Novel genetic loci underlying human intracranial volume identified through genome-wide association

A full list of authors and affiliations appears at the end of the article.

Abstract

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic = 0.748), which indicated a similar genetic background and allowed for the identification of four additional loci.
through meta-analysis (N_{combined} = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth.

The intricate genetic control of the human brain, complemented by environmental factors, leads to the observed variations in brain size in human populations¹. Intracranial volume is closely related to brain volume in early life as the brain grows.^{2,3} However, it becomes stable after the brain has fully developed and remains unaffected by later age-related changes such as brain atrophy^{4,5}, thus representing the maximal attained brain size. Discovering genetic variants that influence intracranial volume can contribute to our understanding of brain development and related diseases, but prior studies have only identified two influential genetic loci^{6–9}.

Here, we performed genome-wide association studies in populations from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)¹⁰ and Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)¹¹ consortia on intracranial volume measured by magnetic resonance imaging. Genotypes were imputed to the 1000 Genomes reference panel (phase 1, version 3). Meta-analysis revealed five novel loci associated with intracranial volume. We also discovered genome-wide overlap between intracranial volume and other key traits including height, cognitive ability, and Parkinson’s disease. Furthermore, we found relatively enriched patterns of association for certain functional categories of variants and near genes that are involved in specific pathways.

RESULTS

Genome-wide association studies

Detailed information on the population characteristics, image acquisition and processing, and genetic quality control can be found in the [Online Methods](#) and Supplementary Tables S1–3.

The discovery meta-analysis (N = 26,577) yielded seven genome-wide significant (p < 5 × 10^{−8}) loci, five of them novel (Figures 1–2; Table 1). The quantile-quantile plot showed inflation (λ = 1.092; Supplementary Figure S1), which we determined to be mainly due to polygenicity rather than cryptic relatedness or population stratification using LD score regression¹². Next we analyzed European samples (N = 2,362; not included in the discovery sample) and generalization samples with African (N = 938), Asian (N = 955), and Hispanic (N = 1,605) ancestries (Table 1). All variants had the same direction of effect in the additional European samples (*sign test, P* = 0.0078), and three variants replicated, at nominal significance. Although sample sizes were generally small for the non-Europeans, here too, the direction of effect was generally concordant with the discovery (*sign test, P* = 0.039). Five nominally significant associations were detected across all three ethnicities.

Next we were able to map the association to novel variants for two previously identified loci at chromosome 17q21 (rs199525; P = 3.8 × 10^{−21}) and 6q22 (rs11759026; P = 2.2 ×
10^{-20}\text{.}^{6,7} The five novel loci were on chr 6q21 (rs2022464; \(P = 3.7 \times 10^{-11}\)), chr 10q24 (rs11191683; \(P = 1.1 \times 10^{-10}\)), chr 3q28 (rs9811910; \(P = 2.0 \times 10^{-9}\)), chr 12q14 (rs138074335/ rs7312464; \(P = 6.2 \times 10^{-9}\)), and chr 12q23 (rs2195243; \(P = 1.5 \times 10^{-8}\)). Functional annotation of the variants and those in LD \((r^2>0.8)\) can be found in Supplementary Table S4.

Height-adjusted analyses

Four of the seven loci for intracranial volume were previously discovered for height (17q21, 6q22, 6q21, and 12q14), prompting us to investigate genome-wide overlap between the two traits. As height and intracranial volume are correlated (weighted average Pearson’s \(r = 0.556\); Supplementary Table S5) and this could drive association signals, we performed a GWAS of intracranial volume adjusted for height in the studies that had measured height \((N = 21,875)\). Findings were compared to the corresponding subset of studies without adjustment \((N = 22,378)\). Using LD score regression (**Online Methods**), we found that there is considerable genetic correlation between intracranial volume and height \((\rho_{\text{genetic}} = 0.241, \ P = 2.4 \times 10^{-10}\)\), which disappears after adjusting for height \((\rho_{\text{genetic}} = 0.049, \ P = 0.21)\) (Table 2). The associations of the seven intracranial volume loci, however, remained significant after adjusting for height (Supplementary Table S6). To investigate whether more height loci were associated with intracranial volume independently of height, we analyzed all 697 genome-wide significant height variants\(^{13}\). An additional 73 variants \((10.7\%; \text{14 variants not available})\) showed nominally significant associations with intracranial volume but were not attenuated after adjustment for height, although none survived Bonferroni correction (Supplementary Table S7). For some variants, the direction of effect was discordant, i.e. positive for height and negative for intracranial volume. Furthermore, a polygenic score of the 697 variants predicted intracranial volume, and this was also the case after adjustment for height in a subset of the studies (Supplementary Table S8).

Genetic correlation

In addition to height, we examined the genome-wide genetic overlap between intracranial volume and other anthropometric traits, cognitive function, and neurodegenerative diseases (Table 2). We found a strong genetic correlation with child head circumference \((\rho_{\text{genetic}} = 0.748)\), which validates intracranial volume as a measure of brain growth during early development. Since this high correlation indicates that the genetic determinants of intracranial volume and child head circumference are largely shared, we aimed to leverage this information by performing a meta-analysis of both traits. The meta-analysis (combined \(N = 37,345)\) led to the identification of four novel loci (Figure 3; Supplementary Table S9).

Weaker correlations were found with birth length and weight \((\rho_{\text{genetic}} < 0.3)\), which attenuated after adjusting for height. Additionally, intracranial volume was genetically correlated with cognitive function in childhood \((\rho_{\text{genetic}} = 0.277, \ P = 2.2\times10^{-3})\) as well as general cognitive function in middle-aged and older adults \((\rho_{\text{genetic}} = 0.202, \ P = 6.3\times10^{-4})\). Furthermore, we found a positive genetic correlation with Parkinson’s disease \((\rho_{\text{genetic}} = 0.315, \ P = 6.6 \times 10^{-7})\), but there was no significant genetic overlap with Alzheimer’s disease, white matter lesions, and psychiatric traits.
Enrichment analyses

Next, we assessed whether particular subsets of genetic variants were enriched for association with intracranial volume using partitioned heritability and pathway analyses (Online Methods). Overall, we found that common variants genotyped from across the whole genome explained 25.42% (S.E. 2.73%) of the variation in intracranial volume. Partitioning heritability by chromosome showed that chromosome 22 contributed twofold more to variation in intracranial volume than would be expected by its size (Figure 4A), which was not seen for any of the other complex traits from the genetic correlation analysis (Supplementary Figure S2). Partitioning by functional elements showed an enrichment for introns and several histone codes that are found in actively transcribed promoters (Figure 4B). The enrichment for intronic variants was specific to intracranial volume, whereas the other functional classes were also enriched in other complex traits (Supplementary Figure S3). We also found that loci associated with intracranial volume cluster around genes involved in specific pathways, with 94 pathways significantly enriched (Figure 4C; full list in Supplementary Table S10). These pathways included all cell cycle components – the M-, G1-, S-, and G2-phases – and various growth factor signaling pathways, including PI3K–AKT.

Head growth trajectories

Although intracranial volume reflects brain development until maturation, and we identified influences of many growth-related processes contributing to its variation, all loci were still discovered via cross-sectional associations in adults. Therefore, we tested whether a polygenic score of the 7 loci could predict head growth in a longitudinal cohort of 2,824 children of European ancestry followed prenatally until 6 years of age (Online Methods). We found that a higher polygenic score, representing a genetically larger intracranial volume in adults, was also associated with a larger child head circumference (β = .031 per SD, P = 0.010). Furthermore, the effect of the polygenic score was age-dependent and more prominent in older children (β = 0.0080 per SD polygenic score per year age, Pinteraction = 0.0091). When investigating the individual loci separately, both 17q21 and 12q14 showed significant associations with child head circumference, but they influenced the trajectories of head growth differently (Figure 4A–B). For 17q21, the negative impact of the G allele on head circumference becomes apparent postnatally and increases towards six years, whereas the 12q14 locus exerts an effect from early pregnancy to one year of age, but is less prominent later in life.

DISCUSSION

Genes contributing to variation in the size of the human brain remain challenging to discover. In a worldwide project of unprecedented scale, we performed the largest-ever meta-analysis of genome-wide association studies of intracranial volume. We discovered five novel genetic loci associated with intracranial volume, and replicated two known signals. The discovery sample included Europeans only, but the direction of effect was similar in other ethnicities. The genes in these loci provide intriguing links between maximal brain size and various processes, including neural stem cell proliferation (FOXO3), neurodegeneration (MAPT), bone mineralization (CENPW), growth signaling (IGF1,
HMGA2), DNA replication (GMNC), and rRNA maturation (PDCD). On a genome-wide scale, we discovered evidence of genetic correlation between intracranial volume and other key traits such as height and cognitive function, and also with Parkinson’s disease, indicating that the genes underlying brain development have far-reaching effects well beyond the initial years of life.

The 17q21 locus tags a 1Mb inversion that is under positive selection in Caucasians14. It contains multiple genes including the MAPT and KANSL1. The MAPT gene is consistently implicated in various neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, and frontotemporal dementia15,16, and microduplications have been reported to cause microcephaly17. KANSL1 causes the reciprocal 17q21.31 microdeletion syndrome - a multisystem disorder with intellectual disability, hypotonia and distinctive facial features18. The signal at 6q22 is intergenic to CENPW and RSPO3, but now lies 172kb closer to CENPW. Interestingly, multiple variants at this locus independently influence bone mineral density19,20, and our signal particularly overlaps with the variant showing high specificity for the skull20.

The significant variants at chr 6q21 span FOXO3, a gene associated with longevity21, height13, and serum IGF1 levels22. FOXO3 regulates the proliferation of neural stem cells, and knockout mice show larger brains resulting from increased proliferation immediately after birth23, followed by a decrease in adult neural stem cell renewal23,24. The rs3800229 variant in strong LD with our top variant (r2 = 0.84) contains chromatin promoter marks in the fetal brain (Supplementary Table S4), and regulates serum IGF1 levels in infants25. This provides a link to the genome-wide significant locus on chr12q23 near IGF1, pointing to a potential mechanism through which these loci may affect brain growth. Chr12q23 lies 20Mb from one of two loci previously detected for head circumference in children26, but that region was not associated with intracranial volume in our study (rs7980687; P = 0.06). The other reported child head circumference locus, however, corresponded to our chr12q14 signal, with the top variant lying 14kb downstream of HMGA2, and already showed suggestive association with intracranial volume in a previous report7. It has also previously been associated with height13 and is essential for growth27. The chr10q24 LD-block covers multiple genes, but an intronic variant within PDCD11 is most significant. PDCD11 encodes an NF-kappa-B-binding protein required for rRNA maturation and generation of 18S rRNA28. A variant in LD (rs7894407) has recently been identified in a GWAS of cerebral white matter hyperintensities29. The top chr3q28 variant is located upstream of GMNC, which codes for the geminin coiled-coil domain-containing protein essential for DNA replication30.

Prior efforts to identify variants affecting intracranial volume were much smaller and critically did not adjust for height6–9. We found that 4 out of 7 loci were already discovered for height13, but also that over 10% of the known ‘height loci’ actually affect intracranial volume, even after regressing out height. Interestingly, some variants showed discordant associations for height and intracranial volume - in line with the recent finding that different height loci disproportionally affect either leg length or spine/head length31 and may be a marker for pathological development32. Also, height might thus serve as a proxy phenotype for intracranial volume, with the tenfold larger sample of the height GWAS giving greater
power to detect associations. Neural genes are also enriched in pathway analyses of height13. However, to fully disentangle whether these identified genes are ‘height genes’, ‘brain volume genes’, or ‘growth genes’ (i.e., pleiotropic), a large collaborative effort is needed that examines the association of these variants with both intracranial volume and height under various models.

When investigating genome-wide overlap with other traits, we found a strong correlation with child head circumference, underlining that intracranial volume is valid measure for maximal attained brain size. We were able to leverage this genetic link by meta-analyzing both traits, which led to the identification of four additional loci (2q32.1, 3q23, 7p14.3, 22q13.2). The correlations with birth length and weight were weaker and decreased further after adjusting for height, so a similar phenotypic correlation between head size and body size at younger age may drive these correlations. Intracranial volume was also genetically associated with cognitive function in childhood as well as general cognitive function in middle-aged and older individuals. This indicates that variation in maximally attained brain size during development shares a genetic basis with cognitive ability later in life and supports intracranial volume as a measure of brain reserve5.

The brain reserve hypothesis states that premorbid brain size can modify resilience to age-related brain pathology33, but there was no indication of a genome-wide overlap with Alzheimer’s disease. However, we found a positive genetic correlation with Parkinson’s disease that rather points to a brain “overgrowth” hypothesis. Interestingly, the IGF1 and the PI3K–AKT pathways, key factors in both growth signaling and our current study of intracranial volume, are neuroprotective in a model system of Parkinson’s disease34. There were no correlations with other neurological or psychiatric traits, indicating that this finding might be specific to Parkinson’s disease. However, it is important to note that there is a certain extent of variation in the sample size and power of these studies, and larger GWAS might reveal genetic correlation with other traits as well.

It is not yet known if variance in intracranial volume, within the normal range, contributes to disease risk or brain reserve. There is no doubt that in the pathological extremes of the distribution, size can matter, as in disorders such as microcephaly or macrocephaly. Here we found evidence for a shared genetic background between intracranial volume and cognitive function, and risk of Parkinson’s disease. While not definitive, these are novel pieces of empirical evidence in the debate on whether or not whole brain size matters.

The pathway analyses highlight cellular growth and proliferation and included all components of the cell cycle (M-, G1-, S-, and G2-phase) and various growth factor signaling pathways. PI3K–AKT signaling has a well described role in brain overgrowth disorders35,36, and was the only significant pathway using a different pathway analysis method (Supplementary Table S11). Interestingly, AKT3 intronic variants showed suggestive evidence for association with intracranial volume (rs7538011; P = 9.2 × 10−7). Deletions of AKT3 cause microcephaly syndromes37, whereas duplications give rise to macrocephaly38. Similar to FOXO3, it is part of the IGF1 signaling pathway, which is important for human longevity39. The PI3K–AKT signaling pathway seems to have an important role in brain growth, not only in pathological extremes, but also for normal
variation at a population level. Other pathways enriched for association with intracranial volume highlight neuronal functions such as neurotransmission and axon guidance.

We identified novel loci all influencing intracranial volume and, at a genome-wide level, there seem to be common pathways, but our longitudinal study reveals that their developmental effects are complex. The loci influenced trajectories of head growth differently; it also would be interesting to investigate whether their spatial profiles of effects are distinct, where certain loci promote growth of particular brain regions.

Here we identified key genetic loci implicated in intracranial volume within a global collaborative effort, followed by computational analyses to determine the important biological pathways and functional elements. While the majority of the genetic variants are yet to be discovered, it is clear that these will provide better insight into brain development, but also into related neuropsychiatric traits such as cognitive functioning and even for neurodegeneration late in life. Uncovering the remaining heritability will advance our understanding of the brain’s complex genetic architecture.

ONLINE METHODS

Study population

This study reports data on 32,438 subjects from 52 study sites that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)\(^\text{10}\) consortium and Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)\(^\text{11}\) consortium. Briefly, the CHARGE consortium is a collaboration of predominantly population-based cohort studies that investigate the genetic and molecular underpinnings of age-related complex diseases, including those of the brain. The ENIGMA consortium brings together numerous studies, mainly with a case-control design, which performed neuroimaging in a range of neuropsychiatric or neurodegenerative diseases, as well as healthy normative populations. Studies participated in either the discovery cohort of European ancestry, the replication in European ancestry, or the generalization to other ethnicities. An overview of the demographics and type of contribution for each cohort is provided in Supplementary Table S1. Written informed consent was obtained from all participants. Each study was approved by the respective Institutional Review Board or Local Ethics Committee.

Genetics

Genotyping was performed using a variety of commercial arrays across the contributing sites. Both samples as well as variants underwent similar quality control procedures based on genetic homogeneity, call rate (less than 95%), minor allele frequency (MAF < 0.01), and Hardy-Weinberg Equilibrium (HWE p-value less than 1 × 10\(^{-6}\)). Good quality variants were used as input for imputation to the 1000 Genomes reference panel (phase 1, version 3) using validated software packages (MaCH/minimac, IMPUTE2, BEAGLE, GenABLE). Variants that were poorly imputed (\(R^2 < 0.5\)) or uncommon (MAF < 0.5%) were removed prior to meta-analysis. Full details on the site-specific genotyping and quality control may be found in Supplementary Table S2.
Imaging

Magnetic resonance imaging (MRI) was obtained from scanners with a diversity of manufacturers, field strengths, and acquisition protocols. Images were used to estimate milliliters of intracranial volume from automated segmentations generated by freely available or in-house methods that have been described and validated earlier. Most sites measured intracranial volume for each participant by multiplying the inverse of the determinant of the transformation matrix required to register the subject’s MRI scan to a common template by the template volume (1,948,105 mm³), using the FreeSurfer software. Visual inspections were performed to identify and remove poorly segmented images. Either all scans were visually inspected, or sites generated histogram plots to identify any outliers, which were defined as individuals with a volume more than three standard deviations away from the mean. Statistical outliers were only excluded if the segmentations were deemed improper. More site-specific information related to the imaging is available in Supplementary Table S3.

Genome-wide association studies

Genome-wide association studies of intracranial volume were performed for each site separately, controlling for age, sex, and, when applicable, age², population stratification variables (MDS / principal components), study site (for multi-site studies only), diagnosis (for case-control studies only). Studies of unrelated individuals performed a linear regression analyses whereas studies of related individuals (ASPSFam, BrainSCALE, ERF, GeneSTAR, GOBS, NeuroIMAGE, NTR-Adults, OATS, QTIM, SYS) used linear mixed models to account for familial relationships. Summary statistics, including the effect estimates of the genetic variant with intracranial volume under an additive model, were exchanged to perform a fixed-effects meta-analysis weighting for sample size in METAL. After the final meta-analysis, variants were excluded if they were only available for fewer than 5,000 individuals. Meta-analyses were stratified by race and done separately for discovery, replication, and generalization samples. Beta coefficients were recalculated from Z-scores, allele frequencies, and the sample, as described earlier Site-specific quantile-quantile plots were generated to inspect the presence of genomic inflation. The variance explained by all variants in the GWAS was estimated using LD score regression. Sensitivity analyses were performed by excluding patients.

Functional annotation

All tracks of the regional association plots were taken from the UCSC Genome Browser Human hg19 assembly. SNPs (top 5%) shows the top 5% associated variants within the locus and are colored by their correlation to the top variant. Genes shows the gene models from GENCODE version 19. The tracks give the predicted chromatin states based on computational integration of ChIP-seq data for 12 chromatin marks in various human tissues derived from the Roadmap Epigenomics Consortium. Additionally, we used HaploReg version 3 for annotation of the top variants and all variants in LD (r² > 0.80) (http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php).
Genetic correlation

The genetic correlation analyses were also performed using LD score regression. The GWAS meta-analysis of intracranial volume, as well as the height adjusted and height subset meta-analyses, were correlated with published GWAS of the following traits: Child head circumference, birth weight, birth length, adult height, childhood cognitive function, adult cognitive function, Alzheimer’s disease, Parkinson’s disease, white matter lesions, psychiatric disorders, neuroticism, and extraversion.

Enrichment analyses

To determine whether the intracranial volume association results were enriched for certain types of genetic variants, we employed two strategies: partitioned heritability and pathway analyses.

Partitioned heritability was calculated using a previously described method. This was done by partitioning variants by chromosome and by 28 functional classes: coding, UTR, promoter, intron, histone marks H3K4me1, H3K4me3, H3K9ac5 and two versions of H3K27ac, open chromatin DNase I hypersensitivity Site (DHS) regions, combined chromHMM/Segway predictions, regions that are conserved in mammals, super-enhancers and active enhancers from the FANTOM5 panel of samples (Finucane et al. page 4).

Multiple testing thresholds were calculated accordingly: \(P_{\text{thresh}} = 0.05/(22 \text{ chromosomes}) = 2.27 \times 10^{-3} \) for the chromosomes and \(P_{\text{thresh}} = 0.05/(28 \text{ classes}) = 1.79 \times 10^{-3} \) for the functional classes.

Pathway analyses were performed using the KGG2.5 and MAGENTA software packages. LD was calculated based with the 1000 Genomes Project European samples as a reference (see URLs). Variants were considered to be within a gene if they were within 5 kb of the 3'5' UTR based on chromosome positions (hg19) coordinates. Gene-based tests were done with the GATES test without weighting \(P \)-values by predicted functional relevance. Pathway analysis was performed using the HYST test of association. A multiple testing threshold accounting for the number of pathways tested resulting in a significance threshold of \(P_{\text{thresh}} = 0.05/(671 \text{ pathways}) = 7.45 \times 10^{-5} \).

Head growth trajectories

Head growth trajectory analyses were done within the Generation R study, a longitudinal cohort study situated in Rotterdam, the Netherlands. For this analysis we included 2,824 children of European ancestry followed prenatally until 6 years of age. Head size was measured at the following points: prenatally (using echo) during the first, second, and third trimester, and postnatally (measuring head circumference) at 0–2 months, 2 months, 3 months, 4 months, 5–10 months, 10–13 months, 13–17 months, and 5 years of age. We tested whether a polygenic score of the 7 loci, as well as the 7 loci themselves separately, were related to head growth using linear mixed models and included an interaction term between time and the genetic score/variant (SAS software). Next, the predicted values were calculated for each person and plotted over time, stratified by genotype (0/1/2 risk alleles) using the R software package.
URLs
ftp://pricelab.pricelab@ftp.broadinstitute.org/LDSCORE/
http://enigma.ini.usc.edu/protocols/genetics-protocols/
http://genenetwork.nl/bloodeqtlbrowser/
http://gump.qimr.edu.au/general/gabrieC/LocusTrack/

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Authors
Hieab HH Adams1,2,246, Derrek P Hibar3,246, Vincent Chouraki4,5,6,246, Jason L Stein3,7,246, Paul A Nyquist8,246, Miguel E Rentería9,246, Stella Trompet10,246, Alejandro Arias-Vasquez11,12,13,14,246, Sudha Seshadri14,6, Sylvane Desrivieres15, Ashley H Beecham16,17, Neda Jahanshahi2, Katharina Wittfeld18,19, Sven J Van der Lee1, Lucija Abramovic9, Saud Alhusaini21,22, Najaf Amin1, Micael Andersson23, Konstantinos Arfanakis24,25,26, Benjamin S Aribisala27,28,29, Ashley H Beecham16,17, Neda Jahanshahi2, Katharina Wittfeld18,19, Sven J Van der Lee1, Lucija Abramovic9, Saud Alhusaini21,22, Najaf Amin1, Micael Andersson23, Konstantinos Arfanakis24,25,26, Benjamin S Aribisala27,28,29, Nicola J Armstrong30,31, Lavinia Athanasiu32,33, Tomas Axelsson34, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alexa Beiser4,35,6, Manon Bernard36, Joshua C Bis37, Laura ME Blanken38,39, Susan H Blanton16,17, Marc M Bohlin20, Marco P Boks20, Janita Bralten11,14, Adam M Brickman40, Owen Carmichael4, Alex

Affiliations

1Department of Epidemiology, Erasmus MC, Rotterdam, 3015 CE, the Netherlands
2Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, 3015 CE, the Netherlands
3Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, 90292, USA
4Department of Neurology, Boston University School of Medicine, Boston, MA, USA
5Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
6Framingham Heart Study, Framingham, MA USA
7Department of Genetics & UNC Neuroscience Center, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
8Department of Neurology, Department of Anesthesia/Critical Care Medicine, Department of Neurosurgery, Johns Hopkins, USA
9QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
10Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
11Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
12Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
13Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
14Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
15MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
16Dr. John T. Macdonald Foundation

Nat Neurosci. Author manuscript; available in PMC 2017 June 01.
Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA 17
John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA 18
German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Greifswald, 17487, Germany 19
Department of Psychiatry, University Medicine Greifswald, Greifswald, 17489, Germany 20
Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, 3584 CX, the Netherlands 21
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, Canada 22
The Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland 23
Department of Integrative Medical Biology and Umeå center for Functional Brain Imaging, Umeå University, Umeå, 901 87, Sweden 24
Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616, USA 25
Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, 60612, USA 26
Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA 27
Brain Research Imaging Centre, University of Edinburgh, Edinburgh, EH4 2XU, UK 28
Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, 2052, Australia 29
Mathematics and Statistics, Murdoch University, Perth, Australia 30
NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, 0315, Norway 31
NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0315, Norway 32
Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, SE-751 44 Uppsala, Sweden 33
Department of Biostatistics, Boston University School of Public Health, Boston, MA; 2) Framingham Heart Study, Framingham, MA 34
Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8, Canada 35
Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA USA, 1730 Minor Avenue / Suite 1360 / Seattle, WA 98101 36
Generation R Study Group, Erasmus Medical Center, Rotterdam, 3015 CE, the Netherlands 37
Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, 3015 CE, the Netherlands 38
Taub Institute for Research on Alzheimer's Disease and the Aging Brain; G.H. Sergievsky Center; Department of Neurology, Columbia University Medical Center. 639 West 116th Street. New York, NY 10032, USA 39
Pennington Biomedical Research Center, Baton Rouge, LA, 70808 40
Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, H4H 1R3, Canada 41
Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, H3A 2B4, Canada 42
Inserm Unit U1219, University of Bordeaux, 33076, France 43
Lieber Institute for Brain Development, Baltimore, 21205, USA 44
Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, California 90095, USA 45
Biological Psychology, Neuroscience Campus Amsterdam, Vrije Universiteit University & Vrije
Universiteit Medical Center, Amsterdam, 1081 BT, the Netherlands
Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, 01307 Germany
Department of Psychiatry, Massachusetts General Hospital, Boston, 02114, USA
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, 02129, USA
INSERM Unit 1000 "Neuroimaging and Psychiatry", University Paris Sud, University Paris Descartes; Maison de Solenn, Adolescent Psychopathology and Medicine Department, APHP Hospital Cochin, 97 Bd de Port Royal, Paris; France
Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
Harvard Medical School, Boston, Massachusetts, 02115, USA
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, 02141, USA
NORMENT - KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5021, Norway
Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021, Norway
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
Karacter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
King's College London, Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychology, Psychiatry and Neurosciences, United Kingdom
Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, 68159, Germany
Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS, USA
Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, the Netherlands
International Max Planck Research School for Language Sciences, Nijmegen, 6525 XD, the Netherlands
Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, 01307 Germany
Department of Research and Development, Diakonhjemmet Hospital, Oslo, 0319, Norway
Department of Pharmacology, National University of Singapore, Singapore
Memory Aging & Cognition Centre (MACC), National University Health System, Singapore
Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Austria
Institute of Medical Informatics, Statistics and Documentation, Medical University Graz, Austria
Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, 80804, Germany
Department of Psychology, Yale University, New Haven, 06520, USA
UCL Institute of Neurology, London, United Kingdom and Epilepsy Society, Bucks, UK
Department of Medicine, Imperial College London, London, SW7 2AZ, UK
Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
Section for Experimental Adaption
Psychopathology and Neuroimaging, Dept. of General Psychiatry, Heidelberg University, Heidelberg, Germany 78Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Lexington 79Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 80Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK 81Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands 82Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK 83Department of Biomedicine, Aarhus University, Aarhus, DK-8000, Denmark 84The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, DK-8000, Denmark 85Center for integrated Sequencing, iSEQ, Aarhus University, Aarhus, DK-8000, Denmark 86UMR5296 University of Bordeaux, CNRS, CEA, Bordeaux, France, 146 rue Leo Saignat, 33076 Bordeaux 2 cedex 87Department of Psychiatry, Yale University, New Haven, Connecticut, 06511, USA 88Olin Neuropsychiatric Research Center, Hartford, Connecticut, 06114, USA 89Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia 90Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam, 1081 HL, The Netherlands 91Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, USA 92Center for Neurobehavioral Genetics, University of California, Los Angeles, California, 90095, USA 93Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands 94Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK 95Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Switzerland 96School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, 3015 CE, the Netherlands 97Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, Illinois, 60612, USA 98Department of Medical and Molecular Genetics, King’s College London, London, SE1 9RT, UK 99The Jenner Institute Laboratories, University of Oxford, Oxford OX3 7DQ, UK 100Department of Medicine and Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, 39008, Spain 101CIBERSAM (Centro Investigación Biomédica en Red Salud Mental), Santander, Spain 102Psychosis Research Group, Department of Psychiatry & Trinity Translational Medicine Institute, Trinity College Dublin 103Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK 104Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA 105Department of Epidemiology and Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA 106Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia 107Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia 108Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam,
1007 MB, the Netherlands 109 Multimodal Imaging Laboratory, Department of Neurosciences, University of California, San Diego, 92093, USA 110 Department of Cognitive Sciences, University of California, San Diego, 92161, USA 111 Icelandic Heart Association, Kopavogur, Iceland 112 Faculty of Medicine, University of Iceland, Reykjavik, Iceland 113 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA 114 Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia 115 Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17489, Germany 116 School of Computing Engineering and Mathematics, Western Sydney University, Parramatta, Australia 117 Neuroimaging Unit, Technological Facilities. Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain 118 Institut Pasteur, Paris, 75015, France 119 Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia 120 GeneSTAR Research Center, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Suite 8028, Baltimore, MD, 21287, USA 121 Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands 122 Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands 123 Brain Center Rudolf Magnus, Human Neurogenetics Unit, UMC Utrecht, Utrecht, 3584 CG, the Netherlands 124 Department of Psychiatry and Human Behavior, University of California-Irvine, Irvine, California, 92617, USA 125 NORMENT - KG Jebsen Centre, Department of Psychology, University of Oslo, Oslo, 0373, Norway 126 Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA 127 FMRIB Centre, University of Oxford, Oxford, OX3 9DU, UK 128 University of Wuerzburg, Department of Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany 129 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA 130 Biospective Inc, Montreal, Quebec, Canada, 6100 Avenue Royalmount, Montréal, Québec, Canada H4P 2R2 131 Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, SE-171 77, Sweden 132 South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine Brownsville/Edinburg/San Antonio, TX, USA 133 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104 USA 134 Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia PA 29104 USA 135 National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, 3052, Australia 136 Academic Unit for Psychiatry of Old Age, University of Melbourne, 3101, Australia 137 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA 138 Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, 3501 Forbes Ave., Suite 830. Pittsburgh PA 15213 139 Dementia Collaborative Research Centre - Assessment and Better Care, UNSW, Sydney, 2052, Australia 140 Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, 6200 MD, the Netherlands 141 Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA 142 Department of Evolution and Genetics, Dagestan State University, Makhachkala, 367000, Dagestan, Russia 143 The Mind
Research Network & LBERI, Albuquerque, New Mexico, 87106, USA
Department of ECE, University of New Mexico, Albuquerque, New Mexico, 87131, USA
Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
Academic Medicine Research Institute, Duke-NUS Graduate Medical School, Singapore
Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, 4055, Switzerland
Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, 52425, Germany
Center for Multimodal Imaging and Genetics, University of California, San Diego, 92093, California, USA
Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, University of California, San Diego, 92093, California, USA
Avera Institute for Human Genetics, Sioux Falls, 57108, USA
Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA;
Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
Broad Institute, Cambridge, Massachusetts, USA
Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, 4059, Australia
Neurology Division, Beaumont Hospital, Dublin, 9, Ireland
Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, 1070, Belgium
Department of Medical Genetics, Oslo University Hospital, Oslo, 0450, Norway
Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, H91 TK33, Galway, Ireland
Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Psychiatry, Trinity College Dublin, Dublin 8, Ireland
Janssen Research & Development, LLC, Titusville, NJ
Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin, 10117, Germany
Intramural Research Program of the National Institute on Aging, Baltimore, MD 21224, USA
Department of Neurological Sciences & Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA
Robertson Center for Biostatistics, University of Glasgow, United Kingdom
Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, 46202, USA
University of Texas Health Science Center, San Antonio, 78229, USA
Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, 02115, USA
Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
Institute of Diagnostic Radiology

Nat Neurosci. Author manuscript; available in PMC 2017 June 01.
and Neuroradiology, University Medicine Greifswald, Greifswald, 17489, Germany
174German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
175Department of Psychology, VU University Amsterdam, Amsterdam, 1081 BT, the Netherlands
176Department of Psychiatry, University of Iowa, Iowa City, 52242, USA
177HMNC Brain Health, Munich, Germany
178Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17489, Germany
179Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
180Department of Neurology, Erasmus MC, Rotterdam, 3015 CE, the Netherlands
181Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
182NICHHD Brain and Tissue Bank for Developmental Disorders, University of Maryland Medical School, Baltimore, Maryland, 21201, USA
183School of Psychology, University of Sussex, Brighton, BN1 9QH, UK
184Institute of Cognitive Neuroscience, University College London, London, WC1N 3AR, UK
185Department of Neuroinformatics, Araya Brain Imaging, Tokyo, Japan
186Medical University of Lodz, Lodz, 90-419, Poland
187Department of Neurology, Mayo Clinic, Rochester, MN, USA
188Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maryland
189Neuroscience Research Australia, Sydney, 2031, Australia
190School of Medical Sciences, UNSW, Sydney, 2052, Australia
191Columbia University Medical Center, New York, 10032, USA
192Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
193Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA, 325 Ninth Avenue, Seattle WA, 98104-2420 USA
194Departments of Neurology and Psychiatry, University of Pittsburgh., 3501 Forbes Ave., Suite 830. Pittsburgh PA 15213
195Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
196NIHR Dementia Biomedical Research Unit, King’s College London, London, SE5 8AF, UK
197Imaging of Dementia and Aging (IDeA) Laboratory, Department of Neurology and Center for Neuroscience, University of California at Davis, 4860 Y Street, Suite 3700, Sacramento, CA, 95817, USA
198Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
199Centre for Advanced Imaging, University of Queensland, Brisbane, 4072, Australia
200Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, 06132, Italy
201Munich Cluster for Systems Neurology (SyNergy), Munich, 81377, Germany
202University of Liverpool, Institute of Translational Medicine, Liverpool, L69 3BX, UK
203Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17489, Germany
204German Center for Cardiovascular Research (DZHK e.V.), partner site Greifswald, Germany
205Department of Statistics & Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, UK
206Department of Medical Informatics Erasmus MC, Rotterdam, 3015 CE, the Netherlands
207Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
208Department of Genomics, Life & Brain Center, University of Bonn, 53127, Germany
209Rotman Research Institute, University of Toronto, Toronto, M6A 2E1, Canada
210Departments of Psychology and Psychiatry, University of Toronto, M5T 1R8, Canada
211Child Mind Institute,
New York, USA. Departments of Physiology and Nutritional Sciences, University of Toronto, MSS 3E2, Canada. Department of Radiology, University of Calgary, Calgary, T2N 4N1, Canada. Department of Clinical Neuroscience, University of Calgary, Calgary, T2N 4N1, Canada. Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA. Group Health Research Institute, Group Health, Seattle, WA, USA., 1730 Minor Avenue / Suite 1360 / Seattle, WA 98101, USA. Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, Australia. Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA 90502. Evelyn F. McKnight Brain Institute, University of Miami, Miller School of Medicine, Miami, FL USA. Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, 2031, Australia. Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, SE5 8AF, UK. Biomedical Research Centre for Mental Health, King’s College London, London, SE5 8AF, UK. Biomedical Research Unit for Dementia, King’s College London, London, SE5 8AF, UK. MRC Edinburgh Brain Bank, University of Edinburgh, Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, UK. Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, FI-70211, Finland. Neurocentre Neurology, Kuopio University Hospital, FI-70211, Finland. Department of Medicine, Peninsula Health & Monash University, Melbourne, Australia. Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, United Kingdom. Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, California, 90033, USA. Brain Resource Center, Johns Hopkins University, Baltimore, Maryland, 21287, USA. Georgia State University, Atlanta, Georgia, 30302, USA. Institute for Neurodegenerative Disorders, UMR 5293, CEA, CNRS, Université de Bordeaux, France. Department of Internal Medicine, Erasmus MC, Rotterdam, 3015 CE, the Netherlands. Genentech Inc. South San Francisco, California, 94080, USA. Department of Psychiatry and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands. Neuroimaging Centre, University of Groningen, University Medical Center Groningen, Groningen, 9713 AW, the Netherlands. Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, 52242, USA. Departments of Psychiatry, Neurology, Neuroscience and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA. Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, 94121, USA. Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, SE-141 83, Sweden. Laboratory of Epidemiology & Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA. Institute of Molecular Biology and Biochemistry, Medical University Graz, Austria, Harrachgasse 21/III, 8010 Graz.
Acknowledgments

CHARGE: Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung, and Blood Institute grant HL105756 and for the neuroCHARGE phenotype working group through the National Institute on Aging grant AG033193.

ENIGMA: ENIGMA was supported in part by a Consortium grant (U54 EB020403 to PMT) from the NIH Institutes contributing to the Big Data to Knowledge (BD2K) Initiative, including the NIBIB and NCI.

Cohort-specific acknowledgements

Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik): This study has been funded by NIH contracts N01-AG-1-2100 and 271210200022C, the NIA Intramural Research Program, Hjartavénd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, VSN: 00-063. The researchers are indebted to the participants for their willingness to participate in the study.

Alzheimer’s Disease Neuroimaging Initiative (ADNI): Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; InnoGenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory of Neuro Imaging at the University of Southern California.

ANM: AddNeuroMed was funded through the EU FP6 programme. HS: Academy of Finland, Research Council for Health, 258081, UEFBrain, University of Eastern Finland, VTR funding Kuopio University Hospital.

Atherosclerosis Risk In Communities Study (ARIC): The Atherosclerosis Risk in Communities study was performed as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HSN268201100006C, HSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL70825, R01HL087641, R01HL59367, and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health (NIH) contract HHSN268200625226C. Infrastructure was partly supported by grant No. UL1RR025005, a component of the NIH and NIH Roadmap for Medical Research. This project was also supported by NIH R01 grant NS087541 to MF.

Austrian Stroke Prevention Study Family (ASPS-Fam): The ASPS-Fam is funded by the Austrian Science Fund (FWF) project I904, the Medical University of Graz and the Steiermärkische Krankenanstalten Gesellschaft.

BETULA: This sample collection was supported by a Wallenberg Scholar grant from the Knut and Alice Wallenberg (KAW) foundation and a grant from Torsten and Ragnar Söderbergs Foundation to Lars Nyberg. Stephanie le Hellard was supported by a grant from HelseVest RHF (Grant 911554).

Bipolar Family Study (BFS): The Bipolar Family Study wishes to thank the Scottish Mental Health Research Network for research assistant support, the Brain Research Imaging Centre Edinburgh, a center in the Scottish Funding Council Scottish Imaging Network–A Platform for Scientific Excellence (SINAPSE) Collaboration, for their support on the development of a structural and functional MRI database and the provision of technical expertise for this study.
image acquisition and the Wellcome Trust Clinical Research Facility for genotyping. Genotyping was supported by the National Alliance for Research on Schizophrenia and Depression (NARSAD) Independent Investigator Award (to A.M.M.), and data collection was supported by the Health Foundation Clinician Scientist Fellowship. The research leading to these results also receives funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements #602450 (IMAGEMEND) and ongoing support from the Wellcome Trust (Ref 104036/Z/14/Z).

Brain Imaging Genetics (BIG): This work makes use of the BIG database, first established in Nijmegen, The Netherlands, in 2007. This resource is now part of Cognomics (www.cognomics.nl), a joint initiative by researchers of the Donders Centre for Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience departments of the Radboud university medical centre and the Max Planck Institute for Psycholinguistics in Nijmegen. The Board of the Cognomics Initiative consists of Barbara Franke, Simon Fisher, Guillen Fernandez, Peter Hagoort, Han Brunner, Jan Buitelaar, Hans van Bokhoven and David Norris. The Cognomics Initiative has received supported from the participating departments and centres and from external grants, i.e. the Biobanking and Biomolecular Resources Research Infrastructure (Netherlands) (BBMRI-NL), the Hersenstichting Nederland, and the Netherlands Organisation for Scientific Research (NWO). The research leading to these results also receives funding from the NWO Gravitation grant ‘Language in Interaction’, the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements n° 602450 (IMAGEMEND), n° 278948 (TACTICS), and n° 602805 (Aggressotype) as well as from the European Community’s Horizon 2020 programme under grant agreement n° 643051 (MIND) and from ERC-2010-AdG 268800-NEUROSCHEMA. In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership. We wish to thank all persons who kindly participated in the BIG research.

Brain Genomics Superstruct Project (GSP): Data were provided [in part] by the Brain Genomics Superstruct Project of Harvard University and the Massachusetts General Hospital, with support from the Center for Brain Science Neuroinformatics Research Group, the Athinoula A. Martinos Center for Biomedical Imaging, and the Center for Human Genetic Research. 20 individual investigators at Harvard and MGH generously contributed data to GSP. This work was made possible by the resources provided through P.H.L is supported by NIMH grants K99 MH101367 (P.H.L.), R01-MH079799 (JWS), K24MH094614 (JWS), and K01MH099232 (AJH).

Brainscale and NTR-Adults: We would like to thank all twin participants from the Netherlands Twin Register. The NTR-adult and Brainscale studies were supported by the Netherlands Organization for Scientific Research NWO [MW904-61-193 (E.D.G & D.B.), MaGW-nr: 400-07-080 (D. v’t E.), MagW 480-04-004 (D.B.), (51.02.060 (H.H.), 668.772 (D.B. & H.H.); NWO/SP 56-464-14192 (D.B.), the European Research Council (ERC-230374) (D.B.), High Potential Grant Utrecht University (H.H.), NWO Brain and Cognition 433-09-220 (H.H.) and the Neuroscience Campus Amsterdam (NCA).

Cardiovascular Health Study (CHS): This research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629, R01AG15928, R01AG20098, R01AG027002, R01AG05133, and R01AG027058 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSA grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

CHAP: This research was funded by grants from the National Institute of Health (AG011101 and AG030146) and the International Alzheimer’s Association (NIRP-14-302587). DNA samples were collected during clinical evaluations and population interviews, and analyzed at the Broad Institute.

Epidemiology of Dementia in Singapore (EDIS): The Singapore Malay Eye Study (SiMES) and the Singapore Chinese Eye. Study (SCES) are funded by National Medical Research Council (grants 0796/2003, IRG07nov013, IRG09nov014, STA/R(003/2008 and CG/SG/ERI/2010) and Biomedical Research Council (grants 09/1/35/19/616), Singapore. The Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore provides services for genotyping. The Epidemiology of Dementia in Singapore study is supported by the National Medical Research Council, Singapore (NMR/CG/NUHS/2010 [Grant no: R-184-006-184-511]). MKI received additional funding from the Singapore Ministry of Health’s National Medical Research Council (NMR/CSA/038/2013).

EPIGEN: Work from the London Cohort was supported by research grants from the Wellcome Trust (grant 084730 to S.M.S.), University College London (UCL)/University College London Hospitals (UCLH) NIHR Biomedical Research Centre/Specialist Biomedical Research Centres (CBRC/SBRC) (grant 114 to S.M.S.), the European Union Marie Curie Reintegration (to M. Matarin and S.M.S.), the UK NIHR (08-08-SCC), the Comprehensive Local Research Network (CLRN) Flexibility and Sustainability Funding (FSF) (grant CEL1300 to S.M.S.), The Big Lottery Fund, the Wolfson Trust and the Epilepsy Society. This work was undertaken at UCLH/UCL, which

Nat Neurosci. Author manuscript; available in PMC 2017 June 01.
received a proportion of funding from the UK Department of Health’s NIHR Biomedical Research Centres funding scheme. Work from the Royal College of Surgeons in Ireland was supported by research grants from the Science Foundation Ireland (Research Frontiers Programme award 08/RFP/GEN1538) and Brainwave—the Irish Epilepsy Association. M. Matarin is funded by Epilepsy Research UK (grant F1206).

Erasmus Rucphen Family study (ERF) The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no.QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. Najaf Amin is supported by the Nethelands Brain Foundation (project number F2013(1)-28). The ERF study genome-wide array data and phenotype data (age and gender) is archived in European Genome-Phenome Database (EGA). The study is archived in the DAC named Erasmus Rucphen Family Study with the accession code: EGAS00000100113. Researchers who wish to use other phenotypic data of the Erasmus Rucphen Family Study must seek approval from the management team of the Erasmus Rucphen Family study. They are advised to contact the study PI, professor Cornelia van Duijn (c.vanduijn@erasmusmc.nl).

Framingham Heart Study (FHS): This work was supported by the dedication of the Framingham Study participants, the National Heart, Lung and Blood Institute’s Framingham Heart Study (Contract No. HHSN268201500001I), and by grants from the National Institute of Health (AG08122, AG033193, AG010129, NS017950, and U01AG49505).

Generation R: The Generation R Study is conducted by the Erasmus Medical Centre in close collaboration with the Municipal Health Service Rotterdam area, and the Stichting Trombosediten & Artenlaboratorium Rijnmond (STAR), Rotterdam. We gratefully acknowledge the contribution of general practitioners, hospitals, midwives, and pharmacies in Rotterdam. Additional support for neuroimaging is supported by ZonMw TOP 40-00812-98-11021.

GeneSTAR: was supported by grants from the National Institutes of Health National Institute of Neurological Disorders and Stroke (R01NS062059), the National Institutes of Health National Heart, Lung, and Blood Institute (U01 HL72518, HL097698) and the National Institutes of Health/National Center for Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. We would like to thank the participants and families of GeneSTAR and our dedicated staff for all their sacrifices.

GIG: The GIG (Genomic Imaging Göttingen) sample was established at the Center for Translational Research in Systems Neuroscience and Psychiatry at Göttingen University. We thank Maria Keil, Esther Diekhof, Tobias Melcher and Ilona Henseler for assistance in MRI data acquisition, and Elisabeth Binder and Holger Mohr for their valuable help with genotyping. We are grateful to all persons who kindly participated in the GIG study.

GOBS: We acknowledge the ultimate source of our data, the Mexican American community of San Antonio and surrounding areas. Financial support for this study was provided by grants from the National Institute of Mental Health MH0708143 (Principal Investigator [PI]: DC Glahn), MH078111 (PI: J Blangero), and MH083824 (PI: Glahn & Blangero). Theoretical development of SOLAR is supported by MH59490 (PI: Blangero). This investigation was conducted, in part, in facilities constructed with support from Research Facilities Improvement Program Grant Numbers C06 RR13556 and C06 RR017515 from the National Center for Research Resources, NIH. Some of this work was performed at Texas Biomedical Research Institute where Dr. Blangero began this investigator-initiated competitively publicly funded work.

HUBIN: This study was financed by the Swedish Research Council (K2007-62X-15077-04-1, K2008-62P-20597-01-3, K2010-62X-15078-07-2, K2012-61X-15078-09-3), the regional agreement on medical training and clinical research between Stockholm County Council and the Karolinska Institutet, the Knut and Alice Wallenberg Foundation, and the HUBIN project. Genotyping was performed by the SNP&SEQ Technology Platform in Uppsala. The platform is part of Science for Life Laboratory at Uppsala University and supported as a national platform by the Swedish Research Council.

IMAGEN: IMAGEN was supported by the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT-2007-037286), the FP7 projects IMAGEMEND (602450) and MATRICS (603016), and the Innovative Medicine Initiative Project EU-AIMS (115300-2), the Medical Research Council Programme Grant “Developmental pathways into adolescent substance abuse” (93558), as well as the NIHR-biomedical Research Center “Mental Health”. Further support was provided by the Swedish Research Council FORMAS, and the German Federal Ministry for Education and Research BMBF (eMED SysAke 01ZX1311A; Forschungszentrum AERIAL; 1EV0711) and the National Institutes of Health, U.S.A. (Axon, Testosterone and Mental Health during Adolescence; MH085772-01A1).
IMpACT: This study was funded by a grant from the Brain & Cognition Excellence Program of the Netherlands Organization for Scientific Research (NWO; grant 433-09-229) and in part by the Netherlands Brain Foundation (grant number, 15F07[2]27). B. Franke is supported by a Vici grant from the Netherlands Organisation for Scientific Research (NWO; grant n° 016.130.669). The research leading to these results also receives funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements n° 602450 (IMAGEMEND), n°278948 (TACTICS), and n°602805 (Aggressotype) as well as from the European Community’s Horizon 2020 programme under grant agreement n° 643051 (MiND). In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership.

LBC1936: We thank the LBC1936 participants and the members of the LBC1936 research team who collected and collated the phenotypic and genotypic data. This work was undertaken as part of the Cross Council and University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE; http://www.ccace.ed.ac.uk). This work was supported by a Research into Ageing programme grant (to I.J.D.) and the Age UK-funded Disconnected Mind project (http://www.disconnectedmind.ed.ac.uk; to I.J.D. and J.M.W.), with additional funding from the UK Medical Research Council (MRC; to I.J.D., J.M.W. and M.E.B.). J.M.W. is supported by the Scottish Funding Council through the SINAPSE Collaboration (http://www.sinapse.ac.uk). M.V.M. is supported by the Row Fogo Charitable Trust. CCACE (MRC MR/K026992/1) is funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) and the UK MRC. Genotyping was supported by a grant from the BBSRC (BB/ F019394/1). The image acquisition and analysis was performed at the Brain Research Imaging Centre, University of Edinburgh (http://www.bric.ed.ac.uk).

Leiden Longevity Study (LLS): The Leiden Longevity Study was supported by a grant from the Innovation-Oriented Research Program on Genomics [SenterNovem IGE05007] and the Netherlands Consortium for Healthy Ageing [grant number 050-060-810].

Mind Clinical Imaging Consortium (MCIC): Data used in the preparation of this work were obtained from the Mind Clinical Imaging Consortium database through the Mind Research Network (www.mrn.org). The MCIC project was supported by the Department of Energy under Award Number DE-FG02-08ER64381. MCIC is the result of efforts of co-investigators from University of Iowa, University of Minnesota, University of New Mexico, and Massachusetts General Hospital.

MooDS: The establishment of the MooDS sample was funded by the German Federal Ministry of Education and Research (BMBF) through the Integrated Genome Research Network (IG) MooDS (Systematic Investigation of the Molecular Causes of Major Mood Disorders and Schizophrenia; grant 01GS08144 to Markus M. Nöthen and Sven Cichon, grant 01GS08147 to Marcella Rietschel and Andreas Meyer-Lindenberg and grant 01GS08148 to Andreas Heinz),) under the auspices of the National Genome Research Network plus (NGFNplus), and through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the e:Med Programme (grant 01ZX1314A to Markus M. Nöthen, grant 01ZX1314C to Hendrik Walter, grant 01ZX1314G to Marcella Rietschel).

MPIP: The MPIP Munich Morphometry Sample comprises images acquired as part of the Munich Antidepressant Response Signature Study and the Recurrent Unipolar Depression (RUD) Case-Control study performed at the MPIP, and control subjects acquired at the Ludwig-Maximilians-University, Munich, Department of Psychiatry. We thank Eva Meisenzahl and Dan Rujescu for providing MRI and genetical data for inclusion into the MPIP Munich Morphometry sample. We wish to acknowledge Anna Olynyk and radiographers Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation. We thank Dorothee P. Auer for local study management in the initial phase of the RUD study. We are grateful to GlaxoSmithKline for providing the genotypes of the Recurrent Unipolar Depression Case-Control Sample. We thank the staff of the Center of Applied Genotyping (CAGT) for generating the genotypes of the MARS cohort. The study is supported by a grant of the Exzellenz-Stiftung of the Max Planck Society. This work has also been funded by the Federal Ministry of Education and Research (BMBF) in the framework of the National Genome Research Network (NGFN), FKZ 01GS0481.

NCNG: this sample collection was supported by grants from the Bergen Research Council and the University of Bergen, the Dr Einar Martens Fund, the K.G. Jebsen Foundation, the Research Council of Norway, to SLH, VMS and TE.

Nesda: Funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10-000-1002); the Center for Medical Systems Biology (CSMB, NWO Genomics), Bioscanning and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University’s Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, R01DM042157-01A, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO.
NIMH-IRP: Supported in part by the NIMH Intramural Research Program (ZIAMH002810; Z01MH002792; Z01MH002790)

Older Australian Twins Study (OATS): We would like to acknowledge and thank the OATS participants, their supporters and respective Research Teams. This work was supported by a number of sources. OATS is supported by the NHMRC/Australian Research Council Strategic Award 401162 and NHMRC Project Grant 1045325 to P. Sachdev and colleagues. OATS was facilitated through access to the Australian Twin Registry, a national research resource supported by the NHMRC Enabling Grant 310667, administered by the University of Melbourne. DNA was extracted by Genetic Repositories Australia, an Enabling Facility supported by the NHMRC Grant 401184. OATS genotyping was partly funded by a Commonwealth Scientific and Industrial Research Organisation Flagship Collaboration Fund Grant. Henry Brodaty is supported by the Australian Government funded Dementia Collaborative Research Centre (DCRC), UNSW. Nicola Armstrong was supported by the NHMRC Project Grant 525453 and Karen Mather is supported by an Alzheimer’s Australia Dementia Research Foundation Postdoctoral Fellowship and the NHMRC Capacity Building Grant 568940.

Osaka: This study was supported, in part, by research grants from the Japanese Ministry of Health, Labor and Welfare; the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) KAKENHI and Scientific Research on Innovative Areas (Comprehensive Brain Science Network); and the Brain Sciences Project of the Center for Novel Science Initiatives (CNSI), the National Institutes of Natural Sciences (NINS), and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED.

PAFIP: The PAFIP study was supported by Instituto de Salud Carlos III, FIS00/3095, 01/3129, P020499, P1060507, PI10/00183, PI14/00639, the SENY Fundació Research Grant CI 2005-0308007, and the Fundación Marqués de Valdecilla API07/011. PAFIP wish to acknowledge WTCCC2 (Wellcome Trust Case Control Consortium 2) for DNA Genotyping. Valdecilla Biobank for providing the biological samples and associated data included in this study and Idival Neuroimaging Unit for its help in the technical execution of this work. Diana Tordesillas-Gutiérrez is funded by a contract from the Carlos III Health Institute (CA12/00312).

PROSPER: The PROSPER study was supported by an investigator initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J. W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework program of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810).

QTIM: DPH, NJ, CRKC, and PMT are supported, in part, by NIH grants R01 NS080655, R01AG040060, R01 EB008432, R01 MH097268, U01 AG024094, R01 MH085667, R01 MH089722, P41 EB015922, and R01 MH094343. RKW is supported by National Science Foundation (BCS-1229450). JLS was supported by the NIMH Intramural Research Program (ZIAMH002810; Z01MH002792; Z01MH002790)

ROS and MAP: The clinical, genomic, and neuroimaging data for the Religious Orders Study and the Rush Memory and Aging Project was funded by NIH grants P30AG10161, R1A1G13819, R01AG17917, R01AG30146, R01AG00039, and the Translational Genomics Research Institute.

Rotterdam Study: The generation and management of GWAS genotype data for the Rotterdam Study are supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports,
the European Commission (DG XII), and the Municipality of Rotterdam. This research is supported by the Dutch Technology Foundation STW, which is part of the NWO, and which is partly funded by the Ministry of Economic Affairs. MAI is supported by ZonMW grant number 916.13.054. HHHA is supported by the Van Leersum Grant of the Royal Netherlands Academy of Arts and Sciences.

Saguenay Youth Study (SYS): The Saguenay Youth Study project is funded by the Canadian Institutes of Health Research (TP, ZP), Heart and Stroke Foundation of Quebec (ZP), and the Canadian Foundation for Innovation (ZP). TP is supported by the Tanenbaum Chair in Population Neuroscience at the Rotman Research Institute, University of Toronto.

SHIP and TREND: The SHIP datasets are part of the Community Medicine Research net (CMR) of the University of Greifswald, which is funded by the German Federal Ministry of Education and Research and the German Ministry of Cultural Affairs, as well as by the Social Ministry of the Federal State of Mecklenburg–West Pomerania (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genomewide data and MRI scans were supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of Mecklenburg–West Pomerania. The University of Greifswald is a member of the Caché Campus Program of the InterSystems GmbH.

Sydney Memory and Ageing Study (Sydney MAS): We would like to thank the Sydney MAS participants, their supporters and respective Research Teams. Sydney MAS was supported by the Australian National Health and Medical Research Council (NHMRC) Program Grants 350833 and 568969 to P. Sachdev, H. Brodaty and G. Andrews. DNA was extracted by Genetic Repositories Australia, an Enabling Facility supported by the NHMRC Grant 401184. Henry Brodaty is supported by the Australian Government funded Dementia Collaborative Research Centre (DCRC), UNSW. Nicola Armstrong was supported by the NHMRC Project Grant 525453 and Karen Mather is supported by an Alzheimer’s Australia Dementia Research Foundation Postdoctoral Fellowship. Both Simone Reppermund and Karen Mather are supported by the NHMRC Capacity Building Grant 568940.

Tasmanian Study of Gait and Cognition (TASCOG): The Tasmanian Study of Gait and Cognition is supported by project grants from the National Health and Medical Research Council of Australia (NHMRC; 403000, 491109, and 606543) and a grant from the Wicking Dementia Education and Research Centre, Hobart. V.S. is supported by a cofunded NHMRC Career Development Fellowship (1061457) and a Heart Foundation Future Leader Fellowship (ID 100089).

Three City Dijon Study: The 3-City Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the Victor Segalen–Bordeaux II University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux d'Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de données biologiques.” Christophe Tzourio and Stéphanie Debette are supported by a grant from the Fondation Leducq.

TOP: The study was supported by the Research Council of Norway (#213837, #223273, #229129), South-East Norway Health Authority (#2013-123) and KG Jebsen Foundation.

UCLA_NL_BP: Data collection and genotyping was made possible with (NIH/NIMH) R01 MH090553 to R.A.O. and South-East Norway Health Authority (#2013-123) and KG Jebsen Foundation.

UMCU: UMCU acknowledgement data: This work was supported by 917.46.370 (H.H.) and 908-02-123 (H.H.) from the Netherlands Organisation for Health Research and Development ZonMW.

WHICAP: This study was supported by a grant from the NIH (5R01AG037212).

Published GWASs used for genetic correlation analysis

CHARGE consortium: See Davies et al.47 for the general cognitive function GWAS, and Verhaaren et al.50 for the white matter lesion GWAS.

Early Growth Genetics (EGG) consortium: Data on head circumference, birth weight, and birth length have been contributed by the EGG Consortium and has been downloaded from www.egg-consortium.org.

Genetic Investigation of ANthropometric Traits (GIANT) consortium: See Wood et al.13

Genetics of Personality Consortium: See De Moor et al.52 for the neuroticism GWAS and Van den Berg et al.53 for the extraversion GWAS.

Nat Neurosci. Author manuscript; available in PMC 2017 June 01.
IGAP: We thank the International Genomics of Alzheimer’s Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i–Select chips was funded by the French National Foundation on Alzheimer’s disease and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council (Grant n° 503480), Alzheimer’s Research UK (Grant n° 503176), the Wellcome Trust (Grant n° 082604/207/2Z) and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract N01–AG–12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer’s Association grant ADGC–10–196728.

International Parkinson’s Disease Genomics Consortium (IPDGC): See Nalls et al.49

Psychiatric Genomics Consortium: See Cross-Disorder Group of the Psychiatric Genomics paper. 51

Social Science Genetic Association Consortium (SSGAC): See Benyamin et al.46 for the childhood cognitive function GWAS.

REFERENCES

35. Hevner, RF. Seminars in perinatology. Elsevier; p. 36-43.

METHODS-ONLY REFERENCES

Figure 1. Common genetic variants associated with intracranial volume

Manhattan plot where every point represents a single genetic variant plotted according to its genomic position (x-axis) and its $-\log_{10}(p\text{-value})$ for association with intracranial volume (y-axis). Variants in blue are genome-wide significant in a previously known locus, whereas red variants reach genome-wide significant for the first time in that locus. The dashed horizontal line represents a significance threshold of $p\text{-value} < 10^{-6}$ and the full horizontal line represents genome-wide significance of $p\text{-value} < 5 \times 10^{-8}$. Variants surpassing these thresholds are indicated by larger points.
Figure 2. Regional association and functional annotation of novel genome-wide significant loci
Regional association plots for the five novel genome-wide significant loci of intracranial volume with gene models below (GENCODE version 19). Annotation tracks below from the Roadmap Epigenomics Consortium57 highlight the genomic region that likely harbors the causal variant(s) ($r^2 > 0.8$ from the top SNP). See Online Methods for detailed track information. Plots were generated using the LocusTrack software (http://gump.qimr.edu.au/general/gabrieC/LocusTrack/).
Figure 3. Meta-analysis of intracranial volume and child head circumference

A ‘twin’ Manhattan plot shows every variant twice: once for the discovery analysis and once for the combined discovery plus replication analysis. The least significant association of the variant-pair is plotted in grey (alternating light and dark between chromosomes). The most significant association of the variant-pair is plotted in red if is from the combined analysis (i.e., the association became more significant after meta-analyzing with the child head circumference GWAS) and in turquoise if it is from the discovery analysis (i.e., the association became less significant after meta-analyzing with the child head circumference GWAS). The dashed horizontal line represents a significance threshold of p-value $< 10^{-6}$ and the full horizontal line represents genome-wide significance of p-value $< 5 \times 10^{-8}$. Variants surpassing these thresholds are indicated by larger and brighter points.
Figure 4. Enrichment analyses of common variants associated with intracranial volume

Enrichment of subsets of variants for association with intracranial volume: A) by chromosomes, B) by functional subtype, and C) by pathway. See Online Methods for additional information.
Figure 5. Temporal trends of intracranial volume loci during pre- and postnatal brain development

Mean predicted values of standardized head circumference using linear mixed models with age, sex, and the rs199525 or rs138074335 variants. The blue line represents children not carrying the risk allele, purple only a single risk allele, and red with two risk alleles. See Online Methods for additional information. Total sample size is 2,824.
Table 1

Association of genome-wide significant loci for intracranial volume in European, African, Asian, and Hispanic populations.

<table>
<thead>
<tr>
<th>Genetic variant</th>
<th>Locus</th>
<th>Position</th>
<th>A1</th>
<th>A2</th>
<th>Freq</th>
<th>European discovery (N=26,577)</th>
<th>European replication (N=2,363)</th>
<th>African generalization (N=938)</th>
<th>Asian generalization (N=955)</th>
<th>Hispanic generalization (N=1,605)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs199525</td>
<td>17q21</td>
<td>44847834</td>
<td>T</td>
<td>G</td>
<td>0.80</td>
<td>0.102 3.8×10^{-21} β 0.024 0.407</td>
<td>0.358 1.3×10^{-3} β 0.264 0.406</td>
<td>0.035 0.493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs11759026</td>
<td>6q22</td>
<td>126792095</td>
<td>A</td>
<td>G</td>
<td>0.76</td>
<td>-0.95 2.2×10^{-30} β -0.019 0.528</td>
<td>-0.131 0.194 β -0.071 0.123</td>
<td>-0.046 0.209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2022464</td>
<td>6q21</td>
<td>108945370</td>
<td>A</td>
<td>C</td>
<td>0.30</td>
<td>-0.63 3.7×10^{-11} β -0.090 4.7×10^{-3}</td>
<td>-0.060 0.233 β -0.105 0.035</td>
<td>-0.088 0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs11191683</td>
<td>10q24</td>
<td>105170649</td>
<td>T</td>
<td>G</td>
<td>0.33</td>
<td>0.059 1.1×10^{-10} β 0.040 0.174</td>
<td>0.187 0.021 β 0.085 0.075</td>
<td>-0.005 0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs9811910</td>
<td>3q28</td>
<td>190670902</td>
<td>C</td>
<td>G</td>
<td>0.08</td>
<td>0.96 1.2×10^{-9} β 0.750 0.010</td>
<td>0.346 0.020 β 0.101 0.621</td>
<td>-0.148 0.187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs138074335</td>
<td>12q14</td>
<td>66374247</td>
<td>A</td>
<td>G</td>
<td>0.59</td>
<td>0.51 6.2×10^{-9} β 0.106 2.9×10^{-4}</td>
<td>-0.016 0.735 β -0.004 0.951</td>
<td>0.001 0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2195243</td>
<td>12q23</td>
<td>102922986</td>
<td>C</td>
<td>G</td>
<td>0.22</td>
<td>-0.059 1.5×10^{-8} β -0.044 0.132</td>
<td>0.037 0.585 β -0.020 0.774</td>
<td>-0.093 0.101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: A1 = effect allele, A2 = reference allele, Freq = frequency of the effect allele, SE = standard error, N = sample size.
Table 2

Genetic correlation between intracranial volume and other anthropometric traits, cognitive function, and neurodegenerative diseases.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>N total</th>
<th>N cases</th>
<th>Mean χ^2</th>
<th>ρ_{genetic}</th>
<th>SE</th>
<th>P</th>
<th>ρ_{genetic}</th>
<th>SE</th>
<th>P</th>
<th>ρ_{genetic}</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometric traits</td>
<td></td>
</tr>
<tr>
<td>Adult height</td>
<td>253,280</td>
<td>-</td>
<td>2.98</td>
<td>.249</td>
<td>.037</td>
<td>1.4×10^{-11}</td>
<td>.241</td>
<td>.038</td>
<td>2.4×10^{-10}</td>
<td>.049</td>
<td>.039</td>
<td>0.21</td>
</tr>
<tr>
<td>Child head circumference</td>
<td>10,768</td>
<td>-</td>
<td>1.04</td>
<td>.748</td>
<td>.121</td>
<td>5.5×10^{-10}</td>
<td>.758</td>
<td>.124</td>
<td>1.1×10^{-9}</td>
<td>.750</td>
<td>.126</td>
<td>2.5×10^{-9}</td>
</tr>
<tr>
<td>Birth length</td>
<td>28,459</td>
<td>-</td>
<td>1.07</td>
<td>.296</td>
<td>.087</td>
<td>6.7×10^{-4}</td>
<td>.278</td>
<td>.087</td>
<td>1.3×10^{-3}</td>
<td>.192</td>
<td>.088</td>
<td>0.029</td>
</tr>
<tr>
<td>Birth weight</td>
<td>26,836</td>
<td>-</td>
<td>1.06</td>
<td>.285</td>
<td>.081</td>
<td>4.4×10^{-4}</td>
<td>.219</td>
<td>.082</td>
<td>7.9×10^{-3}</td>
<td>.160</td>
<td>.086</td>
<td>0.062</td>
</tr>
<tr>
<td>Neurological traits</td>
<td></td>
</tr>
<tr>
<td>Childhood cognitive function</td>
<td>12,441</td>
<td>-</td>
<td>1.08</td>
<td>.277</td>
<td>.090</td>
<td>2.2×10^{-3}</td>
<td>.277</td>
<td>.091</td>
<td>2.5×10^{-3}</td>
<td>.257</td>
<td>.090</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>Adult cognitive function</td>
<td>53,949</td>
<td>-</td>
<td>1.15</td>
<td>.202</td>
<td>.059</td>
<td>6.3×10^{-4}</td>
<td>.205</td>
<td>.060</td>
<td>6.0×10^{-4}</td>
<td>.198</td>
<td>.059</td>
<td>6.9×10^{-4}</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>54,162</td>
<td>17,008</td>
<td>1.11</td>
<td>-.070</td>
<td>.097</td>
<td>0.47</td>
<td>-.049</td>
<td>.097</td>
<td>0.61</td>
<td>-.043</td>
<td>.098</td>
<td>0.66</td>
</tr>
<tr>
<td>Parkinson’s Disease</td>
<td>108,990</td>
<td>13,708</td>
<td>1.10</td>
<td>.315</td>
<td>.063</td>
<td>6.6×10^{-7}</td>
<td>.316</td>
<td>.070</td>
<td>5.5×10^{-6}</td>
<td>.335</td>
<td>.072</td>
<td>3.0×10^{-6}</td>
</tr>
<tr>
<td>White matter lesions</td>
<td>17,936</td>
<td>-</td>
<td>1.07</td>
<td>.112</td>
<td>.075</td>
<td>0.13</td>
<td>.111</td>
<td>.078</td>
<td>0.16</td>
<td>.096</td>
<td>.079</td>
<td>0.23</td>
</tr>
<tr>
<td>Psychiatric traits</td>
<td></td>
</tr>
<tr>
<td>Autism</td>
<td>10,263</td>
<td>4,949</td>
<td>1.07</td>
<td>-.011</td>
<td>.069</td>
<td>0.87</td>
<td>-.036</td>
<td>.074</td>
<td>0.63</td>
<td>.026</td>
<td>.071</td>
<td>0.72</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>11,810</td>
<td>6,990</td>
<td>1.14</td>
<td>.070</td>
<td>.071</td>
<td>0.33</td>
<td>.007</td>
<td>.075</td>
<td>0.93</td>
<td>-.004</td>
<td>.076</td>
<td>0.95</td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td>16,610</td>
<td>9,227</td>
<td>1.07</td>
<td>.002</td>
<td>.100</td>
<td>0.98</td>
<td>.025</td>
<td>.098</td>
<td>0.80</td>
<td>.005</td>
<td>.096</td>
<td>0.96</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>17,115</td>
<td>9,379</td>
<td>1.23</td>
<td>.054</td>
<td>.056</td>
<td>0.33</td>
<td>.017</td>
<td>.058</td>
<td>0.77</td>
<td>-.009</td>
<td>.058</td>
<td>0.87</td>
</tr>
<tr>
<td>Extraversion</td>
<td>63,030</td>
<td>-</td>
<td>1.08</td>
<td>-.041</td>
<td>.092</td>
<td>0.65</td>
<td>-.101</td>
<td>.095</td>
<td>0.29</td>
<td>-.097</td>
<td>.092</td>
<td>0.29</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>63,661</td>
<td>-</td>
<td>1.06</td>
<td>-.017</td>
<td>.109</td>
<td>0.87</td>
<td>.035</td>
<td>.106</td>
<td>0.74</td>
<td>.070</td>
<td>.111</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Genetic correlation between various phenotypes and intracranial volume in the complete discovery sample (“Full sample”), adjusted for height in the studies that had measured height (“Height adjusted”), and the corresponding subset of studies without adjustment (“Height subset”).

Abbreviations: SE = standard error.

Genetic correlation between various phenotypes and intracranial volume in the complete discovery sample (“Full sample”), adjusted for height in the studies that had measured height (“Height adjusted”), and the corresponding subset of studies without adjustment (“Height subset”).

Abbreviations: SE = standard error.