Quantification of plasma surrogate marker for Alzheimer disease

毅 朝 長

医薬基盤研究所 創薬基盤研 究部 プロテオームリサーチプ ロジェクト プロジェクトリーダー, センター長, 医学博士

1984年千葉大学医学部卒業。1992年医学博士。(千葉大 学)。1992-97年米国国立衛生研究所(NIH/NCI)客員研 究員,1998年京都大学大学院生命科学研究科特任研究員, 2000年千葉大学大学院医学研究院分子病態解析学准教授 を経て,2009年1月より現職。

TOMONAGA, Takeshi, MD, PhD

Project Leader, Laboratory of Proteome Research Director of Proteome Research Center, National Institute of Biomedical Innovation

1984 Graduated from Chiba University School of Medicine. Visiting fellow of NIH/NCI in USA (1992-7), Postdoctral fellow of Kyoto University (1998-2000), Associate Professor of Chiba University (2000-2008), and was transferred to the current position in 2009.

■研究内容

老化脳やアルツハイマー病 (AD) では A β 42 蛋白 の脳内への蓄積が原因である。この脳内蓄積を早期に 発見できれば、AD の早期発見及び治療に有用だが、 A β 42 は髄液や血液中にはほとんど存在しないため、 その存在量を測定することは困難である。それに代わる AD のサロゲートマーカーとして A β 42 と同じ機序で産 生される A β 様ペプチド APL1 β 28 が AD 患者髄液 中で増加していることが明らかとなっているが、髄液検 査は侵襲が大きくスクリーニングには不向きである。そこ で本研究では、血中 APL1 β の定量系を確立し、超早 期 AD 診断法を開発することを目的とする。

近年のプロテオミクスの進歩,特に SRM/MRM 法な どの定量プロテオミクス技術の向上は凄まじく,従来の 方法では検出できなかった臨床検体中の微量の蛋白 質の検出・定量が可能になった。そこで我々は,その SRM/MRM 法を用いて血中 APL1 βペプチドの定量を 試みた。血中の APL1 βは髄液中の数千分の1と推定 されたため,抗体を用いた免疫沈降法と SRM/MRM 法 を組み合わせることによって,約数 pg/mL という超微量 なペプチドを定量することが可能となった。この世界最 高レベルの検出系を用いて AD の早期診断を目指す。

Research works

A key feature of the pathology of Alzheimer disease (AD) is the accumulation of amyloid- β peptides (A β) in senile plaques and A β 42 is its major constituent. Thus the level of A β 42 in the brain is a potential biomarker of AD. However, since A β 42 is cleared more rapidly from the soluble pool in the brain, it is hardly detected in the body fluid such as CSF and plasma and surrogate markers for estimating A β 42 generation in the brain have not yet been identified. We have previously identified novel APLP1-derived A β -like (APL β) peptides in human CSF and demonstrated that CSF APL1 β 28 level is a potential surrogate marker for the brain A β 42 production. However, examination of CSF is highly invasive for medical screening and less aggressive procedure such as blood test is needed.

Recent advances in proteomic technology such as selected/multiple reaction monitoring (SRM/ MRM) enabled the detection and quantification of specific proteins in complex samples. In this study, we investigated if APL1 β peptides could be detected in human plasma. Using 1ml of plasma, endogenous APL1 β peptides were able to detected and quantified by immuno-SRM. Strikingly, absolute concentration of APL1 β peptides was identified as a few pg/ml, which is thousands times lower than those in CSF and the lowest detection level of endogenous plasma peptides in our knowledge.

図:従来の血漿タンパク質の検出感度をはるかに上回る Fig. Our method far exceeds detection potential of conventional plasma protein measurement.