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In a human fMRI study, it has been demonstrated that tasting and ingesting capsaicin
activate the ventral part of the middle and posterior short gyri (M/PSG) of the insula
which is known as the primary gustatory area, suggesting that capsaicin is recognized
as a taste. Tasting and digesting spicy foods containing capsaicin induce various
physiological responses such as perspiration from face, salivation, and facilitation
of cardiovascular activity, which are thought to be caused through viscero-visceral
autonomic reflexes. However, this does not necessarily exclude the possibility of the
involvement of higher-order sensory-motor integration between the M/PSG and anterior
short gyrus (ASG) known as the autonomic region of the insula. To reveal a possible
functional coordination between the M/PSG and ASG, we here addressed whether
capsaicin increases neural activity in the ASG as well as the M/PSG using fMRI and
a custom-made taste delivery system. Twenty subjects participated in this study, and
three tastant solutions: capsaicin, NaCl, and artificial saliva (AS) were used. Group
analyses with the regions activated by capsaicin revealed significant activations in
the bilateral ASG and M/PSG. The fMRI blood oxygenation level-dependent (BOLD)
signals in response to capsaicin stimulation were significantly higher in ASG than
in M/PSG regardless of the side. Concomitantly, capsaicin increased the fingertip
temperature significantly. Although there was no significant correlation between the
fingertip temperatures and BOLD signals in the ASG or M/PSG when the contrast
[Capsaicin–AS] or [Capsaicin–NaCl] was computed, a significant correlation was found
in the bilateral ASG when the contrast [2 × Capsaicin–NaCl–AS] was computed. In
contrast, there was a significant correlation in the hypothalamus regardless of the
contrasts. Furthermore, there was a significant correlation between M/PSG and ASG.
These results indicate that capsaicin increases neural activity in the ASG as well as
the M/PSG, suggesting that the neural coordination between the two cortical areas
may be involved in autonomic responses to tasting spicy foods as reflected in fingertip
temperature increases.
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INTRODUCTION

Capsaicin is the pungent ingredient of hot red pepper and
has long been traditionally used as ingredient of spices,
preservatives, and medicine (Suzuki and Iwai, 1984). In response
to tasting and digesting spicy foods containing capsaicin,
various physiological responses such as perspiration from face
(Lee, 1954), salivation (Dunér-Engström et al., 1986) and
increases of systolic blood pressure, heart rate, body core,
and surface temperatures (Hachiya et al., 2007) are transiently
induced. Such autonomic responses may be induced through
viscero-visceral autonomic reflexes (Ganong, 2003). The exact
neuroanatomical basis of these reflexes is not firmly established,
but it is generally believed that capsaicin activates nociceptive
afferents innervating the oral organs and gut, which in turn
activates sympathetic nervous system, causing facilitation of
cardiovascular activity as a result of viscero-visceral reflex. It is
also reported that capsaicin accelerates adrenaline secretion by
activating the adrenal sympathetic efferent nerve in rats (Hachiya
et al., 2007). However, this does not necessarily exclude the
possibility of the involvement of higher-order sensory-motor
integration.

Since capsaicin activates the transient receptor potential
vanilloid 1 (TRPV1) on primary afferent neurons (Holzer,
1991), capsaicin-induced autonomic reflexes might be caused
by impulse activity in nociceptive afferents innervating oral
mucosa and taste bud expressing TRPV1 (Ishida et al., 2002;
Kido et al., 2003; Sasaki et al., 2013). In the rat insular cortex,
the dysgranular region is involved in taste perception as the
primary gustatory area (Yamamoto, 1987; Accolla et al., 2007),
while its caudal granular region is potentially involved in visceral
sensory-motor control as the primary autonomic area (Ruggiero
et al., 1987; Cechetto and Saper, 1990; Yasui et al., 1991).
Using voltage-sensitive dye imaging and whole cell recording
in rat slice preparations, we recently demonstrated that theta-
band oscillatory neural coordination between the gustatory and
autonomic insular cortices can be induced by activation of
TRPV1 in the insular cortex (Saito et al., 2012). Therefore, it
may be possible that not only the viscero-visceral reflex but
also such a neural coordination induced by TRPV1 activation is
responsible for the autonomic responses to tasting and ingesting
spicy foods.

Immunohistochemical studies revealed that TRPV1 is
expressed in epithelial cells (Marincsák et al., 2009) and taste
buds mainly in the circumvallate papillae (Tachibana and Chiba,
2006) of the human tongue. A functional magnetic resonance
imaging (fMRI) study in human subjects demonstrated that the
tasting and swallowing of 44 μM capsaicin cause excitation in
the primary gustatory area, the ventral part of the middle and
posterior short gyri (M/PSG) of the insular cortex (Rudenga
et al., 2010), suggesting that capsaicin is perceived as hot
and spicy tastes. On the other hand, the anterior short gyrus
(ASG) of the insular cortex has been identified as the center
for the autonomic sensory-motor integration in recent fMRI
studies (Craig, 2002; Beissner et al., 2013; Cechetto, 2014).
This anatomical arrangement of the gustatory and autonomic
areas in the insular cortex is very similar to that of the rat,

suggesting a possibility of neural coordination between M/PSG
and ASG. However, it has not been investigated whether the oral
administration of capsaicin at a higher concentration activates
not only M/PSG but also ASG and whether such ASG activation
is involved in autonomic responses in human subjects. We here
demonstrate that the tasting and ingestion of 65 μM capsaicin
activated ASG as well as M/PSG and a significant correlation
was found between the effects size of fMRI BOLD signals in the
bilateral ASG but not in M/PSG and the fingertip temperature
increases.

MATERIALS AND METHODS

Subjects
Experiments were performed on 20 healthy subjects (16 males
and four females; aged 20–36 years) without any history
of neuromuscular disorder or injury to their brain. Written
informed consent was obtained from all subjects before the
experiment. Ethical approval from the ethical committee of the
National Institute for Physiological Sciences and the ethical
committee of Osaka University were obtained before the
experiment.

Stimulus Solution
The following three solutions were used as tastants: artificial
saliva (AS), 65 μM capsaicin, and 0.75 M NaCl dissolved in
deionized water. The concentrations of capsaicin and NaCl
were determined to be approximately equally intense based on
psychophysiological tests (Rudenga et al., 2010). NaCl solution
at this concentration is widely used as a salty tastant (Spetter
et al., 2010; Mascioli et al., 2015), and a limited application of
1 M NaCl did not cause aversive sensation (Mascioli et al., 2015).
It was confirmed in all the subjects participated that 0.3 mL
NaCl solution at 0.75 M did not cause aversive sensation. AS was
composed of a 12.5 mM KCl and 1.25 mM NaHCO3 solution
similar to the ionic components of saliva (O’Doherty et al., 2001).
All solutions were delivered at a room temperature (22–24◦C) as
any effects of temperature, which is known to be represented in
the insular cortex (Craig et al., 2000), could not have contributed
to any of the effects described in our investigation.

Stimulus Delivery System
A custom designed taste delivery system was built to administer
the liquid stimuli. The three tastants were delivered into the
subject’s mouth through the three tygon tubes, one ends of
which were connected to the three storage bottles suspended
from the ceiling and the other ends were introduced into the
mouth to reach the posterior one third of the tongue after the
tubes were attached to the incisor region of a rigid custom
made mandibular mouthguard with dental resin bonding. The
flow of the tastants was controlled by the respective solenoid
valves (Figure 1A). The opening and shunting of respective
solenoid valves, which were placed outside the MRI scanner
room, were independently controlled by a personal computer to
apply tastant solutions at a constant flow rate of 0.1 ml/s. Tastants
were applied to the posterior one third of the subject’s tongue
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FIGURE 1 | A custom designed taste delivery system and experimental design. (A) A schematic diagram of tastants delivery system. Tastants delivered
through the three tygon tubes, the tastant flow through which was regulated by the respective solenoid valves that are controlled by a personal computer. Three
solutions; artificial saliva (AS), capsaicin (Cap), and NaCl were administered at 0.1 ml/s constant flow rate. (Ba–c) NaCl event for 3 s (blue bar) followed by AS event
for 3 s (gray bar) with an interevent interval of 20 s was applied six times every 20 s (one NaCl session) (a). AS event for 3 s (gray bar) followed by AS event for 3 s
(gray bar) with an interevent interval of 20 s was applied six times every 20 s (one AS session) (b). Capsaicin event (red bar) for 3 s followed by five 3 s AS events
(gray bar) applied every 20 s was repeated two times with an interval of 138 s. A paired capsaicin block (c) which contains two capsaicin events was repeated 3
times every 10 min (one capsaicin session). Subjects pressed the button as soon as they felt a liquid on their tongue (bottom).

based on the following three rationales: (1) Taste cells which
express TRPV1 receptors are mostly located in the circumvallate
papillae which are localized in the posterior one third of the
human tongue (Tachibana and Chiba, 2006). (2) The strength
of compound sensation of taste and burning pain evoked by
capsaicin application to the posterior tongue is higher compared
to the anterior tongue, regardless of concentrations of capsaicin
(Rentmeister-Bryant and Green, 1997; Green and Schullery,
2003). (3) None of taste neurons in the nucleus tractus solitarius
in rats displayed prominent excitatory responses to capsaicin
application to the anterior tongue (Simons et al., 2003).

Experimental Design
One NaCl block consisted of a 3 s NaCl event and a 3 s AS
event applied after a rest period of 20 s (Figure 1Ba), which
was repeatedly applied six times every 20 s (one NaCl-session).

One AS block consisted of two 3 s AS events separated by
20 s (Figure 1Bb), which was repeatedly applied six times every
20 s (one AS-session). A pair of capsaicin blocks, each of which
contains a 3 s capsaicin event followed by five 3 s AS events
repeated every 20 s, was applied with an inter-block interval of
20 s, consequently spanning about 5 min (Figure 1Bc). Because
one MRI scan time was limitted to be about 5 min to keep the
subject’s attention on the task, a pair of capsaicin blocks was
repeated three times every 10 min to constitute one capsaicin
session. AS events after taste event application were considered
as rinse events. In order to obtain a sufficient number of trials
for averaging, each subjects participated in one NaCl-session, one
AS-session and one capsaicin-session in the morning and in the
same sessions in the afternoon on the same day. Consequently, 24
AS events, 12 NaCl events, and 12 capsaicin events were used for
fMRI data analysis.
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Subject Preparation
Subjects were instructed not to change their head positions, and
to keep their eyes open to watch a fixation point in front of them.
Subjects held a response button in their right hand and pressed
the button as soon as possible they felt a liquid touch on their
tongue (Figure 1B, bottom). The button press was required to
average the respective fMRI responses to a tastant which was
repeatedly applied, and was used to obtain a positive control
for fMRI. And also, they were asked to briefly take a swallow
of solution for 1 s between fMRI data scanning so that BOLD
signal was not contaminated by movement artifacts related to
swallowing. Prior to MRI scan, subjects were given a description
of the paradigm andwere asked to participate in a training session
in a laboratory. The training session served to screen subjects,
familiarize subjects with the procedures and equipment used
during the actual scan, and make sure that they could press the
button at a probability of 90% or higher and take a swallow of
solution in correct timing.

MRI Data Acquisition
All images were acquired using a 3T MR scanner (Allegra;
Siemens, Erlangen, Germany). For functional imaging during
the sessions, a T2*-weighted gradient-echo echo-planar imaging
(EPI) procedure was used to produce 3-mm-thick slices (34
in total) with a 17% gap covering the entire cerebral and
cerebellar cortices [repetition time (TR) = 3000 ms; echo
time (TE) = 30 ms; flip angle (FA) = 83◦; the field of view
(FOV) = 192 mm; 64 × 64 matrix with a pixel dimension
of 3.0 × 3.0 mm]. The acquisition time (TA) was set at
2000 ms, so as to obtain a 1000-ms “silent period” without
any magnetic-field gradient or radiofrequency pulse. This was
intended to avoid contaminating motion artifacts by swallowing
to the BOLD signal. In total, 960 volumes (96 volumes per
run) were acquired. For anatomical imaging, high-resolution
whole-brain MR images were also obtained using a T1-
weighted three-dimensional (3D) magnetization-prepared rapid-
acquisition gradient-echo (MPRAGE) sequence (TR = 2500 ms;
TE = 4.38 ms; FA = 8◦; FOV = 230 mm; one slab; 192 slices per
slab; voxel dimensions = 0.9 mm × 0.9 mm × 1.0 mm).

Fingertip Temperature Measurement
Body surface temperature at the left little fingertip was measured
as indicator of thermogenesis with an electronic thermometer
system: thermistor (TSD202A, BIOPAC, Biopac Systems Inc.,
Goleta, CA, USA), skin temperature amplifier module (SKT100C,
BIOPAC, Biopac Systems), data acquisition system (Powerlab,
ADInstruments, Colorado Springs, CO, USA) and Power Lab
Chart Ver.5 (Powerlab, ADInstruments), during fMRI data
acquisition. The TSD202A thermistor which can be reliably used
under the condition of 3T-MR scanner (MR conditional) was
attached to the skin with surgical tape. Temperature changes
following application of tastants were obtained by calculating the
fingertip average temperature for 15 s before and after respective
sessions as controls and effects of tastants, respectively. The
fingertip temperature depends on the rate of blood flow or
vascular activity that is regulated by autonomic nervous system

(Nilsson, 1987; Allen et al., 2002; Akata et al., 2004; Dhindsa et al.,
2008; Tansey et al., 2014; Leung, 2015).

fMRI Data Processing
The first two volumes of each run were discarded due to unsteady
magnetization, and the remaining 94 volumes per run (a total of
940 volumes per subject for 10 runs) were used for the analysis.
Image processing and statistical analyses were performed with the
Statistical Parametric Mapping package (SPM8; The Wellcome
Trust Centre for Neuroimaging, London, UK) implemented in
Matlab (Mathworks, Natick, MA, USA). Functional images from
each run were realigned to the mean image of all functional
images to correct for motion. After themotion correction, the T1-
weighted anatomical image was coregistered to the mean image,
and then normalized to a standard T1 template image, which
defined the Montreal Neurological Institute (MNI) space. The
parameters from this normalization process were then applied
to each functional image. The spatially normalized EPI images
were filtered using a Gaussian kernel of 8 mm full-width at half
maximum (FWHM) in the x, y, and z axes.

fMRI Data Analysis
Initially, we performed a single-subject level analysis. The
individual task-related activity was estimated using a general
linear model (Friston, 2007). The signal time-course of each
subject was modeled with a boxcar function convolved with a
canonical haemodynamic-response function (included in SPM8),
a high pass filter (with a cut-off period of 128 s), and session
effects. For each NaCl run, we included one regressor for
NaCl event, one for wash event, and six regressors for six
parameters (three displacements and three rotations) from rigid-
body realignment stage. For each capsaicin run, we included each
one regressor for capsaicin event, one for the first- to fourth-
wash event, one for fifth-wash event, and six regressors from
the realignment. For the AS run, we included one regressor
for AS event and six regressors from the realignment. Serial
autocorrelation of the fMRI time series was modeled using a first-
order autoregressive model. The resulting set of voxel values for
each comparison constituted a statistical parametric map of the t
statistic [SPM {t}].

The weighted sum of the parameters estimated in the
individual analyses consisted of “contrast” images, which were
used for the group-level analyses. The contrast images obtained
from each individual analysis represented the normalized
increment of the fMRI signal for each subject. The contrast
images of each condition were entered into a flexible factorial
model for a multi-subject repeated measured analysis of variance
(ANOVA) with subject (one-level for each subject) and event
(three levels consisted of capsaicin, NaCl, and AS conditions)
factors. To identify regions of overlapping responses to the
three or two different tastes events, we performed conjunction
analyses with a conjunction null hypothesis. This statistic
identifies voxels that are significantly activated in each of the
individual contrasts included in the conjunction (Friston et al.,
2005). Furthermore, the three types of the contrast of interest
[Capsaicin–AS], [Capsaicin–NaCl], and [2 × Capsaicin–NaCl–
AS] were computed to reveal the regions that are selectively or
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FIGURE 2 | Active brain regions revealed by a conjunction analysis. (Aa–c) Lateral (a,c) and superior (b) views after performing conjunction analyses of three
different tastes responses [Capsaicin & NaCl & AS]. Green enclosed areas, postcentral gyrus (S1); Blue enclosed area, precentral gyrus (M1); CS, central sulcus. The
color bar represents the T-values. (Ba–c) Sagittal (a,c) and horizontal (b) views after performing conjunction analyses of three different tastes responses
[Capsaicin & NaCl & AS]. Green enclosed areas, postcentral gyrus (S1); Blue enclosed area, precentral gyrus (M1); yellow enclosed area, insula; CS, central sulcus.
The color bar represents the T-values.

TABLE 1 | Conjunction analysis on brain regions activated by application of the three different tastants.

MNI coordinates T-value Z-score Peak p
(FWE-cor)

Cluster
size (mm3)

Side Anatomical labels Brodmann
area

x y z

–32 18 8 12.15 Inf 0.0000 105472 L Anterior Insula

–54 –22 20 11.00 8.03 0.0000 L Postcentral Gyrus 41

36 22 4 10.84 7.96 0.0000 R Anterior Insula 13

–4 –2 64 9.78 7.46 0.0000 36928 L Supplementary Motor area 6

6 12 58 9.69 7.42 0.0000 R Supplementary Motor area

–8 4 40 9.59 7.37 0.0000 L Middle Cingulate Cortex 24

36 50 16 8.41 6.76 0.0000 4352 R Middle Frontal Gyrus

42 36 24 6.22 5.41 0.0012 R Inferior Frontal Gyrus (p.
Triangularis)

34 36 20 5.97 5.24 0.0028 R Middle Frontal Gyrus

20 –54 –20 7.59 6.28 0.0000 4488 R Cerebellum

38 –52 –34 6.32 5.48 0.0009 R Cerebellum

–34 –50 –32 7.43 6.19 0.0000 3752 L Cerebellum

–24 –64 –24 6.98 5.91 0.0001 L Cerebellum

6 –26 30 6.20 5.40 0.0013 888 R Middle Cingulate Cortex

–4 –26 30 5.79 5.11 0.0051 L Cingulate Gyrus

–32 38 32 5.92 5.21 0.0033 304 L Middle Frontal Gyrus

–10 –76 –30 5.71 5.06 0.0065 544 L Cerebellum

–40 46 14 5.41 4.84 0.0169 80 L Middle Frontal Gyrus

12 –16 –6 5.33 4.78 0.0222 80 R Brainstem

40 0 60 5.29 4.75 0.0249 72 R Middle Frontal Gyrus

12 –22 –4 5.20 4.68 0.0328 16 R Brainstem

–60 –40 20 5.18 4.67 0.0350 8 L SuperiorTemporal Gyrus 22

The statistical threshold size of activation was set at p < 0.05 with correction of the family-wise error (FWE) at the voxel level, when the height threshold was set at
T > 5.06. (x, y, z) values represent Montreal Neurological Institute (MNI) coordinates (mm). R, right; L, Left.
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more potentially activated by capsaicin. The statistical threshold
was set at p < 0.05 with correction of the family-wise error
(FWE) at the voxel level, and the resulting set of voxel values for
each comparison constituted a statistical parametric map of the t
statistic [SPM{t}].

We performed ROI analysis using anatomically defined
insular cortex, which was determined by using WFU pickatlas
tool (Maldjian et al., 2003). We extracted effect size regarding to
each condition from the anatomically defined insula. Numerical
data were expressed as the mean ± SD. Then, we assessed
statistical significance in non-pairwise and pairwise experiments
using repeated-measures ANOVA with Fisher’s protected least
significant difference post hoc test (STATISTICA 10J, StatSoft),
and Pearson’s correlation coefficients between the effect sizes
and the fingertip temperature changes. Statistical analysis of the
fingertip temperature changes was performed with a paired t-test
(p < 0.05).

RESULTS

Conjunction Analysis of All Taste Stimuli
To investigate which areas are commonly activated by the
three taste stimuli, we first performed a conjunction analysis
between all the responses to the respective taste stimuli (Figure 2
and Table 1). Most prominently activated brain areas were
bilateral anterior insula (−32, 18, 8; T = 12.15 and 36, 22,
4; T = 10.84), which were included in the largest cluster
together with bilateral middle insula (−34, −6, 14; T = 9.85
and 38, −2, 12; T = 6.61, Figure 2B), left postcentral
gyrus (−54, −22, 20; T = 11.00, Figures 2Aa,Ba) and left
precentral gyrus (−52, 4, 10; T = 9.06, Figures 2Aa,Ba)
as represented with multiple peaks. These results indicate
that the insula and postcentral gyri were activated following
application of tastants on subject’s tongue and the precentral
gyrus was activated during pressing the button, suggesting that
the fMRI data revealing the activation of the insular cortices
are reliable. Bilateral supplementary motor area, bilateral middle
cingulate cortex, bilateral middle frontal gyrus, and bilateral
cerebellum were also activated (Table 1). These results were
completely the same as the results obtained by performing
a conjunction analysis of two different tastes [Capsaicin
and NaCl].

The Cortical Regions that Display
Stronger Responses to Capsaicin
Compared to NaCl or AS
We next investigated the cortical regions which are more
strongly activated by capsaicin than by NaCl or AS. First, we
performed the group analyses of the two types of comparisons;
[Capsaicin–AS] (Figure 3 and Table 2) and [Capsaicin–NaCl]
(Figure 4 and Table 3). Activated brain areas revealed by the
two comparisons were the bilateral anterior insula and bilateral
middle insula (Figures 3 and 4). The MNI coordinates of peak
voxels in anterior and middle insula were the same between the
two comparisons. However, no brain areas were found to be

FIGURE 3 | Brain areas significantly activated by the comparison
[Capsaicin–AS]. (A,B) The anterior and middle insula activated by capsaicin
stimuli. (x, y, z) values represent Montreal Neurological Institute (MNI)
coordinates (mm), and the color bar represents the T-values.

significantly activated with the comparison [NaCl–AS] (data not
shown; see Discussion).

We next performed the group analysis of the comparison
[2 × Capsaicin–NaCl–AS] to reveal which voxels were
significantly and more potentially activated by capsaicin
compared to NaCl or AS (Figure 5 and Table 4). Brain areas
particularly activated by capsaicin stimuli were the bilateral
anterior insula (Figures 5Aa,Ba), bilateral middle insula
(Figures 5Ab,Bb), right superior medial gyrus (Figure 5C), right
caudate nucleus (Figure 5D), postcentral gyrus (Figure 5E),
ventral posteromedial nucleus (VPM) of left thalamus
(Figure 5F). Highly significant activations were found in
the following coordinates; [38, 20, 4] (T = 10.43; the right
anterior insula), [–32, 18, 6] (T = 9.79; the left anterior insula),
[–32, –4, 14] (T = 8.36; the left middle insula) and [–6, 16, 26]
(T = 7.26; the left anterior cingulate cortex). These cortices
are known to play crucial roles for blood pressure control,
among human central autonomic network (Nagai et al., 2010).
Significant activation was also observed in the hypothalamus
[–6, –8, –2] (T = 5.41), which is the subcortical autonomic
control center (Nakamura, 2011). This region was included in a
cluster of left thalamus (Table 4).

Differential Activation of the Short Insular
Gyri Following Capsaicin Application
The human insular cortex usually contains five major gyri: the
anterior three gyri (Figure 6A) referred to as the “short” gyri
and the posterior two gyri termed as the “long” gyri (Türe
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TABLE 2 | The peak coordinates displayed significant responses by the comparison [Capsaicin–AS].

MNI coordinates T-value Z-score Peak p
(FWE-cor)

Cluster
size (mm3)

Side Anatomical labels Brodmann
area

x y z

38 20 4 10.06 7.60 0.0000 15296 R Anterior Insula 13

52 16 12 8.50 6.80 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

44

52 8 26 7.71 6.35 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

9

–32 18 6 9.49 7.32 0.0000 2800 L Anterior Insula 13

–22 10 –12 5.41 4.84 0.0170 L Putamen

6 32 44 8.04 6.55 0.0000 15040 R Medial Frontal Gyrus 8

10 10 60 7.38 6.16 0.0000 R Supplementary Motor area 6

–6 16 26 7.00 5.92 0.0001 L Anterior Cingulate 24

–32 –4 14 7.81 6.41 0.0000 5224 L Middle Insula 13

–40 –8 12 7.04 5.95 0.0001 L Rolandic Operculum 13

–52 4 12 6.72 5.74 0.0002 L Precentral Gyrus

–54 –22 20 7.75 6.38 0.0000 2968 L Postcentral Gyrus 40

–62 –20 20 6.96 5.90 0.0001 L Postcentral Gyrus 40

–60 –26 30 5.93 5.21 0.0032 L Inferior Parietal Lobule 40

10 6 6 7.37 6.15 0.0000 2208 R Caudate Nucleus

64 –18 24 6.64 5.69 0.0003 752 R Postcentral Gyrus 1

–8 –10 –2 6.35 5.50 0.0008 1872 L Thalamus (including Hypothalamus)

–12 6 4 5.96 5.23 0.0029 L Caudate Nucleus

–12 0 14 5.85 5.15 0.0042 L Caudate Nucleus

34 50 14 5.52 4.92 0.0121 96 R Middle Frontal Gyrus 10

48 30 22 5.36 4.80 0.0200 104 R Middle Frontal Gyrus

38 –2 10 5.31 4.77 0.0233 40 R Middle Insula 13

–14 –16 10 5.27 4.73 0.0267 48 L Thalamus

46 30 14 5.14 4.64 0.0389 8 R Inferior Frontal Gyrus 46

40 28 26 5.09 4.60 0.0458 8 R Middle Frontal Gyrus

–50 –34 48 5.08 4.59 0.0474 8 L Inferior Parietal Lobule 40

The statistical threshold size of activation was set at p < 0.05 with correction of the family-wise error (FWE) at the voxel level. (x, y, z) values represent Montreal Neurological
Institute (MNI) coordinates (mm). R, right; L, Left.

et al., 1999). The three short gyri were termed as the ASG and
M/PSG. To investigate the possible differential activation in the
insular cortex, ROI analysis was made at the peak coordinates
(Figure 6B) in ASG and M/PSG obtained in the group analysis of
the three types of the comparisons; [Capsaicin–AS], [Capsaicin–
NaCl], and [2 × Capsaicin–NaCl–AS]. Regardless of the types of
comparisons, the effect sizes at the ASG were significantly higher
than those at the M/PSG (Figures 6C–E), suggesting that the
ASGwas more potentially activated by capsaicin compared to the
M/PSG. The effect sizes at the right ASG and M/PSG following
capsaicin application were significantly higher compared to the
left corresponding gyri (Figures 6C–E, compare left and right
red bars).

Correlation Between Fingertip
Temperatures and BOLD Signals
To examine the functional relevance of the more increased
activity in the ASG and/or M/PSG in response to capsaicin
administration compared to NaCl or AS, we measured
the fingertip temperatures before and after the respective
tastants application. The mean temperature changes following

application of NaCl and AS were insignificant and smaller
(0.16 ± 0.47 and 0.23 ± 0.74◦C, respectively), while the mean
temperature increase following application of capsaicin was
significant and larger (0.83 ± 0.85◦C; Figure 7A).

To investigate which areas are more closely involved
in the fingertip temperature increases following capsaicin
application, we performed correlation analysis between the
fingertip temperature increases and the effect sizes of BOLD
signals at respective peak coordinates of the three types
of the comparisons; [Capsaicin–AS], [Capsaicin–NaCl] and
[2×Capsaicin–NaCl–AS]. There were no significant correlations
between the fingertip temperature increases and the effect sizes in
the coordinates of both the ASG and M/PSG found as significant
in the group analysis of the two comparisons; [Capsaicin–AS]
(p > 0.05) and [Capsaicin–NaCl] (p > 0.05). In contrast, the
bilateral ASG in the coordinate found as significant by the
comparison [2 × Capsaicin–NaCl–AS] showed a significant
positive correlation between fingertip temperatures and its BOLD
signals (Figures 7Ba,Ca), while the M/PSG did not show any
significant correlation regardless of the side (Figures 7Bb,Cb).
Significant correlations were also found in the bilateral VPM of
thalamus, left ventral posterolateral nucleus (VPL) of thalamus,
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FIGURE 4 | Brain areas significantly activated by the comparison
[Capsaicin–NaCl]. (A,B) The anterior and middle insula activated by
capsaicin stimuli. (x, y, z) values represent Montreal Neurological Institute (MNI)
coordinates (mm), and the color bar represents the T-values.

right medial dorsal nucleus (MD) of thalamus (Data not
shown) and in the hypothalamus regardless of the comparisons
(Figure 7D) while no significant correlation was found in the
right S1 (Figure 7E).

Coordination Between ASG and M/PSG
and Between Diencephalon and ASG or
M/PSG.
We then performed correlation analysis between the effect sizes
in the coordinates of the two cortical regions as found significant
in the group analysis of the comparison [2 × Capsaicin–
NaCl–AS], given the integration and coordination between
the two cortical regions. There was a significant positive
correlation between the effect sizes of BOLD signals of
the right ASG and the right M/PSG (Figure 8B), while
there was no significant correlation between left ASG and
the left M/PSG (Figure 8A). Furthermore, no significant
correlations were also found between the ASG and M/PSG
in the coordinates found as significant in the group analysis
of the comparison [Capsaicin–AS] or [Capsaicin–NaCl], (see
Discussion). These results suggest the neural coordination
between the right M/PSG and ASG potentially in response
to capsaicin application as well as the presence of non-
linear neural integration among different sensory modalities
that occurs during the respective tastants application (see
Discussion).

However, to reveal the neural interaction between the
subcortical brain region and the cortical region, we performed

the correlation analysis between the effect sizes in the coordinates
found as significant in the group analysis of the capsaicin
responses because there would be no neural integration in
the subcortical brain regions. The left and right VPM were
significantly correlated with the effect sizes of the left and
right M/PSG, respectively (Figures 8Ca,Da, respectively), as the
solitary tract carrying the primary taste information projects
to the M/PSG through the VPM. The left VPM was not
significantly correlated with the left ASG (Figure 8Cb) while
the right VPM was significantly correlated with the right
ASG (Figure 8Db). These results strongly suggest the neural
coordination between the right ASG and M/PSG. Furthermore,
there were significant positive correlations between the effect
size in the hypothalamus and those in the bilateral ASG
(Figures 8Ea,Fa) and the right M/PSG (Figure 8Fb), but not the
left M/PSG (Figure 8Eb).

DISCUSSION

The aim of this study was to investigate whether capsaicin
activates the gustatory insular cortex as well as the autonomic
insular cortex. We performed the group analyses of the three
types of the comparison; [Capsaicin–AS], [Capsaicin–NaCl], and
[2 × Capsaicin–NaCl–AS]. Regardless of a difference in these
types of comparisons, the significant increases in BOLD signals
were observed in the bilateral ASG and M/PSG (Figures 3–5
and Tables 2–4), and also the effect sizes in the left and right
ASG obtained in the group analyses of three types of the
comparisons were significantly higher than those in the left
and right M/PSG (Figures 6C–E). The fingertip temperature
measured after capsaicin application was significantly higher
compared to the control whereas no significant temperature
changes were observed following application of NaCl or AS
(Figure 7A). The bilateral ASG in the coordinate found
as significant by the comparison [2 × Capsaicin–NaCl–AS]
showed a significant positive correlation between its effect sizes
and fingertip temperatures (Figures 7Ba,Ca). These results
suggest that capsaicin activated the ASG more selectively and
potentially compared to the M/PSG, which may be responsible
for autonomic responses reflected in fingertip temperature
increases.

Can the Tasteless AS be the Control for
Tastants in fMRI Responses?
Because AS is tasteless solution, the response to AS has been
considered as a control that simply causes tactile sensation in the
gustatory insular cortex (de Araujo et al., 2003), and subsequently
in many studies (O’Doherty et al., 2001; Frank et al., 2006;
Chambers et al., 2009; Nakamura et al., 2011), fMRI response
to AS was subtracted from those to other taste stimulations.
However, in terms of the intensity of the response and the spatial
pattern of the excitation in the gustatory insular cortex, it is
questionable whether the AS response can be treated as a control.
First, it is well known that many different pyramidal neurons,
each of which respond to a different stimulus modality, such as
tactile, pressure, cold and warm temperatures, pain, and tastes,
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TABLE 3 | The peak coordinates displayed significant responses by the comparison [Capsaicin–NaCl].

MNI coordinates T-value Z-score Peak p
(FWE-cor)

Cluster
size (mm3)

Side Anatomical labels Brodmann
area

x y z

38 20 4 10.38 7.74 0.0000 19016 R Anterior Insula 13

52 16 12 9.06 7.10 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

44

52 8 26 8.43 6.76 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

9

–32 18 6 9.69 7.42 0.0000 3224 L Anterior Insula 13

–22 10 –10 5.60 4.98 0.0092 L Putamen

–32 –4 14 8.55 6.83 0.0000 15312 L Middle Insula 13

–54 –22 20 8.50 6.80 0.0000 L Postcentral Gyrus 40

–62 –20 20 7.70 6.35 0.0000 L Postcentral Gyrus 40

12 8 8 7.94 6.49 0.0000 3432 R Caudate Nucleus

20 0 0 5.61 4.98 0.0091 R Pallidum

12 –12 0 5.26 4.73 0.0272 R Thalamus

4 32 44 7.93 6.48 0.0000 20936 R Medial Frontal Gyrus 8

10 10 60 7.87 6.45 0.0000 R Supplementary Motor Area 6

–4 16 26 7.24 6.07 0.0000 L Anterior Cingulate 24

64 –16 24 7.49 6.23 0.0000 2560 R Postcentral Gyrus 1

60 –20 44 5.67 5.03 0.0075 R Precentral Gyrus 2

56 –28 48 5.55 4.94 0.0109 R Postcentral Gyrus 40

–8 –10 –2 6.68 5.72 0.0003 3400 L Thalamus (including Hypothalamus)

–12 6 4 6.35 5.50 0.0008 L

–12 2 12 6.13 5.35 0.0016 L Caudate Nucleus

34 50 14 6.19 5.39 0.0014 272 R Middle Frontal Gyrus 10

38 –2 10 5.75 5.09 0.0058 232 R Middle Insula 13

36 0 2 5.21 4.69 0.0319 R Middle Insula

34 14 36 5.73 5.07 0.0061 72 R Middle Frontal Gyrus 9

–32 –12 68 5.45 4.87 0.0148 40 L Precentral Gyrus 6

–42 –24 56 5.44 4.86 0.0157 160 L Postcentral Gyrus 3

38 –50 46 5.36 4.80 0.0200 72 R Inferior Parietal Lobule 40

18 –52 –20 5.32 4.77 0.0229 56 R Cerebellum

–32 –52 –32 5.22 4.70 0.0309 40 L Cerebellum

20 4 60 5.21 4.69 0.0320 8 R Superior Frontal Gyrus

38 14 22 5.07 4.59 0.0476 8 R Inferior Frontal Gyrus (p.
Trianqularis)

–44 –10 60 5.07 4.59 0.0486 8 L Precentral Gyrus 6

The statistical threshold size of activation was set at p < 0.05 with correction of the family-wise error (FWE) at the voxel level. (x, y, z) values represent Montreal Neurological
Institute (MNI) coordinates (mm). R, right; L, Left.

are intermingled in the gustatory area and there also exist such
neurons that respond to multimodal stimulations (Cechetto and
Saper, 1987; Yamamoto et al., 1988; Allen et al., 1991; Hanamori
et al., 1998). All these neurons may be synaptically connected,
and non-linear summation of synaptic inputs would take place
in respective pyramidal neurons in the gustatory insular cortex in
response to any taste stimulation. Thus, a taste recognition occurs
in the gustatory insular cortex as a result of non-linear integration
of many neuronal activities induced by stimulation of various
sensory modalities with a tastant. Then, the subtraction of the
AS response from some taste response may not necessarily reveal
the pure taste response. Second, fMRI studies demonstrated
that respective tastes were represented as specific patterns with
considerable overlaps in the gustatory cortex (Schoenfeld et al.,
2004; Spetter et al., 2010). This suggests that taste recognition

is mediated by the activity of a different subset of cell assembly
representing differential spatial pattern of excitation, similar to
that observed in rats (Accolla et al., 2007) although it was also
reported that each taste quality was represented as a discrete hot
spot in the gustatory cortex in mice (Chen et al., 2011; Peng
et al., 2015). Water also causes a spatial pattern of excitation,
which was not the same as the overlapping area of any two of
four basic tastants (Accolla et al., 2007). If this is also the case
in human subjects, these observations suggest that subtraction of
water-like AS response from the response to some tastant may
not necessarily reflect the pure taste response and is not the
right way of evaluation of taste response. Therefore, provided
that AS is a tastant that causes a sensation of tasteless, the group
analysis of the comparison [2 × Capsaicin–NaCl–AS] can be an
estimate of the area that shows selective or significantly more
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FIGURE 5 | Brain areas significantly activated by the comparison [2 × Capsaicin–NaCl–AS]. (A,B) The anterior and middle insula activated by capsaicin
stimuli. (C–F) Brain areas particularly activated by capsaicin stimuli. (x, y, z) values represent Montreal Neurological Institute (MNI) coordinates (mm), and the color bar
represents the T-values.

potential responses to capsaicin application compared to NaCl
or AS. The fMRI responses in the left hand area of precentral
gyrus (M1) induced by button presses which were performed
as soon as the subjects detected the arrival of tastants on the
tongue before perceiving tastes did not vary depending on the
taste difference among the three tastants, as revealed by the
abolishment of the M1 activation by computing the contrast of
interest [2× Capsaicin–NaCl–AS]. Then, even if the button press
affects the fMRI taste responses, the button press would cause the
same effect on the taste fMRI responses regardless of the different
tastants. Therefore, the computing of the contrast of interest
[2 × Capsaicin–NaCl–AS] would isolate the taste responses in
the taste-associated brain regions to capsaicin application by
canceling the possible overlapping activity. Indeed, there were
no significant correlations between the temperature changes and
the effect sizes in the coordinate found as significant by the
comparison [Capsaicin–AS] or [Capsaicin–NaCl] whereas there
was a significant correlation between the temperature changes
and the effect size in the coordinate found as significant by the
comparison [2 × Capsaicin–NaCl–AS].

Reliability of Fingertip Temperature
Measurements During MR Scanning
In this study, capsaicin increased the fingertip temperature
significantly. The radio frequency (RF) transmitted from the
electromagnetic coil may cause a slight increase in the core
body temperature inside the MRI bore. However, the left hand

little finger is outside the bore, and the temperature loss
will occur during blood flow through the forearm into the
peripheral endartery in the little finger. Therefore, it is unlikely
that MR scanning causes significant changes in the fingertip
temperature of the subjects without application of tastants
that activate autonomic nervous system. This is also supported
by the observation that the temperature changes observed
following application of NaCl or ASwere statistically insignificant
and much smaller than that observed following application
of capsaicin (Figure 7A). We calculated the fingertip average
temperature for 15 s before and after an entire capsaicin session
as a control and an effect of capsaicin application, respectively.
In this case, the interval between the two measurements was
35 min (the duration of one capsaicin session, during which a
paired capsaicin block repeated three times with 10 min interval),
which would be long enough for the development of autonomic
responses. Even if the fingertip temperature were increased by
RF, 10 min interval is good enough for the recovery of skin
temperature to the original value (Adair and Berglund, 1986), in
contrast to the cumulative effects of capsaicin.

Differential Activation Between the ASG
and the M/PSG in Response to Capsaicin
Application
The M/PSG responds not only to pure taste stimuli as the
primary gustatory area but also to stimulation of other intra-
oral sensations as an integrated oral sensory region that
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TABLE 4 | The peak coordinates displayed significant responses by the comparison [2 × Capsaicin–NaCl–AS].

MNI coordinates T-value Z-score Peak p
(FWE-cor)

Cluster
size (mm3)

Side Anatomical labels Brodmann
area

x y z

38 20 4 10.43 7.76 0.0000 18600 R Anterior Insula 13

52 16 12 8.96 7.05 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

44

52 8 26 8.24 6.66 0.0000 R Inferior Frontal Gyrus (p.
Opercularis)

9

–32 18 6 9.79 7.47 0.0000 3272 L Anterior Insula 13

–22 10 –12 5.62 4.99 0.0087 L Subcallosal Gyrus

–32 –4 14 8.36 6.72 0.0000 12208 L Middle Insula 13

–54 –22 20 8.30 6.69 0.0000 L Postcentral Gyrus 40

–40 –8 12 7.50 6.23 0.0000 L Rolandic Operculum 13

6 32 44 8.12 6.59 0.0000 19832 R Superior Medial Gyrus 8

10 10 60 7.79 6.40 00000 R Supplementary Motor area 6

–6 16 26 7.26 6.09 0.0000 L Anterior Cingulate 24

12 8 8 7.82 6.42 0.0000 18600 R Caudate Nucleus

64 –18 24 7.21 6.06 0.0000 1344 R Postcentral Gyrus 1

–8 –10 –2 6.65 5.70 0.0003 3016 L Thalamus (including
Hypothalamus)

–12 6 4 6.28 5.45 0.0010 L Caudate Nucleus

–12 2 12 6.10 5.33 0.0018 L Caudate Nucleus

34 50 14 5.98 5.24 0.0028 240 R Middle Frontal Gyrus 10

38 –2 10 5.65 5.01 0.0080 168 R Middle Insula 13

38 –50 46 5.32 4.77 0.0227 48 R Inferior Parietal Lobule 40

–42 –24 56 5.28 4.75 0.0254 40 L Postcentral Gyrus 3

–32 –12 68 5.22 4.70 0.0309 16 L Precentral Gyrus 6

60 –20 44 5.18 4.67 0.0348 40 R Precentral Gyrus 2

34 14 36 5.11 4.62 0.0425 8 R Middle Frontal Gyrus 9

–52 –32 56 5.09 4.60 0.0457 16 L Postcentral Gyrus 40

18 –52 –20 5.09 4.60 0.0460 16 R Cerebellum

12 –12 0 5.09 4.60 0.0462 24 R Thalamus

The statistical threshold size of activation was set at p < 0.05 with correction of the family-wise error (FWE) at the voxel level. (x, y, z) values represent Montreal Neurological
Institute (MNI) coordinates (mm). R, right; L, Left.

plays a crucial role in feeding behavior (Small, 2010). It
has been demonstrated by an fMRI study in human subjects
that tasting and swallowing of capsaicin caused excitation in
the M/PSG (Rudenga et al., 2010), suggesting that activation
of oral TRPV1 receptors by capsaicin caused the hot and
spicy sensation in the primary gustatory area of M/PSG.
Partly consistent with this previous study, we found that
the oral administration of capsaicin activated the bilateral
M/PSG while the bilateral ASG were also activated by capsaicin
(Figures 3A,B, 4A,B, and 5A,B). However, as revealed by
the computing of the contrast of interest [2 × Capsaicin–
NaCl–AS], the T-value and Z-score were higher in the
ASG than in the M/PSG (Table 4). Consistent with this
observation, the ROI analysis also revealed that in response
to capsaicin administration, the effect sizes in the ASG were
significantly larger than those in the M/PSG (Figures 6C–E).
These observations suggest that capsaicin may have more
significantly and strongly activated the ASG compared to the
M/PSG.

Regardless of the ASG or the M/PSG, the effect sizes
were significantly larger in response to capsaicin application

compared to NaCl or AS application. Furthermore, in spite
of the taste difference between salty NaCl and tasteless
AS, there were no differences in the effect sizes between
the ASG and M/PSG in response to AS or NaCl and no
differences in the effect sizes between the responses to
NaCl and AS in the ASG or in the M/PSG. Consistent
with this observation, there were no significant brain
areas with the comparison [NaCl–AS] (data not shown).
However, it should be noted that tastants were delivered
to the posterior part of the tongue which expresses TRPV1
receptors more densely compared to the anterior part
and is innervated by the glossopharyngeal nerve (Spector
et al., 1990) while salty taste of NaCl is mostly sensed in
the anterior part which is solely innervated by the chorda
tympani nerve (Oakley, 1967). Therefore, the comparison
of effects sizes between capsaicin and NaCl or AS or
between NaCl and AS does not necessarily reflect the
modality difference in the insular cortices. Nevertheless,
it can be at least concluded that capsaicin activated the
ASG more selectively and potentially compared to the
M/PSG.
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FIGURE 6 | ROI analysis using anatomically defined coordinates of the insular cortex. (A) The schema of three anterior short gyri. ASG, the anterior short
gyri; MSG, the middle short gyri; PSG, the posterior short gyri. (B) Two ROIs located on a right sagittal view, which were at the peak coordinates in the right ASG and
M/PSG of the comparison [2 × Capsaicin–NaCl–AS]. (C–E) The effect sizes at the bilateral ASG (orange) and M/PSG (green) of the three types of the comparisons;
[Capsaicin–AS], [Capsaicin–NaCl], and [2 × Capsaicin–NaCl–AS]. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

Autonomic Insular Cortex Activated by
Capsaicin Application
The insular cortex is composed of functionally diverse
subregions, which are involved in gustatory and olfactory
processing, somatosensation, interoception, motivation, and the
maintenance of homeostasis (Small et al., 1999; Craig, 2002, 2009;
Olausson et al., 2002). The involvement of the insular cortex in
autonomic functions has been studied extensively (Craig, 2002;
Beissner et al., 2013; Cechetto, 2014). Anterior insula and left
posterior insula are potentially involved in human autonomic
functions (King et al., 1999; Cechetto, 2014). Recently, the
autonomic functional organization of the insular cortex has
been revealed to be gyri-specific by the three autonomic
manipulations: Valsalva maneuver, hand grip challenge, and cold
pressor challenge (Macey et al., 2012). In particular, the ASG was
found to be involved in sympathetic regulation as assessed by

electrodermal activity and high-frequency heart rate variability
(Beissner et al., 2013).

Transient increases in heart rate and blood pressure,
and tympanic temperature were observed immediately after
ingesting, chewing, and spitting out hot red pepper (Hachiya
et al., 2007). In the present study, the ASG was more
strongly activated by capsaicin compared to the M/PSG
(Figures 6C–E). The fingertip temperature measured after
capsaicin application was significantly higher compared to the
control (Figure 7A). The bilateral ASG showed a significant
positive correlation between fingertip temperatures and BOLD
signals (Figures 7Ba,Ca). These results suggest that the ASG
plays a crucial role in inducing autonomic responses following
capsaicin administration, as reflected in fingertip temperature
increases. Furthermore, the significant positive correlations
between the effect size in the hypothalamus and those in the
bilateral ASG (Figures 8Ea,Fa) suggest that the ASG activity
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FIGURE 7 | Correlation between fingertip temperatures and effect sizes at the peak coordinates. (A) The fingertip temperature changes calculated by
averaging for 15 s before and after AS, NaCl and capsaicin sessions. Statistical analyses were performed with a paired t-test. CT; control. (B) Correlation between
the fingertip temperature increases and the effect sizes at respective peak coordinates in the left ASG (a) and in the left M/PSG (b) obtained in the group analysis of
the comparison [2 × Capsaicin–NaCl–AS]. (C) Correlation between the fingertip temperature increases and the effect sizes at respective peak coordinates in the
right ASG (a) and in the right M/PSG (b) obtained in the group analysis of the comparison [2 × Capsaicin–NaCl–AS]. (D) Correlation between the fingertip
temperature increases and the effect sizes at the peak coordinates in the hypothalamus (–6, –8, –2) obtained in the group analysis of the comparison
[2 × Capsaicin–NaCl–AS]. (E) Correlation between the fingertip temperature increases and the effect sizes at the peak coordinates in the right S1 of postcentral
gyrus (64, –18, 24) obtained in the group analysis of the comparison [2 × Capsaicin–NaCl–AS].

caused an increase in the fingertip temperature through the
activation of the hypothalamus. Indeed, the peak coordinate
found as significant in the hypothalamus by the group analysis
of the capsaicin responses corresponded to the dorsomedial
hypothalamic nucleus, which is known to be involved in the
control of body temperature (Nakamura, 2011).

After conjunction analysis between all the responses to
the respective taste stimuli, insula, and postcentral gyri
were prominently activated following application of tastants
on subject’s tongue, and the precentral gyrus was activated
during pressing the button. Other regions including bilateral
supplementary motor area, bilateral middle cingulate cortex,
bilateral middle frontal gyrus, and bilateral cerebellum were
also activated (Table 1). These regions were also reported to
be activated by the nociceptive responses to heat, capsaicin, or
mechanical stimulation applied to the hand or forearm skin
by using positron emission tomography and fMRI (Peyron
et al., 2000). However, the supplementary motor area and

cerebellum were known to be involved in the regulation of
sympathetic activity (Beissner et al., 2013), as revealed by
significant correlations between fMRI signal and instantaneous
high frequency power of heart rate changes (Napadow et al.,
2008).

Do Capsaicin-Induced fMRI Responses
in the Insular Cortex Represent Pain
Perception?
In the present study, capsaicin was applied at a concentration
of 65 μM, which is 10–30 times lower than that contained in
tabasco sauce and similar to that of curry sauce. In a previous
study, capsaicin was applied at 44 μMwhich caused neither pain
sensation nor activation of the ASG (Rudenga et al., 2010).

Robust activations in the anterior and posterior long gyri
(A/PLG) of the insular cortex during nociceptive stimulation
were consistently shown in fMRI studies (Apkarian et al., 2005;
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FIGURE 8 | The integration and coordination between two brain regions. (A,B) Correlation between the effect sizes at the peak coordinates in the left ASG
and left M/PSG (A) and those in the right ASG and right M/PSG (B) obtained in the group analysis of the comparison [2 × Capsaicin–NaCl–AS]. (C) Correlation
between the effect sizes at the peak coordinates in the left VPM and left M/PSG (a) and those in the left VPM and left ASG (b) obtained in the group analysis of the
capsaicin responses. (D) Correlation between the effect sizes at the peak coordinates in the right VPM and right M/PSG (a) and those in the right VPM and right ASG
(b) obtained in the group analysis of the capsaicin responses. (E) Correlation between the effect sizes at the peak coordinates in the left ASG and hypothalamus
(a) and those in the left M/PSG and hypothalamus (b) obtained in the group analysis of the capsaicin responses. (F) Correlation between the effect sizes at the peak
coordinates in the right ASG and hypothalamus (a) and those in the right M/PSG and hypothalamus (b) obtained in the group analysis of the capsaicin responses.

Duerden and Albanese, 2013). These posterior parts of the
insular cortex together with inner opercular cortices form a
first-order nociceptive matrix, and a second-order perceptual
matrix is composed of the middle and anterior insular cortices,
the anterior cingulate gyrus, anterior frontal, and posterior
parietal areas (Garcia-Larrea and Peyron, 2013). It was also
reported that nociceptive input was first processed in the
posterior insula and then conveyed to the anterior insula using
Stereo-Electro-Encephalography before neurosurgery (Frot et al.,
2014).

In the present study, a group analysis of the comparison
[2 × Capsaicin–NaCl–AS] revealed that capsaicin activated
the ASG more potentially than the M/PSG without significant
activation of the A/PLG (Figure 5 and Table 4). As the
A/PLG is the first-order nociceptive matrix, these observations
suggest that capsaicin did not cause pain sensation but
activated parasympathetic nervous system to cause an increase
in the fingertip temperature. Usually, in response to cold
acclimation of the fingertip, the contraction of fingertip

endartery would be caused by α2 adrenergic action to prevent
the temperature loss (Nakamura, 2011). However, under the
resting condition with oral administration of capsaicin, such
adrenergic response would not occur whereas adrenergic
action on the heart induced by capsaicin would increase
blood flow in the fingertip endartery to increase the fingertip
temperature.
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