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Task-related motion is a major source of noise in functional magnetic-

resonance imaging (fMRI) time series. The motion effect usually

persists even after perfect spatial realignment is achieved. Here, we

propose a new method to remove a certain type of task-related

motion effect that persists after realignment. The procedure consists

of the following: the decomposition of the realigned time-series data

into spatially-independent components using independent-component

analysis (ICA); the automatic classification and rejection of the ICs of

the task-related residual motion effects; and finally, a reconstruction

without them. To classify the ICs, we utilized the associated task-

related changes in signal intensity and variance. The effectiveness of

the method was verified using an fMRI experiment that explicitly

included head motion as a main effect. The results indicate that our

ICA-based method removed the task-related motion effects more

effectively than the conventional voxel-wise regression-based method.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

This paper describes a new method of adjusting functional

magnetic-resonance imaging (fMRI) time-series data to remove

the confounding effects of task-related subject movement (task-

related motion effect).

In fMRI, it is common to collect a sequence of multi-slice

images of the brain every few seconds. Changes in signal intensity

that are related to task changes are used to infer functional
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anatomy, usually on a voxel-by-voxel basis. The largest source of

variance in fMRI time-series data is movement during the scanning

session (Friston et al., 1995a). Over 30–90% of the variance in the

MR signal can be attributed to movement (Friston et al., 1996). If

untreated, the movement-related variance decreases the sensitivity

of detecting the task-related changes. The first approach to solving

this problem was to simply move the images back into register

(rigid-body realignment) (Friston et al., 1995a). Even after perfect

realignment, however, the residual effects of subject motion

(residual motion effects) might still be present in the time series

data. There are several sources of these motion-related artifacts

(Ashburner and Friston, 1999), including spin-history effects

(Friston et al., 1996), through-plane head motion (Lee et al.,

1998), the interaction effect between magnetic-field inhomogenei-

ties and the movements of subjects (Andersson et al., 2001), and

the interaction effects among them. Interpolation errors are an

additional source of residual motion effects (Grootoonk et al.,

2000). In this paper, we use the term dmotion effectT to refer to the

residual motion effect after correction for misalignment using a

rigid-body transformation.

One possible solution to correct these motion effects in time-

series data has been proposed in the framework of the univariate

general linear model (GLM): the motion effects in each voxel were

modeled by a nonlinear function of position in the current and

previous scans, and these were covaried out of the time-series data

as nuisance effects (Friston et al., 1996). However, this approach

has a serious limitation: if task-related signal changes (true

activations) are correlated with head movements, this component

will be removed (Friston et al., 1996). This situation is likely to

occur in experiments in which some conditions might cause slight

head movements (such as motor tasks or speech) because these

movements are often highly correlated with the experimental

design (Ashburner and Friston, 1999). Hence, corrections for task-

related motion effects are particularly difficult; without correction,

there is a risk of an increase in pseudo-activations or false-positive

(FP) errors, and with correction there is a risk of an increase in
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false-negative (FN) errors. This can be seen as a case of dthrowing
the baby out with the bathwaterT (Friston et al., 1996).

The difficulty stems partly from the temporal constraints of

univariate time-series analysis with GLM; that is, orthogonality

between the signals of interest and those that are not of interest. To

be free from this constraint, the use of independent-component

analysis (ICA) has been proposed. ICA is a multivariate statistical

technique that can decompose fMRI data into spatially-indepen-

dent components with associated time courses that are blind to

temporal information (McKeown et al., 1998a,b). ICA can separate

spatially the processes related to neuronal activity and the motion-

artifact processes into different ICs if they have mutually different

spatial distributions, regardless of the temporal orthogonality

among them. Previous reports have suggested that neuronal

responses, and various other physiological and physical processes,

are not likely to overlap spatially and are expected to be regionally

specific because there are different regional origins for each of the

processes (McKeown et al., 1998a,b). A drawback of this approach

was the absence of explicit criteria for characterizing each IC.

Here, we propose a new procedure to remove the effects of

task-related motion from realigned fMRI time-series data, based on

ICA. We made two explicit criteria for characterizing task-related

motion effects, including the task-related changes in the signal

intensity and its variance. We begin by presenting the theory and

procedure, followed by an example of how it can be applied to real

data that include a motion component as part of the task. We then

evaluate the effectiveness of the proposed procedure.
Methods

Theory and procedures

The algorithm consisted of three steps: first, ICA decom-

position of the realigned time-series data of the brain images;

second, characterization of the ICs; and third, reconstruction of

the imaging data, in which only the ICs that satisfied the criteria

were re-projected onto the original image space. Schematic

representations of our correction procedures are presented in

Fig. 1. As Steps 1 and 3 are well-documented procedures (see

Appendix A), we focus mainly on Step 2. Although these should

be performed as preprocessing steps before statistical analysis,

knowledge of the experimental design is necessary to select the ICs

of interest.
Fig. 1. Schematic representation of our correction procedure: Step 1, ICA

decomposition; Step 2, selection of ICs; and Step 3, data reconstruction.
Step 1: ICA decomposition

The procedure of ICA decomposition is predominantly based on

the work of McKeown et al. (1998a,b). The algorithm was based on

the fast ICA (Hyvarinen, 1999; Hyvarinen and Oja, 2000).

Preprocessing

In each single session, the time-series data of all intracranial

voxels were included in a data matrix, X; this was an n by m by

rectangular matrix, with n being the number of time points in a

session and m being the total number of voxels sampled. To

decrease the computational complexity of the ICA algorithm, data

were centered (mean of zero) and whitened (sphering) to make

each uncorrelated (orthogonalization) before running the ICA

algorithm.

Decomposition

ICA assumes that spatially-independent components, C, are

derived from the data matrix, X, by linear decomposition with an

unmixing matrix, W:

C ¼ WX ð1Þ

Here, C is an n by m rectangular matrix, with n being the

number of ICs and m being the total number of voxels, andW is an

n by n square matrix of full rank. Once the ICA algorithm was

converged, we obtained n spatially-independent component maps

as each row of C = WX and also calculated the mixing matrix M =

W�1, which represents the associated time course of each spatially-

independent component map.

Step 2: Characterization of ICs

To classify the components containing task-related motion

effects, we performed an F test based on a GLM and a Breusch–

Pagan (BP) test (Breusch and Pagan, 1979). The former was

employed to evaluate the task-related change in the signal intensity

(as used in SPM99; see Appendix B for details). The latter was

used to evaluate the task-related change in the variance of the time

course of each component (see Appendix C for details).

Tasks are often accompanied through movement in response to

the task demands; hence, repetitive task-related movements might

result in head movement during the task-on phases. As a brief head

movement causes a spike-like signal-intensity change with a short

duration and large amplitude (Birn et al., 1999), we expected that

motion effects during the task-on phases would be characterized by

an increase in signal intensity and its variance compared with the

task-off phases: the former can be evaluated by an F test and the

latter by a BP test. Both tests can easily be applied to neuroimaging

data in the framework of the GLM with least-square estimation.

We now briefly describe how the newly introduced BP test

works in our methods (see Appendix C for general and

mathematical explanations). The hieratical regressions are sequen-

tially performed both on the time course of an IC and on the

residual time course of the first regression.

The first regression,

YY ¼ GYb þYu ð2Þ

is used to estimate the error of the time course, Yu, where G is the

design matrix of this regression, and
Y
Y is a vector of the time

series of an IC. The design matrix of the first regression usually
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contains a set of regressors that model the task-related hemody-

namics and monotonous low-frequency trends (for example, Fig.

2a). Note that in the first regression, we only take into account an

increase in amplitude; hence, Yu contains task-related inhomoge-

neity of variance or heteroscedastic forms of variance. This non-

constant variance can be examined by the second regression as

follows:

Yp ¼ ŶuYu 2=r̂r2 ð3Þ

Yp ¼ ZYa m v̂v ð4Þ
Here, r̂r2 is the variance estimated from the residual time series

as follows:

r̂r2 ¼ ŶuYu TŶuYu =n: ð5Þ
The second regression is conducted on the residual time series

of the first regression (more correctly, the squared residual time

series divided by its estimated variance). Here, design matrix Z

directly models the non-constant variance of the time series based
Fig. 2. Design matrix for the BP test (a) and the GLM F test (b), used when

applying the procedure to real data. In the BP test, the first regression is

performed only to estimate the residual time series for the second

regression, and then the test statistics are calculated by the second

regression. A sample component time course (solid line) and a fitted time

course (dotted line) for each regression are also shown.
on our knowledge of the experimental design and the estimated

realignment parameters. Generally, in an ordinary-blocked para-

digm with several task-on and-off phases, Z might consist of some

separate rectangular functions (single box-car regressors) repre-

senting the duration of each task-on phase (for example, Fig. 2b).

Finally, test statistics that express how well the model Z can

explain the variance of the observations in the second regression–

that is, the heteroscedasticity in the time course of an IC–are

calculated. Based on v2 statistics, we can specify the appropriate

threshold to evaluate the degrees of heteroscedasticity.

Step 3: Rejection of ICs and data reconstruction

In the final step, we reject the ICs caused by the task-related

motion effects and reconstruct the data from the remaining ICs.

The ICs, which are characterized by their correlation with the

experimental design and the task-related heteroscedasticity in Step

2, are classified using the threshold of F and v2 statistics,

respectively. Then, ICs showing both significant task-related signal

change and task-related heteroscedasticity at the significance level

of P b 0.001 are rejected. ICs passing these selection criteria are

reconstructed to the corrected image matrix, which is derived as:

X V ¼ MCV ð6Þ
Here, CV is the matrix of the corrected IC maps with the

appropriate rows set to zero. A perfect image matrix is

reconstructed by adding the row means.

Application to real data

Subjects and tasks

To evaluate the efficiency of our proposed method, finger-

tapping tasks were performed with and without the presence of

passive head movements synchronized with the task period.

Four right-handed normal male volunteers participated in our

study. The protocol was approved by the Institutional Review

Board of Fukui Medical University, Japan. All subjects gave their

written informed consent.

The task consisted of two sessions: finger tapping without head

motion (T+M�) and finger tapping accompanied by head motion

(T+M+). The order of the sessions was pseudo-randomized among

subjects. During the T+M� session, subjects were asked to

perform a visually paced finger-opposition task for 30 s, alternating

with 30 s of rest as a control condition. This was repeated six times.

In the finger-opposition task, subjects performed a brisk and

precise touch to the tip of the right thumb with the right index

finger at a frequency of 1 Hz. The task and control epochs were

cued by green- or red-colored stimuli, respectively, which blinked

at a frequency of 1 Hz. Each of the task and control phases

consisted of 10 images; hence, one session consisted of 120 images

in total. The T+M+ session was the same as the T+M� session,

except that the head motion was administered externally during the

task phase via the pneumatic system described below. The

generated head motion consisted of a nod-like movement,

mimicking those that often appear during motor or speech tasks.

This passive head movement was applied six or seven times during

the task phase. The pneumatic system generated controlled

movements of the head of the subject within the MRI scanner, in

the manner of Field et al. (2000). An air cushion made of vinyl

chloride (~26 cm long and ~12 cm wide) was spread under the

head of the subject. The air cushion was connected to a foot-



T. Kochiyama et al. / NeuroImage 25 (2005) 802–814 805
operated air pump though a plastic tube, with a three-way stopcock

inserted between the two. The head movement could be started and

stopped promptly by operating the stopcock. The foot-operated air

pump was controlled by one of the experimenters. The volume of

air in the cushion was adjusted so that the head of the subject

would move ~3–4 mm. Elastic padding was placed on both sides of

the head of the subject and headbands were also used to stabilize

the head. Using this system, combined with the biomechanical

properties of the head, the inflation and deflation of the air cushion

successfully allowed nodding movements. The frequency of

movements was adjusted to 0.3–0.4 Hz. The actual movements

applied to the subject during the task phase in the T+M+ session

were checked retrospectively using realignment parameters esti-

mated during the realignment process.

The subjects were instructed not to allow their attention to stray

from the task, even if their head was moved. An experimenter

confirmed the task performance of each subject.

MRI acquisition

Data were obtained with a 3-T MRI system (SIGNA Horizon,

GE, Milwaukee, WI, USA) using a standard birdcage coil. A time-

course series of 126 functional images for each session were

acquired using a T2*-weighted gradient echo-planar sequence with

a TR of 3000 ms, a TE of 30 ms and a flip angle of 908. The first
six volumes were discarded because of non-steady conditions of

magnetization and the remaining 120 volumes were used in the

following analysis. Each volume consisted of 24 slices with a slice

thickness of 3.5 mm and a 0.5-mm gap to cover the entire brain.

The field of view was 22 � 22 cm, and the matrix size was 64 �
64, giving voxel dimensions of 3.44 � 3.44 � 4.00 mm. Soon after

the completion of the acquisition of all functional images, a T2-

weighted high-resolution anatomical image was obtained using a

fast-spin echo sequence with a TR of 6000 ms, a TE of 67 ms, a

flip angle of 908, a matrix size of 256 � 256, voxel dimensions of

0.859 � 0.859 mm and a total of 112 transaxial slices.

Data analysis

Image preprocessing

Image preprocessing was carried out with SPM99 software

from the Wellcome Department of Cognitive Neurology (London,

UK; http://www.fil.ion.ucl.ac.uk/spm). The functional images from

each subject were realigned using the last image as a reference. For

this registration, six parameters (three translations and three

rotations) were extracted from the rigid-body transformation that

minimized the difference between each image and the reference

(Friston et al., 1995a). After registration, all images were resliced

using a sinc interpolation. Motion effects were corrected firstly by

our proposed ICA procedures, and secondly by covarying out the

effects using a multiple-regression analysis based on Friston et al.

(1996). This was done only for the images acquired during the

T+M+ session. Finally, all functional images were smoothed

spatially with an isotopic Gaussian kernel of 6 mm. AT2-weighted

high-resolution MRI was co-registered with the last functional

image. These procedures were similar to those commonly used in

fMRI experiments.

ICA correction of motion effects

The application of the ICA correction was performed as

explained above. First, we specified three design matrices: one
for the GLM F test to evaluate the relationship between the IC

waveform and the experimental design, and two for the BP-test to

check the heteroscedasticity of the IC waveform. For the GLM F

test, we adopted the same design matrix, which was used in the

subsequent statistical analysis for the construction of the SPM{T}:

the task-related signal-intensity change was modeled with a box-

car function convolved with a canonical hemodynamic-response

function. We used the discrete cosine basis function with a cut-off

period of 120 s as a high-pass filter (Fig. 2b). The threshold for

rejection on the GLM F test was set to P b 0.001. The BP test

involves two steps of multiple regression: one performed on the

time-series data of each IC, and one performed on the residual time

series estimated in the first regression. For the first regression, we

adopted the design matrix that contained six task-related box-car

functions convolved with a canonical hemodynamic-response

function and a discrete cosine basis function with a cut-off period

of 120 s as a high-pass filter (Fig. 2a(1)). In this regression, we split

the single task-related box-car function into six task period-related

ones, which prevented the signal-intensity change between

repetitions of the task from contaminating the residual time series

and causing task-related systematic changes. For the second

regression, the design matrix contained six task-related box-car

functions and a constant. The threshold for rejection for the BP test

was P b 0.001.

Statistical analysis

The task-related blood-flow change represented by the blood

oxygen level-dependent (BOLD) signal was modeled with a box-car

function convolved with a canonical hemodynamic-response

function. We applied the discrete cosine basis function with a cut-

off period of 120 s for the high-pass filter and the Gaussian kernel of

4 s for the low-pass filter (Friston et al., 1994, 1995b, 2000; Worsley

and Friston, 1995). A pre-planned comparison was performed to test

the significance of the increased activation related to the finger-

opposition effects and the head movements using the appropriate

linear contrast. We then constituted the statistical parametric map of

the T-statistic SPM{T}.

Comparison with the conventional analysis method and evaluation

of the new procedure

To evaluate the efficiency of our procedure, an identical data set

was treated with the conventional voxel-by-voxel multiple-

regression approach (Bullmore et al., 1999; Friston et al., 1996),

in which the motion effects were modeled and covaried out using a

first-order auto-regressive model of the realignment parameters and

their squares (a total of 24 regressors: six realignment parameters,

six of their squared time courses, and each of six derivatives of the

realignment parameters or their squares).

We then performed modified receiver-operating characteristic

(ROC)-based analysis (Lee et al., 1998) to examine the efficiency

of our procedure and to compare it with the conventional approach.

A ROC graph has a two-dimensional axis that describes the true-

positive fraction (TPF) and the false-positive fraction (FPF). In our

experiment, the TPF was the ratio of the activated areas during the

T+M+ session within the dtrueT-activation areas found during the

T+M� session.

In all four subjects, the true-activation areas were located in the

left-hemisphere digit areas of the primary sensorimotor cortex,

SMA (supplementary motor area) and right cerebellum (Fig. 6).
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Fig. 3. The estimated realignment parameters of a representative subject are

shown. In the T+M+ session, the time course of the realignment parameters

was synchronized with the task cycle: r = 0.41 F 0.14 (mean correlation

coefficient (F SEM) for X translation; r = �0.42 F 0.15 for Y translation;

r = �0.38 F 0.13 for X rotation; and r = �0.34 F 0.11 for Y rotation.

Table 1

The correlation between the estimated realignment parameters and the

experimental design, and the standard deviations of task-on and task-off

periods

Correlation coefficient

(FSEM)

Standard deviation (FSEM)

Task

phase

Rest

phase

(a) M+T+

X translation 0.41 F 0.14 0.32 F 0.04 0.02 F 0.00

Y �0.42 F 0.15 0.72 F 0.12 0.04 F 0.01

Z 0.14 F 0.12 0.07 F 0.02 0.04 F 0.01

X rotation �0.38 F 0.13 0.31 F 0.02 0.05 F 0.01

Y 0.34 F 0.11 0.13 F 0.00 0.02 F 0.00

Z 0.13 F 0.10 0.08 F 0.00 0.02 F 0.00

(b) M+T�
X translation 0.05 F 0.07 0.01 F 0.00 0.01 F 0.00

Y �0.06 F 0.07 0.03 F 0.01 0.03 F 0.01

Z �0.02 F 0.09 0.03 F 0.00 0.04 F 0.01

X rotation 0.05 F 0.05 0.03 F 0.00 0.04 F 0.00

Y 0.02 F 0.06 0.01 F 0.00 0.02 F 0.00

Z 0.06 F 0.07 0.01 F 0.00 0.01 F 0.00

Results were averaged over the four subjects. We confirmed that the

movement applied by the pneumatic system correlated with the experi-

mental design. Also shown is the variance inhomogeneity between the

different task periods.
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The FP activity was defined as activation that was seen outside the

true-activation areas (pseudo-activation).

As the extent of the TP areas depended on the statistical

threshold of the SPM{T}, we varied the SPM{T} threshold from

P b 0.0001 to b0.05, and then calculated the TPF and FPF to create

the ROC graph. First, we defined the true-positive volume of

interest (TP-VOI) of the T+M� session with the SPM{T} threshold

set at P b 0.001. Next, the TPF was defined as the ratio of the

number of voxels above the threshold and inside the TP-VOI,

compared to the total number of voxels in the TP-VOI. Here, the

threshold was selected from one of the following values: P b

0.0001, b0.005, b0.001, b0.01, or b0.05. The FPF was defined as

the ratio of the number of voxels exceeding the threshold inside the

cranium but outside TP-VOI, compared to the total number of

voxels in the whole brain minus those in TP-VOI (Lee et al., 1998).

A set of TPF and FPF values for the corrected data at the

various thresholds was normalized using the initial values of TPF

and FPF calculated from the non-corrected data. This process was
performed for every subject. Finally, the normalized TPF and FPF

values were averaged over the four subjects, and plotted with the

TPF on the X axis and the FPF on the Y axis to create the ROC

graph. The more accurate the method is, the closer its ROC curve

shifts towards the upper left corner of the graph.
Results

Characteristics of head motion

The head movements of each session for each subject were

confirmed retrospectively using the estimated realignment para-

meters (Fig. 3). Head movements that were synchronized with the

task cycle were seen principally in the realignment parameter of

translation in the X (left–right) and Y (anterior–posterior) directions,

and rotation around the X and Y axes during the T+M+ session. No

such correlation was seen during the T+M� session. This tendency

was observed in all subjects (Table 1). The amplitude of the Y-

translation and X-rotation in the T+M+ session was, however, about

twice as large as that of the X translation andY rotation, respectively.

Hence, the task-related nodding head movements were those that

were artificially generated by the pneumatic system. The artificial

head movement introduced obvious fluctuations of the realignment

parameters during the task phase (Fig. 3), with an increase in the

standard deviation (Table 1). This indicates that the head motion

itself is heteroscedastic, which, in turn, introduced the task-related

heteroscedasticity to the fMRI time series. This is useful when

considering when our method should be applied.

Correcting the task-related motion effects

The following section is presented in two parts. The first

verifies our criteria for the selection of the rejected ICs. We

demonstrate that the ICs affected by the task-related motion effects



Fig. 4. (a) A scatter plot of ICs for T+M� sessions (without head motion), displaying their heteroscedasticity and task-correlation. The former was measured by

ESS/2 of the BP test, and the latter by the F value of GLM for a task-related change. All of the ICs of all subjects, denoted by the different symbols, were

plotted. The horizontal dashed line indicates the threshold of EES/2 corresponding to P = 0.001, and the vertical dashed line indicates the threshold of F

corresponding to P = 0.001. A (with vertical arrow) indicates an IC of subject 1 that shows high task-correlation and low heteroscedasticity, and hence was

categorized as dtrueT task-related activation. Its spatial distribution (Z-transformed IC map, top of the middle column) and time course (top of the right column)

are depicted. The threshold of the Z-transformed IC maps was set to jz| N 2 for display purposes (McKeown et al., 1998a,b). IC+ and IC– denote the spatial

distribution of positively or negatively dactiveT voxels, respectively. Note that the sensory motor area was the active region for this component. B (with vertical

arrow) is a heteroscedastic but not task-related IC. Its spatial distribution includes the eyes (second row of the middle column), probably reflecting rapid and

abrupt eye movements (second row of the right column). C (with vertical arrow) is a homoscedastic non-task-related IC, showing diffuse spatial and temporal

patterns (third row of the middle and right column), as seen in previous reports (McKeown et al., 1998a,b). (b) A scatter plot of ICs for T+M+ sessions (with

head motion). D (with vertical arrow) is an IC with high task-correlation and low heteroscedasticity. Its spatial distribution (fourth row of the middle column) is

similar to A, but the temporal patterns in the task phase were more sluggish than A. E and F (with vertical arrows) are task-related heteroscedastic and task-

related ICs. This type of IC was the main interest of our correction procedure.
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can be discriminated using two independent measures: the F value

for correlation with the experimental design, and one half of the

ESS value for the task-related heteroscedasticity. The second part

demonstrates, using the ROC graph, the efficacy of our method

compared with the conventional method, which employs the voxel-

by-voxel GLM framework (Friston et al., 1996).
Characterization of each IC

Task-related signal changes and their heteroscedasticity

Fig. 4 shows a scatter plot displaying the relationship between

the ESS/2 (v2 value) of the BP test and the F value of the task-

related effect of all ICs for four subjects, both for the T+M� (Fig.



Fig. 5. (Left) The reduction in the sensory motor true-positive (TP) voxels by removing the IC. The percent reduction of TP voxels, indicated using a color

scale, produced by removing an IC that was plotted against its heteroscedasticity (by means of EES/2) and task correlation (by means of F value). The

horizontal dashed line indicates the threshold of EES/2 corresponding to P = 0.001, and the vertical dashed line indicates the threshold of F corresponding to

P = 0.001. By removing the ICs with high task correlation and low heteroscedasticity, TP voxels were markedly reduced. (Right) The reduction in the false-

positive (FP) voxels caused by the removal of the IC. Some ICs with high-task correlation and high heteroscedasticity (light-blue arrows) are responsible for

up to 50% of the FP voxels.
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4a) and the T+M+ (Fig. 4b) conditions. The distribution of the

ICs for the head-motion session (T+M+) is more widespread than

that of the session without head movements (T+M�). Note that

the T+M+ session is characterized by ICs that have both task-

related signal changes and task-related heteroscedasticity (the

right and upper sides of the dotted line in Fig. 4b). This might be

related to the pseudo-activation, as mentioned later. These

problematic components had unique spatial distributions localized

to CSF regions or at the edge of the brain. Furthermore, the time

course of these components had task-related fluctuations and

showed heteroscedasticity between the task and rest phases (for

example, E and F in Fig. 4b). Their spatio-temporal patterns are

different from the ICs that were highly correlated with the

hemodynamic reference function with weak or no heteroscedas-

ticity (for example, A in Fig. 4a), or those that were highly

heteroscedastic without any correlation with the reference

function (for example, B in Fig. 4a), both of which were

observed in the sessions without head motion. Furthermore, the

ICA succeeded in extracting the task-related ICs in the sessions

with head motion (for example, D in Fig. 4b), the spatial

distribution and temporal pattern of which were similar to the

corresponding IC component during the T+M� session (for

example, A in Fig. 4a). Only this component showed these

characteristic features in all subjects.

Contribution of each IC to type-1 and -2 errors

We estimated the contribution of each IC to the artifactual

pseudo-activations (type-1 errors) and to the reduction in the

detection of true activations (type-2 errors). These were evaluated

in terms of reducing the FP and TP voxels when removing an IC,
Fig. 6. Results of applying the method to real data. (Upper left) The statistical para

the T+M+ sessions before (middle column) and after (right column) ICA correcti

row) and bottom (second row) are shown. Note that the MIP images are only for

space. The SPM{T} was superimposed on T2-weighted images of the subject (third

of P b 0.001. Subjects 2 (upper right), 3 (lower left) and 4 (lower right) are show

disappeared after the ICA correction, while the active areas of corrected data we
as follows: every time we removed a specific IC from the T+M+

session for each subject, we applied the same procedures as in the

efficiency evaluation. The threshold of the SPM{T} was fixed to

P b 0.001 (uncorrected). The resulting TPF and FPF values for the

IC were compared with the TPF and FPF values of the non-

removed cases. The percent reduction in TPF and FPF values was

calculated and averaged within the cells defined by the rectangular

lattice with class intervals of five for F values and five for ESS/2

values (v2 value). Fig. 5 shows the color chart of the averaged

TPF or FPF reductions. The ICs contributing to TP activation

showed high F values (N80; that is, high task synchronization)

with lower ESS/2 values (b20; that is, lower task-related

heteroscedasticity). According to Fig. 4b, these components

represent the task-related brain activity, and hence should be

preserved after component selection. However, the ICs contribu-

ting to FP activations showed both medium correlations (F value =

10–60) and marginally higher heteroscedasticity (ESS/2 = 20–70).

Some ICs by themselves could reduce FP voxels by N50%. Our

established threshold for both tests can classify these ill-natured

ICs (the vertical and horizontal dotted lines in Fig. 5). In this

study, we successfully classified and preserved these components

with the empirically defined threshold that we applied.

Reconstructed data

Fig. 6 illustrates the effect of the correction procedure on the

empirically defined threshold of the GLM F test and BP test. For

each subject, the maximum-intensity projection (MIP) images and

the sectional images in the left column indicate the statistical

results for the T+M� session (that is, the ideal goal of correction).

The remaining columns indicate the statistical results of the non-
metric maps SPM{T} of subject 1 for the T+M� session (left column), and

ons. The maximum-intensity projections (MIPs) viewed from the front (top

display purposes, as the images are not spatially normalized into Talairach

and fourth rows). All SPM{T} thresholds were set to the significance level

n in the same format. Many pseudo-activated voxels in the T+M+ session

re well preserved in the TP area.
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corrected data (middle) and corrected data (right) for the T+M+

session. For the T+M� session, we found statistically significant

activations in left SM1 and SMA, and right cerebellum (note that
the activation in SMA of subjects 2 and 3, and the cerebellum of

subject 4 did not reach our threshold of P b 0.001) (Fig. 6, left

column).



Fig. 7. The modified ROC curves of the correction for motion-related

effects with ICA and GLM. The normalized false-positive fraction (FPF)

and true-positive fraction (TPF) were plotted with different thresholds of

SPM{T} from P b 0.0001 (uncorrected) to b0.05 (uncorrected). The curves

were generated by averaging the results of the four subjects. The ROC

curve of the ICA correction (closed circle) was located in the upper left

portion of the graph, compared with the conventional method (GLM, closed

triangle) (Friston et al., 1996), indicating a better performance.

T. Kochiyama et al. / NeuroImage 25 (2005) 802–814810
For the non-corrected data from the T+M+ session, the

distributed pseudo-activations severely obscured the TP activation

(Fig. 6, middle column). After applying the ICA correction, almost

all pseudo-activations disappeared, leaving the clusters of true

activity only in the areas activated in the T+M� session (Fig. 6,

right column). However, visible FNs (for example, losing some

active clusters in the cerebellum for subject 2) were also observed

at this threshold.

Efficiency evaluation

The performance efficiency of this method was evaluated in

terms of the degree to which the FP (type-1) and FN (type-2) error

rates changed when we successively moved the threshold of the

SPM{T} from P b 0.0001 (uncorrected) to b0.05 (uncorrected).

Fig. 7 summarizes the change in the FPF and TPF as a modified

ROC graph, which displays the trade-off between the control of FP

and the maintenance of TP. The goal of our correction was to reduce

FP voxels while retaining as many TP voxels as possible. This was

achieved if the points were located in the upper left portion of the

ROC graph. Using the ROC graph, we also compared our procedure

with a previous method employing a GLM framework (Friston et al.,

1996).
Fig. 8. (a) The spatial distribution (top row) and the waveform (second row)

of the IC that correlated with the realignment parameter (x transition, third

row). The maximum-intensity projections (MIP) viewed from right (top

left) and from bottom (top right) are shown. Task-related changes and task-

related heteroscedastic changes are evident (from subject 1 in the T+M+

session): a.u., arbitrary unit; ICW, independent component waveform; r,

correlation coefficient. (b) ICW with low-frequency fluctuation correlated

with the realignment parameter of the X rotation (from subject 2 in the

T+M� session); and (c) with the temporal derivative of a realignment

parameter (Z rotation differentiated) rather than itself (from subject 1 in the

T+M+ session). These ICs have a peculiar spatial distribution with a ring-

like configuration around the Y axis (a), or spreading widely over the edges

of the brain (b) and CSF (cerebrospinal fluid) regions (c). From the

correlation with realignment parameters in conjunction with the spatial

distribution, we can infer that these ICs would be related to residual motion.
The modified ROC graph shows that we could control the

FPF at the 10% level while retaining ~55% of TP voxels when

the statistical threshold of SPM{T} was set to P b 0.001. At

the same threshold, the regression-based method strongly
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controlled FPF but lost almost all TP voxels, leading to FN

errors. In Fig. 7, the ROC curve of our ICA procedure is

always located in the upper left portion of the graph when

compared with that of the approach used previously. This

indicates that the ICA procedure maintains better control of

both type-1 and-2 errors than the regression-based method

(Friston et al., 1996).
Discussion

In this study, we presented a new approach to the removal of

task-related motion effects from realigned fMRI time series. This

novel method led to fewer FN errors compared with previous

approaches. The crucial aspects of our procedure included the

utilization of ICA to decompose the fMRI data using explicit

criteria to characterize the ICs of the task-related motion, such as

the task-related change in signal intensity and its variance

(heteroscedasticity).

ICA is a well-established method that can be applied to various

functional neuroimaging modalities, including fMRI (Arfanakis

et al., 2000; Biswal and Ulmer, 1999; Calhoun et al., 2001, 2002;

Duann et al., 2002; McKeown et al., 1998a,b; Moritz et al., 2000).

It is assumed that the spatio-temporal fMRI dynamics consist of

one or more spatially-independent processes, which originate in

various physiological and physical mechanisms, such as hemody-

namics, image artifacts, machine noise and head motion

(McKeown et al., 1998a,b). With this assumption, the ICA

algorithm can decompose these processes linearly into spatially-

independent components, each associated with a single time course

and component map. The spatial independence of the motion-

related process is acceptable because the motion-related signal

changes are caused by a different mechanism to the other

processes. Some reports have demonstrated that ICA decomposes

motion-suspicious ICs that map with spatially-inhomogeneous

distributions; for example, if the focus preferentially lies on

boundaries between different tissues or at the edge of a slice

(McKeown et al., 1998a,b; Moritz et al., 2003), and the time course

closely matches one of the estimated realignment parameters (for

example, Fig. 8; also, see Bannister et al., 2001). This phenomenon

was observed in both non-realigned fMRI data (McKeown et al.,

1998a,b) and a realigned data set (Moritz et al., 2003). In the

present study, we found several components that revealed typical

artifact distribution around the edge of the brain and ventricles,

which was more prominent in the T+M+ data than in the T+M�
data, both of which were spatially realigned (Fig. 4). We confirmed

that ICA is sensitive enough to detect motion-related processes,

supporting the idea that ICA might be used as a correction tool for

motion effects.

Although ICA is a data-driven analytical technique and does

not rely on strong a priori assumptions regarding the time

courses of the spatially-independent components, subsequent

interpretation and classification of the separated components is

required (McKeown, 2000). In this study, we introduced two

measures for the automatic classification of the separated ICs:

the task-related change in signal intensity and its variance. The

latter was introduced on the basis of the observations of Birn et

al. (1999). They demonstrated that the impulse response of a

brief movement was characterized by a spike-like form with a

short duration and large amplitude (rising at the same time as a

movement and reaching its peak within a few seconds). These
could be temporally distinguished from prolonged hemodynamic

responses (rising 1–2 s after a task and reaching a peak after 4–

5 s) if an event-related paradigm was used (see Fig. 3 in Birn

et al., 1999). This type of motion can be caused by, for

example, jaw, tongue, facial muscle, or eye movements (Birn et

al., 1998, 1999; Chen and Zhu, 1997; Yetkin et al., 1996) as

well as global head motion during conditions when the head is

restrained (see Seto et al., 2001). In a simple blocked paradigm

contaminated by brief periods of motion, the characteristics of

the motion-related signal changes reflect an increase in signal

intensity and variance during the task-on phases compared with

the task-off phases (see Figs. 2 and 4 in Birn et al., 1999).

From this evidence, we expected that the time course of the

motion-related IC would show the same characteristics. The

results of the present study are consistent with this idea. We

characterized all ICs using an F test to analyze the task-related

increase in signal intensity and the BP test to assess the task-

related serial inhomogeneity in variance (task-related hetero-

scedasticity). As a result, the number of ICs with task-related

signal changes was larger in the session with head motion

(T+M+) than without it (T+M�); the number of ICs with task-

related heteroscedasticity showed a similar pattern (Fig. 4).

Furthermore, according to Figs. 4 and 5, there were relatively

few ICs with both of these characteristics, but they contributed

greatly to the reduction in FP voxels. It is important that as few

ICs as possible are removed in order to retain the degrees of

freedom of the filtered data; therefore, the use of the BP test

combined with the F test is appropriate, particularly with

severely motion-contaminated data.

Fig. 7 shows the ROC analysis used to assess the efficiency of

our procedure compared with a previous method. As previously

mentioned, the method based on voxel-by-voxel linear-regression

analysis caused a large decrease in specificity. We verified that

our empirically specified threshold of P b 0.001 for both the BP

test and the F test worked well in our simulation and when

applied to data from other studies in our laboratory. In fact, the

applied threshold (P b 0.001 for both the F test and BP test) was

able to retain 55% of the TP voxels while suppressing FP errors

to 10% in the T+M+ condition. Furthermore, in the T+M�
condition, no IC component was falsely labeled as an dartifactT at
this threshold (Fig. 4). Considering that the task-related head

movements simulated in this study were so extreme, a threshold

of P b 0.001 for both the F test and BP test should work well in

most situations. However, the confirmation of the optimal

threshold requires further investigation, including a large number

of simulations.

Caveats and limitations of the method

The proposed method necessitates knowledge of the move-

ments of the subject, because the time windows when head

movements preferentially occur are required by the second

regression of the BP test. This can be achieved using the

experimental design as well as the time course of the estimated

motion parameters that are obtained through the realignment

process. If the movement (by means of the estimated motion

parameters) is not task-related, the conventional method of

Friston et al. (1996) will work well. If the movement is task-

related, our method can be applied.

Inspection of the estimated motion parameters is also

important to the detection of motion effects that cannot be
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estimated by the present method. For example, the subject might

move at the start of a task-on phase, remain in the same position,

and then return to the original position at the end of the task-on

phase. In this case, the expected motion-related effects will

consist of a box-car-like time series as previously simulated with

a phantom model (Field et al., 2000). In this case, our method

would fail to identify the motion-related ICs because of the lack

of heteroscedasticity.

Theoretically, our method can process the motion effects in

non-blocked paradigms if we can establish the design matrix of

the second regression in the BP test. However, we need to

further investigate how effectively our method, and particularly

the BP test, can characterize motion-related ICs in non-blocked

paradigms.
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Appendix A

ICA decomposition

The ICA decomposition procedure is based mainly on the

work of McKeown et al. (1998a,b). Several methods for

performing ICA decompositions have been proposed, which

use different objective functions together with diverse criteria

for the optimization of the objective functions. In this study,

ICA decomposition was performed using two different algo-

rithms: an information-maximization algorithm (Bell and Sej-

nowski, 1995) and a fixed-point algorithm known as a fast ICA

(Hyvarinen, 1999), both of which were implemented in SPM99.

These two algorithms are available on the Internet free of

charge (http://www.cnl.salk.edu or http://www.cis.hut.fi/projects/

ica/fastica). We concentrate on the results from the fast ICA, as

the final results from both algorithms were similar and direct

comparison of the performance of both algorithms is not the

main concern of this paper (see Esposito et al., 2002). We

briefly review the ICA algorithm below. For details of the

theoretical descriptions and the computational implementations

please refer to previous reports (Hyvarinen, 1999; Hyvarinen

and Oja, 2000, for the fast ICA; Bell and Sejnowski, 1995;

McKeown et al., 1998a,b, for the information-maximization

algorithm).

Preprocessing

In each single session, the time-series data of all intracranial

voxels are included in a data matrix, X; this an n by m rectangular

matrix, with n being the number of time points in a session and m

being the total number of voxels sampled. Before running the ICA

algorithm, data are centered and whitened (sphering). Each row ofX
is centered by subtracting the sample mean tomake it a mean of zero.

Next, the whitening transformation using the Eigenvalue decom-

position of the covariance matrix ofX is applied tomake each row of

X uncorrelated. This orthogonalization reduces the complexity of

the problem to be solved by the ICA algorithm and prevents over-

learning during training, as mentioned in the ICA literature. We

performed a full Eigenvalue projection without dimension reduction

to minimize the alteration of data. For simplicity of notation, we

assume in the rest of this section that X has been centered and

whitened.

Decomposition

ICA assumes that spatially-independent components, C, are

derived from the data matrix, X, by linear decomposition with an

unmixing matrix, W:

C ¼ WX ð1Þ

Here, C is an n by m rectangular matrix, with n being the number

of ICs and m being the total number of voxels, and W is an n by n

square matrix of full rank. We also define the mixing matrix, M, as

the inverse of W, that is:

M ¼ W�1 ð2Þ

The rows of M represent the number of ICs and the columns give

the time course of each component, the spatial distribution of

which is provided by the row of C. The problem to be solved by

the ICA is to find W that makes each column of WX as mutually

independent as possible. The fast ICA accomplishes this by

maximizing the negentropy as the measures of the non-Gaussianity

of the projected data WX through the fixed-point iteration

optimization (Hyvarinen, 1999). Once the fixed-point iteration is

converged, we can obtain n spatially-independent component

maps, as each row of C = WX, and also calculate the mixing

matrix M = W�1, which represents the associated time course of

each spatially-independent component map.
Appendix B

Multiple-regression analysis on the time series of the IC

components (Fig. 2b)

The multiple-regression analysis was based on an ordinary

GLM, the design matrix of which was constructed in accordance

with the prespecified experimental design and is primarily the same

as that used for voxel-by-voxel statistical analysis. It generally

contains several task-related reference functions, trend functions

(high-pass filters) and one constant term as follows:

Ymi ¼ HYh þ GYn þ BYf þYg: ð3Þ

Here, Ymi is the time course of the ith IC, or a (n � 1) vector of

the ith column in a mixing matrix, M, Yg is a (n � 1) vector

representing a disturbance of this regression, and Yh, Yn and Yf are

vectors of the coefficient parameters for each column of a design

matrix for the effects of interest (reference functions for

hemodynamics), H, the nuisance effects (discrete cosine basis

functions for the high-pass filter), G, and the block effects

(constant term), B, respectively. After an ordinary least squares

(OLS) estimation, the F test was performed to evaluate the

 http:\\www.cnl.salk.edu 
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variance accounted for by the effects of interest as follows

(Holmes et al., 1997; Friston et al., 1995c):

Fi ¼

e t0e0 � e t0e

p� p0

e t0e0
n� p0

ð4Þ

Here,

Ye0 ¼ Ymi � HŶhYh; p0 ¼ n� rank Hð Þ; ð5Þ

and

Ye ¼ Ymi � HŶhYh þ GŶnYn þ BŶfYf
� �

;

p ¼ n� rank H ;G;B½ 	ð Þ; ð6Þ

Three estimates, ŶhYh ŶnYn , and ŶfYf , are the OLS-estimators of Yh, Yn
and Yf, respectively. The estimated residuals and the degrees of

freedom for the F value are Ye, p for the full model, and Ye0, p0 for
the reduced model, respectively.
Appendix C

The BP test is a diagnostic test for heteroscedastic disturbances in

a linear-regression model (Breusch and Pagan, 1979). As this test is

carried out in the framework of the GLM with least-squares

estimation, the application to neuroimaging data is as follows.

Consider a multiple-regression model,

Yt ¼ b1 þ b2X2t þ : : : þ bkXkt þ ut ð7Þ

(t=1,...,n)

where Xit is a design matrix for the time-series data Yt, bi is a

coefficient parameter, and the disturbance ut is normally and

independently distributed with a mean of zero and time-varying

variance rt
2. Here we assume that the heteroscedasticity of variance

rt
2 could be modeled by the appropriate function f as:

r2
t ¼ f a1 þ a1Z2t þ : : : þ amZmtð Þ: ð8Þ

Here, Zit is a new explanatory variable for the time series of

rt
2 with the first element being unity, and ai is a coefficient

parameter of this regression. Although the form of function f is

selected by experience, an integer power or exponential function

is typically used. The element of Zit in Eq. (8) is usually obtained

from the explanatory variable Xit in Eq. (7), for example, Xit, Xit
2 or

XitXjt (i p j).

The null hypothesis of homoscedasticity is written as:

H0 : a2 ¼ : : : ¼ am ¼ 0 ð9Þ

If this is correct, a2Z2t + : : :+ amZmt = 0, thence rt
2 = f(a1) is

constant. Therefore, if at least one element of a1 is not 0, the tested

time series Yt is heteroscedastic. The v 2 statistic, assuming the

form of heteroscedasticity is as in Eq. (8), is computed as follows.

Using the matrix notation, Eq. (7) is written as,

Y
Y ¼ XYb þYu ð10Þ

where the first row value of X is unity. Applying the least-squares

estimation, we obtain the estimated residual time series,

ŶuYu ¼ RX
Y
Y ; ð11Þ
where RX = I�X(XTX)�1XT is a residual forming matrix. The

estimated variance r̂r2 is estimated by:

r̂r2 ¼ ŶuYu TŶuYu =n: ð12Þ
Calculate

Yp ¼ ŶuYu 2=r̂r2 ð13Þ
and then perform the regression of Yp on Z

Yp ¼ ZYa þYv ð14Þ

whereYv is the disturbance term. It is noted that the first row of Z is

unity. As the residual error sum of square for the full model Z

under (9) is

SS1 ¼ RZ
Ypð ÞT RZ

Ypð Þ ð15Þ

where RZ = I�Z (ZTZ)�1ZT and the residual error sum of square

for the reduced model ZV specified by H0 is

SS0 ¼ RZ V
Ypð ÞT RZ V

Ypð Þ: ð16Þ
The explained sum of squares (SSE) defined as the partial

contribution of parameters a2 = : : : = am is

SSE ¼ SS0 � SS1: ð17Þ
From the theorem of Breusch and Pagan, one half of the SSE is

asymptotically distributed as v2 with m�1 degrees of freedom

when the null hypothesis is true. The complete proof of this

theorem is given in Breusch and Pagan (1979).
References

Andersson, J.L., Hutton, C., Ashburner, J., Turner, R., Friston, K., 2001.

Modeling geometric deformations in EPI time series. NeuroImage 13,

903–919.

Arfanakis, K., Cordes, D., Haughton, V.M., Moritz, C.H., Quigley, M.A.,

Meyerand, M.E., 2000. Combining independent component analysis

and correlation analysis to probe interregional connectivity in fMRI task

activation datasets. Magn. Reson. Imaging 18, 921–930.

Ashburner, J., Friston, K.J., 1999. Image registration. In: Moonen, A.T.W.,

Bandettini, P.A. (Eds.), Functional MRI. Springer, Berlin, pp. 285–299.

Bannister, P., Beckmann, C., Jenkinson, M., 2001. Exploratory motion

analysis in fMRI using ICA. Seventh International Conference on

Functional Mapping of the Human Brain (Abstract). Academic Press,

San Diego.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach

to blind separation and blind deconvolution. Neural Comput. 7,

1129–1159.

Birn, R.M., Bandettini, P.A., Cox, R.W., Jesmanowicz, A., Shaker, R.,

1998. Magnetic field changes in the human brain due to swallowing or

speaking. Magn. Reson. Med. 40, 55–60.

Birn, R.M., Bandettini, P.A., Cox, R.W., Shaker, R., 1999. Event-related

fMRI of tasks involving brief motion. Hum. Brain Mapp. 7, 106–114.

Biswal, B.B., Ulmer, J.L., 1999. Blind source separation of multiple signal

sources of fMRI data sets using independent component analysis.

J. Comput. Assist. Tomogr. 23, 265–271.

Breusch, T.S., Pagan, A.R., 1979. A simple test for heteroscedasticity and

random coefficient variation. Econometrica 47, 1287–1294.

Bullmore, E.T., Brammer, M.J., Rabe-Hesketh, S., Curtis, V.A., Morris,

R.G., Williams, S.C., Sharma, T., McGuire, P.K., 1999. Methods for

diagnosis and treatment of stimulus-correlated motion in generic brain

activation studies using fMRI. Hum. Brain Mapp. 7, 38–48.

Calhoun, V.D., Adali, T., McGinty, V.B., Pekar, J.J., Watson, T.D.,

Pearlson, G.D., 2001. fMRI activation in a visual-perception task:



T. Kochiyama et al. / NeuroImage 25 (2005) 802–814814
network of areas detected using the general linear model and

independent components analysis. NeuroImage 14, 1080–1088.

Calhoun, V.D., Pekar, J.J., McGinty, V.B., Adali, T., Watson, T.D.,

Pearlson, G.D., 2002. Different activation dynamics in multiple neural

systems during simulated driving. Hum. Brain Mapp. 16, 158–167.

Chen, W., Zhu, X.H., 1997. Suppression of physiological eye movement

artifacts in functional MRI using slab presaturation. Magn. Reson. Med.

38, 546–550.

Duann, J.R., Jung, T.P., Kuo, W.J., Yeh, T.C., Makeig, S., Hsieh, J.C.,

Sejnowski, T.J., 2002. Single-trial variability in event-related BOLD

signals. NeuroImage 15, 823–835.

Esposito, F., Formisano, E., Seifritz, E., Goebel, R., Morrone, R., Tedeschi,

G., Di Salle, F., 2002. Spatial independent component analysis of

functional MRI time-series: to what extent do results depend on the

algorithm used? Hum. Brain Mapp. 16, 146–157.

Field, A.S., Yen, Y.F., Burdette, J.H., Elster, A.D., 2000. False cerebral

activation on BOLD functional MR images: study of low-amplitude

motion weakly correlated to stimulus. Am. J. Neuroradiol. 21,

1388–1396.

Friston, K.J., Jezzard, P., Turner, R., 1994. Analysis of functional MRI

time-series. Hum. Brain Mapp. 1, 153–171.

Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.D.,

Frackowiak, R.S.J., 1995a. Spatial registration and normalization of

images. Hum. Brain Mapp. 3, 165–189.

Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C.,

Frackowiak, R.S., Turner, R., 1995b. Analysis of fMRI time-series

revisited. NeuroImage 2, 45–53.

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D.,

Frackowiak, R.S.J., 1995c. Statistical parametric maps in func-

tional imaging: a general linear approach. Hum. Brain Mapp. 2,

189–210.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., 1996.

Movement-related effects in fMRI time-series. Magn. Reson. Med. 35,

346–355.

Friston, K.J., Josephs, O., Zarahn, E., Holmes, A.P., Rouquette, S., Poline,

J., 2000. To smooth or not to smooth? Bias and efficiency in fMRI

time-series analysis. NeuroImage 12, 196–208.

Grootoonk, S., Hutton, C., Ashburner, J., Howseman, A.M., Josephs, O.,

Rees, G., Friston, K.J., Turner, R., 2000. Characterization and
correction of interpolation effects in the realignment of fMRI time

series. NeuroImage 11, 49–57.

Holmes, A., Poline, J.B., Friston, K.J., 1997. Characterizing brain images

with the General Linear Model. In: Frackowiak, R.S.J., Friston, K.J.,

Frith, C.D., Dolan, R.J., Mazziotta, J.C. (Eds.), Human Brain Function.

Academic Press, San Diego, pp. 59–84.

Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for indepen-

dent component analysis. Trans. Neural Netw. 10, 626–634.

Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms

and applications. Neural Netw. 13, 411–430.

Lee, C.C., Grimm, R.C., Manduca, A., Felmlee, J.P., Ehman, R.L., Riederer,

S.J., Jack Jr., C.R., 1998. A prospective approach to correct for inter-

image head rotation in fMRI. Magn. Reson. Med. 39, 234–243.

McKeown, M.J., 2000. Detection of consistently task-related activations in

fMRI data with hybrid independent component analysis. NeuroImage

11, 24–35.

McKeown, M.J., Jung, T.P., Makeig, S., Brown, G., Kindermann, S.S., Lee,

T.W., Sejnowski, T.J., 1998a. Spatially independent activity patterns in

functional MRI data during the stroop color-naming task. Proc. Natl.

Acad. Sci. U. S. A. 95, 803–810.

McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.P., Kindermann, S.S.,

Bell, A.J., Sejnowski, T.J., 1998b. Analysis of fMRI data by blind

separation into independent spatial components. Hum. Brain Mapp. 6,

160–188.

Moritz, C.H., Haughton, V.M., Cordes, D., Quigley, M., Meyerand, M.E.,

2000. Whole-brain functional MR imaging activation from a finger-

tapping task examined with independent component analysis. Am. J.

Neuroradiol. 21, 1629–1635.

Moritz, C.H., Rogers, B.P., Meyerand, M.E., 2003. Power spectrum ranked

independent component analysis of a periodic fMRI complex motor

paradigm. Hum. Brain Mapp. 18, 111–122.

Seto, E., Sela, G., McIlroy, W.E., Black, S.E., Staines, W.R., Bronskill,

M.J., McIntosh, A.R., Graham, S.J., 2001. Quantifying head motion

associated with motor tasks used in fMRI. NeuroImage 14, 284–297.

Worsley, K.J., Friston, K.J., 1995. Analysis of fMRI time-series revisited—

Again. NeuroImage 2, 173–181.

Yetkin, F.Z., Haughton, V.M., Cox, R.W., Hyde, J., Birn, R.M., Wong,

E.C., Prost, R., 1996. Effect of motion outside the field of view on

functional MR. Am. J. Neuroradiol. 17, 1005–1009.


	Removing the effects of task-related motion using independent-component analysis
	Introduction
	Methods
	Theory and procedures
	Step 1: ICA decomposition
	Preprocessing
	Decomposition

	Step 2: Characterization of ICs
	Step 3: Rejection of ICs and data reconstruction
	Application to real data
	Subjects and tasks

	MRI acquisition
	Data analysis
	Image preprocessing
	ICA correction of motion effects

	Statistical analysis
	Comparison with the conventional analysis method and evaluation of the new procedure

	Results
	Characteristics of head motion
	Correcting the task-related motion effects
	Characterization of each IC
	Task-related signal changes and their heteroscedasticity
	Contribution of each IC to type-1 and -2 errors
	Reconstructed data

	Efficiency evaluation

	Discussion
	Caveats and limitations of the method

	Acknowledgments
	ICA decomposition
	Preprocessing
	Decomposition

	Multiple-regression analysis on the time series of the IC components (Fig. 2b)

	References


