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Abstract
Background: Fatigue is a crucial sensation that triggers rest, yet its underlying neuronal
mechanisms remain unclear. Intense long-term fatigue is a symptom of chronic fatigue syndrome,
which is used as a model to study the mechanisms underlying fatigue.

Methods: Using magnetic resonance imaging, we conducted voxel-based morphometry of 16
patients and 49 age-matched healthy control subjects.

Results: We found that patients with chronic fatigue syndrome had reduced gray-matter volume
in the bilateral prefrontal cortex. Within these areas, the volume reduction in the right prefrontal
cortex paralleled the severity of the fatigue of the subjects.

Conclusion: These results are consistent with previous reports of an abnormal distribution of
acetyl-L-carnitine uptake, which is one of the biochemical markers of chronic fatigue syndrome, in
the prefrontal cortex. Thus, the prefrontal cortex might be an important element of the neural
system that regulates sensations of fatigue.

Background
Chronic fatigue is common and is reported in more than
20% of people seen in primary care [1]. However, the neu-
ral substrates of chronic fatigue are not well understood.
For clinical use, central fatigue is defined as difficulty in
the initiation of, or the ability to sustain, voluntary activi-
ties [2]. Central fatigue, in contrast with neuromuscular or
peripheral fatigue, represents a failure to complete physi-
cal and mental tasks that require self-motivation and
internal cues, in the absence of demonstrable cognitive
failure or motor weakness [3]. Based on this definition,

Chaudhuri and Behan [2] proposed a conceptual model
for central fatigue. The work output of voluntary activity
depends on the applied voluntary effort, which is control-
led by motivational input and perceived effort via feed-
back from motor, sensory and cognitive systems. Hence,
any dissociation between the level of internal input (moti-
vational and limbic) and that of the perceived effort from
applied voluntary effort results in the sense of fatigue.
Assuming that pathological fatigue is an amplified sense
of the normal (physiological) fatigue induced by changes
in the variables regulating work output, clinical studies of
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fatigue disorders can provide clues regarding the neural
substrates of fatigue. Symptoms of lesions in the pathways
of arousal and attention, such as the reticular and limbic
systems, and the basal ganglia, generally include patho-
logical fatigue [2]. Fatigue can also be the primary symp-
tom of a disease itself – this is the case in chronic fatigue
syndrome (CFS), which might therefore prove to be a
good model for studying the mechanisms underlying
fatigue sensation.

CFS is a clinically defined condition characterized by
severe disabling fatigue and a combination of symptoms,
the prominent features being self-reported impairments
in concentration and short-term memory, sleep distur-
bances and musculoskeletal pain [4]. The diagnosis of
CFS can be made only after alternative medical and psy-
chiatric causes of chronic fatigue have been excluded [4].
Recent studies found biochemical and genetic characteris-
tics in CFS patients, such as a decreased concentration of
serum acetyl-L-carnitine [5], a serotonin-transporter gene-
promoter polymorphism [6], and autoantibodies against
the muscarinic cholinergic receptor [7]. Among these,
administration of L-carnitine, which is the precursor of
acetyl-L-carnitine, is known to improve the clinical status
of CFS patients [8]. In the brain, the acetyl moiety of
acetyl-L-carnitine is utilized mainly for the biosynthesis of
L-glutamate [9]. In CSF patients, a significant decrease in
the uptake of acetyl-L-carnitine was found in several
regions of the brain, including the prefrontal (Brod-
mann's area (BA) 9/46d), temporal (BA21 and 41), and

anterior cingulate (BA24 and 33) cortices and cerebellum
[9]. However, whether such focal cortical hypofunction is
due to an anatomical abnormality has not yet been inves-
tigated. We hypothesize that there might be regions with
explicit anatomical abnormalities that correlate with the
severity of fatigue. To measure the reduction in gray-mat-
ter volume, we conducted voxel-based morphometry with
high-resolution magnetic resonance imaging (MRI)
[10,11].

Methods
Sixteen CFS patients (aged 24–46 years; average age 34.0
years; 10 men and 6 women) and 49 age-matched healthy
control subjects (aged 21–47 years; average age 34.4 years;
27 men and 22 women) were enrolled in the study. They
were recruited from the outpatient fatigue clinic in Osaka
University Hospital (HK's special clinic) where more than
430 CFS patients, who met the diagnostic criteria of CFS
[4], are being followed. The protocol was approved by the
ethical committee of the National Institute for Physiolog-
ical Sciences, Japan, and all subjects gave their written
informed consent for the study. The periods of CFS lasted
between 10 and 244 months, and the mean duration was
69.8 months (Table 1). All CFS patients were unable to
carry out normal activities or actively work for several days
a week because of severe general fatigue at the time of
diagnosis. The severity of fatigue was measured using self-
reported ratings based on daily activities (performance
status; Table 2). A detailed neurological examination, the
time course of the patients' signs and symptoms, and

Table 1: Patient Characteristics

Patient number Age (years) Duration (months) PS Difficulty in thinking Inability to concentrate

1 39 132 8 2 2
2 33 56 8 2 1
3 26 10 4 2 2
4 31 37 2 1 1
5 30 36 8 2 2
6 27 42 5 1 2
7 27 100 7 1 1–2
8 27 153 8 2 2
9 37 17 4 1 1
10 46 244 2 2 2
11 24 10 4 1 1
12 34 10 7 2 2
13 36 131 7 2 2
14 35 14 6 1 1
15 46 56 8 2 2
16 45 69 7 2 2

Level of fatigue, difficulty in thinking, inability to concentrate and depression are rated as follows: 2, severe; 1, mild; 0, none. PS, performance status 
at MRI examination.
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additional MRI (for 7 out of 16 patients) made the diag-
nosis of multiple sclerosis (MS) unlikely. The characteris-
tics of the patients are shown in Table 1. To compare brain
volumes, high-resolution anatomical images were
acquired using a 3 Tesla MR scanner (Allegra, Siemens,
Erlangen, Germany). A three-dimensional structural MRI
was acquired for each subject using a T1-weighted mag-
netization-prepared rapid-gradient echo sequence (repeti-
tion time, 1970 ms; echo time, 4.3 ms; inversion time,
990 ms; number of excitation, 1; flip angle, 8°; matrix
size, 256 × 256; field of view, 210 × 210 mm) yielding 160
sagittal slices with a slice thickness of 1.2 mm and an in-
plane resolution of 0.82 mm.

Voxel-based morphometry (VBM) [12] was performed
using SPM2 for image processing and was analyzed with
SnPM99 [13] implemented in MATLAB 6.1 (MathWorks,
Natick, MA, USA). VBM is a fully-automated whole-brain
morphometric technique that detects regional structural
differences between groups on a voxel-by-voxel basis.
Briefly, images were segmented into gray matter, white
matter, cerebrospinal fluid and skull/scalp compartments,
then normalized to standard space and re-segmented. Any
volume changes induced by normalization were adjusted
[10,11]. The spatially normalized segments of gray and
white matter were smoothed using a 12-mm full-width
half-maximum isotropic Gaussian kernel. Statistical anal-
ysis of regional differences between groups was performed
using a permutation test for decreased probability of a
particular voxel containing gray or white matter. Potential
confounding effects of age, sex and whole segment (gray
or white matter) volume differences were modeled, and
the variances attributable to them were excluded from the
analysis [11,14,15]. The significance levels for statistics
estimated by 500 nonparametric randomization and per-
mutation tests were set at P = 0.05, corrected for multiple
comparisons. Within the areas showing a significant vol-
ume reduction in patients, linear correlates between vol-

ume reduction and the degree of fatigue were examined
under the threshold of P < 0.005.

Results
We observed a significant reduction in gray-matter vol-
ume in the bilateral prefrontal areas of CSF patients (Fig-
ure 1). The affected areas extended from BA8 to 9 in the
right cerebral hemisphere, and from BA9 to 11 in the left.
In comparison with healthy controls, there was an average
of 11.8% volume reduction in CSF patients. Within these
areas, there was a significant negative correlation between
the gray-matter volume of the right prefrontal cortex and
the performance status of the CFS group (r2 = 0.46, P =
0.004; Figure 2). This relationship was confirmed using
Spearman's rank-correlation coefficient (P = 0.004). In
this area, the gray-matter volume was reduced by 16.9%
for patients compared with controls. No significant atro-
phy was observed in the white matter of CFS patients.

Discussion
The present study provides the first report of focal gray-
matter atrophy in the prefrontal cortex of CFS patients.
Previous MRI studies of CFS revealed non-specific abnor-
malities: hyperintense small punctuated subcortical
white-matter foci were observed predominantly in the
frontal lobes [16] and their prevalence did not differ from
an age-matched control group [17,18]. Ventricular
enlargement was also reported [19]. Usually, MRI abnor-
malities in CSF patients cause the physician to conclude
that the symptoms might be secondary to another medi-
cal condition [20].

Prefrontal pathology has been reported in MS with path-
ological fatigue [21]. Roelcke and colleagues [21] reported
that MS patients with fatigue had a reduction of the cere-
bral metabolic rate of glucose (CMRGlu) in the bilateral
prefrontal areas compared with MS patients without
fatigue. Moreover, scores on the fatigue-severity scale were
inversely related to CMRGlu levels in the right prefrontal

Table 2: Performance-status scores for evaluating the severity of fatigue in CFS patients.

Scores Condition

0 No complaints; able to carry on normal activity without fatigue.
1 Able to carry on normal activity, but sometimes feels fatigue.
2 Able to carry on normal activity or to do active work with effort; requires occasional rest.
3 Several days a month, unable to carry on normal activity or to do active work; requires rest at home without work.
4 Several days a week, unable to carry on normal activity or to do active work; requires rest at home without work.
5 Unable to carry on normal activity or to do active work at all, although able to perform light tasks; requires rest at home 

without work for several days a week.
6 Requires rest without work at home for over one-half of a week; able to do light tasks in good health.
7 Unable to carry on normal activity or to do light tasks at all; able to care for self without assistance.
8 Remains in bed for more than one-half of each day; able to care for self to some extent, but requires frequent assistance.
9 Unable to care for self; must remain in bed with day-long assistance.
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cortex, suggesting that fatigue in MS is associated with pre-
frontal dysfunction due to the demyelination of frontal
white matter [21]. Although the Talairach's coordinates
reported by Roelcke and colleagues (x = 18, y = 42 and z =
20) were more medial and ventral than those observed
here (x = 48, y = 32 and z = 41), both results suggest that
prefrontal hypofunction might underlie pathological
fatigue. Although MS should be excluded in the diagnosis
of CFS, as in the present study, the similar clinical mani-
festations of the illnesses suggest that a common patho-
genesis underlies the symptoms of fatigue in both
disorders. This speculation is supported by the fact that
the administration of L-carnitine, which improves fatigue
in CFS patients, was effective for treating fatigue in MS
patients [22].

In the present study, right dorsolateral prefrontal-cortex
atrophy was significantly correlated with the severity of
fatigue, as measured by the performance-status scores. As
the performance status rates the daily activities that trigger
or aggravate fatigue, this correlated volume reduction
might reflect a functional deficiency that makes patients
susceptible to fatigue.

A single site in the dorsolateral prefrontal cortex revealed
the parallel between volume reduction and fatigue sever-
ity. This does not necessarily mean that it is fatigue-spe-
cific; instead, this area might be the part of the network
that, when functioning sub-normally, results in patholog-
ical fatigue. Fatigue is also a symptom of diseases that
affect the basal ganglia, and that interrupt the connection

Regional differences between CFS patients and controlsFigure 1
Regional differences between CFS patients and controls. Areas with significantly reduced gray-matter densities in the CFS 
patients were located at bilateral prefrontal areas, which were surface rendered onto the high-resolution MRI. The colored bar 
indicates the t-values.
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between the prefrontal cortex and thalamus [3]. Hence,
frontal-subcortical circuits might be important contribu-
tors to the sense of fatigue.

The dorsolateral prefrontal cortex has dense widespread
subcortical and cortical connections [23]. A series of par-
allel frontal-subcortical circuits have been described that
link specific regions of the frontal cortex to the striatum,
globus pallidus and thalamus [24]. These originate in the
prefrontal cortex, project into the striatum (caudate, puta-
men and ventral striatum), connect to the globus pallidus
and substantia nigra, and from there connect to the thala-
mus. There is then a final link back to the frontal cortex in
each circuit, forming a closed loop [25]. Corticostriatal
and thalamocortical connections use excitatory glutama-
tergic projections [25]. Frontal-subcortical circuits serve as
organizational axes, integrating related information from
widespread areas of the brain and mediating diverse
behaviors. The three principal behaviorally-relevant cir-
cuits originate in the dorsolateral prefrontal, orbitofrontal
and anterior cingulate cortices [26]. The marker behaviors
specific to each circuit are executive dysfunction (dorsola-
teral prefrontal-subcortical circuit), disinhibition (orbit-
ofrontal-subcortical circuit) and apathy (medial frontal-
subcortical circuit), respectively [26]. Hence, these circuits
are capable of concurrent participation in separate
functions, including motor, cognitive and limbic process-
ing [3].

The dorsolateral prefrontal cortex also has widespread
reciprocal corticocortical connections with posterior tem-
poral, parietal and occipital association areas [23]. Fur-
thermore, at the level of the frontal lobes, the
orbitofrontal, anterior cingulate and dorsolateral prefron-
tal cortices are linked to each other without cross connec-
tions at subcortical levels [26]. Therefore, the dorsolateral
prefrontal cortex is poised to serve as a principal site for
the integration of information.

These anatomical and functional characteristics of the
frontal-subcortical circuits suggest that the large decrease
in acetyl-L-carnitine uptake in the dorsolateral prefrontal,
anterior cingulate and temporal cortices [9] represents
hypofunction of the frontal-subcortical circuits. Further-
more, this decrease might be due to the remote effects of
the pathology in the dorsolateral prefrontal cortex [27].
Recently, Fillippi et al. [28] underwent fMRI with MS
patients with fatigue using simple motor task. They found
inverse correlation between fatigue severity score and the
task-related activity of the thalamus, concluding that
fatigue could be secondary to dysfunction of corticosub-
cortical circuits. Thus, according to the model by Chaud-
huri and Behan [3], hypofunction of the dorsolateral
prefrontal cortex might interrupt the associated striato-
thalamo-cortical loop, resulting in enhanced fatigability.

(Left) Correlations between volume and the performance status of CFS patients in the right prefrontal cortex (BA9; Talairach's coordinates: x = 48, y = 32 and z = 41)Figure 2
(Left) Correlations between volume and the performance status of CFS patients in the right prefrontal cortex (BA9; Talairach's 
coordinates: x = 48, y = 32 and z = 41). The colored bar indicates the t-values. (Right) Gray-matter volumes of CFS patients at 
the voxels of maximum correlation (r = 0.71) plotted against the performance status. The linear-regression line is plotted in 
blue. a.u., arbitrary units; Rt PFC, right prefrontal cortex.
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Conclusions
The results of the present study suggest that the dorsola-
teral prefrontal cortex might be an important component
of the neural substrates that regulate the sensation of
fatigue.
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