

体内埋込装置による運動・コミュニケーションのサポート

吉峰 俊樹 大阪大学大学院医学系研究科 脳神経外科学

1. イントロダクション INTRODUCTION

私たちは、脳の表面に電極シートをおいて 正確な脳波を測ることにより(脳表脳波)、 性能の高いブレイン・マシン・インターフェース (BMI) を実現し、身体障害者の方々の運動や コミュニケーションをサポートする研究を進めて います。

この方法は手術が必要ですが、長期間、安定 して正確な脳波を測れるという長所があり、 ワイヤレス体内埋込装置として利用できるように すれば、性能の高い BMI をいつでもすぐに利用 できるようになり、患者さんにとって便利で 使いやすい装置になると期待されます。

4. これまでにわかったこと RESULTS

手足が全く動かないALS の患者さんが、脳信号 重症のALS患者さんのロボットアーム操作 ワイヤレス埋込装置の長期留置動物実験 だけでロボットアームを操作することに世界で 初めて成功しました。同様の方法でコミュニケー ション装置を操作して文章を作成することも できました。

開発したワイヤレス体内埋込装置は動物に 埋め込んだ状態で6ヶ月間動作し、脳表脳波を 正確に測ることができました。また電極シートを 置いた大脳表面の部位には炎症反応は認められず、 長期間安全に利用できることが分かりました。

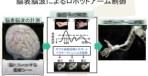
6ヶ月埋込後の電極シートを置いた 部位の大脳表面の組織像 6ヶ月埋込後も長症反応を認めず、長期間の 安全な留置に適していることが分かった。

体内埋込装置により測定した脳波

2. この研究の意義

BMIの技術レベルが高まると サポートできる患者さんは飛躍的に増える

運動神経や筋肉の障害のため、感覚は正常で考えることもできるが、 体を動かせず話すこともできないという、究極のストレスにさらされて いる患者さんがおられます(閉じ込め症候群)。


私たちは、脳表脳波を用いた BMI により、まずこのような患者さんの 運動やコミュニケーションを助け、患者さんが快適で積極的な生活を送り、 介護負担を減らせるようにしたいと考えています。

最終的には200万人を越える身体障害者の方々に広く利用される技術に まで高めていきたいと考えています。

3. 研究方法 **METHODS**

筋萎縮性側索硬化症(ALS)により手足が 全く動かなくなった患者さんに御承諾を 頂き、脳表に電極シートを留置し、研究を 行いました。手を動かすイメージをする時の 脳表脳波を測り、コンピュータで解析する ことでイメージした手の動きを推定し、 ロボットアームを動かすことができました。

脳表脳波によるロボットアーム制御

ワイヤレス体内埋込装置の開発

最終的に患者さんが長い間にわたって 在宅でいつでも使える装置にするには、 電極だけでなく装置全体をワイヤレスの 小型回路にして体内に埋め込む必要が あります。

そこで私たちは世界に先駆けてワイヤ レス体内埋込装置を開発し、動物に 6ヶ月間埋め込みました。

5. 今後の展望 FUTURE

本研究プロジェクトでは、脳表脳波を測定するためのワイヤ レス体内埋込装置の開発を進めて人に埋込可能なレベルにまで 高めるとともに、ロボットアームの開発を進めて、高機能なも のにする計画です。そしてこれらを用いた長期間の臨床研究を 行い、治験・実用化を実現したいと思います。

また、運動に関係した脳波を測る研究だけでなく、感覚に関係 する脳の領域を刺激することにより適切な感覚を起こす研究も 動物実験にて進め、将来的には人への応用を目指します。