発表者へのご案内/For Presenters ### 特別講演、教育講演、シンポジウムでの発表者/For Special Lecturer, Educational lecturer, Symposists 【会場/Venue】 University Concert Hall2016 Marble 【日時/Date&Time】 特別講演 9月7日16:45-17:45 座長挨拶、発表時間、質問時間を含む 教育講演 1 9月7日 10:35-11:30 座長挨拶、発表時間、質問時間を含む 教育講演 2 9月8日 9:35-10:30 座長挨拶、発表時間、質問時間を含む シンポジウム 19月7日 14:30-16:30シンポジウム 29月8日 10:30-12:30 シンポジウムでは4人の講演者に発表いただきます。 各発表者の発表時間は25分、質問時間5分です。 発表方法の詳細は別途本人にご連絡いたします。 #### 2. フラッシュトーク / Flash Talk 【会場/Venue】 University Concert Hall2016 Marble 【日時/Date&Time】 9月7日(金) Sept 7th (Fri) 11:40-12:30 【発表時間/Presentation】 発表時間は $1 \land 100$ 秒厳守(パワーポイント、PDF にてスライド 1 枚を 9 月 1 日までに事務局まで事前提出)、質問時間なし。発表順は、演題番号の順(各抄録の左上に記載ある A で始まる演題番号)で行います。フラッシュトーク発表者は 11 時 30 分に Concert Hall 2016 Marble 会場左手通路に演題番号順に並んでください。 Each presentation should be less than 100 seconds and there will be no question time. The presenters should submit a single-page slide in .ppt or .pdf format to the meeting office until Sep 1st. The order of the presentation is according to the abstract number starting with "A". The presenters should wait their turn by lining up in the order of presentation at the left passage in the Concert Hall 2016 Marble at 11:30. # 3. 優秀口演・奨励賞口演発表 / Session for Selected Oral Presentation and Young Investigator's Awardee 【会場/Venue】 University Concert Hall2016 Marble 【日時/Date&Time】 9月8日 Sept 8th, 13:30-14:45 優秀口演は、トーク希望者から選考委員の審査結果により選ばれた方に行っていただきます。奨励賞は、選考委員の審議により決定し閉会式で授与されます。また奨励賞受賞者は口演発表も行っていただきます。発表時間は各8分+質問時間2分を予定しています。プレゼン資料はマイクロソフトパワーポイントもしくはPDFで作成し発表30分以上前に、発表事務局にファイルを持ち込みディスプレーテストを完了してください。 A few selected abstracts will be presented in the session of Selected Oral Presentation. The Young investigators awardee will also present their work in the same session. The allotted time is 8 min for presentation and 2 min for question and comments. The presenters should prepare the presentation file in Microsoft power point or PDF file and should bring their file to the meeting office to test the display compatibility at least 30 min prior to their presentation. #### 4. ポスター発表 / Poster Presentation 【会場/Venue】 ELF Study Hall2015 5 F フロアー/Floor 演題番号により下記会場に分かれて掲示してください。Please find the room number for the poster presentation by your abstract numbers. ・ポスター会場1 (ELF517) 演題番号 A1 から A20 番まで ・ポスター会場 2 (ELF519) 演題番号 A21 から A40 番まで ・ポスター会場 3 (ELF522) 演題番号 A41 から A47 番まで ・ポスター会場 4 (ELF523) 演題番号 A48 から A55 番まで ・ポスター会場 5 (ELF524) 演題番号 A56 から A67 番まで · Poster Room 1 (ELF517) Abstract number A1 to A20 · Poster Room 2 (ELF519) Abstract number A21 to A40 · Poster Room 3 (ELF522) Abstract number A41 to A47 · Poster Room 4 (ELF523) Abstract number A48 to A55 · Poster Room 5 (ELF524) Abstract number A56 to A67 ### 【示説時間/Presentation time】 発表者は演題番号によって下記により指定された発表時間においてポスター前で発表を行ってください。 Presenters should present his/her work in front of the poster during the allotted time below. 9月7日(金) Sep 7th, 13:30~14:30 演題番号偶数の発表 Presentation of Even Number 9月8日(土)Sep 8th, 14:45~15:45 演題番号奇数の発表 Presentation of Odd Number #### 【貼付・撤去時間/Posting and taking off】 発表者は下記の時間にポスター貼付および撤去を行ってください。 Presenters should post and remove their posters at the time below. 貼付 Posting: 9月7日(金) Sep 7th 9:00 to 9:30 撤去 Removing: 9月8日(土) Sep 8th 15:45 to 16:00 *撤去時間が過ぎても残っているポスターは、事務局にて処分いたしますので、予めご了承ください。 Please note that any posters remaining left after that will be discard by the meeting office ### 【ポスター準備方法/Preparation of Posters 】 ポスターパネルの大きさは縦 $160 \, \mathrm{cm} \times$ 横 $90 \, \mathrm{cm}$ ですので、このパネルに収まるようポスターを作成ください。またパネル左上部に、演題番号を事務局側で貼付していますので該当するパネルにポスターを掲示してください。演題番号部分の大きさは縦 $15 \, \mathrm{cm} \times$ 横 $21 \, \mathrm{cm}$ ですので、パネル全面の大きなポスターを作成する際には演題番号部分を考慮してください。画鋲は各パネルに備え付けてある紙カップ内のものをご使用ください。 The poster panel is in a size of H 160cm x W 90cm, so please prepare your posters to fit this panel. Also the abstract number will be shown on a H15cm x W 21cm sheet which will be posted at the upper left corner of the panel. Please take account of this space if you need to make your poster as large as possible in the panel. The office will also prepare thumbtacks in the paper cup to be used for posting. - ★フラッシュトーク/Flash Talk - *優秀口演/Selected Oral Presentation - 業若手奨励賞/Young Investigator Award # A1. Social networking service usage is related to personality and resting state brain functional connectivity* Kazuma Mori 1 Masahiko Haruno 1 ¹Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) ### A2. Associations between atypicality in local neural retainability and core symptoms of autism* Takamitsu Watanabe^{1,2}, Geraint Rees^{1,3}, Naoki Masuda⁴ - ¹, Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK. - ², RIKEN Centre for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. - ³, Wellcome Trust Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK. - ⁴, Department of Engineering Mathematics, University of Bristol, Woodland Road, Clifton, Bristol BS8 1UB, UK. ### A3, Neural processing for social value conversion into value-based decision Haruaki Fukuda^{1, 2, 3}, Ning Ma^{1, 2}, Shinsuke Suzuki^{1, 2, 4, 5}, Norihiro Harasawa^{1, 2}, Kenichi Ueno^{2, 6}, Justin L Gardner^{7, 8}, Noritaka Ichinohe⁹, Masahiko Haruno1⁰, Kang Cheng^{5, 11}, Hiroyuki Nakahara^{1, 2, 12} ¹ Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, ² Laboratory for Integrated Theoretical Neuroscience, RIKEN Center for Brain Science, ³ Department of General System Studies, The University of Tokyo, ⁴ Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, ⁵ Institute of Development, Aging and Cancer, Tohoku University, ⁶ Support Unit for Functional Magnetic Resonance Imaging, RIKEN Brain Science Institute, ⁷ Department of Psychology, Stanford University, ⁸ Laboratory for Human Systems Neuroscience, RIKEN Brain Science Institute, ⁹ Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, ¹⁰ Center for Information and Neural Networks, National Institute of Information and Communication Technology, ¹¹ Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute, ¹² Department of Intelligence Science and Technology, Kyoto University # A4. Neural correlates of recognition of other's inference of own belief in competitive strategic choices Akitoshi Ogawa^{1,2,3}, Tatsuya Kameda^{4, 2} ¹Department of Neurophysiology, Juntendo University School of Medicine, ²Brain Science Institute, Tamagawa University, ³Labratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, ⁴Department of Social Psychology, The University of Tokyo ## A5. Developmental changes of connectivity in action observation network during gestural interaction Yuko Okamoto^{1,2}, Ayumi Seki³, Ryo Kitada⁴, Hisakazu T Yanaka⁵, Takanori Kochiyama^{1,2}, Tatsuya Koeda⁶ ¹Advanced Telecommunications Research Institute International, ²ATR-Promotions Brain activity imaging center, ³Hokkaido University, ⁴Nanyang Technological University, ⁵Tottori University, ⁶National Center for Child Health and Development # A6. Association between the concentration of GABA in the right DLPFC and social preference Takayuki Fujii¹, Atsushi Miyazaki¹, Muneyoshi Takahashi¹, Toru Ishihara¹, Hiroki Tanaka¹, Hideto Kuribayashi², Haruto Takaqishi¹, Tetsuya Matsuda¹ ¹Tamagawa University Brain Science Institute, ²Siemens Healthcare KK Japan ### A7. COMT genotype affect cortical thickness and surface area abnormalities in boys with ADHD - Machine learning and imaging genetics approach to ADHD -★ Minyoung Jung¹, Yoshifumi Mizuno², Takashi X. Fujisawa¹, Shinichiro Takiguchi², Hirotaka Kosaka^{1,2,3}, Akemi Tomoda^{1,2} ¹Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, JAPAN ²Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, JAPAN ³Department of Neuropsychiatry, University of Fukui, University of Fukui, Eiheiji, Fukui, JAPAN # A8. Switching social behavior in response to a social norm: A multi-modal imaging study using the Human Connectome Project (HCP) pipeline and a large-scale sample★ Hiroki Tanaka¹, Atsushi Miyazaki¹, Haruto Takagishi¹, Takayuki Fujii¹, Toru Ishihara¹, Kei Kanari¹, Kuniyuki Nishina¹, Muneyoshi Takahashi¹, Toshio Yamagishi², Tetsuya Matsuda¹ ¹Tamagawa University Brain Science Institute, ²Hitotsubashi University ### A9. Neural mechanisms for decision-making with predicting others in human Ning Ma:1; Norihiro Harasawa:1; Kenichi Ueno:2; Noritaka Ichinohe:3; Masahiko Haruno:4; Kang Cheng:2,5; Hiroyuki Nakahara:1 1: Lab For Int Theor Neurosci, RIKEN CBS, Japan; 2: fMRI Support Unit, RIKEN CBS, Japan; 3: Dept of Ultrastructural Res, Natl Inst of Neurosci, NCNP, Japan; 4: Center for Info and Neural Networks, NICT, Japan; 5: Lab for Cognitive Brain Mapping, RIKEN CBS, Japan ## A10. Childhood sports activity predicts later-life inhibitory control: A multimodal MRI study using HCP-style paradigm* Toru Ishihara¹, Atsushi Miyazaki¹, Haruto Takagishi¹, Takayuki Fujii¹, Kei Kanari¹, Kuniyuki Nishina¹, Muneyoshi Takahashi¹, Hiroki Tanaka¹, Toshio Yamagishi^{1,2}, Tetsuya Matsuda¹ ¹Tamagawa University Brain Science Institute, ²Hitotsubashi University ### A11. 自分の声らしさ知覚とその神経的基盤の探究 保坂太志 1、木村真理乃 2、四本裕子 2 1東京大学教養学部統合自然科学科、2東京大学総合文化研究科 ### A12. The Neural Basis of Legal Judgment: MRI Experiment on the Legal Mind Takeshi Asamizuya, Ai Takahashi, Hiroharu Saito, Ryosuke Higuchi, Go Naruse, Shozo Ota, Junko Kato Graduate Schools for Law and Politics, The University of Tokyo ### A13. 書字トレーニング時の複数回 MRI 撮像による脳機能・脳構造可塑性の検討★ 牟田光孝1、岡ノ谷一夫2、細田千尋1,2,3 1東京医科歯科大学医歯学総合研究科、2東京大学総合文化研究科、3JST さきがけ ### A14. 運動準備中における時間知覚の歪みに関する神経基盤 岩﨑美帆 1,3,4、野口泰基 1、柿木隆介 2 ¹神戸大学大学院人文学研究科心理学研究室、²生理学研究所システム脳科学研究領域統合生理研究部門、³理化学研究所健康生き活き羅針盤リサーチコンプレックス推進プログラム新規計測開発チーム、⁴理研 BDR-ダイキン工業連携センター # A15. Duration-tuned neural populations in the right parietal cortex mediate subjective experience of time. Masamichi J. Hayashi 1,2, Richard B. lvry 2 ¹Global Center for Medical Engineering and Informatics, Osaka University, ²Department of Psychology, University of California, Berkeley. ### A16. Distinct VTA connectivity networks in schizophrenia and affective disorders Yuko Nakamura¹, Naohiro Okada², Kingo Sawada², Kazusa Ohta³, Akira Kunimatsu³, Kiyoto Kasai², Shinsuke Koike⁴ - 1) UTokyo Center for Integrative Science of Human Behavior, Graduate School of Arts and Sciences, The University of Tokyo. - 2) Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo. - 3) Institute of Medical Science, University of Tokyo - 4) University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM). ### A17. 統合失調症における戦略的推論能力の障害と脳灰白質体積の関係 早瀬允人、森康生、村井俊哉、高橋英彦 京都大学大学院 医学研究科 脳病態生理学講座 精神医学教室 ### A18. Classifying individuals with autism spectrum disorder and schizophrenia based on their neuroanatomical indices★ Walid Yassin¹, Yinghan Zhu², Hironori Nakatani², Masaki Kojima¹, Keiho Owada¹, Hitoshi Kuwabara³, Naohiro Okada⁴, - Wataru Gonoi⁵, Hidemasa Takao⁵, Kiyoto Kasai⁴, Yukiko Kano¹, Osamu Abe⁵, Hidenori Yamasue³, Shinsuke Koike⁶ - 1 Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo - 2 Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo - 3 Department of Psychiatry, Hamamatsu University School of Medicine - 4 Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo - 5 Department of Radiology, Graduate School of Medicine, The University of Tokyo - 6 University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM) ### A19. Associations of diffusion-tensor fractional anisotropy and outcome assessments after cerebral infarction Tetsuo Koyama MD, PhD 1,2, Yuki Uchiyama MD, PhD 2; Kazuhisa Domen MD, PhD ¹Department of Rehabilitation Medicine, Nishinomiya Kyoritsu Neurosurgical Hospital ²Department of Rehabilitation Medicine, Hyogo College of Medicine ### A20. 老年期うつ病のドーパミントランスポーターイメージング・ 守屋洋紀¹、増岡孝浩¹、坂寄健¹、金禹璜¹、新貝慈利¹、舘野周¹、大久保善朗¹ 日本医科大学大学院 精神・行動医学 # A21. A modality-independent semantic map revealed by a novel cross-modal encoding modeling analysis Hiroto Q. Yamaguchi 1, 2, Tomoya Nakai 1, 2, Shinji Nishimoto 1, 2, 3 ¹Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Japan ²Graduate School of Frontier Biosciences, Osaka University, Japan ³Graduate School of Medicine, Osaka University, Japan # A22. Dynamic reconfiguration of default-mode submodules associates with memory-encoding performance. ★ Keerativittayayut R.1, Aoki R.2, Jimura K.3,4, Nakahara K.1,3 ¹Sch of Information, ²Res Inst for Future Design, ³Res Cent for Brain Commun, Kochi Univ of Technol; ⁴Dept of Biosciences and Informatics, Keio Univ. ### A23. 急性ストレス下における安静時機能的結合の動的変化 北脇 真岐 ^{1,3}, Mauricio Delgado² and 春野 雅彦 ^{3,1} 1 大阪大学大学院 生命機能研究科 生命機能専攻 2 Department of Psychology, Rutgers University 3 国立研究開発法人 情報通信研究機構 脳情報通信融合研究センター # A24. Fluctuations in global network topology of modeled and empirical functional connectivity* Makoto Fukushima 1,2, Olaf Sporns 2,3 ¹Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), ²Department of Psychological and Brain Sciences, Indiana University, ³Indiana University Network Science Institute ### A25. Attentional bias towards sad stimuli at acute mental fatigue state. ★ Kyosuke Watanabe ^{1,3}, Akihiro T. Sasaki ^{1,2,4}, Kanako Tajima ², Kei Mizuno ^{1,2,4}, Yasuyoshi Watanabe ^{1,2,4} ¹Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, ²RIKEN Compass to Healthy Life Research Complex Program, and Departments of ³Physiology and ⁴Medical Science on Fatigue, Osaka City University Graduate School of Medicine # A26. Neural mechanisms of fatigue sensation induced by re-experiencing: a magnetoencephalography study. Emi Yamano ¹、 Akira Ishii ²、 Masaaki Tanaka ³、 Yasuyoshi Watanabe ^{4,5} ¹ Health Metrics Development Team, RIKEN Compass to Healthy Life Research Complex Program, ² Department of Sports Medicine, Osaka City University Graduate School of Medicine, ³ Department of Physiology, Osaka City University Graduate School of Medicine, ⁴ RIKEN Center for Biosystems Dynamics Research, ⁵ RIKEN Compass to Healthy Life Research Complex Program ## A27. Age-dependent changes of structure, myelin and neurite in adult human cerebral cortex* Akihiro T. Sasaki^{1,3,4,6}, Hikaru Fukutomi², Kyosuke Watanabe^{1,5}, Yusuke Morito³, Kanako Tajima³, Kyoko Ebisu³, Miho Iwasaki³, Kei Mizuno^{1,3,4,6}, Takuya Hayashi^{2,3}, Yasuyoshi Watanabe^{1,3} ¹Laboratory for Pathophysiological and Health Science, ²Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, ³RIKEN Compass to Heathy Life Research Complex Program, ⁴Department of Medical Science on Fatigue, ⁵Physiology, Osaka City University Graduate School of Medicine, ⁶Osaka City University Center for Health Science Innovation. # A28. Improved functional sensitivity of the amygdala using multi-echo EPI and the evoked response based HRF at 7 Tesla* Uksu Choi^{1,2}, Toshiko Tanaka^{1,2}, Masahiko Haruno^{1,2}, Ikuhiro Kida^{1,2} ¹Center for Information and Neural Networks, National Institute of Information and Communications Technology, ²Graduate School of Frontier Biosciences, Osaka University # A29. Neural impact of native language literacy during speech processing of non-native language Dinh Ha Duy Thuy¹, Aila Johanna¹, Hidenao Fukuyama¹, Kimihiro Nakamura^{1,2} ¹Human Brain Research Center, Kyoto University Graduate School of Medicine ²Section of Systems Neuroscience, National Rehabilitation Center Research Institute ### A30. 記録メディアによって想起時に異なる脳活動 梅島奎立1、茨木拓也2、山﨑崇裕2、酒井邦嘉1 1東京大学大学院総合文化研究科、2株式会社 NTT データ経営研究所 ## A31. Decoding of novel music-genres based on the spectro-temporal modulation property in the superior temporal gyrus★ Tomoya Nakai^{1,2}, Naoko Koide-Majima³, and Shinji Nishimoto^{1,2,4*} ¹Center for Information and Neural Networks, National Institute of Information and Communications Technology, Japan, ¹Graduate School of Frontier Biosciences, Osaka University, Japan, ³Brother Industries LTD, Japan, ⁴Graduate School of Medicine, Osaka University, Japan #### A32. Transient feedforward and feedback signals involved in visual awareness★ 湯淺健一 1,2, 竹村浩昌 1,2, 本吉勇 3, 天野薫 1,2 1情報通信研究機構 脳情報通信融合研究センター, 2大阪大学大学院生命機能研究科, 3東京大学大学院総合文化研究科 # A33. Spatiotemporal Organization of Systems-level Effects of tES Techniques Applied to Visual Cortex During Visual Task Keishi Nomura¹, Shuhei Shima¹, Kristina M Visscher², Aaron Seitz³, Yuko Yotsumoto¹ ¹Department of Life Sciences, The University of Tokyo, ²Department of Neurobiology, The University of Alabama at Birmingham, ³Department of Psychology, The University of California, Riverside ## A34. Visual white matter tracts in Leber's hereditary optic neuropathy: diffusion and quantitative MRI study Hiromasa Takemura^{1,2}*, Shumpei Ogawa^{3,4}*, Aviv Mezer⁵, Hiroshi Horiguchi³, Atsushi Miyazaki⁶, Kenji Matsumoto⁶, Keigo Shikishima³, Tadashi Nakano³, & Yoichiro Masuda³ ¹Center for Information and Neural Networks (CiNet), NICT, ²Grad School of Frontier Biosci., Osaka University, ³Dept Ophthalmology, The Jikei University of Medicine, ⁴Dept Ophthalmology, Atsugi city hospital, ⁵The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Israel, ⁶Brain Science Institute, Tamagawa University. *: These authors contributed equally. ### A35. Cortical dynamics for compensating visual orientation sensitivity bias★ Hui-Ning Wu¹, Yuji Ikegaya^{2,3}, Hiroshi Ban^{1,3} ¹ Graduate School of Frontier Biosciences, Osaka University, Japan. ² Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan. ³ Center for Information and Neural Networks (CiNet), NICT, Japan # A36. Insula shows different activation profiles for initial taste detection and aftertaste discrimination while tasting coffee Muneyoshi Takahashi¹, Takayuki Fujii¹, Atsushi Miyazaki¹, Toru Ishihara¹, Hiroki Tanaka¹, Shinsuke Shimojo¹.2.³, Tetsuya Matsuda¹ ¹Tamagawa University Brain Science Institute, ²Division of Biology and Biological Engineering, ³Computation & Neural Systems, California Institute of Technology ### A37. 痛み体験と痛みの共感に関わる神経活動のマルチボクセルパターン解析 横川啓太1、小島一歩1、平野成樹1、小畠隆行2、須原哲也1、山田真希子1 ¹放射線医学総合研究所 脳機能イメージング研究部、²放射線医学総合研究所 分子イメージング診断治療研究部 A38. キャンセル ### A39. Motor engram is encoded in dormant neuronal network* Sho K. Sugawara^{1,2}, Masaki Fukunaga^{1,2}, Yuki H. Hamano¹, Takaaki Yoshimoto^{1,2}, Norihiro Sadato ^{1,2} ¹Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), Okazaki, Japan, ²Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan # A40. Magnetic Resonance Axonal and Myelin Volume Fraction-Based Connectome Analysis in Parkinson's Disease Christina Andica¹, Koji Kamagata¹, Taku Hatano², Keigo Shimoji¹,³, Wataru Uchida¹, Yuki Takenaka¹,⁴, Asami Saito¹, Takashi Ogawa², Genko Oyama², Haruka Takeshige², Yashushi Shimo², Masaaki Hori¹, Atsushi Umemura⁵, Nobutaka Hattori², Shigeki Aoki¹¹Department of Radiology, Juntendo University Graduate School of Medicine, ²Department of Neurology, Juntendo University School of Medicine, ³Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, ⁴Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, ⁵Department of Neurosurgery, Juntendo University School of Medicine ### A41. Cortical representation of skilled finger sequences in humans* Atsushi Yokoi¹, Jörn Diedrichsen² ¹Center for Information and Neural Networks, National Institute of Information and Communications Technology, Japan, ²The Brain and Mind Institute, University of Western Ontario, Canada ## A42. Visualization of the subcortical nuclei in Parkinson's disease and related disorders with 7-tesla MRI Atsushi Shima¹, Nobukatsu Sawamoto^{1,2}, Koji Furukawa¹, Daisuke Kambe¹, Akira Nishida¹, Haruhi Sakamaki¹, Ikko Wada¹, Kenji Yoshimura¹, Dinh Ha Duy Thuy³, Koji Fujimoto³, Tomohisa Okada³, Ryosuke Takahashi¹ ¹Department of Neurology, Kyoto University Graduate School of Medicine, ²Department of Human Health Sciences, Kyoto University Graduate School of Medicine, ³Human Brain Research Center, Kyoto University Graduate School of Medicine ### A43. パーキンソン病のすくみ足と相関する安静時大脳基底核機能結合の変容 東口大樹1、若杉憲孝1、坂本崇2、村田美穂2、花川隆1 ¹国立精神・神経医療研究センター脳病態統合イメージングセンター 先進脳画像研究部、²国立精神・神経医療研究センター病院 神経内科 ### A44. Neural correlates with temporal prediction during auditory-motor synchronisation★ Kohei Miyata¹, Tetsuya Yamamoto¹, Takahiko Koike¹, Sho Sugawara¹, Masaki Fukunaga¹, and Norihiro Sadato ¹Department of System Neuroscience, National Institute for Physiological Sciences # A45. Local-to-distant development of cerebrocerebellar sensorimotor network in typically developing brain★ Kaoru Amemiya¹, Tomoyo Morita^{1,2}, Daisuke N. Saito^{3,4,5}, Midori Ban⁶, Koji Shimada^{3,4}, Yuko Okamoto^{3,7}, Hirotaka Kosaka^{3,4,8}, Hidehiko Okazawa^{3,4}, Minoru Asada^{1,2}, and Eiichi Naito^{1,9} ¹Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), ²Graduate School of Engineering, Osaka University, ³Research Center for Child Mental Development, University of Fukui, ⁴Biomedical Imaging Research Center, University of Fukui, ⁵Research Center for Child Mental Development, Kanazawa University, ⁶Graduate School of Engineering Science, Osaka University, ⁷ATR promotions, ⁸Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, ⁹Graduate School of Frontier Biosciences, Osaka University ### A46. 経頭蓋磁気刺激に対する脳波の位相応答 小野島隆之1、岡崎由香1、北城圭一1 ¹国立研究開発法人理化学研究所 脳神経科学研究センター 理研 CBS-トヨタ連携センター ### A47. MEG time-resolved meta decoding improves performance by using State Information ★ Fumiya Nakai 1,2, Okito Yamashita 2 ¹Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan. ²ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan ## A48. Effect of the number of EEG electrodes on the multi-class and binary classifications of cortical current sources Alejandra Mejia Tobar^{1,2}、Yousuke Ogata¹、Kahori Kita³、Tatsuhiro Nakamura²、Hiroyuki Kambara¹、Takashi Hanakawa²、Yasuharu Koike^{1,2}、Natsue Yoshimura^{1,2} ¹Institute of Innovative Research, Tokyo Institute of Technology, ²Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, ³Center for Frontier Medical Engineering, Chiba University ### A49. Machine Learning Approaches Providing A Protential Diagnosis of Schizophrenia★ Yinghan Zhu¹, Hironori Nakatani¹, Walid Yassin², Naohiro Okada³, Osamu Abe⁴, Hidenori Yamasue⁵, Kiyoto Kasai³, Shinsuke Koike⁶ 1Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo; 2Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo; 3 Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo; 4 Department of Radiology, Graduate School of Medicine, The University of Tokyo; 5Department of Psychiatry, Hamamatsu University School of Medicine; 6University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM) ## A50. Transforming T1w anatomy into functional space using full brain IR-EPI for high-resolution fMRI at 7T★ Adnan Shah ¹, Takashi Ueguchi ¹, Guoxiang Liu ¹ Laboratory of Brain Function Analysis and Imaging, CiNet, NICT, Suita-Shi, Osaka, Japan ### A51. Improving tissue contrast and segmentation of MPRAGE based anatomical imaging at UHF 7T MRI★ Adnan Shah, Takashi Ueguchi, Guoxiang Liu Laboratory of Brain Function Analysis and Imaging, CiNet, NICT, Suita-Shi, Osaka, Japan ### A52. 拡散 MRI に基づく淡蒼球内節・外節の自動セグメンテーションに関する検討 奥畑志帆 1 、古橋直也 1 、東高志 1 中井隆介 2 小林哲生 1 京都大学 大学院工学研究科、 2 こころの未来研究センター Research Complex Program, Kobe, Japan # A53. Does Diffusion Tensor Model Predict Neurite Distribution of Cerebral Cortical Gray Matter? – Cortical DTI-NODDI Hikaru Fukutomi^{1,2}, Katsutoshi Murata³, Matthew Glasser⁴, Thai Akasaka², Koji Fujimoto², Takayuki Yamamoto², Joonas A. Autio¹, Tomohisa Okada², Kaori Togashi², Hui Zhang⁴, David Van Essen⁴, Takuya Hayashi^{1,5} ¹Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan, ²Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto Japan, ³Siemens Healthcare K.K. Japan, ⁴Centre for Medical Image Computing and Department of Computer Science, University College London, UK, ⁵RIKEN Compass to Healthy Life ### A54. 3D Synthetic MRI-based Volumetry の初期検討:再現性および従来法との比較 藤田翔平 1 、萩原彰文 1,2 、堀正明 1 、下地啓五 3 、高須康平 4 、後藤政実 4 、Christina Andica 1 、前川朋子 1,2 、入江隆介 1,2 、鎌形康司 1 、和田昭彦 1 、青木茂樹 1 上順天堂大学医学部附属順天堂医院 放射線科・部、²東京大学大学院 医学系研究科 放射線医学講座、³東京都独立行政 法人東京都健康長寿医療センター、⁴北里大学大学院 医療系研究科 ### A55. 加齢に伴う脳室拡大と隠れた水頭症:BOLD ラグマップ法による観察 麻生俊彦 1,2・浦山慎一 2 京都大学医学研究科 1)精神科神経科、2)脳機能総合研究センター ### A56. Evaluation of Double Injection Method for FDG PET Brain study Edmond Chen¹, Asuka Kikuchi¹, Akie Inami¹, Fairuz Binti Mohd Nasir², Attayeb Mohsen^{1,3,4}, Shoichi Watanuki¹, Masayasu Miyake², Kazuko Takeda¹, Kotaro Hiraoka¹, Kazuhiko Yanai^{1,3}, Hiroshi Watabe², Manabu Tashiro¹ ¹Divisions of Cyclotron Nuclear Medicine and ²Radiation Safety, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan; ³Dept. Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan # A57. Positron Emission Tomography Tracer for AMPA receptors Characterizes Neuropsychiatric Disorders in Human★ Mai Hatano¹, Waki Nakajima¹, Yusuke Shibata¹, Tetsu Arisawa¹, Tomoyuki Miyazaki¹, Takuya Takahashi^{1*} ¹ Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan. ### A58. 脳の臨界現象と知能★ 江崎貴裕 1,2, Elohim Fonseca dos Reis3, 渡部喬光 4,5, 榊美知子 6,7, 増田直紀 3 ¹PRESTO, Japan Science and Technology Agency, ²RCAST, The University of Tokyo, ³Department of Mathematical Engineering, University of Bristol, ⁴Institute of Cognitive Science, University College London, ⁵RIKEN Center for Brain Science, ⁶School of Psychology and Clinical Language Sciences, University of Reading, ⁷Research Institute, Kochi University of Technology. ### A59. Striatal subdivisions interacting with multiple cerebrocortical networks Akitoshi Ogawa¹, Takahiro Osada¹, Masaki Tanaka¹, Masaaki Hori², Shigeki Aoki^{2,3,4}, Aki Nikolaidis⁵, Michael P Milham⁵, Seiki Konishi^{1,3,4} ¹Department of Neurophysiology, Juntendo University School of Medicine, ²Department of Radiology, Juntendo University School of Medicine, ³Research Institute for Diseases of Old Age, Juntendo University School of Medicine, ⁴Sportology Center, Juntendo University School of Medicine, ⁵Center for the Developing Brain, Child Mind Institute #### A60. Head Motion Suppression Using A Bite-bar System For Human MRI Scans Kenji Haruhana¹, Chisato Suzuki², R. Allen Waggoner¹, Keiji Tanaka^{1,2}, Kenichi Ueno² ¹Laboratory for Cognitive Brain Mapping, Center for Brain Science, RIKEN ²Support Unit for functional Magnetic Resonance Imaging, Research Development Division, Center for Brain Science, RIKEN # A61. Impact of low-frequency rTMS to the medial frontal cortex on mood and affect in monkeys. Shinya Nakamura, Ken-Ichiro Tsutsui Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences #### A62. Resting state functional corticostriatal connectivity in Parkinsonian monkeys Joonas A. Autio¹, Takayuki Ose¹, Kantaro Nishigori¹, Noboyoshi Tanki^{1,2}, Jun Takahashi³, Matthew F. Glasser^{4,5}, Takuya Hayashi¹ ¹Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan. ²Okayama University, Okayama, Japan ³Kyoto University, Kyoto, Japan. ⁴Department of Neuroscience, Washington University, St. Louis, MO, United States ⁵St. Luke's hospital, St. Louis, MT, United States # A63. Dopaminergic modulation of functional connectome in anesthetized macaque monkeys★ Kantaro Nishigori^{1, 2}, Takayuki Ose¹, Masahiro Ohno¹, Masataka Yamaguchi¹, Joonas Autio¹, Atsushi Yoshida¹, Toru Negishi², Shunsuke Nakazawa², Naoko Urushino², Junji Ichihara² and Takuya Hayashi¹ 1RIKEN Center for Biosystems Dynamics Research, Kobe, Japan, 2Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan ### A64. Translating Human Connectome Project to Marmoset Imaging* Yuki Hori¹, Joonas Autio¹, Masahiro Ohno¹, Yoshihiko Kawabata², Yuta Urushibata³, Katsutoshi Murata³, Akihiro Kawasaki¹, Chiho Takeda¹, Chihiro Yokoyama¹, Masataka Yamaguchi¹, Atsushi Yoshida¹, Matthew F Glasser^{4, 5}, David Van Essen⁴, Takuya Hayashi¹ ¹Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, ²Takashima Seisakusho Co. Ltd., ³Siemens Healthcare Japan, ⁴Department of Anatomy and Neurobiology, Washington University in St. Louis, ⁵St. Luke's Hospital # A65. Development of a 24-Channel Multi-Array Coil for functional MRI at 3T in awake macaques Atsushi Yoshida¹, Yuki Hori¹, Kantaro Nishigori², Masahiro Ohno¹, Yoshihiko Kawabata³, Yuta Urushibata⁴, Katsutoshi Murata⁴, Masataka Yamaguchi¹, Joonas Autio¹, Matthew F Glasser^{5, 6}, Takuya Hayashi¹ ¹Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, ²Dainippon Sumitomo Pharm Co. Ltd., ³Takashima Seisakusho Co. Ltd., ⁴Siemens Healthcare Japan, ⁵Department of Anatomy and Neurobiology, Washington University in St. Louis, ⁶St. Luke's Hospital ### A66. Neural dynamics of recurrent active vision Takaaki Kaneko^{1,2}, Misako Komatsu¹, Noritaka Ichinohe^{1,3}, Hideyuki Okano^{2,1} ¹RIKEN Center for Brain Science, Wako, Japan; ²Dept. of Physiol., Keio Univ. Sch. of Med., Tokyo, Japan; ³National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan ### A67. MRI 装置と直結した研究用脳画像データベースおよび標準自動解析装置の開発★ 三井賢治 1,2、村尾拓哉 1,2、林 拓也 1 1 理化学研究所生命機能科学研究センター 脳コネクトミクスイメージングチーム、 2 AUSyscom Japan