Date : 02.08.2008

Neurite arborization and mosaic spacing in the mouse retina require DSCAM

Category : Press Release
 Section of Communications and Public Liaison,
Center for Communication Networks
 

Abstract

Peter G. Fuerst, Amane Koizumi, Richard H. Masland, and Robert W. Burgess. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature (Jan 24, 2008 )

To establish functional circuitry, retinal neurons occupy spatial domains by arborizing their processes, which requires the selfavoidance of neurites from an individual cell, and by spacing their cell bodies, which requires positioning the soma and establishing a zone within which other cells of the same type are excluded1. The mosaic patterns of distinct cell types form independently and overlap. The cues that direct these processes in the vertebrate retina are not known. Here we show that some types of retinal amacrine cells from mice with a spontaneous mutation in Down syndrome cell adhesion molecule (Dscam), a gene encoding an immunoglobulin-superfamily member adhesion molecule, have defects in the arborization of processes and in the spacing of cell bodies. In the mutant retina, cells that would normally express Dscam have hyperfasciculated processes, preventing them from creating an orderly arbor. Also, their cell bodies are randomly distributed or pulled into clumps rather than being regularly spaced mosaics. Our results indicate that mouse DSCAM mediates isoneuronal self-avoidance for arborization and heteroneuronal self-avoidance within specific cell types to prevent fasciculation and to preserve mosaic spacing. These functions are analogous to those of Drosophila DSCAM and DSCAM2. DSCAM may function similarly in other regions of the mammalian nervous system, and this role may extend to other members of the mammalian Dscam gene family.