構と脳神経系情報処理機構の解明

2.1 研究の現状

生体はその恒常性を維持しながらその機能を柔軟に調整し、外的変化や環境に適応している。生理学研究所ではこのメカニズムの解明を目指し、脳においてはニューロン・グリア細胞、神経回路を対象に、未梢で観察した生体内外の情報に基づいて適切な機能を発現させる仕組みについての研究を行い、電気生理学・光学顕微鏡・電子顕微鏡を用いた形態学、分子生物学、光学と顕微鏡によるin vivoイメージング手法、行動解析等、多岐にわたり技術を使って実施している。また、脳機能に加えて、心血管機能・細胞の恒常性とその破綻に関する研究を展開している。本年度の特筆すべき研究成果を以下に記す。

(1) Ca²⁺チャネルサブタイプに依存したシナプス小胞放出の制御機構
神経系の機能の素子であるシナプス伝達の特性について、小脳の静脈細胞からパケット細胞へと興奮性シナプスを対象に、シナプス小胞の単一・多重性放出メカニズムの解析を行い、顆粒細胞軸索末梢のCa²⁺チャネルサブタイプに依存してシナプス小胞放出過程が異なることを観察した。上記の結果は脳情報処理過程で多様性を生み出すメカニズムの理解を深める重要な発見である。

(2) オリゴデンドロサイトの発生・分化・形態形成
発生期の脊髄において、成長因子やシグナル化等の分泌因子がオリゴデンドロサイトの分化を制御することが知られている。ヘパリン酸、ケラチン酸、HNK-1に着目し、これらの酸性糖鎖の合成酵素を欠損したマウスを解析した結果、酸性糖鎖を欠失すると、オリゴデンドロサイトによるシングラミングや脊髄ドメイン形成の変化がみられ、オリゴデンドロサイトの分化が異常になることを観察した。

(3) 電気結合の有無に依存した大脳皮質抑制細胞サブネットワーク
電気結合で繋がっている皮質抑制性細胞は多様な細体細胞サブタイプからの入力を共有しており、この共用入力によって発火が起きると、電気結合している他の細胞には逆に抑制が起きることを明らかにした。抑制細胞の電気結合ネットワークは広範囲に渡って作られているが、局所的には、この機構によってニューロ
（4）大脳皮質一次視覚野から高次視覚野への神経結合の経験依存的発達
生後の視覚体験が大脳皮質一次視覚野 (V1) から二次視覚野 (V2) への神経投射の成熟に影響するかについての解析を行い、発達期に特異的視覚を遮断すると、V1 から V2 への神経結合が減弱すること、V1 細胞よりも V2 細胞の視覚反応性が顕著に低下することを見出した。従って、視覚野間の機能的神経結連形成には生後の正常な体験が重要であることが示唆された。

（5）未梢神経干渉に伴う大脳皮質回路変化の観察
慢性疼痛モデルマウスの大脳皮質体性感覚野の細胞活動を、多光子顕微鏡を用いた in vivo イメージング法により記録し、未梢障害に伴う大脳皮質の変化を解析した。未梢神経障害により体性感覚野のアストロサイトの活動性が上昇し、トロンボポリソンの放出が促進された。この促進によりシナプスの新生の増強を介して神経回路の再編が生じ、抹消刺激に対して過剰に応答する回路が形成されることを明らかにした。以上の発見は慢性疼痛メカニズムの解明に繋がる画期的な成果である。

（6）インスリン欠乏型糖尿病の代謝異常における骨格筋 AMPK の調節作用
AMP キナーゼはエネルギー飢餓により活性化し、糖・脂質代謝を調節することが知られている。ソトストラツチ (STZ) を投与したインスリン欠乏型糖尿病 (STZ 糖尿病) マウスにおいて解析した結果、骨格筋 AMPK が活性化されていた。そこで活性抑制型 AMPK を骨格筋選択的に発現させたところ、AMPK の下流シグナルが骨格筋において抑制されただけでなく、STZ 糖尿病の代謝異常が改善し、死亡率が著しく低下することを見出した。このことは、STZ 糖尿病の代謝異常の原因が単にインスリン欠乏によるのではなく、それによって引き起こされる臓器間相互調節作用の破綻によることを示唆する。

（7）心血管リモデリングにおける機械感受性 TRPC チャネルの役割解析
TRPC3 チャネル欠損および TRPC6 欠損マウスに大動脈狭帯による高血圧負荷を施したところ、心臓の肥大は抑制されないものの、線維化と拡張機能障害が強く抑制されることを見出した。下肢虚血後の末梢血流も TRPC6 欠損マウスで有意に回復することを明らかにし、TRPC6 チャネルを中心とした病態形成の機構を明らかにした。

2.2 今後の展望
上記のように、恒常性維持機構、環境適応機構、生体情報処理機構を解明するために、分子・細胞・神経回路、システムレベルを横断した解析を行い、各レベルで得られた結果を統合して理解するような研究が進められている。脳の特徴として、脳が数の細胞が複雑な回路を形成して機能を発現していること、生体内外の環境や機械・学習に依存してその神経回路や機能が可塑的に変化することが挙げられる。つまり非常な複雑な回路が環境依存的にダイナミックに変化するため、解析が極めて難しい臓器であると言える。今後は、分子・細胞が集積し、システムとして働く仕組みの理解を目指す研究が益々重要になると考えられる。このためには、特定の機能に関与する細胞・神経回路を同定しなくとも、遺伝子変異等の技術を用いて特定の機能に関与する細胞間の活動を抑制すると機能が消失するかといった因果関係をも踏まえた解析が必要である。3次元構造法を用いた高次構造解析、多光子顕微鏡を in vivo 脳に適用したイメージングや光による神経活動操作、ウイルスベクター等を用いた遺伝子操作技術等、最新の技術や複数の技術を組み合わせた解析を、機能的な細胞・回路の研究に利用していくことで、ヒトの体と神経の解明に貢献できることが期待される。

3 認知行動機能の解明

3.1 総括
生理学研究所においては、脳機能のシステム的理解を目指して、主に感覚認知情報研究部門、認知行動発達機構研究部門、生体システム研究部門の 3 部門が取り組んでいる。それぞれの研究室で独自の研究を行っているが、以下のように研究課題や手法に共通点が多い。①感覚・認知・行動・運動といった高次脳機能やそれに関係する意志・注意・意識といった問題、さらに
はこれらの機能を担う脳領域が障害された場合の病態や回復過程についての理解を得るため研究を行なっている。②そのために、ヒトに近縁で、脳活動を直接記録する上で代替のない優れたモデル動物であるサルを用いた実験を中心に行っている。③時間・空間分解能が優れた電気生理学的手法、とくに覚醒動物からのユニット記録という手法を基本としている。④それに加え、皮質波（EEG）電極による広域領域からの多重チャンネル記録、2光子レーザー顕微鏡観察、神経解剖学、ウィルスペクターによる遺伝子導入、fMRI、PET、ヒトを用いた記録など様々な方法を組み合わせて脳機能を総合的に研究している。

3.2 視覚および視覚認知の神経機構

感覚認知情報部は、視覚および視覚認知の神経機構を研究対象として、主にサルの視覚野から単一ニューロン活動記録法と機能的磁気共鳴画像法（fMRI）を用いて、視覚情報の脳内表現、認知による行動制御のメカニズムを調べている。具体的には、①物体の表面の属性（色や明るさおおよび質感）の脳内表現、②それらの情報がどのように知覚や行動に関係しているのかを取り上げて研究しており、またこれらの問題についてヒトで心理物理学的手法による分析とfMRIによる脳機能イメージングの研究も行っている。平成25年度は物体表面質感の中で特に重要な光沢について、数理科学を専門とする外部共同研究者と共にデータの定量的な解析を行い、下側頭皮質に存在する光沢を見分ける細胞がどのような情報を表現しているかについての手がかりを得た。またサルの錐体色素遺伝子の一つを欠損した遺伝的2色型と考えられるサルの色識別行動を調べ、その特性を明らかにした。

3.3 運動制御の神経回路および損傷後の機能代償機構

認知行動発達機構研究部門は、脳による運動制御、とくに眼球のサッカーや運動と手指の精密把持運動を対象として、神経回路の構造と機能、および神経回路が損傷された後の機能代償機構について研究を行っている。具体的には、①サッカー運動と空間的注意の制御の中枢である中脳上丘の局所神経回路、および上丘を中心とした大規模神経回路の機能解析、②大脳皮質運動野（V1）を損傷したサル（盲視モデル）の視覚誘導性の行動及び認知機能、③皮質から脊髄にいたる経路の詳細な機能、およびそれらが損傷した場合の手指の精密把持運動の機能回復メカニズム、④さらにプレイ・マシーン・インタフェース、特に人工神経接続と呼ばれる枠組や刺激神経系を外部機器を通して相互に結合して機能を補綴するシステムに関する基礎と応用研究などである。

感覚認知情報部門は、科研費新学術領域「感覚認知の脳およびメカニズムと高度感覚情報処理結果の融合的研究」を代表として推進している。本領域は、日常生活で極めて重要かつこれまで研究が進めてこなかった「感覚認知」の機能を取り上げ、その性質やメカニズムの理解を分野融合的に進めることを目的として、脳科学研究だけではなく、物理物理学や工学といった異分野間の研究者ネットワークで共同作業を行っている。

認知行動発達機構研究部門は、脳科学研究戦略推進プログラムの平成25年度に発足した更新・規範課題（プレイ・マシーン・インタフェースの開発）に参加することとなった。

3.4 随意運動の脳内メカニズム

生体システム研究部門は、随意運動の脳内メカニズムを明らかにするために、正常な動物における大脳基底核を中心とした運動関連脳領域の線維連絡と働き、大脳基底核疾患の病態生理、さらにそのような障害に対する治療メカニズムなどについて研究を行っている。平成25年における主な成果は、以下のとおりである。①ヒト大脳基底核疾患の治療に用いられる脳深部刺激療法（DBS）の作用機序について、サル淡黄球の神経活動を記録することにより調べたところ、神経情報の伝達を遮断するというメカニズムが明らかになった。②遺伝子変異マウスを用い、大脳基底核の神経活動のうち線条体-淡黄球外縁投射を選択に除去したところ、黒質線網部で観察される大脳皮質由来の退捲興奮が消失するとともに、運動量が増加した。このことから、線条体-淡黄球外縁投射が大脳基底核の出力核である黒質線網部に遅い興奮をもたらし、不要な運動を抑制していると考えられた。

3.5 展望

いずれの研究部門においても固有の問題について、実際に研究が進展しており知覚や行動、運動制御のシステムレベルでの理解につながる成果が得られつつある。これら3研究部門は、電気生理学的手法を基本として
いる。これは古典的な方法であるが、時間・空間分解能とも優れ、信頼性も高い方法であるので、これを基持、発展させることが重要である。一方、習得に時間がかかる技術であるので、後継者を育つことも大きな課題である。
さらに、以下の新たな手法も積極的に用いている。

1. プレーン・マシーン・インターフェイス (BMI) の開発にかかわる基礎研究
神経活動から情報を抽出して外部機器を操作したり、逆に情報を注入して脳活動を操作するプレーン・マシーン・インターフェイス (BMI) の開発にかかわる基礎研究を行っている。情報抽出は神経情報の脳内表現そのものがあり、多点同時記録などの記録技術も有用である。また、情報注入により、因果関係の実証にも踏み込めることから、脳研究の手段としても有用である。

2. ウィルスベクターを用いた遺伝子発現
ウィルスベクターを用いて霊長類の脳で遺伝子発現を操作することにより、特定の神経回路の活性化を変化あるいは除去したり、受容体などの物質発現を操作する。特に、新規に開発された高効率に逆行性輸送されるウィルスベクターを用活すことで、特定の経路の機能を選択的に操作することが可能となったことによっ、近年の大きな技術的進歩である。今後の遺伝学と呼ばれる、駆動性となる神経学の発現させることにより、高い時間・空間解像度で脳の神経細胞群の活動を操作する研究パラダイムの進展も大いに期待されている。

3. fMRI のサルへの適用
fMRI のサルへの適用は、広い脳領域で特定の刺激や行動に関わる活動をマッピングする上で極めて有効な手段であり、高次脳機能研究に広く応用可能である。生理学研究所は動物実験のできる MRI 装置があるという国内では数少ない環境であり、将来的に共同利用の一つの有力なリソースとして期待される。

4. ドチャンネル神経活動計測装置を用いた大規模神経回路の活動解析
fMRI による活動計測には広い脳領域をカバーできるという利点がある一方で、時間解像度に限界がある。このような問題点を補う手法として、ドチャンネル神経活動計測装置を用いたマルチユニット活動計測や、広い脳領域に皮質脳波 (EEG) 電極を配置して、大規模な神経回路の活動を高い時間解像度で記録・解析する手法が発展しつつある。今後、大脳皮質や皮質下の構造に多数配置した電極によって記録される電図電位を長期にわたり安定して記録し、それらの異なる周波数帯域の成分の間の関係性をグレninger 因果などを用いて解析することで、学習や脳・脊髄損傷後の機能回復機構を大規模回路動態の変化として捉えていくような研究が発展することが期待される。

5. モデル動物の利用
げっ歯類には、多くの遺伝子変異動物や疾患モデル動物が存在するが、in vivo での解析は殆ど行われてこなかった。霊長類に加え、必要に応じマウス、ラットを用いる覚醒下状態あるいは行動中の神経活動記録も行っている。

4 より高度な認知行動機能の解明

4.1 背景
人間を対象とした脳研究は、近年の科学技術の進歩に伴う検査法の急速な進歩により、様々な高次脳機能、特に認知機能が解明されるようになってきた。電気生理学的には脳波と脳磁図 (MEG)、脳血流解析ではポジトロン断層撮影 (PET)、機能的磁気共鳴画像 (fMRI) と赤外線分光法 (NIRS) が利用可能であり、これらの手法は、非侵襲的脳機能イメージングと総称されている。また、頭皮上から磁気を与えることにより脳内に電気刺激を与え、脳内の様々な部位の機能を興奮あるいは抑制することにより、その機能をより詳細に知る検査法 (経頭蓋的磁気刺激法、TMS) の研究も進んでいる。生理学研究所は、このような手法を統合的に用いることにより、高次脳機能を動的かつ大局的に理解することを目指し、非侵襲的脳機能イメージング研究に関する日本のバイオニキとして、世界的な業績をあげてきた。2013(平成 25) 年度は、脳磁図 (MEG) の大幅な性能向上のため、ソフトウェア、ハードウェア両面において改良を行い、世界最高水準の性能を得ることができる。空間解像度は数倍向上した。時間解像度の向上は今回は改良の最大の目的であり、ミリ秒以下のレベルまで向上した。これにより、提示が短時間で視覚で理解できないような刺激（サブリミナル刺激）に対する脳反応の記録解析が可能となった。このような
「無意識状態」における脳機能の解析は、fMRIのような血流測定技術では不可能であり、脳磁図の有する高い時間分解能を最大限に生かしたものである。

4.2 社会能力の神経基盤と発達

非侵襲的脳機能イメージングの研究の重要な対象として、社会能力がある。これは他者と円滑に付き合う能力をさし、社会生活を送るために必須で、言語性・非言語性のコミュニケーション能力を基盤とした高次脳機能と捉える。その神経基盤および発達においては、社会的獲得過程については不明の点が多い。他方、科学技術の加速的な発展による情報化、少子化、高齢化などによる、人間の発達をより生活環境や社会環境の急激な変化に対応するために、社会能力の重要性は増してきている。この「社会脳 (social brain)」研究」と称されている一連の研究は、これまで解明がほとんど行われてこなかった、動機付けや意味付けといった人間の最も基本的な認知行動機構の解明を目指しており、社会的にも大きな注目を集めている分野である。

一方で、発達途上の脳活動を直接観察することも極めて重要であり、様々な技術的困難を解決しつつ研究が進められている。例えば、顔は社会的信号として極めて重要であり、その認知機能と神経基盤は成人で詳細に調べられてきたが、その発達過程は明らかではない。近年乳児の脳活動計測法としてNIRSを用い、乳児の脳内での顔認知機能の発達が解析の対象となりつつある。このような研究背景のもと、文部科学省科学研究補助金「新学術領域研究「学際的研究による顔認知のメカニズムの解明」（2008年～2012年度、領域代表者 生理学研究所 査木隆介 教授）により、「顔認知機能の解明」をキーワードとして、心理学、脳科学、医学、工学、情報学などの幅広い分野の学際的な研究者を結集して研究が展開された。最終的には、可能な限りその成果を社会に還元することを目的として大规模な研究班を組織し、全国規模で新たな研究潮流を形成しつつある。

一方、文部科学省「脳科学研究戦略推進プログラム」課題D「社会的行動を支える脳基盤の計測・支援技術の開発」（2009～2013年度、分担機関 生理学研究所）により、実際のヒト社会行動における社会能力計測技術として、集団の脳機能・視線・行動計測法の開発を進めていっている。例えば、2個体間の相互作用とその神経基盤を研究する目的で、2台の高磁場(3 Tesla)MRI装置を用いた脳機能同時計測(dual functional MRI)手法を開発した。なおdual functional MRIは2009年度末に生理研研究施設に導入を完了し、2010年度より運用開始した。種々の調整を経て、2011年度より共同利用に供されている。

4.3 新たな研究動向

(1) 無意識下の脳活動研究

現在のヒト脳機能研究の大きなトピックスの1つは「無意識状態、無意識下」の刺激に対する脳活動の解明である。刺激提示時間が短すぎて気づかれないような刺激に対しても、ヒトの脳はきちんと情報処理していることが明らかにされつつある。いわゆるサブリミナル効果である。サブリミナル効果のような特殊な状況以外でも、私達は無意識状態での認知を日常生活に経験する。例えば、他の事に注意を払っていたとすると、目の前にあるものさえ自覚できないことがある。そのような場合でも、脳はきちんと情報処理している。これまでの研究は、注意、集中といった意識に関する研究がほとんどであったが、これからは「無意識状態、無意識下」での脳機能解明が新たな研究テーマとして注目を集めており、生理学研究所では、2013(平成25)年度に、脳磁図(MEG)の大幅な性能向上のため、ソフトウェア、ハードウェア両面において改良を行い、世界最高水準の性能を得ることができた。時間分解能の向上は今回の改良の主要目的であり、ミリ秒以下のレベルまで向上した。これにより、提示が短時間過ぎて意識できないような刺激(サブリミナル刺激)に対する脳反応の記録解析が可能となった。このような「無意識状態」における脳機能の解析は、fMRIのような血流測定技術では不可能であり、脳磁図の有する高い時間分解能を最大限に生かしたものである。

(2) MRI技術を用いた社会性の脳科学研究とモデル動物研究との統合

社会性発現の生物学的基盤を明らかにするためには、その破壊の理解から進める事が重要で、破壊の早期発症としての自閉症と成熟期発症の統合失調症をターゲットに、ヒトにおける行動的な特徴と類似性を示す各種遺伝子を含むマウスを用いた研究が進められている。ヒトとモデル動物の種間の高次脳機能の違いは大きくないことから、表現型の類似性だけでなく、脳活動領域、神
経回路からシナプスおよび分子まで、各階層における社会性の中間表現型を見出していくことが必須であり、その際に各階層間をシームレスに繋いでいくための手法としてのイメージング科学が必要である。

脳活動領域、神経回路からシナプスおよび分子まで各階層における社会性の中間表現型の解析に果たす画像情報の役割は極めて大きい。社会能力を担う神経基盤は、マクロレベルからミクロレベルにおける脳領域間の関係性にあると想定されており、その機能的・解剖学的統合の観点の解析（コネクトミクス）を、種間を越えて統合的に解析するためのシームレス・イメージング・プラットフォームを形成することが必要である。

MRI に代表される非侵襲的画像技術の発展により、ヒト生体の解剖学的構造を多次元的に構成する技術は大幅に進んだ。近年超高磁場 (7T) 超電導磁石をもつことで、非侵襲的に全身の組織を数百ミクロン程度 (200〜500 μm) の解析度で撮像し、3次元再構成することが可能となった。顕微鏡レベルでは、微細な神経結合の解析と機能分子在在や機能標識法を組み合わせることによって、機能共役型コネクトミクスという革新的な分野が拓かれつつある。

このミクロレベルでの成果をヒト・マクロレベルの生理学へとスムーズに還元するためには、ヒトと動物を同じプラットフォームで観察・解析出来る「生体顕微鏡」としての超高磁場 MRI が必須である。社会能力などヒトに特有な認知活動の神経基盤を明らかにするために、機能的 MRI による神経活動パターンを超高解像度 MRI によるヒト生体の詳細構造を合わせて解析していくと共に、それらに対応する動物モデルを対象とした各種光学顕微鏡、電子顕微鏡など最先端のイメージング手法を組み合わせて、生体における包括的構造機能連関の解明を進める必要がある。

ミクロレベル・コネクトミクスとのシームレスな連携を要する近未来の課題例としては、自閉症における大脳皮質 - 線条体回路の異常などが考えられ、正常マウスの神経回路をモデルマウスの神経回路を網羅的に比較することによって、これらの病態の構造基盤を明らかにし、療養類 (サル) を経由してヒトの疾患における神経回路異常の発現にとどまることが期待される。ヒト白質の詳細解剖は、MRI をもじった拡散強調画像法で初めて可能となったものであり、超高磁場 (7T) MRI では、白質走行の方向を 800 μm 程度の解析度で描出することが出来る。さらに、ヒトにおいてマクロレベルのコネクトミクスを行うためには、大脳皮質領域地図を個人レベルで作成する必要があるが、これは 7T-MRI によってのみ可能である。その最大の特徴として、信号群音比が高く、これらのデータ解析を全て個体ベースで行うことが可能である。そのため、疾患研究には極めて有効と考えられる。このような研究動向を踏まえ、生理学研究所は、2020(平成 24) 年度補正予算によりヒト用超高磁場 (7T) MRI の導入を措置し、現在設置手続きを進めている。

(3) 画像解析手法の開発

シームレス・イメージング・プラットフォームにより可能となる広範囲の神経回路構築の全脳解析を含む種々の画像解析法の開発は、イメージング科学の重要な領域として今後の生理学研究に必須である。その展開には、生理学者・形態学者のみならず画像解析、ソフウェア開発、理論モデル、画像表現、臨床画像診断に携わる画像診断医など共通の目標を持った多数の専門家・研究者の参画と共同利用研究が極めて重要である。

ヒト用超高磁場 (7T) MRI が、広範囲にわたる学際的研究所を推進する大学共同利用機関としての生理学研究所に導入されることを契機として、イメージング科学を all-Japan 体制で展開するための適切な環境を整えていくことが期待される。

5 4 次元脳・生体分子統合イメージング法の開発

社会的機能まで含めたヒト脳は最も高度かつ複雑な生物器官である。その複雑さは空間的、時間的階層構造と各階層における構成ユニット間のネットワーク構造に起因する。一方脳の働き（機能）を観ると階層毎に個別機能はあるものの統合されれば知覚などに見られるように高次単一機能として立ち現われる。ある意味で単純である。超複雑システムとしての脳階層ネットワーク構造に支えられた脳機能の統合的単純化を最先端脳科学は脳内信号の情報処理機構として理解する立場を取っている。しかしコンピュータの固有論理機械に比べると脳は外界に応答し自律的に神経セラルエンジンを形成するダイナミックな創発系のように見える。

この創発系は外部入力に応答し内部状態を再定義し変容する階層化ネットワークシステムである。
生理学研究所では、このような階層化ネットワークシステムを解析する手法の一つとして、4次元脳・生体分子統合イメージング法の開発を目指している。目的は脳科学の根幹的問題「脳情報構造の自発的生成」問題の解決である。そのために各階層の脳内信号の時空間記述と情報生成の基本である階層間統合を可視化し得るシームレスイメージングシステムの構築を行う。

分子から脳回路をシームレスに繋ぐ方法として、生理研では、電子線トモグラフィー、位相差電子顕微鏡法、超高速電子顕微鏡法、光子・電子ハイブリッド顕微鏡、連続ブロック表面が用いられている。電子線トモグラフィーは、タンパク質複合体の形成過程やそれに伴う構造変化を解析する方法 (Kumoi et al, PlosOne 2013)，位相差電子顕微観察法は、100kDa よりも小さい生体分子の構造観察を可能とする (Wu et al, J. Phys D 2013)。そして、細胞における分子の動態については、今年度高超高速電子顕微鏡にデジタルカメラが整備され、3 次元で効率よく細胞内分子の動態解析が行えるようになった (宮崎 & 村田, 顕微鏡 2013)。そして、光子・電子ハイブリッド顕微鏡を使った標的タンパク質の細胞内観察法の開発も進めている。最後に、分子・細胞レベルにおける知見を高次脳機能に発展させる方法として、コネクトーム解析があり、これには分解能と走査領域の異なる 2 台のダイアモンド切削型走査電子顕微鏡 (SEM) が用意されていて、本装置を用いた共同研究が既に 10 件以上進行中である。従来連続切片法に頼っていた電子顕微鏡での 3 次元解析が今後飛躍的に効率化されることが期待されている。

2 光子励起顕微鏡技術の展開は、引き続き鍵倉らにより行われており、脳科学研究において先導的役割を確立するとともに、分子から個体までの多様な階層・部位への応用展開を進めている。得られた各階層レベルのイメージの統合化手法については、自然科学研究機構新分野創成センター メンシングサイエンス研究拠点との共同研究により進めている。さらに最近、2 光子顕微観察顕微鏡システムの構築に成功しており、分子活性の測定を細胞から個体の多階層でイメージすることを可能にした。

これに加えて、新規電子顕微鏡法や光応答型タンパク質の開発も精力的に行われており、今後さらなる多階層イメージングの高度化が見込まれる。

マクロレベルにおいては、ヒトの高次脳機能を動的かつ大別的に理解することを目指して、機能的 MRI、近赤外線分光学法、脳磁図などの非侵襲的脳機能イメージング法を駆使して、研究を進めている。その重要な対象のひとつとして、社会能力がある。これは他者と円滑に付き合う能力を含む、言語性・非言語的なコミュニケーション能力を基盤とした高次脳機能である。その重要な要素のひとつである顔認知の発達過程を明らかにするため、近赤外線分光学法を用いて乳幼児の神経活動計測を展開しており (Ichikawa, et al. 2013), 新領域を拓きつつある。2 個体 MRI 同時計測をさらに進展させるため、3T 装置 2 台から構成される同時計測用 MRI システムを生理研研究棟地階に導入して、異なるタイプの共同研究に係わる神経基盤を明らかにした。現在、さらに複雑な共同作業中の神経活動の計測が進めており、人間の社会行動の神経基盤とその発達機構調査に資することが期待される。

6 遺伝子変換動物の開発

6.1 霧貫類

大型の霧貫類であるマカダムにおいて、海外(米国)では、受精卵への遺伝子導入でトランスジェニック動物を作成したという報告があるが、世代交代に時間要する(生殖年齢に達するのに 4 ～ 5 年)ので、実際にはあまり現実的ではない。そこでライフサイクルの短いコモンマーモセットを対象としてトランスジェニック動物の作製が試みられ、2009 年の実験動物中央研究所と慶應義塾大学のグループが、世界に先駆けて germ line transmission するトランスジェニックマーモセットの作製に成功した (Sasaki et al. Nature 2009)。自然科学研究機構でも、生理学研究所の伊佐正教授が拠点長を務める文部科学省脳科学研究推進プログラム課題 C において、生理研の教授を併任する山森哲雄教授が中心となってマーモセットの飼育・繁殖と自己操作を行う施設を実験動物中央研究所、慶應義塾と連携して立ち上げ、遺伝子変換動物作製技術の技術移転を受けた。そして、「脳科学研究に有用なマーモセットライオン」の作製を行い、一部成功している。一方、2013 年に新しいゲノム編集技術を利用した簡便で迅速な遺伝子変換動物作製技術である Crisper/Cas が発表され、霧貫類での成功例も海外で
報告されるようになった。このような動向への対応も検討の必要がある。
一方、中枢神経系に遺伝子導入を行うにはウィルスベクターを用いる方法がより簡便である。脳科学研究戦略推進プログラムの実施にあたり、生理学研究所では、2009年度より動物実験センターの一両にセンターズ専用の遺伝子導入実験室（P2）を立ち上げ、雪長類（マカクザル）の脳への遺伝子導入実験を行ってきた。その結果、福島県立医科大学の小林和人教授、京都大学の渡邉大教授との共同で、新たに開発された高頻度選択性レンチウィルスベクターと、順行性アデノ関連ウィルスベクターに2重感したニューロンにおいてのみ、新規開発された高感度 Tet-ON系によって著明な抑制効果を発見することで、経路選択性・可逆的に神経伝達を遮断する技術の開発に成功し、世界で初めてマカクザルでの行動制御に成功した（Kinoshita et al. Nature 2012）。現在、この技術は、雪長類、げっ歯類における様々な経路に適用されている。このような新規のウィルスベクターなどを広く国内で共同利用してもらうため、生理学研究所では2012年度より、脳機能計測・支援センターにウィルスベクター開発室を設置し、小林憲太教授の任を取って、ウィルスベクターの作製・提供・技術移転などを開始した。現在国内のみならず、海外にもベクターやプラスミドを貸付しての共同研究が数多く展開されている。

6.2 げっ歯類

生理学研究所では、マウスでは外来遺伝子導入ならびに内在遺伝子改変した個体の作製技術を、ラットでは外来遺伝子導入した個体の作製技術をルーチンに提供している。その作製サービスを提供するための実験室は、山手2号館2階胚操作室（ラット用：P1A）および2号館7階の行動・代謝分子解析センター遺伝子改変動物作製室内 培養室・インジェクション室（マウス用：P1A）などからなっている。

内在遺伝子改変個体を作製する技術を開発するに当たって、遺伝子改変動物作製室ではラット多能性幹細胞の樹立に取り組み、生殖系寄与能を持つ胚性幹（ES）細胞株や人工多能性幹（iPS）細胞株の樹立に成功し、これらES細胞を使って、遺伝子組換え法により免疫不全ラットおよびメタスチンニューロン欠損などのノックアウト（KO）個体の獲得、さらにラット ROSA遺伝子座に蛍光蛋白遺伝子を同様に組み換えさせたノックイン（KI）ラットの作製にも成功した。最近、ジンクフィンガスクレアーゼ（ZFN）やTALエフェクタスクレアーゼ（TALEN）を利用したゲノム編集（任意の遺伝子の挿入や欠失）の成功例が、哺乳動物や培養細胞において報告され、標的配列の選択が可能であることから次世代のKO/KI技術として注目されている。平成25年度は、迅速かつ効率的にKO個体を作製する目的で、ZFNやTALENを利用した新しいゲノム編集技術によるKOラットの作製に取り組み、Pdx1（Pancreas duodenum homeobox1）遺伝子をはじめ数種類の遺伝子を対象にその欠失効果を検証した。

このように、生理学研究所計画共同研究においてラットでも内在遺伝子改変した個体の作製技術をルーチンに提供する準備を整えつつある。
第 IV 部

本年度の研究活動
1 分子生理研究系
1.1 神経機能素子研究部門

神経機能素子研究部門では、イオンチャネル、受容体、G 蛋白質等の構造と機能に関する研究を展開している。具体的には (1) Family C に属する Orphan 代謝型受容体 P3R3 の分子機能の解明に向けた解析、(2) G タンパク質結合型受容体の動的構造変化と機能調節機構、そしてシグナリングの多様性の解析、(3) KCNQ1-KCNE1 チャネル複合体の、KCNE1 による機能修飾のメカニズムと構造基盤の解析、(4) ATP 受容体チャンネル P2X2 の膜電位依存性ゲーティングの分子機構、およびチャネル分子内における活性化シグナルの流れの解析、(5) Kv4.2-KChIP4 複合体の、量体数比の状況依存性と、KChIP による機能調節機構の解析、(6) hERG チャネルの極めて緩徐な脱活性化の分子機構の解析、(7) TRP1 チャネルのリガンドおよび温度依存的活性化機構の解析、(8) メラノプロキンのタンパク質の安定性と機能の種間差異の比較解析を、学際的アプローチにより進めている。

2013 年に発表した論文、Tateyama M, Kubo Y (2013) Analyses of the effects of Gq protein on the activated states of the muscularin M3 receptor and the purinergic P2Y1 receptor. Physiol Rep 1:e00134. の内容を以下に紹介する。

Gq タンパク質共役型受容体は、細胞内カルシウム濃度や M 電流活性の制御を介して神経機能を調節する膜機能タンパク質である。受容体はアゴニストと結合して活性型となりシグナルを Gq タンパク質に伝達する。一方で、Gq タンパク質との相互作用は受容体の活性型構造にも影響を与える。受容体の活性化状態は、受容体細胞内領域に付加した蛍光蛋白質周囲で起こる FRET 効率を計測することにより捉える事が出来るが、ムスカリニン型アセチルコリン受容体 1 型 (M1 受容体) では、アゴニスト結合により FRET 効率は減少し、その大きさは Gq 結合により顕著に増大する。この結果は、Gq タンパク質との相互作用により M1 受容体の活性型構造が安定化することを示すものであるが、他の種類の受容体に対しても Gq 結合が同様な作用を示すかどうかは不明であった。そこで、本研究では、ムスカリニン型アセチルコリン受容体 3 型 (M3 受容体) と代謝型 P2Y1 受容体 1 型 (P2Y1 受容体) を用いてこれを検討した。先ず、蛍光タンパク質を付加する方法を工夫することにより、Gq 結合能を維持した FRET コンストラクトの作製に成功した。各コンストラクトは、図に示すように、アゴニスト結合による FRET 効率の減少を示したが、その減少量は Gq タンパク質の共発現により M3 受容体では有意に増大した。一方、Gq タンパク質の共発現は P2Y1 受容体の FRET 減少に影響を与えないかった。以上の結果から、G タンパク質結合による受容体活性化構造の安定化作用は受容体の種類により異なることが示され、G タンパク質と受容体の相互作用様式の多様性が示唆された。

図 1. ムスカリニンアセチルコリン M3 受容体および代謝型プシン P2Y1 受容体のアゴニスト投与による構造変化、および構造変化に対する Gq 結合の作用についての FRET 解析 M3 および P2Y1 受容体に 2 組の蛍光タンパク質を付加し、リガンド Oxo-M および ADP と投与に伴う構造変化を FRET の低下として捉えた。ヘテロ 3 亜体である Gq タンパク質を共発現させることにより、M3 受容体では FRET の変化は有意に増強したが、P2Y1 受容体では FRET 変化は影響を受けなかった。

125
1.2 分子神経生理研究部門

分子神経生理研究部門では哺乳類神経幹細胞からのグリ
ア細胞の発生・分化、および成体におけるグリア細胞の
機能とその病態について研究を進めている。また、極
めて微量な試料から糖蛋白質糖鎖構造解析法を開発し、
脳内における新しい糖鎖構造の生理学的意義、末梢神
経系糖鎖における硫酸化糖鎖の役割について検討して
いる。

1. オリゴデンロサイトの発生・分化・形態形成

中枢神経系の主要構成細胞の一つであるオリゴデン
ロサイト（以下 OL）は、ニューロンに糖鎖（メリリ
ン）を形成し、活動電位の疎導伝導を可能にしている。
中枢神経系の OL は、一つの細胞が複数のニューロン
軸索に対しメリリンを形成することが知られており、
複数のニューロンが同調して OL による伝導速度調節
を受れている可能性が報告されているため、脳の高次
機能を理解する上で重要な研究課題である。我々は、
OL-ニューロン間相互作用が減少するノックアウトマ
ウスを用いて、OL 依存的なニューロン遺伝子の発現
変化をマイクロアレイ法により解析した。また生体内
で OL の形態を詳細に観察標識できる技術を新たに確
立し、領域依存的および活動依存的な in vivo メリリ
ン形成模式の解析を行っている。これらの手法と、培
養 OL-DRG ニューロン共培養系を併用し、OL-ニュー
ロン間相互作用の分子機構と生理機能の解明に取り組
む。発生期の発育においては、成長因子やモルフォゲ
ンなどの分泌因子が OL の分化を制御することが知ら
れている。この OL 発生過程に酸性糖鎖がどのように
機能しているか解析を行った。酸性糖鎖として、ヘパ
ラン硫酸、ケラチン硫酸、HNK-1 に着目し、これらの
合成酵素を欠損したマウスを解析し、正常な酸性糖鎖
を欠失することで OL への分化が異常になることを見
出した。これはモルフォゲンによるシグナリングの変
化や発育期骨髄のドメイン構造の形成への影響である
ことを明らかにした。今後は、酸性糖鎖とモルフォゲ
ンの相互作用を詳細に解析し、その分子機構の解明を
めざす。

2. グリア細胞の機能と病態

グリア細胞の病態としてオリゴデンロサイト異常
により生じる脱髄性疾患とアストロサイト病の一つと
しての MLC を取り上げている。脱髄性疾患の病態と
して重要なことは病状が進行すると再脱髄化の抑制さ
れることがある。われわれは脱髄再生期後には発現する
シスタチン F 発現を抑制すると脱髄症状が悪化するこ
とを明らかにし、シスタチン F は脱髄再生に必要な因
子であることを見出した。また、MLC の病因遺伝子
である Mcl 1 を過剰発現させたところ、正常な遺伝子
ではもとより MLC と同様の現象の現れることを見出した。

3. グリオトランスミッターのイメージング

グリア細胞の重要な機能の一つとして伝達物質を放
出することによってシナプス伝達を調節することがあ
げられる。しかし個々の放出イベントの時間的空間的
な動態と放出メカニズムについてはよくわかっていない。
そこで名古屋大学 愛部教授のグループと共同でシナプシン誘導による発光来層態度で観
察する方法により、培養大脳皮質アストロサイトの
ATP 放出を観察した。グルタミン酸添加により、持続
時間の長い ATP 放出イベントの数が増加した。開口
放出や様々なチャネルの阻害薬単独では放出の持続時
間や強度が減少するものの、放出イベントの数は減
少しなかった。しかしすべての阻害薬を合わせて投与す
ると、放出の数が減少した。興味深いことにチャネル
の阻害薬の複合投与では放出イベントの数が有意に減
少し、このことはここで観察される ATP 放出には開口
放出が関与しない可能性を示唆している。今後はアス
トロサイトからの ATP 放出の生理的意義、すなわち神
経回路への影響を調べることが課題である。そのため
に海馬スライスでの ATP 放出を詳しく解析する。ま
た東京大学 慶應教授の開発したグルタミン酸放出を可
視化するプロープを用いて、アストロサイトからのグ
ルタミン酸放出メカニズムの解明に取り組む。

4. N-結合型糖鎖の構造決定と機能解析

糖鎖を有する分子は細胞表面や細胞内に存在し、細
胞間相互作用やシグナル伝達に深く関わっている。今
年度は糖鎖を糖鎖に付加する酵素である GlcNAc-
6-sulfotransferase1 のノックアウトマウスの末梢神経
系において異常な糖鎖構造が観察されたことから、糖
鎖上の硫酸化糖鎖が糖鎖構造の形成または維持に関
与している可能性を示した。また、脳に発現する 6-sia
lylLewis C 構造を認識するレセプターの探索を行い、
6-sialyl Lewis C 構造がミクログリアによるニューロン
食取に関与することを示唆する結果を得た。
2. 細胞器官研究系

2.1 生体膜研究部門

生体膜研究部門ではシナプス伝達制御メカニズムを分子レベルで解明し、その機能障害がどのようにして‘てんかん’等のシナプス疾患を引き起こすのかを明らかにする。当研究部門では独自に同定した1）パルミトイル化脂質修飾酵素 DHHC 受容体、および2）てんかん関連リガンド LGI1・ADAM22 受容体を起点としてシナプス可塑性的根幹を成すと考えられている AMPA 型グルタミン酸受容体を介したシナプス伝達の制御機構を解明することを目指している。2013年には発表した以下の論文について紹介する。

1. DHHC2 パルミトイル化酵素によるポストシナプス膜ドメイン形成機構

足場蛋白質 PSD-95 はパルミトイル化脂質修飾依存的にポストシナプス膜 (PSD) に濃縮し、シナプス形成に中心的な役割を果たす。私共はパルミトイル化 PSD-95 の動態を可視化するため、パルミトイル化脂質修飾を欠いた PSD-95 を特異的に認識する構造換え抗体を開発した。この新規プローブと超解像顕微鏡 (STED 顕微鏡) を組み合わせて、ポストシナプス膜内部にパルミトイル化 PSD-95 が形成する新規のサブドメイン構造 (ナノドメイン) を発見した。このナノドメインは PSD の基本単位であると考えられ、さらにナノドメインの PSD-95 は持続的に脱パルミトイル化状態とパルミトイル化状態の間をサイクルしていることを見出した。また、私共はパルミトイル化酵素 DHHC2 が、シナプス膜上で機能するユニークな酵素であり、直接ナノドメイン形成を担うことを明らかにした。DHHC2 がシナプス局所で脱パルミトイル化酵素と共に恒常的なバーミトルサイクルを駆動することが、ナノドメインのサイズと数の維持に必要であると考えられた。

さらに、DHHC2 は神経活動依存的にナノドメインを再構築し、AMPA 受容体のシナプスにおける数を制御していることを見出した。このように、パルミトイル化脂質修飾特異的なプローブを開発し、シナプス伝達の新しい制御機構を見出した (Fukata Y et al, J Cell Biol 202:145-161 (2013))。

2. 辺縁系脳炎における LGI1 自己抗体の作用機構の解明

本研究では、国内の自己免疫性神経疾患患者の血清を網羅的に解析し、症候や記憶障害をきたす辺縁系脳炎の病因となる自己抗体の種類とその頻度を明らかにした。そして、てんかん関連分子 LGI1 に対する自己抗体がシナプス機能異常を引き起こし、辺縁系脳炎を惹起している可能性が極めて高いことを突き止めめた。さらに、LGII 自己抗体が LGI1 とその受容体である ADAM22 との結合を阻害することにより、脳内の興奮性シナプス伝達の大部分を担う AMPA 受容体機能を低下させることを突き止めた。AMPA 受容体を介したシナプス伝達の制御機構は記憶、学習の根幹を成すと考えられていることから、LGI1 自己抗体による AMPA 受容体機能制御の破綻は辺縁系脳炎の記憶障害やてんかん症状を引き起こすと考えられる。さらに、辺縁系脳炎の診断、治療効果の判定に実用可能な検査法を開発した (Ohkawa T et al, J Neurosci 33: 18161-18174 (2013))。
2.2 細胞生理研究部門

TRP チャネルに焦点をあてて痛み刺激感受・温度感受・機械刺激感受・体温調節の分子機構の解析を進めている。

1. 細胞外温度依存性の TRPM8 活性化温度閾値変化の解析

30 度のときには TRPM8 の冷刺激による活性化温度閾値が約 28 度で、40 度のときにはその活性化温度閾値は約 35 度まで上昇することが分かった。この活性化温度の閾値変化は phosphatidylinositol 4,5-bisphosphate (PIP2) 依存的であることを示した。また、human TRPM8 の 1008 番目のアルギニンがこの PIP2 の作用に関わることが、点変異体解析によって明らかになった。同じ温度の水を、それ以前に曝露されていた温度によってより冷たく感じたり、より温かく感じたりする現象（ウェーバーの 3 ポジト実験）が未梢感受神経末梢に発現するメトートール感受体 TRPM8 の PIP2 の依存的な活性化温度閾値の変化で説明できるかもしれないと考えられた (J. Neurosci., 2013)。

2. TRPA1 スプライスバリントによる機能制御機構の解析

マウス感受神経に Exon20 を欠失したスプライスバリアント TRPA1b を見いただした。TRPA1b は full length TRPA1 (TRPA1a) と結合して TRPA1a の細胞膜移行を促進し、TRPA1 の機能を増強させていることが分かった。また、マウスの炎症性疼痛モデルと神経障害性疼痛モデルにおいて、TRPA1a 欠損マウスでは有意に機械刺激感受覚が減弱しており、TRPA1 が炎症性疼痛および神経障害性疼痛発生に関わっていることが分かった。さらに、TRPA1a 遺伝子の発現増加は一過的であったが、TRPA1b 遺伝子は持続的に増加しており、この TRPA1b の増加が TRPA1 機能増強を介して炎症性疼痛および神経障害性疼痛発生をもたらしているものと考えられた (Nature Commun., 2013)。

3. 亜鉛イオンによる TRPM5 の機能抑制機構の解析

細胞外亜鉛イオン（Zn2+）が細胞内 Ca2+ 濃度増加によって活性化した TRPM5 電流を生理的濃度域で濃度依存的に抑制することがわかった。また、温度によって增大した TRPM5 電流も抑制した。この細胞外 Zn2+ による抑制はボア阻害作用によらないことがわかったが、ポアループの複数のアミノ酸が関与していることが、点変異体解析によって明らかになった (J. Biol. Chem., 2013)。

4. トカゲ TRPA1 チャネルの熱による直接の活性化機構の解析

トカゲ (green anole lizard, Anolis carolinensis) TRPA1 チャネルの化学刺激と温度刺激による活性化をバッチクランプ法で解析し、AITC によって活性化すること、冷刺激ではなく熱刺激（活性化温度閾値約 36 度）によって活性化することが明らかになった。また、温度刺激と化学物質刺激の間で相乗効果があることも判明した。さらに、バッチ膜による indside-out 法の記録で単一チャネルの開口を観察され、トカゲ TRPA1 は細胞内因子を必要とせず、熱によって直接活性化することが明らかになった。加えて、単一チャネル開口キネティクスが AITC と熱による活性化で異なることも見いだされた (Pflüger Archiv Europen J. Physiol., 2013)。

5. ニワトリ TRPA1 チャネルの遺伝子クローニングと機能解析

ニワトリ TRPA1 チャネル遺伝子をクローニングして機能解析を行った。AITC 等の化学物質感受性は維持している一方、ニワトリ TRPA1 は熱刺激センサーであり、活性化温度閾値は約 39.4 度であった。哺乳類等の恒温動物 TRPA1 は冷刺激感受性が温度感受性がないのに、同じ寒帯動物ニワトリの TRPA1 が熱によって活性化することに驚きである。また、トリの忌避剤として知られる methylantranilate (MA) がニワトリ TRPA1 の刺激物質であることが明らかになり、MA のニワトリ TRPA1 活性化に関わるアミノ酸を同定した (Molec. Biol. Evolution, 2013)。

128
3 生体情報研究系

3.1 感覚認知情報研究部門

感覚認知情報部門は視覚および聴覚認知の神経機構を主な研究対象としてきた。現在は聴覚と感覚を中心的なテーマとして研究を進めている。感覚に関しては本年度は聴覚コントラストの極性が色選択性に与える影響を調べると、共に、錐体伝達子に異常を持つ2色性のマウスの聴覚を行動学的に調べる実験を行った。

質感に関しては、素材識別の神経機構をサルのfMRIを用いて調べる実験を開始すると共に、触覚経験者が視覚的素材単独に与える影響の研究を進めていている。実験方法はこれまでに無麻醉のサルからの単一ニューロン活動記録が中心であったが、それらに加えて特定の刺激選択性を持つ細胞が集まる領域間の結合を調べるための神経解剖学的方法や、サルを用いた機能的磁気共鳴画像法（fMRI）も併用して多面的に研究を進めていく。

1. サル V4野の色選択性応答に対する輝度コントラスト極性の影響

色刺激の輝度コントラスト極性の変化は色の見え方に影響を与えることがあり、このような色覚における輝度コントラストの関係を明らかにすることは色の見えの神経基盤を理解する上で重要である。色覚を深く関係があると考えられているサルの視覚皮質V4野の色選択性ニューロンの色選択性応答に色刺激の輝度コントラストの極性変化が与える影響を調べた。背景よりも明るい色刺激セットと背景より暗い色刺激セットを用いて、注視課題遂行中のサルのV4野で色選択性ニューロンの活動を記録した。背景より明るい色刺激に対する神経活動と暗い色刺激に対する神経活動を比較した結果、V4野には輝度コントラストの極性が変化することで色選択性が変化するニューロンが多くみられた。また、色ごとに明るい色に対する神経活動と暗い色刺激に対する神経活動を比較した結果、青からシアンにかけての色域を中心に比較的強い輝度コントラストの影響がみられた。

2. 2色型色盲ザルの色覚特性の行動的解析

遺伝学的に同定された2色型色盲ザル（L錐体欠損）の色覚特性を明らかにするために石原式検査表を模した視覚刺激を用いて色別課題を行った。視覚刺激は複数のドットによって構成され正方形の外形を持つ。この視覚刺激を水平に3つ並べて液晶ディスプレイ上に呈示し、そのうちの1つについて順状の部分に含まれるドットの色を変化させターゲット刺激とした。

ターゲット刺激の色は64種類（16色度×4彩度）から試行毎にランダムに選択した。3色型色覚のサルでは、ターゲットの検出率は彩度に依存し、いずれの色相においても高い検出率を示した。一方2色型色盲ザルでは、特定の色相において検出率の低下が見られ、検出閾値が上昇した。この色相はヒトのL錐体欠損の混同色線上に位置していた。この結果は遺伝子型から予想される2色型色盲ザルの色覚特性と一致する。

3. 素材識別に関わるサル視覚領域：fMRI研究

素材識別に関しては、これまで、金属、プラスチック、木などの素材に関する視覚情報が脳においてどのように処理されるかについてヒトを対象としてfMRI研究を行ってきた。本年度は、サルを対象として同様の刺激を用いてfMRIで脳活動を解析し、視覚皮質のどの部位が素材を識別しているか、またどのような情報に基づいて識別が行われているかを調べた。様々な脳領域の活動パターンから、ある素材カテゴリがどの程度類似しているかを求める。ヒトの心理学実験により求めた素材カテゴリ間の心理的類似度と比較したところ、サルV4野及び後部下側頭皮質の活動が心理的類似度と相関しており、またヒト腹部高次視覚野の活動とも類似していることが明らかになった。一方、低次視覚領域であるV1,V2では、ヒトの実験の結果と同様、素材カテゴリ間の画像的特徴の類似度と高い相関を示した。

4. 触覚経験が視覚的素材弁別に与える影響

素材の視覚の認識における触覚の影響を調べるため、触覚経験課題を設定し実験を行った。触覚経験課題では実物素材刺激が視覚的かつ触覚的に呈示される。サルの前面に実物刺激呈示装置を設置し、各実物素材刺激を呈示した。実物素材刺激は9種類の素材カテゴリ（金属、ガラス、陶器、石材、樹皮、木目、皮革、布、毛）によって構成され、各素材カテゴリについて4種類のサンプルが含まれている。サルは実物素材を一定時
間注視しながら把持することで報酬を得る。課題の成功率は徐々に上昇し、経験開始から15日後にほぼ全ての素材について75%以上に到達し、その後は安定した成功率を示した。成功率の上昇は素材カテゴリーごとに異なり、金属とガラスは経験初期から比較的高い成功率を示し、皮革と毛については比較的緩徐に上昇した。これらの結果は素材への親密度と触覚経験の影響を反映していると考えられる。
3.2 神経シグナル研究部

神経シグナル研究部門では、脳神経系の機能的素子の知見を基盤として、より複雑な系である神経回路の機能を理解することを目指して研究を進めている。今年度行った研究として、神経系の機能的素子であるCa²⁺チャネルとシナプス小胞放出の関係、より生理的な系、in vivoにおける神経回路の作動機構を明らかにした論文を紹介する。

1. Ca²⁺チャネルサブタイプに依存した異なるシナプス小胞放出過程

中枢神経の軸索終末では、活動電位の伝播に伴い、1個のシナプス小胞が開口放出されると考えられてきた（単一性放出：monovesicular release）。その一方で、1回の活動電位当たり、複数のシナプス小胞が複数の放出部位から同時に、もしくは単一の放出部位から連続的に放出される、多重性放出（multivesicular release）の存在も指摘されている。シナプス小胞の単一性/多重性放出の違いは、神経終末のCa²⁺動員や放出機構の性質の違いによって生じると推定されてきた。しかし、神経終末のシナプス小胞放出ダイナミクス（放出確率ならびに放出単一性・多重性、放出同期性）を制御する分子的基盤は、ほとんど解明されていない。また、各シナプスにおいて単一性放出と多重性放出の遷移が起きる可能性についても検討されてこなかった。

これまで私たちは、ラット小脳顆粒細胞・分子層介在神経（側頭神経）軸索起始部間の興奮性シナプス伝達について検討を行い、顆粒細胞（上行性線維）の2回パルス刺激（30～100ミリ秒間隔）に伴い、介在神経から記録される興奮性シナプス後電流（EPSC）の2回目の振幅値と減衰時定数（τ）が、刺激間隔に依存して一過性に増大する現象を発見した（Satake et al., 2012)。

減衰過程のベータパルス増大は、1個のシナプス小胞の放出多重性の変化（即ち、単一小胞放出から多重小胞放出への可逆的変化）に伴う伝達物質グルタミン酸のシナプス間蓄積ならびに2非同期性の遅延放出（delayed release）によって引き起こされたと推定している。しかし、EPSCの減衰時間が多重性放出によって決定されるという現象はこれまで報告がなく、その分子的背景も明らかでなかった。本論文では、EPSC減衰時間のベータパルス増大を実験モデルとして、多重性放出の発現メカニズムを多角的に追究した。その結果、顆粒細胞の多重性放出は、①複数のCaV2.1チャネルを介して顆粒細胞の軸索末梢に流入したCa²⁺が流入部位から周囲に拡散して蓄積すること、②蓄積したCa²⁺がチャネル近傍に局在するシナプス小胞/Ca²⁺センサー複合体のみならず、③遠位の小胞/Ca²⁺センサー複合体にも作用して複数のシナプス小胞を放出させることによって惹起されたことなどが明らかになった。このCa²⁺チャネルサブタイプに依存した異なるシナプス小胞放出過程（単一性放出と多重性放出）の発現は、脳の情報処理プロセスに多様性を生み出すメカニズムの一つとして、今後の神経回路研究に新しい道を拓くと期待される。（Satake & Imoto K., J Neurosci)

2. 青斑核から脊髄に至る下行性ノルアドレナリン神経を介するα2作動薬の鎮痛メカニズム

昨年度の研究から覚醒や呼吸、循環、皮膚の活動調節に加え、痛みの抑制を司る脳幹青斑核ノルアドレナリノン神経に着目し、その活動が如何にしてコントロールされているかを、バッチクランプ法を用いてin vivoシナプスレベルで明らかにできた。本研究は未だ不明の多い、青斑核から脊髄に至る痛みの下行性抑制回路の作動機構の詳細を明らかにした。鎮静薬として使われるα2作動薬は、青斑核ニューロンを過分極させ、鎮静効果を現することが知られている。ところが、鎮静効果を示さない低用量のα2作動薬は、逆に一部の青斑核ニューロンを活性化し、脊髄におけるGABAなどを介した抑制性シナプス後電流の発生頻度と振幅を著明に増大することを見出した。また、このノルアドレナリン神経を介した脊髄におけるGABAニューロンの賦活化はα1受容体を介すること、さらに、高用量のα2作動薬は青斑核を直接作用し、α2受容体を介して細胞を過分極させることを明確にした。以上のよりin vivoでは、低用量のα2作動薬が青斑核から脊髄に至る下行性ノルアドレナリン神経を賦活化するという新規鎮痛メカニズムを提唱した。（Funai et al., Pain)
3.3 神経分化研究部門

大脳皮質の神経回路特性とその経験依存的発達メカニズムの解析を行っている。ラット・マウスの大脳皮質を対象に、in vitro 脳切片標本を用いた神経回路解析、麻酔動物を対象とした電気生理学的手法および二光子励起顕微鏡を用いたイメージングによる視覚野の機能解析、視覚弁別機能を評価するための行動学的解析、ウイルストレーサーによる形態学的解析を引き続き行っており、成果を順次発表する予定である。最も進展があった研究内容を以下に記す。

1. 大脳皮質一次視覚野から高次視覚野への神経結合の経験依存的発達

大脳皮質一次視覚野 (V1) の視覚反射性と局所神経結合は生後が視覚神経を意味して発達することが、我々を含む多くの研究室から報告されている。本年度、我々は二次視覚野 (V2) の視覚反射および神経回路が生後視覚神経を影響するかを明らかにする目的で、生後発達過程の成長会期に同眼の視を縫合することにより形態視を遮断して成熟したラットを用いて解析を行った。視床外側膝状体から直接入力を受ける V1 と比較して、V2 から記録した視覚誘発電位および個々の神経の神経反射強度は著しく低下していた。このような低下は正常な視覚を研えた場合で見られた。この低下を引き起こす可能性として、V1 から V2 への神経結合形成が抑制されていることが考えられる。そこで、V1 細胞にウイルスベクターを用いて蛍光蛋白 GFP を発現させ、V2 への投射線維を解析した結果、形態視遮断により投射量が減少し、投射パターンにも異常がみられた。V1 細胞に感受性陽イオンチャネルであるチャネルログプシン 2 を発現させたラットの V1 と V2 を含む切片標本を作製し、V1 から V2 への機能的神経結合を調べたところ、コントロー

2. 細胞系譜に依存した大脳皮質パラレル野の神経結合形成

大脳皮質ニューロンの細胞系譜と生後の神経結合形成の関係を明らかにするために、野生型マウスから樹立した iPS 細胞を蛍光タンパク遺伝子を導入し、この iPS 細胞を別の野生型マウスの胚に移植することにより、同じ神経前駆細胞から発生したと考えられるニューロン群が可視化されたマウスを用いて実験を行った。このマウスの大脳皮質パラレル野から切片標本を作製し、4 層の単一パラレル内にある 2 個の異所性細胞より同時ホールセル記録を行い、神経結合形成を解析した。細胞系譜が同じと考えられる細胞間では、発達初期（生後 9–12 日齢）では 4 分の記録細胞ベアに神経結合が見出され、発達後期（生後 13–16 日齢）では双方向性結合の割合が顕著に増加した。また、発達後期では双方向性に結合している神経細胞ベアで観察された興奮性シナプス後電流 (EPSC) の振幅は一方向性に結合するベアと比較して有意に大きかった。一方、細胞系譜が異なるベアから記録したところ、発達初期は細胞系譜が同じベアと同様な特性を示したが、発達後期においても双方向性结合の割合はチャンスレベルに近く、一方向性結合ベアと双方向性結合ベアとの間に EPSC の振幅に違いはみられなかった。以上の結果は、細胞系譜は出生後数の比較的遅い発達段階でのシナプス形成に影響することを示唆する。
3.4 心循環シグナル研究部門

2013年8月にスタートした心循環シグナル研究部門では、心血管組織の機能をストレス適応・不適応を制御するシグナル伝達機構の解析から明らかにしようとしている。今年度は、心不全の治療標的として定着したブリン作動性P2Y6受容体やTRPC3/6 チャネルの欠損マウスを用いて、これらの機械感受性機構および病態形成における役割解析を行った。さらに活性硫黄の体肺循環・代謝をもとに、全新しい生体レドックス制御システムの構築にも着手した。

1. 心血管リモデリングにおける機械感受性 TRPC チャネルの役割解析

初代培養心筋細胞・平滑筋細胞を用いた解析から、transient receptor potential canonical (TRPC) チャネル (TRPC3 と TRPC6 の ヘテロ 4 量体チャネル) が機械伸展刺激やずり応力により誘発される持続的な Ca\(^{2+}\) 応答を制御する仲介分子であることを示した。そこで、TRPC3 欠損および TRPC6 欠損マウスに大動脈狭帯による高血圧負荷を施したところ、メカニカルストレスによる代償性の心肥大は大幅に抑制された。リモデリング（線維化と拡張機能障害）が TRPC3 または TRPC6 の欠損により強く抑制されるものを示した。また、下肢虚血後の末梢循環に対する TRPC3/6 チャネルの効果を調べたところ、TRPC6 欠損マウスにおいて末梢血流が有意に回復することを示した。この機序として、TRPC6 が血管成熟を負に制御していること、内皮依存的緩和因子による TRPC6 のリシン酸化が血管平滑筋細胞の筋分化を促進させる（負の制御を解除させる）ことを明らかにした。

2. P2Y6 受容体による心筋細胞−細胞外基質間相互作用の生理的意義の解明

P2Y6 欠損マウスに大動脈狭帯による圧負荷を施したところ、野生型マウスと比べて顕著に突然死の割合が増加した。生きた P2Y6 欠損マウスも圧負荷 6 週間後の時点で著しい心機能低下（心不全）を起こしていた。ラット心筋由来 H9c2 細胞株に P2Y6 受容体を発現させ、機械的伸展刺激を行ったところ、強い Ca\(^{2+}\) 応答が観察された。この Ca\(^{2+}\) 応答は、P2Y6 受容体の細胞外基質タンパク結合 (RGD) ドメインに変異を与えることで有意に減弱した。以上の結果から、P2Y6 受容体 RGD ドメインがメカニカルストレスに対する心筋適応（保護）に必要となる可能性が示された。

3. 砂黄循環・代謝による心血管恒常性維持機構の解析

活性酸素によるタンパク質の酸化的翻訳後修飾は、秩序だった細胞内のシグナル伝達に臨らざをもたらす要因となる。我々は、硫化水素 (H\(_2\)S) がガスではなく、求核性の高いイオン (HS\(^{-}\)) として内因性および外因性の親電子物質の消去に働く可能性を報告した。しかし実際には、硫黄は体循環を介してグルタチオンなどのシステムチオール基と結合し、ポリ硫黄鎖を形成することで求核性の高いポリ硫黄を形成することがわかり、心臓へのポリ硫黄蓄積が心筋保護につながることが明らかにされてきた。
4 統合生理研究系

4.1 感覚運動調節研究部門

高次脳機能（顔認知など）に関連する脳反応、各種感覚や運動に関連する脳反応などを、各種ニューロイメージング手法（脳波、脳磁図、機能的MRI、近赤外線光法、経頭蓋電気刺激）を用いて研究している。2013年に発表した論文のうち代表的な2研究を紹介する。

他人の痒みを見たり、痒みを想像したりすると、痒くなったり、体を揺らしてしまったりする。しかし、その脳内メカニズムはわからていなかった。痒みを想像させる写真を見せたときの脳の活動を、磁気共鳴断層画像装置（fMRI）を使って調べた。その結果、痒みを想像できる画像を見たときには、感動をつかさどる島皮質の活動と、運動の制御や欲求をつかさどる大脳基底核の活動の間で相関性が高まったことを明らかにした。すなわち、島皮質と大脳基底核の機能的なつながりが強化され、それが原因で揺きたくなると考えられる。もしこのつながりを上手にコントロールできれば、アトピー性皮膚炎などで問題となっている制御困難な摂取欲求・摂取行為を制御する新たな治療法開発につながることが期待される。本研究は、ドイツのハイデルベルク大学との共同研究によるものである。中日新聞、日本経済新聞、共同通信など多くのメディアで紹介された。

よく知っている著名人の顔であっても、白目と黒目の明暗関係を反転させた目には誰の顔かわかりにくくなる（図1）。ブレア錯視（Tony Blair illusion）として知られるこの奇妙な顔は、乳児には‘顔’として見ているかどうかを、近赤外光放射法（Near-Infrared Spectroscopy：NIRS）を用いて計測した。その結果、(1) 正常な目の顔を認定しているときは脳活動が上昇したが、白黒反転目では上昇しなかった。(2) 正常な目を見ているとき、脳の右後側頭部が強く活動した。これらの結果は、生後5ヶ月以降になると乳児はヒト特有の白目・黒目をもつ顔だけを‘顔’として認識すること、その処理は脳の右半球で行われていることを示唆すると考えられた。今回の研究は、赤ちゃんの脳内でヒト特有の目に関する神経基盤を明らかにした世界で初めての研究である。なお、本研究は中央大学医学部との共同研究であり、朝日新聞など多くのメディアで紹介された。

図1 ブレア錯視
4.2 生体システム研究部門

脳をシステムとして捉え、大脳皮質・大脳基底核・小脳などが協調して働くことによって随意運動をコントロールしているメカニズムについて、頭蓋顔やげっ歯類を用い神経生理学的手法と神経解剖学的手法を組み合わせて解明しようとしている。また、これらの脳領域が脳内の意識障害の病態生理を明らかにし、さらには治療法を開発することを目指して、頭蓋顔やげっ歯類の疾患モデル動物、ヒト患者を用いて研究を行っている。

2013 年に発表した論文を紹介する。

パーキンソン病をはじめとするヒト大脳基底核疾患の治療として、大脳基底核に刺激電極を埋め込み高頻度連続電気刺激を行うという脳深部刺激療法（Deep Brain Stimulation, DBS）が行われている。しかし、連続刺激が局所の神経を抑制しているのか、興奮させているのかなど、その作用メカニズムについては不明なことが多い。今回サルの淡蒔球内節を刺激し、局所の神経活動を記録することにより、DBS の作用メカニズムを探った。淡蒔球内節の単発刺激では局所の神経活動が一時的に抑制され、高頻度の連続刺激では刺激期間中の神経活動が完全に抑制された。また、この抑制には GABA-A 受容体が関与していることが明らかになった。さらに大脳皮質を刺激すると、淡蒔球内節ニューロンは、早い興奮、抑制、遅い興奮からなる 3 相性応答を示すが（図 1 A）、高頻度刺激中はこのような 3 相性抑制は全く誘発されなかった（図 1 B）。このことから、淡蒔球内節脳深部刺激療法の作用メカニズムとして、局所の神経活動の抑制ばかりでなく、淡蒔球内節を通じる神経情報の遮断ということが考えられた。

図 1 A, 大脳皮質 (Cx) 刺激 (矢頭) によって淡蒔球内節 (GPI) に早期興奮、抑制、遅い興奮からなる 3 相性の応答が誘発された。B, これに GPI の高頻度刺激 (GPI 100Hz, 矢印) を加えると、自発神経活動ばかりでなく、大脳皮質刺激による応答も抑制された。C, 大脳基底核を巡らせる神経路経路に、刺激 (Stim.)、記録 (Rec.) 部位を示す。GPi, 淡蒔球外節；STN, 視床下核；Striatum, 線条体；Thalamus, 視床。物体の情報は、前頭前野背側部 (vPFC) に入力された後、背内側運動野 (dmMC) と背側前頭前野 (dPFC) を介して運動前野背側部 (PMD) に至り、最終的に運動コマンドになる。

大脳基底核を巡る神経路経路のうち、線条体から淡蒔球外節に投射する間接路の機能について、本経路にヒトインテロイキン 2 受容体を発現させた遺伝子変換マウスを用いて調べた。イムノキシオンを線条体に注入することにより、線条体一淡蒔球外節 (間接路) のみを除去すると、自発運動量が増加した。大脳基底核の出力部である黒質線条部の神経活動を記録すると、自発発射活動は変化しないが、大脳皮質刺激によって誘発される遅い興奮が減弱していた（図 2）。このことから、間接路が黒質線条部に遅い興奮をもたらし、運動を抑制していると考えられた。
図2 A. 正常では大脳皮質 (Cortex) からの情報は、大脳皮質-視床下核 (STN)-黒質網様部 (SNr) (ハイパー直接路) を介して黒質網様部に早疫黙蓄を誘導し、運動を抑制する (1)。次に大脳皮質-線条体 (Striatum)-黒質網様部 (直接路) を介して黒質網様部を抑制し、運動抑制を解除する (2)。最後に大脳皮質-線条体-淡蒔球外層 (GP)-視床下核-黒質網様部 (間接路) を介して黒質網様部に早疫黙蓄を誘導し、運動を抑制する (3)。B. 線条体-淡蒔球外層投射ニューロンを除去すると、黒質網様部での早疫黙蓄が消失し、運動を抑制することができず自発運動量が上昇する。
5 大脳皮質機能研究系

5.1 大脳神経回路論研究部門

大脳機能を支える局所神経回路の構成を調べることを目指して、これまでに大脳皮質の投射・介在ニューロンを、軸索投射・発火・物質発現のパターンから分類してきた。現在は、これまで同定してきた基本構成ニューロンから皮質回路が作られる原則や、局所回路と大脳システムの機能的つながりを理解することを目標にしている。特に、ニューロン種や局所回路結合にある階層性やサブネットワークの実体を明らかにしたいと考えている。今年度は、以下の研究を行った。

1. 電気結合 FS 細胞における錐体細胞からの興奮性入力の共有

大脳皮質の主要な GABA 作働性細胞である fast-spiking (FS) 細胞は相互に抑制することでなく、ギャップ結合で電気的につながったネットワークも形成している。従って、FS 細胞活動は興奮性シナプス入力と電気結合の両方に依存して決まると考えられる。FS 細胞の活動制御を理解するために、先ず、近傍錐体細胞から FS 細胞への興奮性入力パターンと、FS 細胞間の電気結合作用を脳切片標本でのペアー記録で解析した。

5 層の錐体細胞は corticopontine (CPn) 細胞と commissural (COM) 細胞という独立した二つの投射グループに分けられる。各 FS 細胞は CPn 細胞と COM 細胞の両方から収束的に入力を受けていた。一方、近傍 2 個の FS 細胞の単一錐体細胞からの入力様式を調べると、電気結合が見られるペアーと見られないペアーでは、樹状突起の近接度には差が見られないにもかかわらず、電気結合ペアーにおいて共通入力が多く見られた。また、FS 細胞が膜電位変動から発火すると、電気結合する別の FS 細胞には後過分極電位が主に伝播することで抑制を引き起こした。

次に、電気結合 FS 細胞ペアーへの共通興奮入力の意義をシュミレーションを使って理解するために、実験データに基づいた FS 細胞群の電気・化学シナプス結合回路網を構築した。このネットワークで電気結合 FS 細胞ペアーへの共通興奮入力の伝播様式を、FS 細胞の膜電位を変えて調べた。その結果、共通入力を受えた電気結合 FS 細胞ペアーが興奮することで、近傍の FS 細胞に膜電位が幅分極時には抑制性、また過分極時には興奮性の作用をした。

FS 細胞グループは広範囲の電気結合ネットワークを作っているが、電気的に直接繋がる細胞への共通興奮入力によって皮質状態に依存した、選択的な局所活動が生じ得ることがわかった。

2. 近傍・遠隔皮質間投射のニューロン構成と領域間結合選択性

新皮質による、線条体・視床・橋核・脊髄といった皮質下構造への出力形成を理解するには、皮質下投射ニューロンの領野内局所回路でのシナプス接続だけではなく、多様な領域間回路における結合も知る必要がある。しかし、そもそも新皮質の同側皮質間結合に関与する錐体細胞の機能的構成はあまりよく分かっていない。

そこで今回、前頭皮質領野間結合、前頭皮質・遠隔領野間結合に関与する錐体細胞の細胞体・軸索終末の層分布、及び皮質下構造へ投射するサブタイプの同側皮質間結合への関与を解析した。

皮質領野間は相互結合しているが、投射方向によって関与する錐体細胞の細胞体の層分布が異なっていた。前頭領野間では、皮質間投射細胞はどちらの方向でも 2/3 層、5 層の両方に分布していた。一方、遠隔皮質との結合では、2/3 層上部、または 5 層上部に限局しており、各方向の層分布は相補的になっていた。また、5 層錐体細胞が同側皮質間結合に関与する場合、その皮質下投射サブタイプの構成や軸索終末の層分布が皮質間方向に依存していた。前頭皮質内では、吻側から尾側領野方向への投射で、逆方向のものより、5 層上部の橋核投射細胞が関与する割合が高く、それらは尾側領野の 1 層上部でより多く投射すると考えられた。

これらの結果に基づいて、前頭皮質の領野間結合にトップダウン・ボトムアップ方向性を周り当てた。その上で、この領野間階層性と、私たちがこれまでに見つけてきた局所回路における階層的結合との関連を明らかにした。
5.2 心理生理学研究部門

認知、記憶、思考、行動、情動、社会能力などに関する脳活動を中心に、ヒトを対象とした実験的研究を推進している。脳神経活動に伴う局所的な循環やエネルギー代謝の変化をとらえる脳機能イメージング（機能的MRI）を中心に、高齢脳機能を動的かつ大気的に理解することを目指している。機能局在と機能連関のダイナミックな変化を画像化することにより、自己と他者との関係（社会的認知）にかかわる神経基盤を明らかにする。社会認知関連の研究を2例紹介する。

1. 向社会行動に関わる心の理論と共感

共感と温情効果の関係を調べるため、男女の被験者2人が他の男女の2人とボールを仮想的にトスし合うタスク（cyberball task）を課し、異性の一人がトスから排斥される状況を実験的操作により作り出した。共感が親密度に応じた差を行い、fMRI実験参加者として交際者を選定した。交際相手でも見知らぬ人でも、排斥されている相手へのトスが増えるとともに、線条体の有意な活動が見られたことを確認した。気違い行動中の線条体の活動は、親密者では感情的共感尺度と、非親密者では認知的共感尺度と相関した。このことから、向社会行動がその行為に伴うポジティブな感情（温情効果）により生起すること、温情効果が報酬系の一

2. 自己認知関連情動（恥ずかしさ）の神経基盤

他者との相互作用により生じる高次な社会的感情の一つである恥ずかしさの神経基盤を調べるために、「他者の目」を導入することで自己顔によって惹起される恥ずかしさ情動を操作し、その情動変化に応じた脳活動について機能的磁気共鳴画像法（fMRI）を用いて調べた。右側皮質の活動が自己意識情動と相関することを見出し、自己顔認知に伴う自己意識情動の神経基盤として島が重要であることが判明した。

文献

1. Kawamichi H, Tanabe HC, Takahashi HK, Sadato N (2013) Activation of the reward system during sympathetic concern is mediated by two types of empathy in a familiarity-dependent manner. Soc Neurosci 8(1)90-100.

6 発達生理学研究系

6.1 認知行動発達機構研究部門

認知行動発達機構研究部門では、児童類固有の精密な運動、特に眼球サッカーモートンと手指の巧緻運動を対象として、関与する神経回路の構造と機能、関連する様々な認知機能、さらには回路の一部が損傷を受けた際の機能回復機構について、主としてマカクザルを研究用動物として用い、様々な研究手法を統合して研究を進めている。具体的には、脊髄部損傷後の機能回復に関する言語、脳皮質の神経回路機構を長年研究してきたが、ここに近年、ブレイン・マシン・インターフェーズ (BMI) の手法を用いて、特に皮質脳波 (ECoG) 電極によって記録された脳皮質運動関連領域の活動から上肢筋の筋活動や上肢の軌道をデコーデする手法の開発や、損傷した部位をまたって脳皮質を直接制御することで重篤な麻痺の機能代行を行う「人工神経接続」という新しい BMI パラダイムの開発も進めている。また、一次視覚野が損傷を受けると反対側視野における「視覚的意識」が障害を受け続けるが、その場合でも訓練によって、障害視野に提示された対象に対して眼を向け、腕を伸ばすことが可能であるとされる「盲視 (blindsight)」の神経機構を、片側一次視覚野損傷サルを用いて解析している。一方で、このような「無意識の視覚一運動変換系」の中枢をなすされている中脳の上丘の局所神経回路を盲視類のスライスタンクを介して活発に解析している。2013年は、これまで脳科学研究情報推進プログラムや戦略的創造研究推進事業 (CREST) などで行われてきた外部との共同研究の成果が多く論文として発表される年となった。それ以外にも部門所属の研究者の研究中との共同研究や、転出した研究者が当該部門で行われていた研究の成果も論文として発表された。以下、その代表的な4編について概説する。

2013年に、ウィルスベクターの2重感染と Tet 系を用いて特定の神経回路の伝達を選択的に阻害する手法を開発し、サルの脊髄固有ニューロンが精密把持運動の制御に関与していることを示したが、この方法論の詳細は不明だった。今回、マウスにおいて頭部の指向運動を制御している上丘一側脳幹網様体運動路を主法を適用し、詳細な条件設定を行った。すると、ドキシサイクリン投与後1-2日に運動障害は出現し、3日後にピークを迎えるがその後回回の適応現象によって症状は軽減する。一方、遺伝子発現体自体でドキシサイクリン終了1か月近い経過で消失するということが明らかになった。

マカクザルの第5頸節で皮質脊髄路を損傷した後、一組はすぐにリハビリ訓練を開始、他の一組は1か月間麻痺肢を拘束訓練を開始した。両群の比較の結果、損傷直後から訓練を開始した群の方が3か月後の運動機能ははるかに良好に改善していたことから、初期のリハビリ訓練の有効性が証明された。

精密把持運動を行っているサルの頸節から spike triggered averaging 法によって運動ニューロンに直接接続していることが証明されている介在ニューロンから単一細胞活動記録を行って解析したところ、これらの介在ニューロンは手指運動の動的フェーズと持続フェーズの両方を制御していることが明らかになった。

手指の屈伸運動を遂行中のサルの一次運動野の単一細胞を行い、そのタイミングでトリガーして背画に電気刺激を加えたところ、特有のタイミングではその皮質ニューロンと上肢筋運動ニューロンとのシナプス結合の強度が強く spike-timing dependent plasticityを起こすことを見出した。
6.2 生体恒常機能発達機構研究部門

当部門では、発達期および障害回復期、および慢性疼痛などの病態変化の背景にある神経回路機能の再編成機構の解明を主なテーマに研究を行っている。本年度は主に以下の2項目を中心に研究を推進した。
1. 多光子顕微鏡を用いたin vivoイメージング法による発達・障害にともなう大脳皮質回路変化の観察
2. 抑制性神経回路機能の発達および障害による変化

特に、GABAおよびグリシン作動性回路の発達再編成に関する制御因子とその機序。さらに細胞内Cl⁻イオン調節機構に関する研究。

1. 多光子顕微鏡を用いたin vivoイメージング法による発達・障害にともなう大脳皮質回路変化の観察
これまでに、高齢老年症の長期観察を用いた研究で、各種細胞に発達したる体イオンの発達が観察されている。この観察において、大脳表面から1 mm以上の深部の大脳皮質全層にわたる全体像および1 μm以下の微細構造のイメージング法を確立するとともに、2ヶ月以上の長期間にわたる繰り返し観察を可能とした。これらの技術を利用し、本年は1)慢性疼痛モデルマウスにおいて、大脳皮質機能制御機能(Sta)のにおけるシナプス再編についてグリア細胞の関与について検討を加えてきた。末梢神経損傷による神経性疼痛モデルマウスでは、Staにおけるアストロサイトの活動が亢進していることが確認された。IP₃受容体ノックアウトマウスやBAPTAのアストロサイトへの選択的導入により、アストロサイトの活動(カルシウム上昇)を抑制すると、シナプスの新生・消失(ターンオーバー)の増加が抑制され、痛覚過敏も減弱した。さらに、慢性疼痛発症モデルではGabapentinを投与するとシナプストーンオーバーの増強が抑制された。Gabapentin受容体の内因性アゴニストであるトロンポソピンのアストロサイトでの発現が慢性疼痛時には大脳皮質Staに増加していることが確認された。以上のことから、末梢神経損傷によりStaのアストロサイトの活性が上昇し、トロンポソピンの放出を促進し、シナプスの新生の増強を介して神経回路の再編促進し、銃消刺激に対して過剰に応答する回路が形成されることが判明した。

2. 抑制性神経回路の発達および障害における変化
神経伝達物質のGABAからグルタミンスのメカニズム解明の一環として、GABAとグルタミンスが共に出されている骨髄培養細胞を用いた検討を行った。伝達物質がGABAからグルタミンスへ変化に際しておくるシナプス後膜のグルタミンス受容体の動態変化を検討するため、Q-dot(量子ドット)を用いたライフサイクルイメージングを開始した。まず、モデル系として骨髄培養神経細胞を対象に選択的グルタミンス受容体阻害剤を用いて検討をしたところ、たとえ成熟した神経細胞であっても、グルタミンス神経伝達の有無に応じて、シナプスにおける同受容体の動態が変化する結果を得た。従来、同受容体の局在は発達期における受容体の活性の有無や神経活動によって規定される考えられてきたが、我々の研究から、成熟した神経細胞においても受容体の局在が変化することが示唆されたことから、今後はそのメカニズムについて明らかにしたいと考えている。

また、GABAの脱分極一過分極を細胞特異的および時期特異的に制御可能なKCC2-tetOマウスを用いて、性腺刺激ホルモン放出ホルモン(Gn-Rh)神経細胞の活動制御によるLHのパルス状分泌を解析制御について、浜松医科大学と共同研究を行い、GABAは排卵のリズム調節に関与することが判明した。
6.3 生殖・内分泌系発達機構研究部門

当研究部門では、生体恒常性維持に関わる摂食・代謝調節機能に焦点を当て研究を行っている。本年度は以下の項目について研究を推進した。

1. 骨格筋と肝臓の糖代謝に及ぼす視床下部腹内側核の調節作用

血糖値をコントロールするためには、運動、そして食事が大事であり、肝臓のβ細胞から血中に分泌されるインスリンがその調節に重要である。しかし、近年、血糖の利用を調節する器官として、脳、とりわけ視床下部が重要であることが明らかとなった。例えば、脂肪萎縮症（脂肪組織が先天的、後天的に萎縮する）の患者は、重度の糖尿病を発症し、インスリンもほとんど効果が無い場合がある。しかし、脂肪細胞から産生されるホルモン、レプチンを投与すると、糖尿病が著しく改善する。現在では、脂肪萎縮症の糖尿病治療薬として、レプチンが臨床で用いられている。しかし、レプチンが脳に作用し、どのようにして糖代謝を調節するかは、ほとんど解明されていない。これまで、同部門では、レプチンが視床下部腹内側核（VMH）に作用し、骨格筋、心臓、褐色脂肪組織での糖の利用を促進することを明らかにして来た。

今回、同部門の戸田研究員（NIPS リサーチフェロー）は、骨格筋と肝臓での糖代謝を調節する VMH でのレプチンの作用機構を明らかにした。戸田研究員は、無麻酔、非拘束下のマウスにおいて、レプチンによる糖代謝調節機構を Hyperinsulinemic-Englycemic clamp 法を用いて調べた。その結果、全身に投与したレプチンは、VMH ニューロンに直接作用して ERK1/2 と STAT3 を活性化し、それぞれ骨格筋と肝臓におけるインスリンによる糖代謝調節作用（インスリン感受性）を高めることを見出した。レプチンは、ERK1/2 や STAT3 を介して VMH におけるシナプス可塑性を変化させることにより、骨格筋と肝臓での糖代謝を制御することが示唆される。

レプチンによる血糖調節作用の特長は、インスリンと異なり、低血糖を引き起こさないことである。本研究において、このレプチン作用に関する重要な知見が得られた。すなわち、食事直後に著しくインスリン血症の時においてのみ、レプチンは肝臓でのインスリン感受性を高め、糖利用を高めた。これに対して、血中インスリン濃度が食前のような低濃度においては、レプチンは肝臓からの糖利用を促進せず、むしろ糖放出を高めた。このようにレプチンによる肝糖代謝への調節作用は血中インスリン濃度に依存して変化し、低血糖を防止することが明らかとなった (Toda, C et al, Diabetes 2013, 昭和大学と北海道大学との共同研究)。

2. レプチン欠乏型糖尿病の代謝異常に及ぼす骨格筋 AMPK の調節作用

腸β細胞が破壊されることによって引き起こされる糖尿病は、インスリン療法を行わないと、高血糖、ケトアシドーシスを引き起こして死に至る。本研究では、エネルギー摂入によって活性化した糖・脂質代謝を調節する AMPK の機能を調べた。その結果、ストレプトゾトシン (STZ) を投与したインスリン欠乏型糖尿病 (STZ 糖尿病) において、骨格筋 AMPK が著しく活性化することを見出した。そこで活性抑制型 AMPK を骨格筋選択的に発現させたところ、AMPK の下流シグナルが骨格筋において抑制されなくなれて、STZ 糖尿病の高血糖、高脂肪酸血症、高中性脂肪血症、高ケトン体血症は改善し、体重減少、骨格筋、白色脂肪組織の萎縮が改善した。さらに、死亡率が著しく低下することを見出した。このこと、STZ 糖尿病の代謝異常の原因が単にインスリン欠乏によるのではなく、それによって引き起こされる臓器間相互調節作用の破綻によることを示唆する。
7 行動・代謝分子解析センター

7.1 遺伝子変動動物作製室

遺伝子変動動物作製室では、ラットにおける遺伝子変動技術の革新に挑戦しつつ遺伝子変動マウスを用いた脳機能解析も推進しており、同時に遺伝子変動動物作製に関する情報ならびに技術の提供も行っている。ここでは 2013 年に発表した論文 6 編のうち、効率的に生殖系列キメラ作製できる ES 細胞株を開発するため取り組んだ、ラット ES 細胞株の生殖系列への寄与条件に関する後方視的解析に関する 1 編の概要を紹介する。

ラットでは体細胞核移植や 4 倍体胚補完によって個体を作製する技術が未確立であることから、現時点では ES 細胞の遺伝形質だけを備えた個体を得にはキメラを作製して野生型ラットと交配するというコンベンショナルな方法を採用するしかない。本実験では、3i 培地 (SU5402, PD0325901, CHIR99021) で樹立した 4 系統 7 ライン、2i 培地 (PD1843521, CHIR99021) で樹立した 3 系統 4 ライン、2i + Forskolin 培地で樹立した 3 系統 5 ラインの ES 細胞株を対象に G1 世代への伝達を調べ、その成否に基づき、ラット ES 細胞株の生殖系列寄与に関わる条件を後方視的に解析した。使用ラット系統には、WI ならびに CAG/venus-Tg、近交系 F344（以上アルピノ個体）、BN, DA ならびに WI × DA の F3 以上の世代から有毛個体を選抜した BLK、が含まれる。全 16 ライン中 11 のラット ES 細胞株で生殖系列への寄与が確認できた (69%)。樹立培地別に見ると、3i 培地、2i 培地、2i + Forskolin 培地でそれぞれ、4/7 (57%), 2/5 (40%), 5/5 (100%) となった。

3 種類の培地全てで樹立を試みた CAG/venus-Tg ラット由来ラインでは、2i + Forskolin 培地で樹立したラインでのみ G1 世代への伝達が起こったが、この少数例のデータを元に Forskolin の効果を強調し過ぎるべきではない。有毛のグループとアルピノのグループ間の比較では、寄与率はそれぞれ 4/6 (67%), 7/11 (64%) となった。ES 細胞株の Genotype も伝達への影響条件ではなさそうである (XX: 67%, 2/3, XY: 64%, 9/14)。

また、BLK 由来 ES 細胞株からのキメラ度（アルピノに占める黒毛色の割合: 60～90%) と伝達度 (G1 産仔あたりの Positive 個体の割合: 0～65%) には相関は認められなかった。

7.2 行動様式解析室

行動様式解析室では、各種遺伝子変動マウスに対して網羅的行動テストパッケージを行うことで精神疾患様行動を示すマウスを同定し、そのマウスの脳を解析することによって遺伝子と行動・精神疾患の関係、さらには精神疾患の表現型を明らかにすることを目指している。

2013 年は防衛研究のため 8 月までは一時移転先である山手地区において業務を実施し、その後、明大寺地区に再移転をした。移転に際しては施設の構成基盤後の全ての装置のセットアップを行っている。移転作業中はマウスを維持することができないため、一部のマウスについては連携先の藤田保健衛生大学へ移動して実験を継続するなどの対応を行った。本年度は研究用所外 10 件、所内 1 件の共同研究を行っている。マウス数は 6 系統のマウスに対して網羅的行動テストパッケージによる解析を行ったのに加え、7 系統の遺伝子変動マウスあるいは薬物投与マウスについても複数の行動テストによる解析を行っている。その中でも行動解析により新しく同定した統合失調症モデルマウスである Schnurri-2 遺伝子欠損マウスの表現型は特筆すべきものであった。このマウスは、行動表現型および脳内の表現型が統合失調症に酷似しており、これまでにない優れた統合失調症モデルマウスと考えられる。2013 年にはこの Schnurri-2 遺伝子欠損マウスについての論文 (Takao et al., Neuropsychopharmacology, 2013) を含め、マウスの行動解析論文として 8 報を発表している。一般的な行動解析を用いた研究の問題点として、行
7.3 代謝生理解析室

代謝生理解析室は、2010年に発足、2011年に計画共同研究「マウス・ラットの代謝生理機能解析」を開始した。同室では、生理学内外の研究者が作成、保有する遺伝子変異動物を用いて以下の項目を測定している。

1) 運動系を中心とした覚醒下での単一ニューロン活動などの神経活動の計測。
2) 自由行動下における脳内特定部位での神経伝達物質の分泌計測。
3) フラビン及びヘモグロビン由来の内因性シグナルを利用した脳領域活動と膜電位感受性色素を用いた回路活動のイメージング。
4) 自由行動下における摂食、エネルギー消費の計測。
5) 自由行動下における体温、脈拍数、血圧の計測。

本年度は、外部機関と8件の共同研究、生理研内部において1件の共同研究を実施した。その中で、遺伝子変異マウスにイムノトキシンを注入し、大脳基底核の神経回路のうち線条体-脳척外縁路（間接路）を選択的に除去すると、黒質網様部で観察される大脳皮質由来の遲延興奮が減弱するとともに、自発運動が増加することが、福島県立医科大学と京都大学との共同研究により報告された。このことは、間接路が黒質網様部に遅延興奮をもたらし、運動を抑制することを示している。また、炎症性サイトカインである上皮成長因子EGFを若年期ラットに暴露すると統合失調症症状が現れると同時に、脳神経外縁ニューロンの活性性が亢進することが新潟大学との共同研究によって明らかとなった。このことは、大脳基底核が精神疾患の病態に関わる可能性を示唆するものである。

*1 http://www.mouse-phenotype.org/software.html
8 脳機能計測・支援センター

8.1 形態情報解析室

形態情報解析室は、1) 国内唯一の医学生物学専用超高圧電子顕微鏡 H-1250M（日立製）を使用した超高圧電子顕微鏡共同利用研究、2) 生理研の独自開発技術による位相差低温電子顕微鏡（日本電子製 JEM2000FS をベース作製）、ならびにアジア・オセアニア地区で唯一稼働するダイヤモンドナイフ切断型連続ブロック表面 SEM などの最先端機器を用いた計画共同研究「先端電子顕微鏡の医学・生物学応用」、そして、3) その他の電子顕微鏡観察やその画像解析を中心とした一般共同研究、これらを国内外の研究機関から広く募集し実施している。

超高圧電子顕微鏡においては、前年度末に念願のデジタルカメラが導入され、これにより連続傾斜像の撮影や凍結試料からのクリオ観察が可能に行えるようになった。そして、これを利用して細胞の三次元形態解析や無染色・無固定の高分解能構造解析が行えるようになった。2012(平成 24) 年度の共同利用研究は、これら3つの課題を中心とした、外国からの 3 課題を含む合計 17 課題が採択され、実施された。

位相差低温電子顕微鏡においては、JST の研究成果を最適展開支援プログラム A-STEP の支援を受けて、エアロック式位相板ホルダーがテラベース株式会社によって開発されて導入された。そして、これまで 2 日かかっていた位相板交換が数時間で行えようになった。このことにより、無染色・無固定の生物試料の位相差観察が非常に効率よく行えるようになった。本年度、この位相差観察を用いた採択共同研究申請は 9 件あり、これ以外にも 6 件の共同研究が行われた。

連続ブロック表面 SEM は、昨年度導入された Sigma/VP-3View（Zeiss/Gatan 製）に加えて、さらに長時間、高分解能で連続画像取得が行える Merlin-3View（Zeiss/Gatan 製）が導入され、本年度から本格的に共同研究機器として使用されるようになった。当室が所内対応者となって採択された共同研究は 6 件あり、これ以外にも研究や新規申請の問い合わせが 10 件以上あった。

一般共同研究では、上記の専門的な共同研究以外に、これまで電子顕微鏡の検証のない研究者に対しても一から支援を行い、電子顕微鏡研究の裾野を広げる活動を行っている。

8.2 生体機能情報解析室

運動制御や学習や睡眠などの中枢神経機構を解明する目的で、無麻酔のサルの脳活動を様々な状況下で記録解析した。まず、ケージ内で自由睡眠中のサルの大脳皮質フィールド電位をテレメーターによって記録する研究を行った。目的は、眠り状態における睡眠時録波の時間的な分布・構造を調べることである。睡眠時録波は学習や記憶の固定に関係するという説があるが、そのリズム発生源や皮質電流発生源の分布などの基本的な性質については未定の点多く、その発生の神経機構は解明されていない。これらを解明するために脳内電極による研究が最適であるが、ヒトでは睡眠時録波は発症した脳障害者が限られた例でのデータしか得られなかったため、サルでの研究が有意義であると考えられた。記録解析の結果、睡眠時録波を発生する皮質域が複数あること、その皮質域に中心周波数が異なること、複数の皮質域に睡眠時録波が一定の法則の下に相互に関連したタイミングで発生していることなど新知見が得られた。結果は日本神経科学研究会において発表した（Takouchi et al.）。これらの結果からまず睡眠時録波の発生機構が全解明されるものではないが、その基礎となる結果を得た。今後さらに実験を継続する予定である。また、この研究が平行して、覚醒中的運動活動と脳活動の観察を記録し、判断や評価などに関する脳活動解析の実験を行った。成功と失敗、報酬の多寡などを評価し判断することは、睡眠障害が発症する前にあらかじめその出来ない可能性を理解することを目的とする。このように、神経活動に関わる脳活動が大脳皮質のどの部分にどのように変化するかを解析した。現在、結果を解析中である。このように、睡眠障害の脳波直接電気記録しかなければ解明が困難と思われる事案について、研究を行ってきた。
8.3 多光子顕微鏡室

多光子顕微鏡室では、現在3台の2光子励起顕微鏡と2台の2光子蛍光寿命イメージング顕微鏡を管理しており、所内での共同研究を推進している。

多光子顕微鏡として、これまでに脳内血管・血流のイメージング技術の確立を行い、血流の広範囲同時観察や血流定量的解析法による血管作業の評価法の確立を行ってきた。さらに最近、世界最先端技術である2光子蛍光寿命イメージング顕微鏡システムの構築を行った。この顕微鏡は従来の2光子顕微鏡に蛍光寿命測定装置を組み込んだもので、組織深部の生きた細胞の形態だけでなく、細胞同の相関作用や細胞活性状態の可視化を可能にするものである。現在、この装置を用いた共同研究として、心筋細胞における低分子量Gタンパク質の活性化や皮質細胞における微小管結合タンパク質活性化のイメージング、神経細胞内での輸送RNA構造変化のイメージング等を行っている。また現在までに、異なる2波長のレーザーによる2光子励起システム（ツインレーザーシステム）の高度化を行いつ、イメージングをしながら光感受性化合物の2光子励起による活性化を可能にするための技術構築を行ってきたが、これに加えて、独自に光制御可能なタンパク質分子や新規蛍光タンパク質を遺伝子工学的に作製することも成功している。このような光応答性分子を2光子励起で局所的に活性化させたり、不活性化させたりすることで、細胞、分子操作を可能にすることを目指している。

機器に関する問題点として、多光子励起法を用いたイメージングや操作の精度・効率の心臓部機器である6台の高出力フェンプミナタラスレーザーの内で、初期に導入した物は7年を経過し、さらに、共同研究などによる使用時間が1万時間を超えている。そのため、頻繁にレーザー内部の調整を試みているが次第に出力レーザーパワーラが落ちてきている。近々、コア部品の取り替えなど、大規模な修理が必要になることが予想される。

8.4 電子顕微鏡室

電子顕微鏡室は、生理学研究所と基礎生物学研究所の共通実験施設で、透過型および走査型電子顕微鏡、生物試料作製機器、画像処理機器などが整備され、電子顕微鏡の試料作製から観察、画像処理、作画までの一連の工程が行えるようになっている。

現在、電子顕微鏡としては、明大寺地区には透過型電子顕微鏡1台、走査型電子顕微鏡1台、ディラミクスナノプロファイル測定システムSEM（呼称3D-SEM）2台、走査型電子顕微鏡2台（施設所有のものが1台）、走査型電子顕微鏡1台、ディラミクスナノプロファイル測定システムSEM（呼称3D-SEM）2台、走査型電子顕微鏡1台、ディラミクスナノプロファイル測定システムSEM（呼称3D-SEM）2台を稼働している。本施設は、両研究所の顕微形態解析の中心として多くの研究者に利用され、脳科学をはじめとする最先端の研究に寄与している。2013年（平成25年）年度における主な変更点として、明大寺地区では、電子顕微鏡室が耐震工事のため本年度中閉鎖されているため、機器はそれぞれ高圧電顕鏡、基研本棟内、山手電顕鏡に移設して維持管理されている。

山手地区においては、前記の3D-SEM2台（SIGMA/VP, MERLIN）が共同研究機器として本格的に稼働を始め、前年度に導入されたライカ製ウルトラミクロトーム（EM UC7）がこれに付随する設備としてフルに活用されている。さらに、3D-SEMのためのデータサーバーの運用を行っている。

電子顕微鏡室の活動としては、前年同様に、液体窒素の取り扱いや試料作製のための講習会などが行われた。また、電子顕微鏡室機器マニュアルの充実や外国人研究者のための利用改善、電子顕微鏡に関する最新技術の紹介等、利用に対するサービスの充実を図っている。
9 岡崎統合バイオサイエンスセンター

9.1 生命時空間設計研究領域 神経分化研究室

本研究グループは、体制が比較的単純な脊椎動物であるゼブラフィッシュを用いて、脊髄神経回路の発生機構および回路機能の解析を行っている。胚期、幼生期初期には、ゼブラフィッシュの体はほぼ透明である。この利点を生かし、蛍光タンパク質を特定のクラスの神経細胞に発現させ、それら神経細胞を生きたまま可視化することを研究手法の中心に据えて研究を進めていいる。2013年度は、後脳に存在するchx10を発現する神経細胞の機能解析を、チャネルロドプシンやハロロドプシンなどの光遺伝学ツールを利用して進め、これら神経細胞が幼魚の遊泳運動を駆動するのにきわめて重要な役割を果たしていることを明らかにした。また、脊髄発生期に、脊髄側面でドメイン様に発現する複数のトランスジェニックを用い、脊側の脊髄神経発生様式の詳細を明らかにした。
第Ⅴ部

業績リスト
1 分子生理研究系
1.1 神経機能素子研究部門

A. 英文原著

D. 研究関係著作

1. 中村亮一, 久保義弘 (2013) 電位依存性カリウムチャネル KCNQ1 の複合体ストイキオメトリーと機能制御機構. 生物物理 53:313-316.

1.2 分子神経生理研究部門

A. 英文原著

D. 研究関係著作

2. 等誠司, 清水健史, 池中一裕 (2013) 免疫性神経疾患における神経幹細胞と再生戦略. 日本臨床 71(5):795-800

2 細胞器官研究系
2.1 生体膜研究部門

A. 英文原著

2.2 細胞生理研究部門

A. 英文原著

D. 研究関係著作
7. 富永真琴 (2013) TRP チャネル (TRPV1, TRPA1) の慢性疼痛への関与と鎮痛. 臨床整形外科 48:1175-1178.

3 生体情報研究系
3.1 感覚認知情報研究部門
A. 英文原著

C. 英文総説（査読あり）

D. 研究関係著作

3.2 神経シグナル研究部門
A. 英文原著

D. 研究関係著作

E. その他

3.3 視覚情報処理研究部門（旧名 神経分化研究部門）

A. 英文原著

3.4 心循環シグナル研究部門

A. 英文原著

C. 研究関係著作

D. 研究関係著作

2. 西田基宏, 澤智裕 (2013) 穂化水素アノンによるレドックス恒常性制御とその臨床応用. 生化学 85:996-999.

4. 統合生理研究系

4.1 感覚運動調節研究部門

A. 英文原著

C. 英文論説（査読あり）

D. 研究関係著作

1. 柿木隆介 (2013) 第6章 痛みの仕組みと心身相関. “ここまでわかっした心身相関” (久保千春 編). 診断と治療
生体システム研究部門

A. 英文原著

B. 英文総説（論文あり）

D. 研究関係著作

5 大腦皮質機能研究系

5.1 腦形態解析研究部門

A. 英文原著

5.2 大腦神經回路論研究部門

A. 英文原著

5. Otsuka T, Kawaguchi Y (2013) Common excitatory synaptic inputs to electrically connected cortical

C. 英文総説（読取り）

D. 研究関係著作

5.3 心理生理学研究部門

A. 英文原著

D. 研究関係著作

6 発達生理学研究系

6.1 認知行動発達機構研究部門

A. 英文原著

7. Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial cor-

B. 和文原著

C. 英文総説（查読あり）

D. 研究関係著作

6.2 生体恒常機能発達機構研究部門

A. 英文原著

C. 英文総説（査読あり）

6.3 生殖・内分泌系発達機構研究部門

A. 英文原著

C. 研究関係著作

D. 研究関係著作

7 行動・代謝分子解析センター

7.1 遺伝子変動動物作製室

A. 研究原著

7.2 行動様式解析室

A. 英文原著

C. 英文総説

D. 研究関係著作

2. 宮川剛, 高雄啓三 (2013) 腦の高次機能 7 遺伝子と行動。改訂第3版 腦神経科学イラストレイテッド (真鍋俊也, 森寿, 渡辺雅彦, 岡野栄之, 宮川剛 編), 羊土社, pp 258-268.

8 脳機能計測・支援センター

8.1 形態情報解析室

A. 英文原著

D. 研究関係著作

8.2 ウィルスベクター開発室

A. 英文原著

C. 英文総説

9 岡崎統合バイオサイエンスセンター

9.1 神経分化研究室

A. 英文原著

9.2 細胞生理研究部門

p. 150 参照

10 動物実験センター

A. 英文原著

B. 和文原著論文

11 個別研究

11.1 村上準教授

A. 英文原著

B. 研究関係著作

11.2 毛利助教

A. 英文原著

12 特別研究

12.1 永山國昭特任教授研究室

A. 英文原著

E. その他
12.2 岡田名誉教授研究室

A. 英文原著

D. 研究関係著作

E. その他

第 VI 部

資料：研究、広報など
１ 共同研究および共同利用研究による顕著な業績

(神経分化研究部門)
生後発達期の大脳皮質にはサイレントシナプスと呼ばれる、シナプス後部にNMDA 受容体のみが存在し、AMPA 受容体を欠く興奮性シナプスがある。生後直後の暗室飼育により視覚入力を遮断すると成熟した大脳皮質においてもサイレントシナプスが残存することを見出した。

(感覚運動調節研究部門)
中央大学文学部との共同研究
人間の眼の特徴は、白目部分が大きく、白黒のコントラストが明確な事である。そのため、白目と黒目を入れ替えた画像を作成すると、非常に奇妙な顔画像となる。このような顔画像を乳児が顔として認識するかどうかを、近赤外線分光法 (NIRS) を用いて検査したところ、乳児は白目一黒目入れ替え画像に対しては顔反応が見られなかった。乳児にとって、白目と黒目のコントラストが重要であることを示唆する所見であった。

信州大学医学部との共同研究
ニコチンには聴覚、視覚変化を脳内で前注意的に検出する過程を増強する作用があることが知られている。体性感覚変化においても同様な作用がニコチンにあるかどうかを、脳磁図 (MEG) を用いて検査したところ、ニコチンは体性感覚変化に伴う脳反応を増強した。感覚変化の前注意的検出過程に対するニコチンの増強作用は、すべての感覚系に共通することを示唆する所見であった。

神戸大学文学部との共同研究
視覚配線経路の視ニューロンと同じく、視覚脳内経路にはナイフやハンマーといった道具刺激 (manipulable objects) により強い反応を示すニューロンの存在が示唆されている。先行研究は主に脳損傷患者を対象としてきたが、本研究では健康人を対象とし、この道具選択的反応の有無を検討した。脳磁場信号を誘発波形・周波数波形の両面から解析したところ、脳間経路の道具選択性を支持する結果を得た。

早稲田大学スポーツ科学学術院との共同研究
野球部や少年野球クラブに所属している 164 名の小中学生を対象とし、ボールの投球速度、打球速度に関係する身体・体力要素を明らかにした。それぞれの被験者から、身長、体重、BMI、月年齢、野球経験月数、立ち幅跳び、反復横跳び、シットアップ、10 m スプリント、長距離走、背筋力、左右の握力を記録した。重回帰分析の結果、ボールの投球速度には、月年齢、BMI、立ち幅跳び、10 m スプリント、握力が統計学的に有意に関係し、打球速度には、月年齢、BMI、立ち幅跳び、背筋力が関係していることがわかった。

1911 年から 1980 年に生まれたプロ野球選手 (4,259 名) を対象とし、相対的年齢効果を検討した。日本では学校やスポーツの
制度を4月開始にしているため、相対的年齢として4.6月生まれをQ1、9月生まれをQ2、10.12月生まれをQ3、13月生まれをQ4と分類し、解析を行った。その結果、1910年代生まれから統計学的に有意な効果が認められ、特に1940年代以降はその効果は強まった。社会文化的な要因により、時代とともに相対的年齢効果が変化していることが明らかになった。

早稲田大学高等研究所との共同研究

課題遂行に伴うヒト脳活動や脳領域間結合状態の変化はよく知られているが、脳がネットワークとしてどのように働くかは不明である。そこで本研究ではネットワーク解釈法を用いて課題遂行中のヒトの脳活動データに適用した。その結果、注意指向中には前頭頂野周辺に情報処理の中心となるハブが認められ、また周辺的な機能分散性は減少した。以上より、ネットワークの動的機能特性という新たな観点からヒトの脳機能を検証可能と考えられた。

千葉大学医学部との共同研究

皮膚からの感覚入力は受容野毎に異なる一つ性感覚野(S1)の領域に投射し、S1には体表地図が描かれる(体部位再現)。本研究では脳活動を用いて、侵害情報処理に関するS1での体部位再現を検討した。体表の5箇所に侵害刺激(表皮内電気刺激)を加えS1の活動部位を観察したところ、触覚同様の明確な体部位再現が認められた。侵害刺激処理においてもS1が判別的側面に重要な役割を果たすことを示している。

愛知心身障害者コロニーとの共同研究

ウィルス症候群(WS)は視覚認知の脳側面機能に比し顔認知等の脳側面機能は比較的保たれているものの、必ずしも健康でなく、顔の全体処理の成立の指標となる顔側立効果を認めないとする報告もある。本研究では脳活動および脳波により、10代のWS患者における顔側立効果の出現の有無を検討した。その結果、顔側立効果の出現には個人差があり、個々の患者における視空間認知能力の発達レベルが影響する可能性が示唆された。

金城学院大学との共同研究

自発運動の際には特有の脳活動が脳波や脳磁図で明瞭に記録される。本研究では示指を自己ベースで運動させた際の運動関連脳磁図の起始について検討した。運動関連脳波の連続する3成分はいずれも中心前頭に起源が推定され、正中神経刺激による3b野の活動部位の外側に、5野及び第二次性感覚野の上前方に位置した。つまり、第一次運動野の活動であることが明瞭に示された。自発運動に関わる神経回路の決定に重要な知見である。

（生体システム研究部門）
共同研究者：小林和人教授（福島県立医大）、志賀富貴雄教授（京都大学）

遺伝子変異マウスを用いて、大脳基底核の神経回路のうち線条体-淡蒼外側路（間接路）のみをイムノトキシン注入により除去したところ、黒質網様部で観察される大脳皮質由来の興奮が減衰するとともに、自発運動が増加した。このことは、間接路が黒質網様部に興奮をもたらし、運動を抑制していることを示している。

共同研究者：波呂宏之教授ほか（新潟大学脳研究所）

(行動・代謝分子解析センター・行動模式解析室)
共同研究者：木下専教授（名古屋大学）

(生命・内分泌系発達機構研究部門)

共同研究者：木下専教授（名古屋大学）

バーキンソン病患者の死後脳で蓄積が見られるSept4を過剰に発現させたマウスの脳では神経変性は見られなかったが、このマウスでは活動性の低下などの行動異常が見られた。神経変性がなくとも過剰なSept4の存在は脳機能に影響を与えることが明らかとなった。

共同研究者：五十嵐道弘教授（新潟大学）

SNARE機能を失活するSNARE蛋白質の1つで、形質膜に存在するsyntaxin-1AのCaMKIIとの結合に必須のアミノ酸を置換した点変異マウスの解析を行った。このマウスでは神経伝達の可塑性が亢進しており、行動レベルでは過活動や不安様行動の低下、作業記憶の低下などが見られた。

2 機構内連携
自然科学研究機構プロジェクト「脳神経情報の階層的解析」「機能生命科学における揺らぎと決定」合同シンポジウム

日時：2014年2月27日（火）
場所：生理学研究所（明大寺地区）1階 大会議室

会議は「脳神経情報の階層的解析」、鈴倉淳一（生理学研究所・生体恒常機能発達機構研究部門）

「機能生命科学における揺らぎと決定」久保義弘（生理学研究所・神経機能素子研究部門）
第１部「脳神経情報の階層的研究」
「イントロダクション」 鶴倉淳一（生理学研究所・生体恒常機能発達機構研究部門）
「変化関連活動」 乾幸二（生理学研究所・感覚運動調節研究部門）
「脳幹損傷後の機能回復に関する脳皮質運動野と側坐核との機能連関」西村幸男（生理学研究所・認知行動発達機構研究部門）
「神経活動依存性脳制御機能とその破綻による精神疾患の可能性」和気弘明（基礎生物学研究所・光脳回路部門）
「シナプス内シグナル分子の活性化イメージングと光操作」村越秀治（生理学研究所・多光子顕微鏡室）
「位相差電子顕微鏡による AMPA 型グリタミン酸受容体機能構造の可視化」永山國雄 村田和義（生理学研究所・特別研究・形態情報解析室）
「脳分子ダイナミクスから読み解くシナプス伝達制御機構」坂内博子（名古屋大学大学院理学研究科）

第２部「機能生命科学における挑戦と決定」
「イントロダクション」久保義弘（生理学研究所・神経機能素子研究部門）
「脳振動、発音と前頭葉における行動調節」虫明元（東北大学大学院医学系研究科・生体システム生理学分野）
「細胞内シグナル伝達系における脳と神経の階層化」上田昌宏（大阪大学大学院理学研究科・理化学研究所・生命システム研究センター）
「G 構造とシグナルニングの機能による心臓のストレス適応と不適応の調節機序」西田昌宏（統合バイオサイエンスセンター・心循環シグナル研究部門）
「イオンチャネル複合体のストイキオメトリの解読と動的構造変化」中條浩一久保義弘（生理学研究所・神経機能素子研究部門）
「マウス初期胚における発音」藤森俊彦（基礎生物学研究所・初期発生研究部門）
「複雑な自然画像から規則性を見つけ出す脳の働き」小松英彦（生理学研究所・感覚認知情報研究部門）

3 自然科学研究機構 新分野創成センター シンポジウム

3.1 自然科学研究機構新分野創成センターシンポジウム 大規模脳神経回路機能マップのその先

日時：2014年1月12日（日）10:20〜18:10
場所：星陵会館 ホール（東京都千代田区永田町2丁目16-2）

【主催】自然科学研究機構 新分野創成センター
【共催】自然科学研究機構 生理学研究所 多次元共同脳科学推進センター
【後援】文部科学省、日本脳科学関連学会連合、包括型脳科学研究推進支援ネットワーク

開会挨拶 官下保司（東京大学大学院医学系研究科・新分野創成センター）
セッション１「革新的技術による脳機能ネットワークの全容解明プロジェクトとは」
1. 「大規模神経回路の計測技術の現状と展望」岡部繁男（東京大学大学院医学系研究科・新分野創成センター）
2. 「神経回路の高速スリップデータ解析と大規模シミュレーション」石井信（京都大学大学院情報学研究科）

セッション２「革新的技術開発と脳機能ネットワークの全容解明からの基礎研究における波及効果」
3. 「脳活動情報マッピング法によって解明された観覚入力による多様な恐怖情動」小早川令子（大阪バイオサイエンス研究所）
4. 「ECoG 電極を用いた皮質モジュール間ネットワーク解析」藤井直敬（理化学研究所 脳科学総合研究センター）
5. 「大脳皮質の神経細胞の活動の重要な記録に向けて」大木敏一（九州大学大学院医学研究科）
6. 「大脳皮質のニューロナライシングと結合マッピング」川口泰雄（自然科学研究機構 生理学研究所）
7. 「脳の可塑性と操作、そして自発性」池谷裕二（東京大学大学院薬学系研究科）
8. 「行動・学習中での大脳多細胞・多シナプスの活動の理解に向けて」松崎政理（自然科学研究機構 基礎生物学研究所）
9. 「視覚類認知ゲノミクスと精神・神経疾患をターゲットとした視覚類モデル動物の探索」郷康広（新分野創成センター）
10. 「情報処理システムとしての脳ネットワークの展開」杉本祥志（産業技術総合研究所 ヒューマンライフテクノロジー研究部門）
11. 「個体レベルのシステム生物学の実現に向けて」上田泰己（東京大学大学院医学系研究科）

セッション３「Fast Presentation: 未来の脳科学」
・水谷治央（Molecular and Cellular Biology, Harvard University）
・山下 貴之（スイス連邦工科大学ローザンヌ校 脳精神研究施設）
4 国際共同研究による顕著な業績

4.1 生理学研究所に長期滞在した外国人研究者との共同研究

4.2 その他の国際共同研究による主な論文 (in press を含む)

(感覚運動調節研究部門)

ドイツ・ミュンスター大学との共同研究

(生体システム研究部門)

共同研究者：Obeso JA 教授（スペイン、ナバーラ大学）、Crossman AR 教授（英国、マンチェスター大）

大脳基底核の出力がブロックした際の異常運動出現に関する考察。

(大脳神経回路論研究部門)

大脳皮質 GABA 作動性細胞の分類の統一見解を得るため、この分野の専門家からなる国際研究チームを組織し、参加者から集めた計 320 個の GABA 細胞を、42 人の研究者が独立して分類した。この分類結果と教師付きモデルを使った分類法を比較し、客観性のある分類を確立するために必要な手法について議論した。

(行動・代謝分子解析センター 行動様式解析室)

共同研究者：Alexander G. Bassuk 准教授（米国アイオワ大学）

自閉症スペクトラム障害で変異が報告されている遺伝子である Prickle1 をヘテロに欠損したマウスの行動を解析した。Prickle1 ヘテロ欠損では社会性行動の異常などの自閉症様の行動異常が見られた。
4.3 生理研で研究活動を行った外国人研究者等

1. 職員・研究員
 Batu Keceli (神経機能素子研究部門、研究員)
 Sumru Keceli (感覚運動調節研究部門、日本学術振興会外国人研究員)
 唐麗君 (生体機能推進機関、NIPS リサーチフェロー)
 Laxmi Kumar Parajuli (生体機能推進機関、NIPS リサーチフェロー)
 Dwi Wahyu Indriati (脳形態解析推進研究部門、研究員)

2. 外国人研究職員 (客員分)、外国人研究職員 (特別分)
外人研究職員 (客員分)
 廣谷昌子 (Carleton University Canada, Associate Professor)
 Jorge Bosch-Bayard (Cuban Neuroscience Center Cuba, Senior Researcher)
 Andrew Moorhouse (School of Medical Sciences University of New South Wales Australia, Senior Lecturer)
 Ravshan Sabirov (Institute of Bioorganic Chemistry Academy of Sciences of Uzbekistan, Uzbekistan, Professor and Head)
 Petr Merzybyak (Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan Uzbekistan, Associate Professor)
 Shi-Sheng Zhou (Institute of Basic Medical Sciences Medecal College Dalian University China, Professor and Head)

外国人研究職員 (特別分)
 Ratchanee Rodsiri (Faculty of Pharmaceutical Sciences Chulalongkorn University Thailand, Lecturer)
 Md. Rafiquil Islam (Department of Biotechnology and Genetic Engineering Islamic University Bangladesh, Assistant Professor)
 Olivier Darbin (Department of Neurology University of Southern Alabama USA, Research Assistant Professor)
 Abdedhafid Zeghibi (Department of Psychology Sheffield University UK, Research Associate)

3. 生理研で研究活動を行った外国人研究者 (3ヶ月以上)
 Alsayed Abdelhamid Mohamed Abayed (特別訪問研究員、エジプト)
 Syed Tanvir Ahmed (研究員、パングラディシュ)

4. 生理研で研究活動を行った外国人留学生 (総研生を含む)
 Luna Wahab (総研生)
 Li Jia Yi (総研生)
 Astari Anggara-Dewi
 William R G Meghee
 Poetocarredo Galve Alex Francisco
 Rizki Tsari Andriani
 Sayedul Ashraf Kushal
 Listya Puspa Kirana
 Dendi Krisna Nugraha
 Anggun Indah Budiningrum
 Zeynep Orhan

5. 生理研を訪問した外国人研究者
 Professor REUVENY, Eitan (Weizmann Institute of Science, Israel)
 Elly Nedivi (MIT, USA)
 Yang Dan (Univ of California Berkley, USA)
 Clay Reid (Allen Institute, USA)
 Yi Zuo (Univ of California Santa Cruz, USA)
 Michael J Higley (Yale Univ, USA)
 Soohyun Lee (New York Univ, USA)
 Mark Harnett (HHMI Janelia Farm Research Campus, USA)
Hannah Monyer (Uni Heidelberg, Germany)
Lucy Palmer (Uni Bern, Switzerland)
Carl Petersen (Brain Mind Institute, EPFL, Switzerland)
Thomas Klausberger (Medical Univ Vienna, Austria)
Joachim Luebke (Forschungzentrum Jülich, Germany)
Desdemona Fricker (Université Pierre et Marie Curie, France)
Shawn Mikula (Max-Planck Institut für Medizinische Forschung, Germany)
Dr. Tamas L. Horvath (Yale University School of Medicine, USA)
Jang, In Jung (Seoul National Univ, 韓国)
Kim, Yong Ho(Seoul National Univ, 韓国)
Maria E Rubio (Univ of Pittsburgh, USA)
Tamara Stevenson (Univ of Michigan, USA)
Ashor Khoshaba (Univ of New South Wales, Australia)

6. 現在留学中、あるいは今年外国から帰国した日本人研究者
森島美絵子 (Columbia Univ, USA から帰国)
加勢大輔 (Uni Bordeaux, France へ留学中)

5 発明出願状況

1. 南部篤、知見聡美、西村幸男、高良沙幸
「脳における電気的活動取得装置およびその利用」
出願日 2013 年 10 月 4 日
出願番号 PCT/JP2013/077107
※ 2012 年 8 月 22 日 国内出願

2. 竹越靖彦、横田繁史
「糖尿病による代謝異常を改善するための組成物」
出願日 2013 年 7 月 31 日
出願番号 特願 2013-159588
※ 2014 年 1 月 31 日 PCT 出願済

3. 乾幸二、竹島康行、柿木隆介
「眼鏡レンズの評価方法及びその評価方法を用いた眼鏡レンズの設計方法」
出願日 2013 年 10 月 8 日
出願番号 特願 2013-210872
6 2013年 生理科学実験技術トレーニングコースのアンケート

受講者 117名 （男性 76名 女性 41名）
アンケート回答者 111名 回答率 95％ （全てネット経由にて回答）

参加者の身分（%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>学部学生</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>大学院生（修士）</td>
<td>29</td>
<td>25</td>
<td>29</td>
<td>27</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>大学院生（博士）</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>35</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>大学等の研究員（ポストドク）</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>企業の研究者</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>国立研究所などの研究者</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>助手・講師</td>
<td>11</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>その他</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

1. このトレーニングコースを何で知りましたか？ （複数回答可）（%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>インターネット</td>
<td>38</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>雑誌等の広告</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>友人・知人・先生の紹介</td>
<td>64</td>
<td>70</td>
<td>69</td>
<td>78</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>ポスター</td>
<td>16</td>
<td>17</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>以前参加したことがある</td>
<td>13</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>その他</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2. 何回目の参加ですか？（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>始めて</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>二回目</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>三回目以上</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

3. 参加動機は？（複数回答可）（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>自分の研究のレベル向上</td>
<td>84</td>
<td>86</td>
<td>89</td>
<td>84</td>
<td>87</td>
<td>84</td>
</tr>
<tr>
<td>新たな分野を研究したい</td>
<td>47</td>
<td>53</td>
<td>49</td>
<td>48</td>
<td>55</td>
<td>47</td>
</tr>
<tr>
<td>他の研究者との交流</td>
<td>40</td>
<td>41</td>
<td>37</td>
<td>39</td>
<td>34</td>
<td>47</td>
</tr>
<tr>
<td>生理研や総研大に興味があった</td>
<td>16</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>その他</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

4. インターネットを使った応募方法や電子メールによる連絡は？（複数回答可）（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>便利でよかった</td>
<td>92</td>
<td>99</td>
<td>95</td>
<td>100</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>日頃メールを使わないので不便だった</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>やり方がわかりにくかった</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>連絡があまり来てなくて心配だった</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>連絡が多すぎた</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>その他</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5. ホームページの内容は？（％）
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>大変変わりやすかった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>わかりやすかった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61</td>
</tr>
<tr>
<td>普通</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
</tr>
<tr>
<td>わかりにくかった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>全然わかりなかった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

6. 所属学会？（複数回答可）（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>日本生理学会会員</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>日本神経科学学会会員</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>該当なし</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
</tr>
</tbody>
</table>

7. 受講料（10,200 円）は？（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>高い</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>ちょうどいい</td>
<td>57</td>
<td>52</td>
<td>56</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>安い</td>
<td>39</td>
<td>41</td>
<td>37</td>
<td>27</td>
<td>30</td>
</tr>
</tbody>
</table>

8. ロッジを利用しましたか？（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>利用できた</td>
<td>20</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>希望したが利用できなかった</td>
<td>45</td>
<td>51</td>
<td>46</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>希望しなかった</td>
<td>35</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

9. トレーニングコースを利用するためにかかった交通費・宿泊費は？（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>負担が大きい</td>
<td>19</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>これくらいはやむを得ない</td>
<td>64</td>
<td>76</td>
<td>69</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>大した負担ではない</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

10. 受講・交通費・旅費の補助を、研究費・研究室・会社などから受けましたか？（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>すべて自己負担</td>
<td>50</td>
<td>41</td>
<td>42</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>部分的（およそ 2/3 まで）補助を受け</td>
<td>11</td>
<td>16</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ほとんど（およそ 2/3 以上）補助を受け</td>
<td>39</td>
<td>43</td>
<td>44</td>
<td>38</td>
<td>40</td>
</tr>
</tbody>
</table>

11. 初日の講演はいかがでしたか？（複数回答可）（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ためになった</td>
<td>71</td>
<td>73</td>
<td>74</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>面白かった</td>
<td>53</td>
<td>67</td>
<td>65</td>
<td>51</td>
<td>67</td>
</tr>
<tr>
<td>難しかった</td>
<td>32</td>
<td>29</td>
<td>22</td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>興味がない分野で退屈だった</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>内容が簡単につけられなかった</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>その他</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

12. 初日の生理学研究所・総合研究大学院大学の紹介はいかがでしたか？（複数回答可）（％）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>参考になった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>有意義だった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>生理研・総研大に興味が沸いた</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>退屈だった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>時間の無駄だった</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>その他</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
13. 実習期間は？（%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>長い</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ちょうどよい</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>短い</td>
<td>21</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>19</td>
</tr>
</tbody>
</table>

14. 実習内容（%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>大変満足</td>
<td>51</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>満足</td>
<td>43</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>まあまあ</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>少し不満</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>かなり不満</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

15. 交流会は？（複数回答可）（%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>研究所スタッフとの交流できた</td>
<td>45</td>
<td>51</td>
<td>51</td>
<td>54</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>他の参加者との交流できた</td>
<td>57</td>
<td>71</td>
<td>68</td>
<td>71</td>
<td>78</td>
<td>69</td>
</tr>
<tr>
<td>有意義だった</td>
<td>33</td>
<td>43</td>
<td>49</td>
<td>44</td>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td>面白かった</td>
<td>27</td>
<td>33</td>
<td>36</td>
<td>36</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td>時間の無駄だった</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>不参加</td>
<td>20</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>
7 広報活動、アウトリーチ活動

7.1 主催講演会等

<table>
<thead>
<tr>
<th>No.</th>
<th>開催日</th>
<th>事項</th>
<th>場所</th>
<th>テーマ</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013/5/25</td>
<td>第 26 回せいるけん市民講座</td>
<td>岡崎げんき館</td>
<td>みらいの科学者大集合 13 脳の不思議とサイエンス温度を感じるからだの仕組み大実験 ホットなトウガラシとクールなミント</td>
<td>162</td>
</tr>
<tr>
<td>2</td>
<td>2013/7/20</td>
<td>第 27 回せいるけん市民講座</td>
<td>岡崎げんき館</td>
<td>未来の科学者大集合 14 見えない真実をみる顕微鏡がひらく生物の世界 レーザーレンズ顕微鏡でミクロの世界を見てみよう！</td>
<td>114</td>
</tr>
<tr>
<td>3</td>
<td>2013/11/16</td>
<td>第 28 回せいるけん市民講座</td>
<td>岡崎げんき館</td>
<td>基礎医学からみたバーキンソン病</td>
<td>112</td>
</tr>
<tr>
<td>4</td>
<td>2014/2/22</td>
<td>第 29 回せいるけん市民講座</td>
<td>岡崎げんき館</td>
<td>脳は不思議がいっぱい！！</td>
<td></td>
</tr>
</tbody>
</table>

2013 年 12 月末現在

7.2 見学受入一覧

<table>
<thead>
<tr>
<th>No.</th>
<th>見学者日</th>
<th>見学者 (団体名)</th>
<th>人数 (人数)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013/5/14</td>
<td>名城大学附属高等学校</td>
<td>12</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>2</td>
<td>2013/5/29</td>
<td>愛知教育大学</td>
<td>30</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>3</td>
<td>2013/6/5</td>
<td>愛知県立刈谷高等学校</td>
<td>45</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>4</td>
<td>2013/6/6</td>
<td>立命館高等学校</td>
<td>54</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>5</td>
<td>2013/7/22</td>
<td>東海大学付属高輪台高等学校</td>
<td>32</td>
<td>南部 鳥教授 (生体システム研究部門)</td>
</tr>
<tr>
<td>6</td>
<td>2013/7/26</td>
<td>山梨県立日川高等学校</td>
<td>39</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>7</td>
<td>2013/8/2</td>
<td>愛知教育大学附属岡崎中学校</td>
<td>1</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>8</td>
<td>2013/8/6-7</td>
<td>岡崎市立池端中学校</td>
<td>6</td>
<td>平林 真澄准教授 (伝達子改変動物作成室)</td>
</tr>
<tr>
<td>9</td>
<td>2013/8/6-7</td>
<td>岡崎市立下山中学校</td>
<td>2</td>
<td>平林 真澄准教授 (伝達子改変動物作成室)</td>
</tr>
<tr>
<td>10</td>
<td>2013/8/21-22</td>
<td>岡崎市立葵中学校</td>
<td>1</td>
<td>佐治俊幸技術係長 (機器研究試作室)</td>
</tr>
<tr>
<td>11</td>
<td>2013/8/23</td>
<td>静岡県立浜松高等学校</td>
<td>44</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>12</td>
<td>2013/8/27</td>
<td>東京都立多摩科学技術高等学校</td>
<td>23</td>
<td>小泉 周准教授 (広報展開推進室)</td>
</tr>
<tr>
<td>13</td>
<td>2013/11/12-13</td>
<td>岡崎市立甲山中学校</td>
<td>2</td>
<td>井村伸明技術主任 (ネットワーク管理室)</td>
</tr>
<tr>
<td>14</td>
<td>2013/11/19</td>
<td>岡崎市立額田中学校</td>
<td>2</td>
<td>吉村伸明技術主任 (ネットワーク管理室)</td>
</tr>
<tr>
<td>15</td>
<td>2013/12/10</td>
<td>愛知教育大学附属岡崎中学校</td>
<td>1</td>
<td>乾幸二准教授 (感覚運動調節研究部門)</td>
</tr>
<tr>
<td>16</td>
<td>2013/12/11</td>
<td>愛知教育大学附属岡崎中学校</td>
<td>2</td>
<td>西村幸男准教授 (認知行動発達機構研究部門)</td>
</tr>
<tr>
<td>17</td>
<td>2013/12/25</td>
<td>愛知教育大学附属岡崎中学校</td>
<td>1</td>
<td>定藤規弘教授 (心理生理学研究部門)</td>
</tr>
<tr>
<td>18</td>
<td>2014/2/4</td>
<td>三河地方高等学校理科教員</td>
<td>24</td>
<td>柿木隆介教授 (感覚運動調節研究部門)</td>
</tr>
</tbody>
</table>

2014 年 3 月末現在 合計 321 名

7.3 生理学研究講師派遣等一覧

<table>
<thead>
<tr>
<th>No.</th>
<th>年月日</th>
<th>事項</th>
<th>場所</th>
<th>職種</th>
<th>氏名</th>
<th>テーマ</th>
<th>参加者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013/5/9</td>
<td>愛知工業大学名電高等学校</td>
<td>愛知工業大学名電高等学校</td>
<td>準教授</td>
<td>小泉 周</td>
<td>総合学習（マッスルセンター）</td>
<td>199</td>
</tr>
<tr>
<td>2</td>
<td>2013/5/27</td>
<td>理化学研究所 脳科学所</td>
<td>理化学研究所 脳科学総合研究センター</td>
<td>教授</td>
<td>定藤規弘</td>
<td>V. Emotion and Social Behaviors Social behavior</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2013/6/28</td>
<td>幸田町立北部中学校</td>
<td>北部中学校</td>
<td>教授</td>
<td>柿本隆介</td>
<td>脳は不思議がいっぱい！！</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>2013/7/9</td>
<td>出前授業</td>
<td>岡崎市立甲山中学校</td>
<td>準教授</td>
<td>小泉 周</td>
<td>マッスルセンサーを使った理科授業（英語）</td>
<td>35</td>
</tr>
</tbody>
</table>

179
<table>
<thead>
<tr>
<th>No.</th>
<th>年月日</th>
<th>事項</th>
<th>場所</th>
<th>職種</th>
<th>氏名</th>
<th>テーマ</th>
<th>参加者</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2013/7/16</td>
<td>中学生理科授業</td>
<td>岡崎市立新香山中学校</td>
<td>准教授</td>
<td>小泉 周</td>
<td>脳や体を動かす電気信号を感じてみよう！</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>2013/7/17</td>
<td>中学生理科授業</td>
<td>岡崎市立六ツ美北中学校</td>
<td>准教授</td>
<td>窪田芳之</td>
<td>脳の神経細胞と回路</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>2013/7/20</td>
<td>マルチバンド撮像法講演会</td>
<td>Siemens Japan 本社</td>
<td>特任助教</td>
<td>小池耕彦</td>
<td>The Usage of Multiband GE-EPI Sequence: Social Neuroscience Perspective</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2013/7/30</td>
<td>石川県養護教育研究会主催 养護教諭校種別研修会</td>
<td>金沢市</td>
<td>教授</td>
<td>椎木隆介</td>
<td>脳は不思議がいっぱい！</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>2013/7/31</td>
<td>第 108 回国研セミナー</td>
<td>岡崎市立福岡中学校</td>
<td>教授</td>
<td>椎木隆介</td>
<td>脳は不思議がいっぱい！</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>2013/8/4</td>
<td>サイエンスワールド夏の特別企画</td>
<td>岐阜県先端技術科学体験センター サイエンスワールド レクチャーラボ</td>
<td>准教授</td>
<td>小泉 周</td>
<td>聴覚と脳のココだけの話</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>2013/8/10</td>
<td>先端科学体験教室</td>
<td>飯能市市民活動センター</td>
<td>准教授</td>
<td>小泉 周</td>
<td>みなさまのおかげサマーで 60 年先端科学体験教室「シナブズメーカー」</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>2013/8/27</td>
<td>医療法人 医会友宅 野病院 市民公開講座</td>
<td>医療法人 会友宅 野病院 すくらホール</td>
<td>教授</td>
<td>鍋倉淳一</td>
<td>回復する脳：障害脳におけ る脳回路の再編</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>2013/8/27</td>
<td>滋野市第 18 回ま</td>
<td>滋野市南の森ホール</td>
<td>教授</td>
<td>定篤規弘</td>
<td>脳を科学する</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2013/9/5</td>
<td>岡崎市スーパーサイエンススクール推進事業</td>
<td>岡崎市立六ツ美中等小学校</td>
<td>准教授</td>
<td>小泉 周</td>
<td>マッサルセンサーでロボットアームを動かそう！</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>2013/9/14</td>
<td>ワークショップ</td>
<td>とよた科学体験館</td>
<td>准教授</td>
<td>小泉 周</td>
<td>マッサルセンターでロボッ トアームを動かそう！</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>2013/9/17</td>
<td>都市の再創造 20 年後の大阪</td>
<td>ネレッジキャピタルコ ンペレコンベンション センター</td>
<td>教授</td>
<td>定篤規弘</td>
<td>コミュニケーションと脳回路</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2013/9/25</td>
<td>岡崎市スーパーサイエンススクール推進事業</td>
<td>岡崎市立福岡中学校</td>
<td>椎木研＋小泉周＋技術課</td>
<td>自然科学研究機構サイエン スセミナー</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2013/9/26</td>
<td>中学生理科授業</td>
<td>岡崎市立六ツ美中学校</td>
<td>特任准教授</td>
<td>丸山 美男</td>
<td>考えてみよう！「だからのし くみ」と「脳とこころの不思議」</td>
<td>161</td>
</tr>
<tr>
<td>19</td>
<td>2013/9/27</td>
<td>中学生理科授業</td>
<td>岡崎市立六ツ美中学校</td>
<td>教授</td>
<td>吉村由美子</td>
<td>ものを見る脳</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>2013/10/10</td>
<td>中学生理科授業</td>
<td>岡崎市立北中学校</td>
<td>教授</td>
<td>深田正紀</td>
<td>細胞の動く仕組み</td>
<td>243</td>
</tr>
<tr>
<td>21</td>
<td>2013/10/13</td>
<td>第 60 回岡崎市小中学校理科作品展</td>
<td>岡崎市中央総合講演</td>
<td>技術係</td>
<td>永田 治と戸川 森雄</td>
<td>マッサルセンター展示</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>2013/10/17</td>
<td>Blind Brain Workshop</td>
<td>Bagni di Pisa Palace & Spa, San Giuliano Terme</td>
<td>助教</td>
<td>北田亮</td>
<td>Neural representation underlying the recognition of facial and bodily expressions in the early blind</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>年月日</td>
<td>事項</td>
<td>場所</td>
<td>職種</td>
<td>氏名</td>
<td>テーマ</td>
<td>参加者</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>23</td>
<td>2013/11/1</td>
<td>岡崎市医師会生理学研究所講演会</td>
<td>岡崎市医師会館講堂</td>
<td>教授</td>
<td>定藤規弘</td>
<td>脳機能画像法を用いた社会能力発達過程へのアプローチ</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2013/11/9</td>
<td>Japan Super Science Fair 2013（JSSF）Science World</td>
<td>立命館大学びわこ・くさつキャンパス</td>
<td>特任教授</td>
<td>小泉 周</td>
<td>The Inner Universe, The Brain Mysteries</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>2013/11/25</td>
<td>講演会</td>
<td>総合 NTT データ経営研究所</td>
<td>教授</td>
<td>柿本隆介</td>
<td>「心の豊かさ」の脳科学的構造化についての検討</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>2013/11/26</td>
<td>医療法人 鉄友会 宇野病院 民間公開講座</td>
<td>医療法人 鉄友会 宇野病院 さくらホール</td>
<td>特任教授</td>
<td>小泉 周</td>
<td>モノを見る仕組みと病気</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>2013/11/27</td>
<td>岡崎歯科医師会 学術講演会</td>
<td>岡崎歯科総合センター</td>
<td>教授</td>
<td>柿本隆介</td>
<td>脳は不思議がいっぱい!!</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>2013/12/6</td>
<td>中学生理科授業</td>
<td>岡崎市立甲山中学校</td>
<td>准教授</td>
<td>古江秀昌</td>
<td>触覚や痛みを体が感じる仕組み</td>
<td>40</td>
</tr>
<tr>
<td>29</td>
<td>2013/12/4</td>
<td>岡崎市スーパーサイエンススクール推進事業</td>
<td>岡崎市立葵中学校</td>
<td>技術係長</td>
<td>永田 治</td>
<td>戸川森雄 佐治俊幸</td>
<td>体の電気信号を見てみよう！</td>
</tr>
<tr>
<td>30</td>
<td>2013/12/13</td>
<td>岡崎市スーパーサイエンススクール推進事業</td>
<td>岡崎市立愛宕小学校</td>
<td>特任教授</td>
<td>永山國昭</td>
<td>昔の人が見たミクロの世界</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>2013/2/4</td>
<td>岡崎市スーパーサイエンススクール推進事業</td>
<td>岡崎市立岩津中学校</td>
<td>助教</td>
<td>郷田直一</td>
<td>見ることの不思議</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>2014/2/7</td>
<td>中学生理科授業</td>
<td>岡崎市立城北中学校</td>
<td>特任准教授</td>
<td>岡本秀彦</td>
<td>しなやかな脳〜努力は脳にあらわれる〜</td>
<td>193</td>
</tr>
<tr>
<td>33</td>
<td>2014/3/15</td>
<td>岡崎高等学校コア SSSH 事業</td>
<td>生理学研究所大会議室</td>
<td>教授</td>
<td>柿本隆介</td>
<td>脳は不思議がいっぱい！！</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>2014/3/16</td>
<td>平成 26 年度スーパーサイエンス中高校組理科実験講座</td>
<td>刈谷高等学校 生物教室</td>
<td>技術課長</td>
<td>永田治・戸川森雄・佐治俊幸</td>
<td>マッサラルセンサー実験講座</td>
<td>35</td>
</tr>
</tbody>
</table>

7.4 新聞報道

<table>
<thead>
<tr>
<th>No.</th>
<th>報道日</th>
<th>記事タイトル</th>
<th>新聞名</th>
<th>該当者名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013/1/1</td>
<td>「桑谷山荘」が 42 年の歴史に幕</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2013/1/6</td>
<td>生命の星を探せ 自然科学研究機構が本格研究</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2013/1/8</td>
<td>地球外生命を探せ ハワイに巨大望遠鏡建設 自然科学研究機構が本格調査</td>
<td>東京 夕刊</td>
<td></td>
</tr>
</tbody>
</table>
| 4 | 2013/1/11 | 新年のご挨拶岡田泰伸生理学研究所所長 | 科学 | 岡田泰伸所長
井本敬次課長 | |
| 5 | 2013/1/13 | 中日春秋（自然科学研究機構関連） | 中日 | |
| 6 | 2013/1/16 | バーキンソン病電気刺激療法仕組み解明岡崎・生理研 | 中日 夕刊 | 南部 篠教授 |
| 7 | 2013/1/17 | バーキンソン病電気刺激療法 仕組み解明 | 日経産業 | 南部 篠教授 |
| 8 | 2013/1/17 | バーキンソン病脳病変特有解明 治療法の仕組み解明 生理研チーム | 東京愛知 | 南部 篠教授 |
| 9 | 2013/1/18 | 電気刺激が運動神経伝達バーキンソン病治療療法仕組み解明岡崎・生理研 | 読売 | 南部 篠教授
知見聡史助教 | |
<p>| 10 | 2013/1/18 | ものの動きのべたる神経 サルの脳膜から発見 | 日本経済 夕刊 | 小泉 周教授 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>発表日</th>
<th>記事タイトル</th>
<th>新聞名</th>
<th>該当者名</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2013/1/23</td>
<td>科学実験で体験！“しなやかな脳”の不思議－せいいろん市民講座－</td>
<td>東海愛知</td>
<td>岡本秀彦特任准教授 永田 治技術係長</td>
</tr>
<tr>
<td>12</td>
<td>2013/2/3</td>
<td>強いわる気は喜びが育てる</td>
<td>朝日中学生ウ－リーク－</td>
<td>定藤規弘教授 榎 吉寿助教</td>
</tr>
<tr>
<td>13</td>
<td>2013/2/7</td>
<td>統合失調症モデルマウス予防・治療法開発に期待 藤田保健衛生大・生研が発表 v</td>
<td>中日</td>
<td>宮川 剛客員教授</td>
</tr>
<tr>
<td>14</td>
<td>2013/2/7</td>
<td>脳科学のフロンティア 岡崎・自然科学研究機構 最先端の遺伝子工学 工夫重ね基礎研究</td>
<td>中日</td>
<td>小林憲太准教授 高崎啓三特任准教授</td>
</tr>
<tr>
<td>15</td>
<td>2013/2/7</td>
<td>統合失調症マウス作製 発症機構解明に道</td>
<td>日刊工業</td>
<td>宮川 剛客員教授 高崎啓三特任准教授</td>
</tr>
<tr>
<td>16</td>
<td>2013/2/8</td>
<td>脳科学のフロンティア 岡崎・自然科学研究機構分子から見た脳内 生体のメカニズム解明</td>
<td>中日</td>
<td>東京都一准教授</td>
</tr>
<tr>
<td>17</td>
<td>2013/2/8</td>
<td>統合失調症に似た特徴 モデルマウス作製に成功 －藤田保健衛生大と生理研－</td>
<td>科学</td>
<td>宮川 剛客員教授 高崎啓三特任准教授</td>
</tr>
<tr>
<td>18</td>
<td>2013/2/8</td>
<td>「モーション・ディテクターの役割」視覚神経細胞発見 物の動きや方向を検知 マーサーモントの脳網中 生理・小泉准教授ら</td>
<td>科学</td>
<td>小泉 周准教授 森藤 晃博士</td>
</tr>
<tr>
<td>19</td>
<td>2013/2/9</td>
<td>脳科学のフロンティア 岡崎・自然科学研究機構 社会脳と脳内成果次世代につなげる</td>
<td>中日</td>
<td>北田 亮助教授 大森賢治分子研教授</td>
</tr>
<tr>
<td>20</td>
<td>2013/2/18</td>
<td>特定遺伝子抑制で物忘れ 藤田保健衛生大 マウスで実験</td>
<td>日経産業</td>
<td>宮川 剛客員教授</td>
</tr>
<tr>
<td>21</td>
<td>2013/2/21</td>
<td>最先端の研究 名古屋で 24日講座</td>
<td>中日</td>
<td>小泉 周准教授</td>
</tr>
<tr>
<td>22</td>
<td>2013/2/21</td>
<td>せいいろん講座 24日名古屋</td>
<td>東海愛知</td>
<td>小泉 周准教授</td>
</tr>
<tr>
<td>23</td>
<td>2013/2/26</td>
<td>動き感覚の視神経細胞網膜から発見 岡崎の生理研と基研生理 -細胞から放出される通り道発見</td>
<td>中日</td>
<td>小泉 周准教授</td>
</tr>
<tr>
<td>24</td>
<td>2013/3/1</td>
<td>抗酸化物質グルタチオン -生理研・岡田所長らの研究グループ -細胞から放出される通り道発見</td>
<td>科学</td>
<td>岡田泰伸所長</td>
</tr>
<tr>
<td>25</td>
<td>2013/3/1</td>
<td>「ノーベル賞受賞して」自然科学研究所院生を応援 岡崎信金が奨学金制度</td>
<td>中部経済</td>
<td>岡崎信金設立</td>
</tr>
<tr>
<td>26</td>
<td>2013/3/1</td>
<td>院生に奨学金 岡崎信金 人材育成を支援</td>
<td>東海愛知</td>
<td>岡崎信金学園博士</td>
</tr>
<tr>
<td>27</td>
<td>2013/3/2</td>
<td>子ども科学館計画着陸 岡崎市 ソフト面は充実めずる</td>
<td>中日</td>
<td>岡崎市 岡崎科学館設立</td>
</tr>
<tr>
<td>28</td>
<td>2013/3/2</td>
<td>岡崎市議会3月定例会 子ども科学館計画は着陸へ</td>
<td>東海愛知</td>
<td>岡崎市議会 岡崎科学館設立</td>
</tr>
<tr>
<td>29</td>
<td>2013/3/6</td>
<td>「岡崎からのノーベル賞を」 先端科学大学院生に奨学金 岡崎信金創設</td>
<td>中日</td>
<td>岡崎信金設立</td>
</tr>
<tr>
<td>30</td>
<td>2013/3/5</td>
<td>ベダルをこいでカマリヲを起こす coal融合科学研究所 マッスルセンサーボット</td>
<td>多治見のタウ ン誌たじたじ</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2013/3/9</td>
<td>今さら聞けないPLUS 高速になると時間が止まること不思議 光より速くならない？</td>
<td>朝日 be</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>32</td>
<td>2013/3/29</td>
<td>先端技術 テクノトレンド 高性能顕微鏡など新技術 難多脳研究加速に期待</td>
<td>日経産業</td>
<td>銚倉淳一教授</td>
</tr>
<tr>
<td>33</td>
<td>2013/3/29</td>
<td>脳梗塞からの回復 グリア細胞が深く関与 群馬大、生理研が解明</td>
<td>科学</td>
<td>銚倉淳一教授</td>
</tr>
<tr>
<td>34</td>
<td>2013/3/31</td>
<td>SUNDAY NIKKEI ヒックスの次は暗黒物質 新理論見す続く巨大実験</td>
<td>日本経済</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>35</td>
<td>2013/4/9</td>
<td>伊佐教授に文科大臣表彰 岡崎の生理学 岡崎の神経回路の研究で</td>
<td>中日</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>36</td>
<td>2013/4/10</td>
<td>生理研の副研教授 科学技術賞を受賞 岡崎</td>
<td>東海愛知</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>37</td>
<td>2013/4/11</td>
<td>冷たさ感じる温度 こう調節 センサーのタンパク質特定 愛知・岡崎の生理研など</td>
<td>中日</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>38</td>
<td>2013/4/11</td>
<td>脳と視神経 接続成功 まじしたサル動いた 岡崎・生理研が発表</td>
<td>中日</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>39</td>
<td>2013/4/11</td>
<td>脳機能損傷部画像信号 岡崎の生理学 サルで実験 不自由な手足の治療に応用も</td>
<td>朝日</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>No.</td>
<td>報道日</td>
<td>記事タイトル</td>
<td>新聞名</td>
<td>該当者名</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>40</td>
<td>2013/4/11</td>
<td>脊髄損傷でも手動くん！生理学研究、サルで技術開発</td>
<td>毎日</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>41</td>
<td>2013/4/12</td>
<td>「人工神経」で運動機能回復へ岡崎・生理研の西村准教授ら研究</td>
<td>東海愛知</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>42</td>
<td>2013/4/12</td>
<td>脊髄神経人工人線機能科学研究所 部長コンピュータ導入</td>
<td>日刊工業</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>43</td>
<td>2013/4/12</td>
<td>脊髄損傷の治療 神経再生と成長</td>
<td>日本経済</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>44</td>
<td>2013/4/12</td>
<td>電子回路で神経接続 脊髄損傷サル手を動かせる</td>
<td>生理学研究所</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>45</td>
<td>2013/4/19</td>
<td>科学技術分野の文部科学大臣表彰 科學技術賞 研究部門</td>
<td>科学</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>46</td>
<td>2013/4/19</td>
<td>「計算論的神経科学」4課題 日新研究交流を支援 JST、DFGなどが実現 3年間</td>
<td>科学</td>
<td>吉田正俊助教授</td>
</tr>
<tr>
<td>47</td>
<td>2013/4/25</td>
<td>意思に反した手足の動き挙げる神経回路研究 生理研</td>
<td>日経産業</td>
<td>南部 篤教授</td>
</tr>
<tr>
<td>48</td>
<td>2013/4/26</td>
<td>魚の尾棒を握る神経細胞群 脊髄の持動制御 生理学研</td>
<td>朝日</td>
<td>東島両一准教授</td>
</tr>
<tr>
<td>49</td>
<td>2013/4/26</td>
<td>後脳の神経細胞群の駆動 Cara・生理研 司令塔細胞 石で特定</td>
<td>中日</td>
<td>東島両一准教授</td>
</tr>
<tr>
<td>50</td>
<td>2013/4/26</td>
<td>魚の絵画 後脳の神経細胞群が制御 岡崎生理研 東海愛知大学教授が発見</td>
<td>東海愛知</td>
<td>東海愛知大學教授</td>
</tr>
<tr>
<td>51</td>
<td>2013/4/26</td>
<td>冷たさ感じる仕組み解明 生理研・マンダムが共同</td>
<td>科学</td>
<td>富永真造教授</td>
</tr>
<tr>
<td>52</td>
<td>2013/4/28</td>
<td>春の賞状 「脳」研究で新分野開拓</td>
<td>中日</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>53</td>
<td>2013/4/28</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>毎日</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>54</td>
<td>2013/4/28</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>朝日</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>55</td>
<td>2013/4/28</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>諭楽</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>56</td>
<td>2013/4/28</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>日本経済</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>57</td>
<td>2013/4/30</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>日経産業</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>58</td>
<td>2013/4/30</td>
<td>魚の脳に風が「司令塔」 生理学研 特定の神経細胞群</td>
<td>毎日</td>
<td>東島両一准教授</td>
</tr>
<tr>
<td>59</td>
<td>2013/4/30</td>
<td>冷たさの感覚 周囲温度で変化 生理研、仕組み解明</td>
<td>日経産業</td>
<td>富永真造教授</td>
</tr>
<tr>
<td>60</td>
<td>2013/5/1</td>
<td>魚の尾びれ光で操作 有毒神経細胞群を特定 生理研</td>
<td>東海愛知</td>
<td>東海愛知大学教授</td>
</tr>
<tr>
<td>61</td>
<td>2013/5/1</td>
<td>後脳の神経細胞群を動き制御 岡崎・生理学研 「歩行障害解消つながれば」魚で実験</td>
<td>諭楽</td>
<td>東島両一准教授</td>
</tr>
<tr>
<td>62</td>
<td>2013/5/3</td>
<td>脊髄損傷部位をバイパス サルの手の機能回復に成功 生理研など人工神経接続技術開発</td>
<td>科学</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>63</td>
<td>2013/5/3</td>
<td>春の賞状 紫絵賞受賞者</td>
<td>科学</td>
<td>川人光男客員教授</td>
</tr>
<tr>
<td>64</td>
<td>2013/5/19</td>
<td>高校生と楽しい実験しよう（生理学研究所市民講座紹介）</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>2013/5/24</td>
<td>魚の絵画コントロール「光に反応」神経細胞群を変える</td>
<td>科学</td>
<td>東島両一准教授</td>
</tr>
<tr>
<td>66</td>
<td>2013/5/25</td>
<td>脳の不思議を実験で しようげんき館 セリケン市民講座</td>
<td>東海愛知</td>
<td>東海愛知大学教授</td>
</tr>
<tr>
<td>67</td>
<td>2013/6/5</td>
<td>宇宙と人類</td>
<td>中日</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>68</td>
<td>2013/6/7</td>
<td>位相変電頭で ダイヤと小分子 RNA の結合を解明 觀察</td>
<td>科学</td>
<td>永山義明教授</td>
</tr>
<tr>
<td>69</td>
<td>2013/6/21</td>
<td>ある人に迫る 佐藤勝彦（宇宙物理学者） 知れば知るほど新たな謎を生む</td>
<td>中日</td>
<td>夕刊</td>
</tr>
<tr>
<td>70</td>
<td>2013/6/23</td>
<td>ジュニア中日 新聞で学ぼう なるほど！脳の濃度で違う感じするセンサー</td>
<td>中日</td>
<td>富永真造教授</td>
</tr>
<tr>
<td>71</td>
<td>2013/7/9</td>
<td>神経細胞間の情報伝導場所の解明 脳科学</td>
<td>中日</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>72</td>
<td>2013/7/9</td>
<td>三割も工業 高価な玩具</td>
<td>中日</td>
<td>岡崎 3機関</td>
</tr>
<tr>
<td>73</td>
<td>2013/7/12</td>
<td>脳神経細胞つながり感覚 神経細胞の働きを知る 生理学研究班が仕組み解明</td>
<td>新聞</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>74</td>
<td>2013/7/18</td>
<td>科学 脳の神経回路 こよみに挑む 鼻をくぐる化</td>
<td>諭楽</td>
<td>伊佐 正教授</td>
</tr>
<tr>
<td>75</td>
<td>2013/7/26</td>
<td>研究者等の科学コミュニケーション活動</td>
<td>科学</td>
<td>小泉 周准教授</td>
</tr>
<tr>
<td>76</td>
<td>2013/7/26</td>
<td>平成25年度科学振興事業300機関ランキング 生理学研究所101位</td>
<td>科学</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>77</td>
<td>2013/7/26</td>
<td>生きたシナプス変化 デイナミックに観察 生理学研究班 最新脳科学の魅力</td>
<td>科学</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>78</td>
<td>2013/8/3</td>
<td>「最先端の研究場所」 生理研の井本所長が誇る</td>
<td>中日</td>
<td>井本敬二所長</td>
</tr>
<tr>
<td>79</td>
<td>2013/8/3</td>
<td>生理研・井本新所長が誇る 次世代 MRI 導入へ</td>
<td>東海愛知</td>
<td>井本敬二所長</td>
</tr>
<tr>
<td>No.</td>
<td>報道日</td>
<td>記事タイトル</td>
<td>新聞名</td>
<td>該当者名</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>---</td>
<td>----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>80</td>
<td>2013/8/3</td>
<td>虫に刺された画像みるだけで・・・脳がかゆみ感じちゃう 生理学が仕組み解明</td>
<td>日本経済</td>
<td>望月秀紀特任助教</td>
</tr>
<tr>
<td>81</td>
<td>2013/8/6</td>
<td>岡崎南 RC・自然科学研究機構 パーベキューで交流 被災地の生徒も招待 「三研・おいでねパーベキュー交流講座」</td>
<td>東海愛知</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>2013/8/6</td>
<td>科学技術脳を拓く 1. 腦データが生む新商品</td>
<td>日本経済</td>
<td>小松英彦教授 研究紹介</td>
</tr>
<tr>
<td>83</td>
<td>2013/8/7</td>
<td>いわきの子岡崎の夏講座 岡崎南 RC企画</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>2013/8/7</td>
<td>大人の人材確保支援</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>2013/8/7</td>
<td>22大学・機関「研究力高い」文科系、最大年4億円助成</td>
<td>日本経済</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>2013/8/7</td>
<td>22大学・機関の研究支援を支援 文科系</td>
<td>日刊工業</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>2013/8/8</td>
<td>テクノウオッチャー 評点変えぬ大学向け研究助成</td>
<td>日経産業</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>2013/8/8</td>
<td>かゆみを誘発する 脳内の相関性解明 生理研・望月特任助教 アトピー治療に光明か</td>
<td>東海愛知</td>
<td>望月秀紀特任助教</td>
</tr>
<tr>
<td>89</td>
<td>2013/10</td>
<td>鍋倉教授が講演 27日野病院</td>
<td>東海愛知</td>
<td>鍋倉淳一教授</td>
</tr>
<tr>
<td>90</td>
<td>2013/8/20</td>
<td>脳・神経科学研究を深掘 名大・生理研が基本協定</td>
<td>日刊工業</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>2013/8/21</td>
<td>名大医学部と生理研 共同研究や交流協定</td>
<td>中日</td>
<td>井本敬二所長</td>
</tr>
<tr>
<td>92</td>
<td>2013/8/21</td>
<td>発光言 分子さえ研究すれば分かるほど、ヒトの体は単純ではない</td>
<td>日本経済</td>
<td>井本敬二所長</td>
</tr>
<tr>
<td>93</td>
<td>2013/8/23</td>
<td>体験型 腦内の相関性解明 生理学が仕組み解明</td>
<td>科学</td>
<td>望月秀紀特任助教</td>
</tr>
<tr>
<td>94</td>
<td>2013/8/25</td>
<td>「あの人がかゆそう」自分もかゆく 脳のメカニズム解明 岡崎・生理研など</td>
<td>中日</td>
<td>望月秀紀特任助教</td>
</tr>
<tr>
<td>95</td>
<td>2013/8/27</td>
<td>最先端の研究体験 岡崎自然科学研究機構など主催 高校生が実験などに参加</td>
<td>東海愛知</td>
<td>小泉 周准教授</td>
</tr>
<tr>
<td>96</td>
<td>2013/8/29</td>
<td>生理研の鍋倉さん講演 岡崎野田病院で公開講座</td>
<td>東海愛知</td>
<td>鍋倉淳一教授</td>
</tr>
<tr>
<td>97</td>
<td>2013/8/29</td>
<td>駆ける 西村幸男氏 脳と神経を人工接続</td>
<td>読売 東京版</td>
<td>西村幸男教授</td>
</tr>
<tr>
<td>98</td>
<td>2013/9/7</td>
<td>皮膚炎 痛み増す物質 ワサビ辛み受容体と類似 生理研発 療法開発に期待</td>
<td>中日</td>
<td>富永真琴教授</td>
</tr>
<tr>
<td>99</td>
<td>2013/9/10</td>
<td>先端技術 日本のイノベーター インフレーション宇宙論を提唱 自然科学研究機構長 佐藤勝彦氏①</td>
<td>日経産業</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>100</td>
<td>2013/9/11</td>
<td>先端技術 日本のイノベーター インフレーション宇宙論を提唱 自然科学研究機構長 佐藤勝彦氏①</td>
<td>日経産業</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>101</td>
<td>2013/9/23</td>
<td>我々こそ開拓者</td>
<td>日刊工業</td>
<td>佐藤勝彦機構長</td>
</tr>
<tr>
<td>102</td>
<td>2013/9/28</td>
<td>研究者から学ぶ 岡崎市福岡中 科学の面白さ 実験を通して</td>
<td>東海愛知</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>2013/10/4</td>
<td>炎症時の痛みなどにワサビ受容体が関わる仕組み解明 生理学</td>
<td>科学</td>
<td>富永真琴教授 周一隆研究員</td>
</tr>
<tr>
<td>104</td>
<td>2013/10/5</td>
<td>基礎研、生理研から講師招きサイエンスセミナー 福岡中</td>
<td>岡崎ホームニューズ</td>
<td>坂本隆介教授 小泉 周准教授 生理技術課</td>
</tr>
<tr>
<td>105</td>
<td>2013/10/9</td>
<td>桑谷山荘解体へ サル飼育施設転用断念</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>2013/10/9</td>
<td>桑谷山荘の再利用を断念 岡崎市が解体撤去へ</td>
<td>毎日</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>2013/10/9</td>
<td>旧桑谷山荘解体、撤去へ 岡崎市 実験用施設計画は断念</td>
<td>読売</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>2013/10/9</td>
<td>桑谷山荘施設解体へ</td>
<td>東海愛知</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>2013/10/12</td>
<td>岡崎の小中学生が力作 「理科」60回目「技術・家庭科」40回目あ す節目の作品展</td>
<td>中日</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>2013/10/13</td>
<td>しょう 小中学生の理科作品展</td>
<td>東海愛知</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>2013/10/14</td>
<td>理科研究、もずく基礎技術 岡崎で小中学生作品展</td>
<td>読売</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>2013/10/25</td>
<td>ウィルス感染 立体で観察 岡崎・生理学など成功</td>
<td>中日</td>
<td>永山国昭特任教授</td>
</tr>
<tr>
<td>113</td>
<td>2013/10/26</td>
<td>シアノバクテリア感染ウィルス 増殖の立体構造解明</td>
<td>読売</td>
<td>永山国昭特任教授</td>
</tr>
<tr>
<td>114</td>
<td>2013/10/27</td>
<td>ウィルス感染過程を解明 生理研 永山時任教授らのグループ</td>
<td>東海愛知</td>
<td>永山国昭時任教授</td>
</tr>
<tr>
<td>115</td>
<td>2013/11/5</td>
<td>ウィルス感染 立体観察 自然科学研究位相差顕微鏡使い</td>
<td>日経産業</td>
<td>永山国昭時任教授</td>
</tr>
<tr>
<td>No.</td>
<td>報道日</td>
<td>記事タイトル</td>
<td>新聞名</td>
<td>該当者名</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>116</td>
<td>2013/11/6</td>
<td>小泉特任教授が講演 26 日・宇野病院市民公開講座</td>
<td>東海愛知</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>2013/11/8</td>
<td>電子回路でまし手足回復も愛知の研究所、米誌に発表</td>
<td>共同通信</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>118</td>
<td>2013/11/8</td>
<td>大脳と脇聴つなが人工回路で神経を強化</td>
<td>中日</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>119</td>
<td>2013/11/8</td>
<td>脳指令で脇聴に電気信号 生理研 小型の神経接続装置を開発</td>
<td>日刊工業</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>120</td>
<td>2013/11/8</td>
<td>脳と脇聴のつながり強化に成功 生理研・西村教授ら</td>
<td>東海愛知</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>121</td>
<td>2013/11/8</td>
<td>せいりけん市民講座 16 日、岡崎げんき館で</td>
<td>東海愛知</td>
<td>南部 駿教授</td>
</tr>
<tr>
<td>122</td>
<td>2013/11/8</td>
<td>大脳と脇聴 人工的に神経強化 まし患者機能再建も 生理研サルで成功</td>
<td>毎日</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>123</td>
<td>2013/11/8</td>
<td>脳と脇聴結ぶ神経を増幅 生理学研 身体機能回復に光</td>
<td>朝日</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>124</td>
<td>2013/11/13</td>
<td>こいれん、記憶障害の脳疾患 岡崎・生理研 発表の仕組み解明</td>
<td>中日</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>125</td>
<td>2013/11/15</td>
<td>ウイルスの感染生活史 位相差電顕で解明 生理研など日米共同チーム成果</td>
<td>科学</td>
<td>永山國昭教授</td>
</tr>
<tr>
<td>126</td>
<td>2013/11/19</td>
<td>大脳と脇聴 神経結合の強化成功 生理学研サル実験 リハビリに応用期待</td>
<td>読売</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>127</td>
<td>2013/11/22</td>
<td>こいれん・記憶障害を自知自己免疫性遠隔系脳炎 生理研の研究グループ 病態を解明</td>
<td>科学</td>
<td>深田正紀教授</td>
</tr>
<tr>
<td>128</td>
<td>2013/12/13</td>
<td>白日と黒目のコントラストで赤ちゃんはヒトの「顔」を認識－中央大、生理研のグループ明らかに－</td>
<td>科学</td>
<td>柿本隆介教授</td>
</tr>
<tr>
<td>129</td>
<td>2013/12/13</td>
<td>脳と脇聴のつながり 神経接続装置で強化 世界初 生理研など成功</td>
<td>科学</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>130</td>
<td>2013/12/13</td>
<td>脳信号解読研究が加速 医療やリハビリに活用</td>
<td>日経産業</td>
<td>西村幸男准教授</td>
</tr>
<tr>
<td>131</td>
<td>2013/12/13</td>
<td>学士院新会員に山中教授ら 5 人</td>
<td>読売</td>
<td>佐藤勝彦機関長</td>
</tr>
<tr>
<td>132</td>
<td>2013/12/13</td>
<td>学士院会員新たに 5 人</td>
<td>朝日</td>
<td>佐藤勝彦機関長</td>
</tr>
<tr>
<td>133</td>
<td>2013/12/13</td>
<td>新会員に山中教授ら 日本学士院、5 人を選ぶ</td>
<td>毎日</td>
<td>佐藤勝彦機関長</td>
</tr>
<tr>
<td>134</td>
<td>2013/12/13</td>
<td>学士院新会員 山中氏ら 5 人</td>
<td>日本経济</td>
<td>佐藤勝彦機関長</td>
</tr>
<tr>
<td>135</td>
<td>2013/12/13</td>
<td>学士院新会員に 5 人</td>
<td>中日</td>
<td>佐藤勝彦機関長</td>
</tr>
<tr>
<td>136</td>
<td>2013/12/14</td>
<td>今さら聞けないプラス ウソでなく、知っているかを判定</td>
<td>朝日</td>
<td>柿本隆介教授</td>
</tr>
<tr>
<td>137</td>
<td>2013/12/16</td>
<td>眼の見え方差を縮小</td>
<td>日刊工業</td>
<td>柿本隆介教授</td>
</tr>
<tr>
<td>138</td>
<td>2013/12/20</td>
<td>学士院新会員に 5 氏</td>
<td>科学</td>
<td>佐藤勝彦機関長</td>
</tr>
</tbody>
</table>

注）元職員は、生理学研究所での研究成果について取り上げられたものを掲載
7.5 ラジオテレビ

<table>
<thead>
<tr>
<th>No.</th>
<th>出演日</th>
<th>番組名</th>
<th>出演先</th>
<th>事項</th>
<th>該当者名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013/1/15</td>
<td>Nスタ</td>
<td>TBSテレビ</td>
<td>脳の不思議と活用企業</td>
<td>定藤規弘教授</td>
</tr>
<tr>
<td>2</td>
<td>2013/1/16</td>
<td>ニュース</td>
<td>NHKテレビ</td>
<td>パーキンソン病治療効果解明</td>
<td>南部篤教授</td>
</tr>
<tr>
<td>3</td>
<td>2013/1/22</td>
<td>ZIP!</td>
<td>日本テレビ</td>
<td>子どもを楽しませる方法を徹底調査！</td>
<td>定藤規弘教授</td>
</tr>
<tr>
<td>4</td>
<td>2013/1/23</td>
<td>7PM</td>
<td>BSジャパン（テレビ東京）</td>
<td>DBSのメカニズムについて</td>
<td>南部篤教授</td>
</tr>
<tr>
<td>5</td>
<td>2013/1/24</td>
<td>ZIP!</td>
<td>日本テレビ</td>
<td>カフェ勉強について</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>6</td>
<td>2013/2/13</td>
<td>UP!</td>
<td>メテレ（名古屋テレビ）</td>
<td>腕を大切に！</td>
<td>県原翔院生</td>
</tr>
<tr>
<td>7</td>
<td>2013/4/5</td>
<td>多田しげおの気分満足</td>
<td>CBCラジオ</td>
<td>腦の不思議12</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>8</td>
<td>2013/4/11</td>
<td>イッポウ</td>
<td>CBCテレビ</td>
<td>傷ついた脳を人工的につないで手を自在に動かす「人工神経接続」技術を開発</td>
<td>西村幸男教授</td>
</tr>
<tr>
<td>9</td>
<td>2013/4/12</td>
<td>ニュース</td>
<td>NHKテレビ</td>
<td>傷ついた脳を人工的につないで手を自在に動かす「人工神経接続」技術を開発</td>
<td>西村幸男教授</td>
</tr>
<tr>
<td>10</td>
<td>2013/4/26</td>
<td>ニュース</td>
<td>NHKテレビ</td>
<td>光で魚の動きを制御 神経のしくみ解明へ</td>
<td>東栗真一教授</td>
</tr>
<tr>
<td>11</td>
<td>2013/6/13</td>
<td>ニュースWEB</td>
<td>NHKテレビ</td>
<td>病気のメカニズムについて</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>12</td>
<td>2013/5/12</td>
<td>日本紹介</td>
<td>大関テレビ</td>
<td>腦波を使った脳発見器</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>13</td>
<td>2013/6/23</td>
<td>スパニチ！！</td>
<td>TBSテレビ</td>
<td>100秒博士アカデミー ダウンタウンが素人の研究に仰天SP</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>14</td>
<td>2013/7/26</td>
<td>多田しげおの気分満足</td>
<td>CBCラジオ</td>
<td>脳の不思議13</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>15</td>
<td>2013/8/19</td>
<td>ギャクテン教室！</td>
<td>NHKテレビ</td>
<td>恐怖</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>16</td>
<td>2013/10/23</td>
<td>ためしてギャッテン</td>
<td>NHKテレビ</td>
<td>脳若返り！魔法の呪文記憶力で東大生に勝つ</td>
<td>定藤規弘教授</td>
</tr>
<tr>
<td>17</td>
<td>2013/10/25</td>
<td>多田しげおの気分満足</td>
<td>CBCラジオ</td>
<td>脳の不思議14</td>
<td>根本隆介教授</td>
</tr>
<tr>
<td>18</td>
<td>2013/11/28</td>
<td>奇跡体験！アンピリバボー</td>
<td>フジテレビ</td>
<td>脳死体験</td>
<td>根本隆介教授</td>
</tr>
</tbody>
</table>

2013年1月分〜11月分
第 VII 部

資料：規則、評価結果など
１ 自然科学研究機構生理学研究所点検評価規則

平成16年4月1日
生研規則第3号
最終改正 平成19年3月30日

（目的）

第1条 この規則は、自然科学研究機構生理学研究所（以下「研究所」という。）の設置目的及び社会的使命を達成するため、研究所の運営、研究及び教育等の状況について自己点検・評価及び外部の者による評価（以下「外部評価」という。）を行い、もって研究所の活性化を図り、中期計画及び年度計画に反映させることを目的とする。

（点検評価委員会）

第2条 研究所に、前条の目的を達成するため生理学研究所点検評価委員会（以下「委員会」という。）を置く。

２ 委員会は、次に掲げる者をもって組織する。

一 副所長
二 研究総主幹
三 主幹
四 研究施設の長
五 研究所運営会議の所外委員 4名
六 研究所の技術課長

七 その他委員会が必要と認めた者

３ 前項第7号の委員の任期は、2年とし、再任を妨げない。

（委員長）

第3条 委員会に委員長を置き、研究総主幹をもって充てる。

２ 委員長に事故があるときは、副所長がその職務を代行する。

（招集）

第4条 委員会は、委員長が招集し、その議長となる。

（点検評価委員会の任務）

第5条 委員会は、次に掲げる事項について企画、検討及び実施する。

一 自己点検・評価及び外部評価の基本方針に関すること。
二 自己点検・評価及び外部評価の実施に関すること。
三 自己点検・評価報告書及び外部評価報告書の作成及び公表に関すること。
四 中期計画及び年度計画に関すること。
五 独立行政法人大学評価・学位授与機構が行う評価に係る諸事業への対応に関すること。
六 その他自己点検・評価及び外部評価に関すること。

（点検評価事項）

第6条 委員会は、次の各号に掲げる事項について点検評価を行うものとする。

一 研究所の在り方、目標及び将来計画に関すること。
二 研究目標及び研究活動に関すること。
三 研究所の運営に関すること。
四 大学その他研究機関等との共同研究体制に関すること。
五 大学院教育協力および研究者の養成等教育に関すること。
六 研究組織及び研究施設に関すること。
七 研究支援体制に関すること。
八 事務処理体制に関すること。
九 施設・設備及び研究環境に関すること。
十 国際研究交流に関すること。
十一 学術団体との連携に関すること。
十二 社会との連携に関すること。
十三 管理運営に関すること。
十四 研究成果等の公開及び公表に関すること。
十五 点検評価体制に関すること。
十六 その他委員会が必要と認める事項
　２ 前項各号に掲げる事項に係る具体的な点検評価項目は、委員会が別に定める。

（専門委員会）
第７条 委員会に、専門的事項について調査させるため、必要に応じて専門委員会を設くことができる。
　２ 専門委員会の組織等については、委員会が別に定める。

（点検評価の実施）
第８条 自己点検・評価又は外部評価は、毎年度実施する。

（点検評価結果への公表）
第９条 研究所長は、委員会が取りまとめた点検評価の結果を、原則として公表する。ただし、個人情報に係る事項、その他委員会において公表することが適当でないと認めた事項については、この限りではない。

（点検評価結果の対応）
第１０条 研究所長は、委員会が行った点検評価の結果に基づき、改善が必要と認められるものについては、その改善に努めるものとする。

（庶務）
第１１条 委員会の庶務は、岡崎統合事務センター総務部総務課において処理する。

（雑則）
第１２条 この規則に定めるもののほか、委員会の運営に関し必要な事項は、委員会の議を経て研究所長が定める。

附則 この規則は、平成１６年４月１日から施行する。
附則 この規則は、平成１７年３月１８日から施行する。
附則 この規則は、平成１９年４月１日から施行する。
2 大学共同利用機関法人自然科学研究機構の平成 24 年度に係る業務の実績に関する評価結果

1 全体評価
自然科学研究機構（以下「機構」という。）は、我が国の天文学、物質科学、エネルギー科学、生命科学その他の自然科学分野の研究発展を促進する目的をもって、国交省、文部科学省、総務省及び厚生労働省の三省庁が設立・運営する研究機関である。機構は、国立天文台、核融合科学研究所、基礎生物学研究所、生理学研究所及び分子科学研究所の 5 つの大学共同利用機関（以下「機関」という。）を設置する法人である。第 2 期中間評価においては、機関が 5 つの機関を設置・運営するほか、各機関が自然科学分野における学術研究の発展を推進する観点として、先端的・学際的領域の学術研究を行うとともに、その成果を発信する機能を果たすほか、特色ある大学教育を推進するとともに、若手研究者の育成に努めることが基本的な目標としている。

この目標達成に向けて機構長のリーダーシップの下、「新分野創成センター」の充実、分野間連携研究プロジェクトの推進、若手研究者の交流の支援など、「法人の基本的な目標」に沿って計画的に取り組んでいることが認められる。

(戦略的・意欲的な計画の状況)
第 2 期中間評価において、優れた人材の流動化・活性化を目指した戦略的・意欲的な計画を定めて積極的に取り組んでおり、平成 24 年度においては、新たに 102 名（うち女性 28 名、外国人 4 名）の年俸制職員（任期付）を採用しているほか、国立天文台では教育研究職員に対してプロジェクト長・センター長が活動目標を設定する達成度評価を開始するとともに、分子科学研究所では、「若手研究者育成制度」により若手研究者を特任准教授として採用し、独立した研究室の立ち上げに係る経費を措置するなどの取組を実施している。

2 項目別評価
1. 業務運営・財務内容等の状況

(1) 業務運営の改善及び効率化に関する目標

平成 24 年度の実績のうち、下記の事項が注目される。

○ 公募制、内部昇格禁止、任期制等を活用して研究教育職員の流動化・活性化を図ることに、最先端の研究を推進するための人材の確保に取り組んでいる。特に、著者もの研究者、優れた技術・事務の専門家を任期付き常勤職として雇用する年俸制職員制度により、平成 24 年度は、新たに 102 名を採用し、優秀な研究者等の確保に積極的に取り組んでいる。

○ 分子科学研究所では、新たな分子科学を切り拓く若手研究者を養成するため、博士号取得後 2 年以内（海外の場合は帰国後 1 年以内）の 5 名を基本予算制職員を追加採用し、教授、准教授グループとは独立した研究室を主宰させる「若手研究者育成制度」を平成 23 年度から実施開始、平成 23 年度に採用した新任職員 2 名に対して平成 24 年度には所定の経費を元に研究室立ち上げに係る経費を別途に措置するとともに、新たに実施分野の公募・選考を実施している。

○ 各機関の業務実績を一元的に管理するシステムの構築及び事務処理に係る情報の共有化やシステム化について、情報交換、セキュリティ化等を通じて、準備を進めているほか、人事給与システムについては、バージョンアップを行った結果、給与計算時間を 4 分の 1 程度に短縮するなど、業務の効率化に関する取組を進めている。

【評価】中期計画の達成に向けて努力に注でいる
（理由）年度計画の達成 9 事業すべてが「年度計画を上回って実施している」又は「年度計画を十分に実施している」と認められ、上記の状況等を総合的に勘案したことによる。

(2) 財務内容の改善に関する目標

平成 24 年度の実績のうち、下記の事項が注目される。

○ 国立天文台では、天文学振興資金を活用し、一般財団等からの寄附により、約 1,400 万円を受け入れているほか、「理科年表」を編纂して版間使用料として約 500 万円の自己収入を得ている。さらに、機関全体の資金について、機構内水の資金の管理、運用を行い、約 200 万円の運用益を得ている。
II. 教育研究等の質の向上の状況

平成 24 年度の実績のうち、下記の事項が注目される。

【評定】 中期計画の達成に向けて 順調に進んでいる
（理由）年度計画の記載 7 事項すべてが「年度計画を十分に実施している」と認められることによる。

II. 教育研究等の質の向上の状況

平成 24 年度の実績のうち、下記の事項が注目される。

【評定】 中期計画の達成に向けて 順調に進んでいる
（理由）年度計画の記載 7 事項すべてが「年度計画を十分に実施している」と認められることによる。

III. その他の業務運営に関する重要目標

平成 24 年度の実績のうち、下記の事項が注目される。

【評定】 中期計画の達成に向けて 順調に進んでいる
（理由）年度計画の記載 7 事項すべてが「年度計画を十分に実施している」と認められることによる。
○ 新たな研究分野の創成に向けて、宇宙と生命観念を設置し、宇宙と生命研究分野（仮称）の目的及び分野の活動方針について検討を行うとともに、平成 23 年度から平成 24 年度に 11 回開催した懇談会の他、関連シンポジウムにおける議論を踏まえ、平成 25 年度に新分野創成センターに「宇宙における生命研究分野」を新たに創設することを決定するなど、法人の機能強化について積極的な取組を実施している。

○ 国立天文台では、すばる望遠鏡における装置開発について東京大学やプリンストン大学、台湾中央研究院と共同で推進した世界最大級の超広視野焦点カメラ（Hyper Suprime-Cam：HSC）を望遠鏡に取り付け、性能試験観測を開始する一方、チリ観測所では、アタカマ密密型干渉計（ACA）を用いた初期観測を開始しており、124 億光年彼方の銀河の成分調査、赤色巨星周囲の渦巻構造とその周りの球殻構造の発見、惑星誕生現場における糖類分子の発見等の成果を上げている。

○ 基礎生物学研究所では、専用自家用発電設備を有する IBBP（大学連携バイオバックアッププロジェクト）センターを開設することにより、災害時においても、全国の大学・研究機関の重要な生物遺伝資源を安全に保管できる体制を整備し、国内 7 大学との連携事業を開始している。

[⑤大学院への教育協力、⑥人材養成]

○「自然科学研究機構若手研究者賞」を創設し、新分野の開拓に挑戦する若手研究者の取組を顕彰していることに加え、若手研究者賞記念講演と併せて開催された「ミート・ザ・レクチャーズ」等で、高等学校生・学部生との交流を積極的に組み込むことで、次世代の研究者育成に計画的に取り組んでいる。
３ 大学共同利用機関法人自然科学研究機構年度計画 (平成 25 年度) 抜粋

(1) 研究目標及び研究の成果等に関する目標を達成するためにとるべき措置

① 大学共同利用法人自然科学研究機構 (以下「本機関」という。) は、天文学、核融合科学、分子科学、基礎生物学、生理学の各分野 (以下「各分野」という。) における拠点的研究機関 (以下「機関」という。) において、以下の各計画のよう
に、国際的に高い水準の学術研究を進める。

② 岡崎統合バイオサイエンスセンターにおける連携研究を推進するため、生命システムの動的秩序の統合的解釈を目指すこ
とを新たな目標として掲げ、3つの新研究領域 (バイオセンシング研究領域、生命時空間設計研究領域、生命動態形成研究
領域) に組織を改編し、分子から個体までのさまざまな階層にまたがる重点課題についての研究を開始するとともに、こ
れら研究を担う特任准教授を公募により採用する。

③ 新分野創成センター - プレインサイエンス研究分野においては、本センターからの申請及び採択された新学術領域 (包括脳)
終了後の計画について、我が国の脳研究の在り方を踏まえながら検討する。脳研究における新しい分野開拓について、若手
を中心にプレインストーミングを行ないながら将来計画を立案する。また、ニホンザル及びマーモセットの発生学を含む
 الكرن على الدراسة الدقيقة للخلايا الحية وتحديد طبيعة العوامل المتصلة

情報科学を科学計測の融合を目指した新分野「画像情報科学」の創成に向け、引き続き、「画像科
学コミュニケーション」から課題を募集し、実績を積み上げる。情報交換や情報収集を行うとともに、研究会/シンポジウム開催
等の活動を通じて、コミュニケーションの拡大を図り、「画像科学」の創成を図る。

更に、これまでの議論をふまえ、新たな研究分野として「宇宙における生命」を設置する。

各分野の特記事項を以下に示す。

(中略)

(生理学研究所)

① 生体の働きを担う機能分子の構造、その動作・制御メカニズム、生体機能への統合を解明するとともに、それらが破綻し
た際の病態等に関する研究を進める。

② 生体恒常性の維持、脳神経における情報処理とその発達、記憶学習等のメカニズムを分子・細胞レベルで解明するととも
に、それらの病態への関わりに関する研究を進める。

③ 痛覚・機能・視覚等の感知・認識知識等の脳内機能に関する研究、これらが障害された病態生理や治療
療法に関する研究、及び判断・感情や対人関係等の脳の高次機能や社会的行動等の神経科学的基盤を明らかにする研究を
進める。

④ ウィルスベクターを用いた遺伝子発現によって特定神経回路機能を操作して熱機を解析する研究手法を用いて、脳機能の
解析を行う。プレイン・マシン・インタフェースを応用し、脳神経系障害や神経疾患の病態と代償・回復メカニズムについ
て調べる。

⑤ 分子・細胞から個体における各レベルでの生体機能の可視化に関する研究を進める。可視化のためのプローブ・ベクターの
作製、イメージング技術開発・改良等を行う。新たに設置したミクロトーム組込み型の三次元走査型電子顕微鏡 (3D-SEM)
を用いた神経結合の微細的解析 (コネクトミクス) 等を行う。

(中略)

(2) 研究実施体制等の整備等を達成するための措置

① 個々の研究者が応募できる研究推進費の充実、及び研究推進状況の審査を踏まえた若手研究者へのエキープの助成もしくは
重点配分など、効果的な経費の配分を行い、個々の自由なアイデアに基づく学術研究等を進めさせる。

② 大型研究プロジェクトに関しては、本中期目標・計画の達成に向け、研究者コ Communities の議論も踏まえつつ、各機関内
の柔軟な研究連携を組織的に推進する。

③ 新たな研究分野の設置に向けて新分野創成センター構成員の拡充を図るなど組織運営を充実する。

プレインサイエンス研究分野では、研究者コミュニティから若手研究者を登用し将来的計画などを検討する組織及び「認知
ゲノミクス基礎研究センター (仮称)」の設置に向けた準備組織を整備する。

イメージングサイエンス研究分野では、関係する国内外の研究者との連携を深め、自然現象のイメージング化の研究を推
進する体制をさらに充実させるとともに、生命科学研究分野における画像取得や画像データ解析のための新たなソフトウェアの開発、定量的解析手法の確立などの展開を進める体制を確立する。

更に、「宇宙と生命」に関する研究者コミュニティの意見を踏まえ、新たな研究分野「宇宙における生命」を推進する体制を確立する。

2 共同利用・共同研究に関する目標を達成するための措置

(1) 共同利用・共同研究の内容・水準に関する目標を達成するための措置

① 引き続き各研究施設の高性能化・高機能化を図り、より国際的に高い水準の共同利用・共同研究を進める。

② 各機関において、その研究分野に応じた学術研究ネットワークの中核拠点としての共同利用・共同研究を引き続き実施する。

国立天文台では、大型観測装置を共有利用上供するほか、電波 VLBI 分野及び光学外分野において、大学間連携の枠組み等により天文学研究ネットワークの中核拠点としての役割を果たす。

核融合科学研究所では、両方向型共同研究における連携強化や一般共同研究におけるネットワーク型の推進など、中核拠点として、共同研究に参画する大学間の交流を一層進め、大学の研究活性化に貢献する。

基礎生物学研究所では、IBBP センターの本格的運用により大学等研究機関の生物遺伝資源のバックアップを一層推進する。また新開の環境制御下で生物の環境応答等を多元的に解析するための施設を導入し共同利用・共同研究を開始する。

生理学研究所では、脳科学・生理学研究に必要な実験動物用サブポール・技術の開発・供給、及び先端的研修機器の共同利用を通じて学術ネットワークの中核拠点としての役割を果たす。特に、ウイルススペクターの供給、三次元光学電子顕微鏡 (3D-SEM) を用いた神経結合の網羅的研究の共同研究を開始する。

分子科学研究所では、化学分野における先端的研究施設を利用した共同研究を推進するとともに、そのノウハウを大学でも活かすように、大学内外での相互利用を支援する取組を実施する。また、活発な人事流通を生かして、大学等との双方向の共同研究を推進する。

各分野の特記事項を以下に示す。

(中略)

(生理学研究所)

① 分子から個体そして社会活動に至る各レベルのイメージング技術を用いた共同利用研究を活発に進め、データ解析手法の開発も図る。特に、革新的なコンポジット技術を応用した研究を行う。

② 対人関係など社会機関における脳機能等が測定可能な 2 台の同時計測用機能的磁気共鳴画像装置 (dual-fMRI) を用いた共同利用実験、共同研究を推進する。また、高機能的磁気共鳴画像装置 (TT-fMRI) 導入のための準備を進めるとともに、導入後の共同利用実験開始に向けて連携研究者コミュニティでの情報交換を強化する。

③ ナショナルバイオリソースプロジェクト (NBRP) の一環として、利用者のニーズに沿ったニホンザルの安定した供給を進め、疾病対策を強化するなど、供給ニホンザルの一層の高品質化を図る。長期的安定供給のための体制整備を引き続き検討する。

④ 課題を設定して重点的に進める計画共同研究を行う。特に、平成 24 年度に設置されたウイルススペクター開発室より、ウイルススペクターの供給を開始する。

⑤ 実験動物の健康管理体制を強化するために、岡崎共通研究施設・動物実験センターに研究教育職員 1 名を新たに配置する。

(中略)

(2) 共同利用・共同研究の実施体制等に関する目標を達成するための措置

(生理学研究所関係項目のみ)

④ 生理学研究所では、研究者コミュニティの意見を踏まえて計画共同研究等の改善を図る。特に、新たに三次元走査型電子顕微鏡 (3D-SEM) を用いた計画共同研究の実施を開始する。

⑤ 生理学研究所では、長期科学技術協力事項「脳研究」分野の事業を継続し、共同研究者派遣、グループ共同研究及び情報交換セミナーによって研究交流の促進を図るとともに、新分野の開拓を行う。

④ 生理学研究所では、新たに、名古屋大学医学部・大学院医学系研究科及び放射線医学総合研究所との間に学術協定を締結し、共同研究、人材交流、院生教育を連携的に推進する。また、脳科学の研究領域における戦略的プロジェクト等の研究成果が、広く研究者コミュニティで利用できるように、実験技術・研究リソース等の積極的な提供を図る。特に、當年会への遺伝子導入実験を行う共同利用研究を推進するとともに、ウイルススペクターの開発をさらに発展させ、全国の研究者への提供を開始する。
3 教育に関する目標を達成するための措置
(1) 大学院への教育協力に関する目標を達成するための措置
① 引き続き高度な研究設備と国際的な研究環境を活かした研究を通じて、自然学科の広い視野と知識を備えた研究者を育成する。
② 総合研究大学院大学の教育に積極的に参加し、大学共同利用機関としての機能を生かした特色ある大学院教育を実施する。
物理科学研究科の基盤機能である国際天文台、核融合科学研究所、分子科学研究所においては総合研究大学院大学の特別経費による研究科を超えた教育プロジェクト「広い視野を備えた物理科学研究者を育成するためのコース別大学院教育プログラム」を更に強化し、個々の学生の個性を活かした個別のある大学院教育を行う。また、e-ラーニングの整備を含む基礎教育の充実や複数の専攻の協力による共通講義の整備を引き続き進める。
生命科学研究科及び物理科学研究科の基盤機能である基礎生物科学研究所、生理学研究所及び分子科学研究所においては、生命科学研究の多様化に対応できる分野横断的な研究者の育成を目指し、異なる研究科と専攻を横断する「統合生命科学研究プロジェクト」をさらに充実させ、研究者の育成を行う。また、専攻を超えた教育システムである「脳科学専攻間融合プログラム」の受講者を中心に博士（脳科学）を授与できる体制整備を受け、引き続き本プログラムを推進する。また、e-ラーニングの整備に基づいた基礎教育の充実や複数の専攻の協力による共通講義の整備を引き続き進める。
③ 全国の国立私立大学より特別共同利用研究員を受け入れ、大学院教育に協力する。また、東京大学大学院、名古屋大学大学院等との間で、単位取得換算制度を備えた教育協力の実施を図る。

(2) 人材養成に関する目標を達成するための措置
① 優秀な若手研究者を、国内外を問わず公募して、博士研究員として受入れる。また、リサーチアシスタント (RA) 制度等を充実させ、優れた若手研究者の養成を図る。
更に寄付金や基金なども活用し、研究発表の機会の提供等、若手研究者・学生支援の充実を図る。
② 各機関において、総合研究大学院大学の「夏の体験入学」及び「アジア冬の学校」を実施するとともに、総合研究大学院大学院生を対象とした「夏の遠征」や野辺山530m電波望遠鏡を利用した観測実習（国際天文台）、全国の高等専門学校における「核合成科学人材育成プログラム」（核融合科学研究所）、学部学生、大学院生一般を対象とした「N 体シミュレーションの学校」（国際天文台）、大学院生を含む東アジア若手研究者招へい事業や国際インターンシッププログラム（分子科学研究所）、国内研究者を対象にした「ゲノムインフォマティックストレーニングコース」（基礎生物科学研究所）、「生化学実験技術トレーニングコース」及び「多文化共同研究推進センタートレーニングプログラム」（生理学研究所）等、海外からの体験入学者を受け入れる「インターンシップ」（基礎生物科学研究所、生理学研究所）等を実施し、大学院生を含む国内外の若手研究者の育成に取り組む。

4 その他の目標を達成するための措置
(1) 社会との連携や社会貢献に関する目標を達成するための措置
① ホームページやポータルサイト、広報誌を活用するとともに、プレスリリースを積極的に行い、社会に向けた最新の研究成果や学術情報の発信を行う。また、一般公開や市民向け公開講座を行うとともにアウトリーチ活動のための広報スペースを確保するなど、自然科学における学術研究の重要性を直接的にかかわりのある社会・市民に訴える活動を展開する。
② 各機関において、学術授業・学術講演やスーパーサイエンスハイスクール事業等の理科教育に協力するとともに、国立天文台での施設公開や定例観望会（月 2 回）、核融合科学研究所の理科教育研究会等での教員との科学コミュニケーション、理学研究学部の「せいかん市民講座」の実施など、地域の特性を活かしつつ、自治体、公民館、理科教育研究会や医師会等との協力による市民科学セミナーの開催、理科・工学教室等の科学イベントの実施、クラブ活動への協力、医学生物科学研究の普及活動を通じて科学の普及活動を実施する。
③ 学術成果を社会に還元するため、民間等との共同研究や受託研究等を適切に受け入れることともに、研究で得られた成果を公開し、その普及を促進する。また、知的財産等の創出としての財務支援を支援するとともに、特許収益を考慮した登録特許の適切な管理（評価・PR・維持等）を実施する。

(2) 国際化に関する目標を達成するための措置
① 我が国の自然科学分野における国際的学術拠点として、機構長のリーダーシップ下、国際戦略本部を中心に、欧州分子生物学研究所（EMBL）やプリンストン大学（米国）等との国際的な共同研究を積極的に実施する。また、国際交流協定等への貢献を通じて国際的な研究成果の実現に貢献する。
② 各機関において、すばる国際研究会議（国際天文台）、国際土岐コンファレンス（核融合科学研究所）及び基生研コンファレンス（基礎生物科学研究所）、生理研究国際シンポジウム（生理学研究所）、岡崎コンファレンス（分子科学研究所）等の各機関主催の国際シンポジウムを開催し、国際交流を促進する。更には、各機関が結成した国際学術交流協定などに基づき、海外の主要研究機関との研究者交流、共同研究、留学生受け入れを推進するとともに、外国人研究者の採用を促進し、国際的研究、教
育観点を構築する。人事公募においては、ホームページに英語による研究者の採用情報の掲載（国立天文台、生理学研究所検討中）やウェブによる応募受理システムの採用（国立天文台検討中）などを実施し、海外からの応募を可能とするとともに、機構で働く、もしくは機構を訪問する外国人研究者のために、就業規則等の必要な文書について英文化を計画的に進める。

Ⅱ 業務運営の改善及び効率化に関する目標を達成するためにとるべき措置

１組織運営の改善に関する目標を達成するための措置

① 機構長のリーダーシップの下、役員会や監査役を含む運営会議、教育研究評議会等を開催して、研究の促進に向けた
② 本機関の運営会議等において、研究計画や共同利用・共同研究の重要事項について、他の運営機関からの提案と意見
を参考に、各研究分野の特性を踏まえた業務の改善を計画的に行なうこと。また、核融合研究所及び「分子
科学研究所」では、現状での業務の専門性を臨むため、研究者の中間管理懇談会を実施する。
③ 機構長のリーダーシップの下、各機関が一体となって自然科学の新分野の創成を図ること、新分野創成センターの体制を
充実させることに、「宇宙における生命」研究分野を設置する。また、若手研究者による芽吹かな分野間協力の支援
等を行うとともに、研究者交流の活性化を図る。
④ 研究教育職員の採用は原則として公募制により実施し、その人事選考は外部委員会を含む運営会議で行い、透明性・公平性
の確保を図る。また、研究者の流動化による研究の活性化を図るため、分子科学研究所においては、内部昇格制を実施
し、生理学研究所では教授への内部昇格制と任期制の併用、その他の機関においては、各分野の特性を踏まえた任期制を
実施する。
⑤ 技術職員、事務職員の専門的向上の向上を図るため、機構及び各機関主催の研修を計画的に行なう。また、内部研修会
会なども積極的に参加させる。また、機構内部の研修については、研修内容の見直しを行う。
⑥ 男女共同参画社会に適した環境整備を行うため、男女共同参画推進に向けたアクションプランを計画的に実施する。

(中略)

Ⅲ 財務内容の改善に関する目標を達成するためにとるべき措置

１外部研究資金、寄附金その他の自己収入の増加に関する目標を達成するための措置

自己収入の増加を図るため、外部研究資金の募集等の情報を機構全体的に掲載するために開設した Web ページを見直し、充
実させる。

２経費の抑制に関する目標を達成するための措置

① 各分野の研究推進及び共同利用・共同研究の更なる強化を図るため、年俸制常勤職員制度等を活用して優秀な研究者を採
用するなど、適正な人件費の管理を進める。
② 水道光熱費、消耗品費、通信運搬費などの人件費以外の経費について、経年及び月単位の変化の把握と計画的実施や機構内
他機関の節約事例を参考にする等で、契約方法を見直す等の節減方策の検討を行い、経費削減に努める。

３資産の運用管理の改善に関する目標を達成するための措置

① 引き続き、固定資産の管理及び活用状況を点検するため各機関の使用責任者に加えて資産管理部局による使用状況の確認
を実施する。また、所持使用設備の活用化を促すために公開した Web ページの情報内容について周知徹底を図り、有効活用を促進する。
② 国立天文台野辺山地区の職員宿舎等を転用して設置した「自然科学研究機構野辺山研修所」を機構全体の研修施設として
運営する。

Ⅳ 自己点検・評価及び当該状況に係る情報の提供に関する目標を達成するためにとるべき措置

１評価の充実に関する目標を達成するための措置

① 研究体制及び共同利用・共同研究体制について、国際的見地から各機関の特性に応じた自己点検及び外部評価等を実施し、
その成果を広く公開するとともに、必要に応じて見直しを行う。
② 機構全体としての業務運営の改善に資するため、年度計画に基づく実績の検証を行うとともに、平成 24 年度に実施した外部
評価における意見を踏まえ、組織運営の充実を図る。
情報公開や情報発信等の推進に関する目標を達成するための措置
機構の活動、財務内容や共同利用・共同研究の状況等を、シンポジウムの開催及び Web ページの充実、報道発表の実施等により、一般社会へ分かりやすく発信する。

Ⅴ その他業務運営に関する重要目標を達成するためにとるべき措置

1 施設設備の整備・活用等に関する目標を達成するための措置
① 環境への影響が少なく安全性の高い将来の核融合発電の実現に向けた学術研究を推進するため、大型ヘリカル実験の基盤となる施設設備の整備を行うなど、各機関において研究の高度化に対応して緊急に研究環境を向上させる必要のある施設・設備等の整備を行う。
② 施設実態調査及び満足度調査を行うとともに、その結果に基づき重点的・計画的な整備並びに、施設の有効活用を推進する。
③ 施設・設備の維持・保全計画に基づいた維持保全を行う。

2 安全管理に関する目標を達成するための措置
① 防火、防災マニュアルの役職員への周知を徹底するとともに、防災訓練等を実施する。
② 職員の過重労働に起因する労働災害の防止策について、各機関で設置する安全衛生委員会等で検討し、必要な対策を講じる。また、メンタルヘルスケアのためにストレスチェックを行う。
③ 機構の情報システムや重要な情報資産への不正アクセス等に対する十分なセキュリティ対策を行うとともに、情報セキュリティセミナー等を開催して、セキュリティに関する啓発を行う。また、セキュリティに関する事例の機構内共有を促進する。

3 法令遵守に関する目標を達成するための措置
法令違反、論文の捏造・改ざん・盗用、各種ハラスメント、研究費の不適切な執行等の行為を防止するため、各種講習会やセミナー等を実施し、周知徹底を図る。

（以下省略）
大学共同利用機関法人自然科学研究機構 理学分野

〇大学共同利用機関及び大学共同利用機関法人の設立経緯
　　我が国では、特定分野の研究を行うことを目的とする研究所は、従来、特定大学に附属する形で設置されてきたが、学術研究の発展に伴い、個々の大学の枠を超え、全国の大学から研究者が集って、大規模な施設設備等を共同で利用し、効果的な共同研究を進める組織が求められるようになった。そのため、昭和 46 年に初めて、特定大学に附属しない大学の共同利用の機関として、高エネルギー物理研究所が設置された。以後、種々の学術分野の要請に基づき順次拡大され、各々の分野において高度な学術研究を進める我が国の中核的な研究拠点として発展。平成 16 年度の国立大学法人化の際、大学共同利用機関法人 4 機関に再編され、上記に加え、各機関における共同研究を通じ、時代を要請する新たな学問分野創出への戦略的な取組等を実施。（4 機関 17 大学共同利用機関（平成 25 年度現在））
　　〇大学共同利用機関法人とは、我が国の学術研究の向上と均衡ある発展を図るため、大学共同利用機関を設置することを目的として、国立大学法人法に基づき設立された法人。
　　〇大学共同利用機関とは
　　・大規模な施設・設備や大量の学術情報・データ等を、個々の大学の枠を越え、全国の大学等の研究者の共同利用に供し、効果的な共同研究を進めるための組織。
　　・研究者コミュニティの意見を反映した運営により、研究者の自由な発想を源泉とする学術研究を推進。
　　＜主な機能＞ 大型施設・設備の提供、学術資料（情報）の収集・保存・提供、学術情報流通基盤の整備、共同利用・共同研究の場の提供
　　・大学院学生の受入れを行うなど、研究と教育を一体的に実施し、人材養成に貢献。
　　〇法令上の規定
　　(国立大学法人法 別表第二 (第二条関係))
　　【自然科学研究機構】
　　天文学、物質科学、エネルギー科学、生命科学その他の自然科学に関する研究
　　※新分野創成に関する研究を行う新分野創成センターを設置。
　　(国立大学法人法施行規則 別表第一 (第一条関係))
　　【国立天文台】
　　天文学及びこれに関連する分野の研究、天体観測並びに暦書編纂、中央標準時の決定及び現示並びに時計の検定に関する事務
　　【核融合科学研究所】
　　核融合科学に関する総合研究
　　【基礎生物学研究所】●
　　基礎生物学に関する総合研究
　　【生理学研究所】●
　　生理学に関する総合研究
　　【分子科学研究所】●
　　分子の構造、機能等に関する実験的研究及びこれに関する理論的研究
　　※上記●印の 3 機関の共通の研究施設として、バイオサイエンスの学際領域にまたがる諸問題に対し、分野横断的な観点と方法論を適用し、新しいバイオサイエンスを切り開く研究を行う岡崎総合バイオサイエンスセンターを設置。

<table>
<thead>
<tr>
<th>設置目的等</th>
<th>強みや特色、社会的な役割</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然科学研究機構は、宇宙、エネルギー、物質、生命等に関わる自然科学分野の拠点的研究機関を設置・運営することを目的としており、国立天文台、核融合科学研究所、基礎生物学研究所、生理学研究所及び分子科学研究所の 5 機関共同利用機関で構成され、各機関の特色を生かしながら、更に各々の分野を超えて、広範な自然の構造と機能の解明に総合的に取り組み、自然科学の新たな展開を目指して新しい学術分野の創出とその発展を図るとともに、若者研究者を育成に努める。また、大学共同利用機関としての特性を生かして、大学等との連携の下、我が国の大学の自然科学分野を中心とした研究力強化を図る。自然科学研究機構は、以下の強みや特色、社会的な役割を有している。</td>
<td></td>
</tr>
</tbody>
</table>
○総合研究大学院大学の基盤機関として緊密な連係・協力を進めるほか、国内外の大学から大学院生を特別共同利用研究員等として、またポストドクなど若手研究者を多数受け入れ、最先端の研究環境を生かした特色ある教育・指導を実施するなど、他大学との連携により学際的・国際的視野を有する若手研究者を育成する。
※総合研究大学院大学個票参照

○それぞれの機関の第一線級の研究者を育成することが従来の基本であった。今後は、世界最先端の研究が可能な大型装置や特殊実験装置を有する環境を生かして、国際的にリーダシップを発揮することが出来る研究者の育成が新たな方向性である。これを踏まえて、総合研究大学院大学、特別共同利用研究員、連携大学院の大学院生、ポストドクを含めた若手研究者への教育指導を実施する。また、研究成果を国際舞台で積極的に評価を受けるため、海外への渡航費の補助などを実施するとともに英語による成果発表の能力の向上に各機関とも努めている。若手の研究者育成については、グローバル化と同時に、広い視野を持つことが重要で、学際領域分野への視点が重要である。このため、生命科学分野では、総合生命科学研究プログラムなどを実施している。この面で、新分野創成センターなども若手教育に関与することも検討課題と考える。
※総合研究大学院大学個票参照

○天文学、核融合科学、基礎生物学、生理学、分子科学に関する世界の卓越した研究拠点として各分野の先端的・学際的領域の学術研究を推進するとともに、研究者コミュニティの発展に基づき全国の大学等が個別に整備しきれない「すばる」、「ALMA」、「大型ヘリカル装置」など世界的レベルの大型装置、プラスマシミュレータ、放射光施設や様々なイメージング装置等共同利用・共同研究のための先端施設・装置を整備し全国の大学等の研究者の利用に供するほか、研究データ、ナショナル・バイオリソースを提供するなどして共同研究を推進し、我が国の大学の自然科学分野の発展に寄与する。また、各分野の我が国における国際的恩恵として国際共同研究・研究者交流を促進するとともに、自然科学の新たな展開を目指して、バイオサイエンスのほかブレインサイエンス、イメージングサイエンス、アストロバイオロジーの分野において研究機関間の分野間連携、新たな学際領域の創造を進めると。更に、自然科学の将来像についての検討や研究交流の場を提供する NINS Colloquium を開催し、自然科学研究分野全体のコミュニティの発展に寄与している。

○シンポジウムの開催や研究施設公開、研究成果の社会への積極的な発信を行うなど、自然科学に対する国民の理解を深める活動を通じて学術の進展に寄与する。また、権の作成や中央標準時の現状等、国民生活に必要不可欠な業務の遂行により社会的な貢献を果たす。更に、研究成果を基に企業と共同による最先端の観測・実験機器の開発を通じて産業界の技術開発力の向上と人材育成に貢献している。

○社会人向け講座の実施のほか、社会人入学制度や中学学校の理科教員に対しセミナーを開催し教員の見識を広げることに貢献している。
※総合研究大学院大学個票参照

強みや特色、社会的な役割
5 総合研究大学院大学 ミッションの再定義 (抜粋)

<table>
<thead>
<tr>
<th>総合研究大学院大学 理学分野</th>
</tr>
</thead>
</table>
| 総合研究大学院大学は、大学共同利用機関の傘下の大学院教育を行い、学術研究の新しい流れに先導的に対応できる、幅広い視野を持った国際的な独創性豊かな研究者を養成することを目的として昭和63年に設置された。平成9年に、学術機関としての学問分野の枠を超えた先端的な学問分野の開拓を創出しうる国際的に通用する高度な専門性と広い視野を有する人材を養成することを目的として、先端科学研究科が設置された。
| 総合研究大学院大学は、自然科学研究機構、情報・システム研究機構、高エネルギー加速器研究機構、宇宙航空研究開発機構等に設置されているそれぞれの分野で我が国を代表する研究者を基盤機関とする博士課程のみの研究大学院大学として、理学の分野においては自然科学あるいは人間社会のための科学に関する理論及び応用を教授研究し、その深奥をきわめることを通じて文化的進展に貢献することを目指し教育、研究、社会貢献に取り組んできたところであり、以下の強みや特色、社会的な役割を有している。
| 〇基盤機関が有する優れた人材・物的環境を活用して国際的にも最先端の研究現場で博士課程教育を直接実施し重要専門性を活用した科学研究科、生命科学研究科（平成16年）、物理科学研究科、高エネルギー加速器研究科、複合科学研究科（平成18年）、先端科学研究科（平成19年）が順次移行した。
| 強みや特色、社会的な役割 |
| 総合研究大学院大学は、自然科学研究機構、情報・システム研究機構、高エネルギー加速器研究機構、宇宙航空研究開発機構等に設置されているそれぞれの分野で我が国を代表する研究者を基盤機関とする博士課程のみの研究大学院大学として、理学の分野においては自然科学あるいは人間社会のための科学に関する理論及び応用を教授研究し、その深奥をきわめることを通じて文化的進展に貢献することを目指し教育、研究、社会貢献に取り組んできたところであり、以下の強みや特色、社会的な役割を有している。
| 〇基盤機関が有する優れた人材・物的環境を活用して国際的にも最先端の研究現場で博士課程教育を直接実施し重要専門性を活用した科学研究科、生命科学研究科（平成16年）、物理科学研究科、高エネルギー加速器研究科、複合科学研究科（平成18年）、先端科学研究科（平成19年）が順次移行した。
| 〇基盤機関が有する優れた人材・物的環境を活用して国際的にも最先端の研究現場で博士課程教育を直接実施し重要専門性を活用した科学研究科、生命科学研究科（平成16年）、物理科学研究科、高エネルギー加速器研究科、複合科学研究科（平成18年）、先端科学研究科（平成19年）が順次移行した。
| 〇基盤機関が有する優れた人材・物的環境を活用して国際的にも最先端の研究現場で博士課程教育を直接実施し重要専門性を活用した科学研究科、生命科学研究科（平成16年）、物理科学研究科、高エネルギー加速器研究科、複合科学研究科（平成18年）、先端科学研究科（平成19年）が順次移行した。
| 〇基盤機関が有する優れた人材・物的環境を活用して国際的にも最先端の研究現場で博士課程教育を直接実施し重要専門性を活用した科学研究科、生命科学研究科（平成16年）、物理科学研究科、高エネルギー加速器研究科、複合科学研究科（平成18年）、先端科学研究科（平成19年）が順次移行した。
<table>
<thead>
<tr>
<th>強みや特色、社会的な役割</th>
</tr>
</thead>
</table>
| ○本学が当初博士後期課程のみの大学院として発足した背景には、大学院生の流動化を促進することのほかに、急速に発展する自然科学をリカレント教育する社会的なニーズが高まってきたことがあり、この設置理念に基づき引き続き社会人学生を積極的に受け入れ知識基地会の高度化に資するとともに多彩な人材養成を通じて産業界との連携を強化する。
○地元横須賀高校との高院接続協定書に基づいて高校生に対する人文・理科教育に貢献しつつ、在校生の25％に達した留学生のより積極的な受け入れ並びに日本学術振興会と共催して欧米先進5か国の博士候補者やポスドク（年約100名）との国際交流を推進する。 |
2013(平成25)年度生理学研究所 点検評価委員会 委員等名簿

（所外委員）
蔵田 潔 弘前大学 大学院 医学研究科・教授
高井 龍 旭川医科大学 医学部・教授
高橋 晃 新潟大学 脳研究所・所長
本間 さと 北海道大学 大学院 医学研究科・特任教授

（所外専門委員）
Marc Sommer 米国 Duke University・教授
Tamas L. Horvath 米国 Yale University・教授
Min Zhou カナダ University of Toronto・教授
西条 寿夫 富山大学 大学院 医学薬学研究部・教授
坂上 敏道 玉川大学 脳科学研究所・教授
上田 陽一 産業医科大学 医学部・教授
岡村 均 京都大学 大学院 薬学研究科・教授
井上 隆司 福岡大学 医学部・教授
吉原 良浩 理化学研究所 脳科学総合研究センター・シニアチームリーダー
響堂 篤 東京大学 大学院 医学系研究科・教授
小川 隆子 筑波大学 大学院 人間総合科学研究科・教授

（所内委員）
鍋倉 淳一 副所長・教授
伊佐 正 教授・研究総主幹
久保 義弘 教授・共同研究担当主幹
篠越 靖彦 教授・動物実験問題担当主幹
定藤 規弘 教授・安全衛生・研究倫理担当主幹
柿木 隆介 教授・学術情報発信担当主幹
南部 篤 教授・教育担当主幹 (委員長)
富永 真琴 岡崎統合バイオサイエンスセンター 教授・特別事業担当主幹
池中 一裕 教授・岡崎統合バイオサイエンスセンター センター長
大河原 浩 技術課長

（敬称略）