Date : 10.27.2008

Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels

Category : Press Release
 Section of Communications and Public Liaison, 
Center for Communication Networks
 

Katsuhiro Nagatomo and Yoshihiro Kubo
Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
Communicated by Lily Y. Jan, University of California School of Medicine, San Francisco, CA, September 30, 2008 (received for review September 7, 2008)

Caffeine has various well-characterized pharmacological effects,but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Ca2i imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity.