Publications

Publication List

  1. Coutinho EA, Okamoto S, Ishikawa AW, Yokota S, Wada N, Hirabayashi T, Saito K, Sato T, Takagi K, Wang CC, Kobayashi K, Ogawa Y, Shioda S, Yoshimura Y, Minokoshi Y. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues. Diabetes, in press.
    Pub Med
  2. Kimura R, Saiki A, Fujiwara-Tsukamoto Y, Sakai Y, Isomura Y. (2017) Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions. J Physiol, 595 (1), 385-413
    Pub Med
  3. Oishi K, Nakagawa N, Tachikawa K, Sasaki S, Aramaki M, Hirano S, Yamamoto N, Yoshimura Y, Nakajima K.(2016) Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. Elife. 2016 Feb 12;5. pii: e10907.
    Pub Med
  4. Tarusawa E, Sanbo M, Okayama A, Miyashita T, Kitsukawa T, Hirayama T, Hirabayashi, T, Hasegawa S, Kaneko R, Toyoda S, Kobayashi T, Kato-Itoh M, Nakauchi H, Hirabayashi M, Yagi T, Yoshimura Y. (2016) Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biol. 2016 Dec 2;14(1):103.
    Pub Med
  5. Osanai, Y., Shimizu, T., Mori, T., Yoshimura, Y., Hatanaka, N., Nambu, A., Kimori, Y., Koyama, S., Kobayashi, K. & Ikenaka, K. Rabies virus-mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions. Glia, 65(1):93-105, 2017
    Pub Med
  6. Miyamoto, A., Wake, H., Ishikawa, A.W., Shibata, K., Murakoshi, H., Koizumi, S., Moorhouse, A.J., Yoshimura, Y. & Nabekura, J. (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nature Communications, 7:12540.
    Pub Med
  7. Sunaga Y, Yamaura H, Haruta M, Yamaguchi T, Motoyama M, Ohta Y, Takehara H, Noda T, Sasagawa K, Tokuda T, Yoshimura Y, Ohta J. (2016). Implantable imaging device for brain functional imaging system using flavoprotein fluorescence. Jpn. J. Appl. Phys. 55, 03DF02.
  8. Sugimura T, Yoshimura Y, Komatsu Y. (2015) TNFα is required for the production of T-type Ca(2+) channel-dependent long-term potentiation in visual cortex. Neurosci Res. 96, 37-44.
    Pub Med
  9. Ishikawa, A.W., Komatsu, Y., Yoshimura, Y. (2014)Experience-dependent emergence of fine-scale networks in visual cortex. J Neurosci. 34(37):12576-86.
    Pub Med
  10. Horibe, S., Tarusawa, E., Komatsu, Y. & Yoshimura, Y. (2014) Ni2+-sensitive T-type Ca2+ channel currents are regulated in parallel with synaptic and visual response plasticity in visual cortex. Neurosci Res., 87, 33-39.
    Pub Med
  11. Mori T, Morimoto K. (2014) Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Front Neuroanat. 7:47..
    Pub Med
  12. Toyoda, S., Kawaguchi, M., Kobayashi, T., Tarusawa, E., Toyama, T., Okano, M., Oda, M., Nakauchi, H., Yoshimura, Y., Sanbo, M., Hirabayashi, M., Hirayama, T., Hirabayashi, T. & Yagi, T. (2014) Developmental epigenetic modification regulates stochastic expression of clustered Protocadherin genes, generating single neuron diversity. Neuron, 82(1), 94-108
    Pub Med
  13. Mizuno, H., Luo, W., Tarusawa, E., Saito, Y.M., Sato, T., Yoshimura, Y., Itohara, S. & Iwasato, T. (2014) NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron, 82(2), 365-79.
    Pub Med
  14. Funahashi, R., Maruyama, T., Yoshimura, Y. & Komatsu, Y. (2013)Silent synapses persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-reared mice. J Neurophysiol. 109 (8), 2064-2076.
    Pub Med
  15. Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. (2012) CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2 (2), 345-357.
    Pub Med

Report List

2017

2016

  1. Tarusawa E, Sanbo M, Okayama A, Miyashita T, Kitsukawa T, Hirayama T, Hirabayashi T, Hasegawa S, Hirabayashi M, Yagi T, Yoshimura Y (2016.11.16) High reciprocal connectivity between clonal cortical neurons is established under the guidance of epigenetic regulation. Society of Neuroscience 2016, (San Diego, USA)
  2. 唐木智充,金亮,尾藤晴彦, 吉村由美子 (2016.11.4)最適方位が類似した視覚野錐体細胞における選択的な神経結合. 第63回中部生理学会, (岡崎)
  3. Yoshimura Y (2016.8.8) Experience-dependent development of fine-scale networks and feature-selective synchronization in the visual cortex. International Symposium 2016 ‘Circuit Construction in the Mammalian Brain’, (Osaka)
  4. Kimura R, Yoshimura Y (2016.7.22) Development of a visuomotor task useful for the analysis of interactions between neuronal activities in the visual and motor cortices of behaving rats. The 39 th Annual Meeting of the Japan Neuroscience Society, (Yokohama)
  5. Nishio N, Ishikawa AW, Yoshimura Y (2016.7.22) Experience dependent maturation of spatial frequency tunings in excitatory and inhibitory neurons in mouse primary visual cortex. The 39th Annual Meeting of the Japan Neuroscience Society, (Yokohama) 
  6. Yoshimura Y (2016.7.21) Experience-dependent maturation of neural circuits and functions in the secondary visual cortex of rats The 39th Annual Meeting of the Japan Neuroscience Society, (Yokohama) 
  7. Karaki T, Kim R, Bito H, Yoshimura Y (2016.7.20) Synaptic connections are preferentially formed between cortical pyramidal neurons with similar orientation preference in both layers 2/3 and 5. The 39th Annual Meeting of the Japan Neuroscience Society, (Yokohama) 
  8. Ishikawa AW, Komatsu Y, Yoshimura Y (2016.7.20) Visual experience-dependent and independent development of visually-evoked synchronized firing in rat visual cortex. The 39th Annual Meeting of the Japan Neuroscience Society, (Yokohama) 
  9. Yamamoto M, Yoshimura Y (2016.2.12) Cell-type specific neural connectivity of visual cortex revealed through trans-synaptic tracing. The 8th NAGOYA Global Retreat, (Nagoya)

2015

  1. Yoshimura Y (2015.11.14) Experience-dependent maturation of fine-scale networks and feature-selective synchronization in visual cortex. East Asia Joint Symposium 2015, (Okinawa)
  2. Ishikawa AW (2015.10.17) Experience-dependent and independent development of feature-selective synchronization in rat visual cortex. Neuroscience 2015, (Chicago, USA)
  3. Ishikawa AW (2015.7.27) Experience-dependent development of fine-scale networks and synchronous firing in rat primary visual cortex. A Satellite Symposium to Neuroscience 2015, “Neural Circuits, Development and Plasticity of the Early Visual System”, (Kobe)

2014

  1. Mori T, Yoshimura Y (2014.9. 13) Distinct patterns of synaptic inputs onto pyramidal cell and interneuron subtypes in mouse hippocampal CA1. The 36th Annual Meeting of the Japan Neuroscience Society, (Yokohama)
  2. Yoshimura Y (2014.9.12) The effect of visual deprivation on the maturation of secondary visual cortex. The 36th Annual Meeting of the Japan Neuroscience Society, (Yokohama)

2013

  1. Ishikawa A, Komatsu Y, Yoshimura Y (2013.11.12) Experience-dependent emergence of fine-scale networks in visual cortex. Neuroscience2013, (San Diego, USA)
  2. Mori T, Yoshimura Y (2013.11.11) Glycoprotein from an attenuated rabies strain increases an affinity toword non-neuronal cells and long-range projection neurons. Neuroscience2013, (San Diego, USA)
  3. Yoshimura Y (2013.6.22) Experience-dependent maturation of visual cortical circuits and function. The 36th Annual Meeting of the Japan Neuroscience Society, (Kyoto)
  4. Tarusawa E, Toyoda S, Kobayashi T, Sanbo M, Hirabayashi M, Yagi T, Yoshimura Y (2013.6.21) Dnmt3b epigenetically regulates specificity of synaptic connections in mouse barrel cortex. The 36th Annual Meeting of the Japan Neuroscience Society, (Kyoto)

2012

  1. Ishikawa AW (2012.11.16) The reduction in the visual responsiveness of cortical neurons resulting from visual deprivation is more prominent in the secondary than the primary visual cortex. Global COE Symposium on Neuro-Tumor Biology and Medicine, (Nagoya)

2011

2010

  1. Tarusawa E, Akashi K, Sakimura K, Molnar E, Fukazawa Y, Yoshimura Y, Shigemoto R (2010.9) Immunohistochemical localization of kainate receptors, GluK2/3 (GluR6/7) and GluK5 (KA2), in the mouse hippocampus. Neuro2010.

2009

  1. Yoshimura Y (2009.9) Activity-dependent development of microcircuits in visual cortex.