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Cross-modal plasticity in blind subjects contributes to sensory compensation when vision is lost early in life, but it is not
known if it does so when visual loss occurs at an older age. We used H,'*0 positron emission tomography to identify
cerebral regions activated in association with Braille reading, and repetitive transcranial magnetic stimulation to induce
focal transient disruption of function during Braille reading, in 8 subjects who became blind after age 14 years (late-
onset blind), after a lengthy period of normal vision. Results were compared with those previously reported obtained
from congenitally and early-onset blind subjects. As shown by H,"*0 positron emission tomographic scanning, the
occipital cortex was strongly activated in the congenitally blind and early-onset blind groups but not in the late-onset
blind group. Occipital repetitive transcranial magnetic stimulation disrupted the Braille reading task in congenitally
blind and early-onset blind subjects but not in late-onset blind subjects. These results indicate that the susceptible period

for this form of functionally relevant cross-modal plasticity does not extend beyond 14 years.
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Visual deprivation early in life results in various phys-
iological and behavioral effects involving the develop-
ing cortex.! Cross-modal plasticity associated with vi-
sual deprivation has been described in animals®> and
humans.®~7 In general, areas activated in sighted sub-
jects by performance of visual tasks become activated
in association with tactile’ or auditory discrimination
tasks. These studies have been done mostly in individ-
uals who were congenitally blind or became blind very
early in life.?

A clear link berween specific measures of plasticity
(electrophysiological or neuroimaging) and functional
relevance in terms of sensory compensation is not al-
ways clear.” In ar least one form of cross-modal plas-
ticity, this link has been demonstrated. Activation of
the occipital cortex by tactile discrimination tasks like
Braille reading in early blind subjects’ appears to play a
role in sensory processing.'® Our goal in this study was
to determine if this particular form of useful plasticity
can take place lacer in life or if it is only a property of
the developing nervous system.

Transcranial magnetic stimulation (TMS) is a non-
invasive technique that can induce focal and transient
disruption of function in the cortical regions under the
magnetic coil.''™"? Disruption of specific cognitive
tasks by focal cortical stimulation has been interpreted

_jects who became blind earlier in life

as a sign that the region stimulated is functionally
engaged and useful for task performance.'® H,'*0
positron emission tomography (H,'>O PET) and re-
petitive transcranial magnetic stimulation (rTMS) are
therefore complementary in that although H,'’O PET
can identify areas activated in association with task per-
formance, rTMS allows the noninvasive study of the
behavioral consequences of focal transient disruption of
the activated cortical regions. The combination of both
techniques provides a powerful tool to identify net-
works activated in association with Braille reading and
to test behavioral effects of reversible disruption of spe-
cific cortical regions.

In this study we tested 8 subjects blind after age 14
by using a combination of H,'’O PET and rTMS.
The results in patients with late-onset blindness (LOB)
were compared with results reported previously in sub-
719 and support
the existence of a period of susceptibility for func-
tionally relevant cross-modal plasticity in human blind
subjects.

Subjects and Methods

Subjects
Eight subjects participated in this study (Table 1). Four
right-handed LOB subjects underwent PET scanning, and 5
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Table 1. Clinical Characteristics of the Patients

Age when Hours
Age ar Started Years  per Day
Onset of Braille Reading Reading  Visual Reading
Age/Sex  Blindness Cause Reading  Braille Braille Percepion  Hand ~ PET (TMS
A Latc-onser blind subjects
1 3U/F 15 Retinal detachment 16 . 15 1 None R +
2 64/M 17 Glaucoma 20 44 0.5 None R + o+
3 34/F 25 Diabetes 25 9 2 None R +
4 48/M 44 Retinitis pigmentosa 45 3 0.5 Light R +
5 38/F 35 Glaucoma 36 2 1 Bright light R +
6 56/M 16 Trauma 16 40 1 None L +
7 G2/F 58 Glaucoma 60 2 1.7 Bright lighte L +
8 53/F 33 Glaucoma 39 14 L5 None R +
Mean 48.25 30.37 32.13 1613 L.15
SD 1268  15.25 15.69 168  0.54
B Congenital blind, PET . : i
] 43/M  Birth Retinolental fibroplasia 5 38 L5 None R +
2 49/F Birth Anophthalmos 6 43 2 None R . +
3 45/M Birth Optic nerve dysplasia 6 39 4 None R +
4 45/F Birth Retinolental fibroplasia 6 39 1 None L +
Mean 45.5 5.8 398 21
sSD 25 0.5 2.2 1.3
C  Early blind, PET
1 60/M 4 CNS infection 5 55 3 None R +
2 58/M 5 CNS infection 7 51 1 None L +
3 5SIF 13 Retinolental fibroplasia 8 47 3 None R +
4 42/IF 12 Congenital glaucoma 5 37 2 None R +
Mean 53.8 8.5 6.3 47.5 23
SD 8.1 4.7 1.5 7.7 1.0
D Congenital early blind, rTMS
1 44/M 3 mo Glaucoma 5 39 2 None L +
2 38/M Birth Premature rerinitis 4 29 4 None R +
3 63IM 4 yr Meningitis 6 57 6 None R +
4 471F Birth Premature retinitis 6 41 2 Brighe light L +
5 44/F Birch Glaucoma 5 39 2 None R +
Mean 47.2 5.2 41 3.2
SD 9.42 0.84 10.1 1.79

PET = positron emission tomography; rTMS = repetitive transcranial magnetic stimulation; CNS = central nervous system,

LOB subjects underwent rTMS (1 of the subjects underwent
both PET and rTMS). The PET and rTMS experiments
were performed as previously described.”'® All our subjects
lost their vision after age 14 years and started to read Braille
daily soon afterward. The protocols were approved by the
Insticutional Review Board of the National Institute of Neu-
rological Disorders and Stroke, all subjects gave informed
consent, and rTMS was used under a US Food and Drug
Administration investigational device exemption. The blind
subjects had normal brain magnetic resonance imaging scans
and no progressive neurological disease.

PET Methodology

There were 3 PET conditions—mostly “word,” mostly “non-
word” Braille reading, and an unconstrained rest condition.
Under the word condition, 41 words and 3 nonwords were
presented. Under the nonword condition, 41 nonwords and
3 words were presented. Subjects were asked to utcer “num”
when they encountered the infrequent word or nonword.’
Letters were presented in strings of 8 letters. The rate of pre-
sentation was one string every 2.4 seconds. Subjects read by
using the right hand. All subjects were scanned with their
eyes closed and patched to minimize blinking. The lights
of the PET room were dimmed. Each subject underwent

452 Annals of Neurology Vol 45 No 4 April 1999

six (two per condition) sequential regional cerebral blood
flow (rCBF) PET scans with H,'50, using a Scanditronix
(Uppsala, Sweden) PC 2048-15b PET camera with an axial
field of view of 9.75 cm and an in-plane resolution at the
center of the field of view of 6.1 mm. A bolus of 30 mCj of
H,'%0O was injected for each scan, and data were collected in
two-dimensional acquisition mode with a 10-minute inter-
scan interval. The actenuation corrected emission data were
reconstructed as 15 contiguous axial planes of slice thickness
6.5 mm.

Statistical Analysis of PET Data

All head images were analyzed with statistical parametric
mapping (Wellcome Department of Cognitive Neurology,
London, UK)."> After realignment, all images were trans-
formed into standard stereotactic space.'® Each image was
smoothed with an isotropic Gaussian fileer of 10 mm. To
explore the effect of the onset of blindness on the activation
patterns during Braille reading, the 12 blind subjects were
categorized into three groups. Four subjects who never had
vision were caregorized as the congenitally blind (CB) group,
4 who lost their sight before the age of 14 as the carly-onset
blind (EOB) group (mean onset of complete blindness was
8.5 years), and the other 4 who lost their sight after the age



of 14 as LOB group. The following general linear model was
then applied. Let Ybiqif denote the rCBF at voxel # for the
Jjth measurement in condition g of subject 7 in group  (j =
1,2, g = 1,2,3; i = 1....,12; ¢t = 1,2,3).

Y kiqj! = (!¢kq. + 5+ gki(giqj —g.) + Skaq,':

where oub"q‘ is the interaction effect for condition ¢ of group
¢ (the condition-by-group effect), y*, is the subject effect, { ;
is the global regression effect of subject 4, g; is the global
CBF of subject  in jth replication of condition g, and g is
the mean of the gCBF over ¢ conditions and j replications of
subject 7, and e";q,-, is an error term that is an independent,
normally distributed random variable with zero means. The
tested contrasts are summarized in Table 2. As mostly word
and mostly nonword tasks produced identical results,” the
contrasts representing the averaged effect of these two task
conditions were used. Contrasts 1, 2, and 3 represent the
averaged task effects within the group, and contrasts 4
through 9 represenc the difference of the task effects among
the groups (simple effects).

The effect of the onset of blindness on the regional acti-
vation patterns by Braille reading was evaluated as group X
condition interaction by using conjunction analysis.'” With
this approach, several hypotheses or simple effects described
by the contrasts (see Table 2) were tested, asking whether all
the effects are jointly and equally significant. In other words,
the main effect we were interested in was the conjoint ex-
pression of the series of simple effects. The conjunction anal-
ysis has two processes.'” First is the elimination of the re-
gions that show significant differences among the simple
effects, by F test with an appropriate threshold (p < 0.05,
uncorrected for multiple comparisons). Second is the statis-
tical inference test for the main effect, using the standard
procedure based on the theory of Gaussian random fields.'®
To depict the task-related neuronal activities common to
three groups, contrasts 1, 2, and 3 were tested with conjunc-
tion analysis (see Table 2). This comparison shows the neu-
ronal activities unaffected by the onset of the blindness. To
depict the regions that show the task-related activation in
both CB and EOB but no activation in LOB, the same pro-

Table 2. Contrasts for Simple Effects

cedure was applied to the different combination of contrasts,
namely, 1, 2, and 6. Contrast 1 indicates the rtask-related
activation in CB, 2 indicates that in EB, and 6 indicates the
difference of task-related activation berween EB and LOB.
The elimination step of the conjunction analysis discounts
the areas where the effects of contrasts 1, 2, and 6 are sig-
nificantly different. Through this process, 2 and 6 are equally
significant only when the task-related neuronal change in
LOB is null, because contrast 6 indicates the difference be-
tween task effect of EB, which is represented by contrast 2,
and that of LOB. This comparison shows the task-related
neural activities specific for congenital and early blind groups
but not for late-onset group, hence the onset-dependent plas-
tic change in Braille reading. In a similar manner, activations
by congenital and late, early and late, congenital only, early
only, and late only were assessed. A statistical threshold of
2 < 0.05, with correction for multiple comparisons ac voxel
level,'® was considered significant. The simple analysis pro-
tects against false positives; the conjunction analysis protects
against false negatives.

TMS Methodology

TMS was delivered with a magnetoelectric stimulator (Cad-
well Laboratories, Kennewick, WA) and a figure 8—shaped'®
water-cooled coil. The coil was held tangentially to the scalp
with the intersection of both loops oriented sagittally. Trains
of stimuli were used because they are more effective chan
single stimuli in disrupting cognitive tasks.'? rTMS was de-
livered to three occipital positions (midline, contralateral,
and ipsilateral to the reading finger, overlying Brodmann ar-
eas 17, 18, and 19; O,, O,, and O, of the international
10-20 system of electrode placement), two parietal positions
(contralateral and ipsilateral, approximately overlying Brod-
mann atea 7; P; and P,), a midfrontal position (F,), and to
the contralateral sensorimotor area (overlying Brodmann ar-
cas 4, 3, 1, and 2).%° As a control condition, rTMS was also
delivered into the air (the sound of the stimulator was as
loud as in actual brain stimulation, but no stimulation
reached the brain). Each train of rTMS was triggered by the
reading finger crossing a laser beam'® and had a fixed fre-
quency of 10 Hz and a duration of 3 seconds. The stimulus

Congenital Early Late
No. Rest Word Nonword Rest Word Nonword Rest Word Nonword
] -2 1 1 0 0 0 0 0 0
2 0 0 0 -2 1 1 0 0 0
3 0 0 0 0 0 0 -2 1 1
4 -2 1 1 2 -1 -1 0 0 0
5 -2 | 1 0 0 0 2 -1 -1
6 0 0 0 -2 1 | 2 -1 -1
7 2 -1 | -2 1 1 1] 0 0
8 2 -1 -1 0 0 0 -2 1 1
9 0 0 0 2 -1 -1 =2 1 1

Main effects of conjoint expression of simple effects by conjunction analysis: 1 & 2 & 3: common to congeniral, early, and late; 1 & 2 & 6: common

to congenital and carly, without change in late; 2 & 3 & 7: common to earl

y and late, without change in congenital; 1 & 3 & 4: common 1o congenital

and late, withour change in carly; 2 & 6 & 7: carly only, without change in congenical of lace; 3 & 8 & 9: lace only, without change in congenital or

early. The ampersand (&) denotes conjunction analysis,'?
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intensity (normalized across subjects) was 10% above the
minimal output of the stimulator required to induce a
50-i.V electromyographic response from the relaxed first
dorsal interosseous muscle. Parameters of stimulation were
within those considered to be safe in recent publications.”'??
fTMS can transiently suppress visual perception of letters'!
and extrafoveal targets,?® probably by interference with visual
calcarine'! and association cortical areas at depths of 1.5 to
2.25 cm below the scalp surface.* Reading was also done in
the absence of rTMS. The subjects identified 25 Braille let-
ters presented in five strings of five letters (all nonwords)
each for each scalp position stimulated. The order of string
presentations and stimulated positions were randomized
across subjects. Errors were defined as wrong identification
or inability to identify letters. Subjects were encouraged to
reporet sensations and subjective experiences felt after each
rTMS train. Results from subjects in the LOB group (n =
5) were compared with those in a2 combined CB + EOB
group already reported (see Table 1).

Statistical Analysis of rTMS Data

Overall errors in the LOB group and the CB + EOB groups
were compared by using the Fisher exact test. The effects of
repetition and letter were evaluated in individual logistic re-
gressions. To evaluate the error rate by stimulated position, a
logistic regression model with the seven stimulated positions
(+ no stimulation + air stimulation) as a categorical factor
was derived for each of the two groups (LOB and CB +
EOB) separately.

Results

Cortical Regions Activated in Association with the
Braille Reading Task

Irrespective of the onset of blindness, performance of
the Braille discrimination task with the right index fin-
ger activated the left primary sensorimotor cortex
(SM1), superior and inferior parietal lobule, prefrontal
cortex, fusiform gyrus and cerebellum bilaterally, right
dorsal premotor cortex, left fusiform gyrus, right infe-
rior occipital lobe, and anterior cingulate gyrus (Fig 1,
Table 3).

CB and EOB blind subjects, but not LOB subjects,
activated the primary visual cortex bilaterally, the righe
inferior occipital gyrus, and the left superior parietal
lobule extending to the angular gyrus and supramar-
ginal gyrus on the left (see Table 3). EOB subjects ac-
tivated the primary visual cortex slightly more exten-
sively than subjects in the CB group. The percentage
of increase in rCBF in the primary visual cortex was
similar in both groups (see Table 3 and Fig 2B). EOB
and LOB subjects, but not subjects in the CB group,
activated the cerebellar vermis bilaterally adjacent to
the areas of cerebellar activation common to all groups
and right lingual gyrus. The CB and LOB groups, but
not the EOB group, activated the anterior cingulate
gyrus close to the supplementary motor area, the right
inferior parietal lobule, the right fusiform gyrus, and
the right inferior occipital gyrus, all of which were ad-

jacent to the activated areas common to all groups.
Only the EOB group activated the primary visual cor-
tex adjacent to the commonly activated area. Only the
LOB group activated the left dorsal premotor cortex
and left precuneus. There was no region activated by
the CB group only.

The 2 subjects who became blind at ages 12 and 13
(see Table 1) after a protracted period of partial vision?®
showed clear activation of the left primary visual cortex
and left supramarginal gyrus, where there was no activa-
tion in LOB subjects (see Fig 2A and Table 4).

Effects of Disruption of Cortical Activity
In unstimulated trials, subjects in the LOB group iden-
tified letters 1 through 5 in 1.4 £ 0.6, 2.4 * 0.5, 3.3
* 0.5, 4 * 0.5, and 4.3 * 0.3 seconds after reading
began. Therefore, the 3-second duration of the rTMS
trains covered approximately 75% of the reading time.
Accuracy level in unstimulated trials before the rTMS
session was 85.4 * 8.1% in the LOB group, lower
than in the CB * EOB group (94.8 + 4.6%)."° In 2
similar manner, accuracy level during intervention was
lower in the LOB group (81.3 * 1.2%) than in the
CB + EOB group (87.5 * 1.0%) (p < 0.0001, Fish-
er’s test). Neither repetition nor letter affected error
rates in either group. Based on logistic regressions, the
LOB group showed no significant effect of stimulated
position on error rate (likelihood ratio test, x* with 8
df = 4.83, p = 0.78) whereas the CB + EOB group
did, because of the higher rate of errors with midoc-
cipital stimulation (likelihood ratio test, x* with 8 4f =
30.56, p < 0.001). The only single position where the
CB + EOB group showed more errors than the LOB
was O, (25.6% vs 16.8%) (Fig 3A). The difference in
error rates between stimulation of midoccipital regions
(O,) and Air was larger in subjects in the CB + EOB
group than in those in the LOB group (see Fig 3B).
Subjects in the LOB group did not report distorted
somatosensory perceptions with stimulation at any site

as subjects in the CB + EOB group did."°

Discussion

Effects of Deafferentation on Visual Function
Individuals blind since early age because of cataracts
can regain function to variable degrees after corrective
surgeries.?® However, if this correction takes place later
in life, patients do not learn to use their vision normal-
ly.*” Thus, the probability of success in visual rehabil-
itation relates to the degree of visual competence dur-
ing a sensitive period,”® which in cats and monkeys is
limited to the first weeks or months of life""**~*! but
in humans lasts substantially longer, approximately to
the beginning of the second decade.’>™>” Therefore,
the visual cortex undergoes functionally significant
plasticity when changes in visual input take place early

Cohen et al: Period of Susceptibilicy 455



Table 3. Activation by Braille Discrimination with Right Index Finger

Coordinates %ACBF
Location® x y z z » Congenital Early Late
Congenital, early, and late blind . ‘
SM1 Lefe -36 —24 52 7.81 <0.01 14.2 6.3 16.2
LPs (7) Left =28 —54 44 7.94 <0.01 14.8 9.9 7.0
Right 30 =56 44 6.78 <0.01 7.6 84 9.7
LPi (40) Left —44 —38 36 7.22 <0.0t 12.3 8.2 7.5
Right 42 —40 36 7.14 <0.01 10.0 4.2 9.8
Cerebellum Left —14 ~82 =20 6.25 <0.01 44 8.7 9.5
Right 16 =50 -28 7.70 <0.01 14.3 15.5 111
GF (37) Left —42 -62 -20 6.92 <0.01 9.8 8.4 7.2
Right 50 =50 ~24 4.85 0.01 - 37 5.7 7.1
PMd (6) Right 24 -8 48 7.00 <0.01 11.1 7.5 7.6
GFi (44) Left =50 -2 24 4.73 0.01 5.7 3.5 6.0
Right 40 0 24 566 <00l 8.4 27 8.6
ACG Left —-10 6 44 5.20 <0.01 11.0 29 6.4
GOi (18) Right 32 =72 —4 4.56 0.03 13.1 8.9 4.1
Congenital and early blind, not late blind
Cu (17) Left -16 —88 4 5.41 <0.01 7.7 9.8 0.0
Right 16 —98 —4 4.67 0.02 6.8 12.5 -0.1
Ga (39) Left -38 —56 36 6.57 <0.0! 8.1 14.9 =37
Gsm (40) Left —48 —40 32 5.44 <0.01 7.6 8.8 0.4
GOi (18) Righe 28 =76 —4 5.49 <0.01 7.5 15.6 -14
LPs (7) Left —-28 ~38 44 5.31 <0.01 7.6 11.6 -1.2
Early and late blind, not congenital blind
Cerebellum Left -8 -76 -16 5.03 <0.01 ~1.5 7.4 9.8
Right 4 ~64 -8 6.59 <0.01 -4.0 14.3 12.4
GL (18) Right 20 —88 -20 5.26 <0.01 0.5 134 4.7
Congenital and late blind, not early blind
ACG Left -8 2 48 5.31 <0.01 124 1.7 5.1
LPi (40) Right 40 —40 44 5.11 <0.01 8.3 -1.3 10.7
GF (37) Right 48 =56 ~28 4.84 <0.01 7.5 =0.5 8.2
GFi (44) Right 38 2 24 4.83 0.01 8.5 1.1 8.2
GOi (18) Right 36 —-68 0 4.67 0.01 10.1 -0.6 4.5
Early blind only
Cu (17) Left -14 =96 -16 6.58 <0.01 2.0 15.7 —0.3
Right 12 -92 -12 4.81 0.01 0.3 11. -0.7
Late blind only
PMd (6) Left —-38 -6 52 5.89 <0.01 -0.1 -17 14.6
PCu (7) Left -4 —78 44 5.53 <0.01 1.1 1.5 17.2

All foci were defined as the local maxima of the Z scores, within the clusters thresholded by the predefined statistical significance (p < 0.05,
with correction for multiple comparisons).

*Brodmann area, in parentheses, according to Talairach and Tournoux.'¢
ith correction for multiple comparisons at voxel level.'

ACG = anterior cingulate gyrus; Cu = cuncus; Ga = angular gyrus; GF = fusiform gyrus; GFi = inferior frontal gyrus; GL = lingual gyrus;
GOi = inferior occipital gyrus; Gsm = supramarginal gyrus; LPi = inferior parictal lobule; LPs = superior parietal lobule; PCu = precuneus;
PMd = dorsal premotor cortex; SM1 = primary sensorimotor cortex.

in life. The influence of age at the time of deafferen-
tation in the development of plasticity across sensory
modalities has been less well documented.®8~4"

Plasticity Across Sensory Modalities in the Blind

In subjects with congenital and early blindness, a dis-
tributed network is activated in association with Braille
reading. These areas include the inferior parietal lobule,
primary visual cortex, inferior occipital gyri, fusiform
gyri, ventral premotor area, superior parietal lobule,
cerebellum, and primary sensorimotor cortex bilater-
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ally, right dorsal premotor cortex, right middle occipi-
tal gyrus, and right prefrontal area.”*** It has been pro-
posed that tactile processing pathways usually linked in
SII in sighted subjects, are rerouted in blind subjects to
ventral occipital areas.?® This activation of “visual”
brain regions by a tactile discrimination task represents
an important example of cross-modal plasticity.” Fur-
thermore, it is now known that this occipirtal activity
plays an important role in terms of sensory compensa-
tion. That is, distuption of occipital function during
Braille reading in subjects blind at an early age, using



Table 4. Comparison Between Early Blind* and Late Blind®
with Regard to Activation by Braille Discrimination with
Right Index Finger

Coordinates %ACBF
Location® x y z z p Early Late

Early" > late blind
Gsm (40), left —40 -58 36 5.09 <0.01 144 —4.6
Cu (17), left —-14 -94 -16 497 <0.01 165 -1.2

*n = 2; onset of blindness was 12 and 13 years of age.

b = 4,

‘Brodmann area, in parentheses, according to Talairach and Tour-
noux.'¢

4With correction for multiple comparisons at voxel level.'

Cu = cuneus; Gsm = supramarginal gyrus.

TMS, results in accuracy errors in the reading task
and in induction of phantom dots and distorted tactile
perceptions. '°

Cross-modal plasticity in blind humans has been de-
scribed in association with a variety of tasks,®>42-43
but so far it has been demonstrated to be important in
terms of sensory compensation only when associated
with performance of tactile discrimination tasks.'®
Therefore, identification of a period of susceptibility
(or lack of it} would be of interest in a model of cross-
modal plasticity known to play a compensatory role.

Period of Capability for Cross-Modal Plasticity in

the Blind

The cortical areas activated during Braille reading by
all three groups were widely distributed. Ac the periph-
ery of these areas, there were small foci that lacked ac-
tivation by one group; ie, the cerebellar vermis was ac-
tivated in EOB and LOB but not CB, and anterior
cingulate gyrus, right inferior parietal lobule, right fusi-
form gyrus, righe inferior frontal gyrus, and right infe-
rior occipital gyrus were activated in CB and LOB but
not EOB. Although this may indicate subtle fluctua-
tions of the extent of the activation because of the dif-
ferent onset of blindness, these areas represent the neu-
ral substrates for Braille reading by blind subjects
irrespective of the onset of their blindness.

Our study in a group of subjects who lost their vi-
sion after age 14 (LOB) shows that the occipital cortex,
except for small regions in the right inferior occipital
gyrus and lingual gyrus with weak activation, does not
activate in association with the rtactile discrimination
task. These two areas were detected only by conjunc-
tion analysis, which is more sensitive than the conven-
tional subtraction approach because of reduced search
volume.'” Comparison within each group with a more
conservative approach'®> showed strong activation in
the CB and EOB groups, as reported previously.”?>
Furthermore, the present study shows that most of the

LOB

Error rate

CB-EOB
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Age of onset of blindness (years)

Difference in error rates between
stimulation at OZ and Air

=~}

Fig 3. (A) Error rates (mean * SE) for stimulation of differ-
ent scalp positions in the late-onset blind (LOB) group (A,
top) and in the congenitally blind (CB) + early-onset blind
(EOB) group (displayed here for comparison) (A, bottom).
Solid columns indicate error rates induced by stimulation of
the midoccipital position. Note that in the CB + EOB group,
stimulation of midoccipital positions elicited the largest ervor
rate. In the LOB group, there are no differences in error rates
by stimulation position. * = scalp positions where significantly
more errors occurred than control (air). TMS = transcranial
magnetic stimulation; Air, no brain stimulation (control); C3,
sensorimotor cortex; contra, contralateral; ipsi, ipsilateral. (B)
Difference in error rates with stimulation over the midoccipi-
tal region (O,) and control (Air) as a function of age of onset
of blindness.
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