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al movement is more stable than parallel bimanual movement. This is well
established at the kinematic level. We used functional MRI (fMRI) to evaluate the neural substrates of the
stability of mirror-symmetrical bimanual movement. Right-handed participants (n=17) rotated disks with
their index fingers bimanually, both in mirror-symmetrical and asymmetrical parallel modes. We applied the
Akaike causality model to both kinematic and fMRI time-series data. We hypothesized that kinematic
stability is represented by the extent of neural “cross-talk”: as the fraction of signals that are common to
controlling both hands increases, the stability also increases. The standard deviation of the phase difference
for the mirror mode was significantly smaller than that for the parallel mode, confirming that the former was
more stable. We used the noise-contribution ratio (NCR), which was computed using a multivariate
autoregressive model with latent variables, as a direct measure of the cross-talk between both the two hands
and the bilateral primary motor cortices (M1s). The mode-by-direction interaction of the NCR was significant
in both the kinematic and fMRI data. Furthermore, in both sets of data, the NCR from the right hand (left M1)
to the left (right M1) was more prominent than vice versa during the mirror-symmetrical mode, whereas no
difference was observed during parallel movement or rest. The asymmetric interhemispheric interaction
from the left M1 to the right M1 during symmetric bimanual movement might represent cortical-level cross-
talk, which contributes to the stability of symmetric bimanual movements.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Bimanual coordination in the mirror-symmetrical mode, in which
homologous muscles are active simultaneously, is more stable than in
the parallel mode, in which homologous muscles are engaged in an
alternating fashion (Swinnen et al., 1997). When a subject performs a
cyclical movement in the parallel mode, increasing the movement
frequency ultimately results in a phase transition towards the mirror-
symmetrical mode, but the opposite transition does not occur (Kelso,
1984). This phenomenon was first formalized theoretically by
dynamic-systems theory at the behavioral level (Haken et al., 1985;
Schöner and Kelso, 1988). Furthermore, the reversal in direction at the
phase transition was mainly associated with the non-dominant hand
(Walter and Swinnen, 1992; Byblow et al., 1994, 1998, 2000;
Sherwood, 1994; Semjen et al., 1995; Treffner and Turvey, 1995;
Rogers et al., 1998; Garry and Franks, 2000). These kinematic data
suggest that the left hemisphere is dominant for bimanual movement.
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To associate the process of bimanual coordination with the neural
structures that control hand movements (de Oliveira, 2002), the
concepts of inter-manual and neural cross-talk (Marteniuk and
MacKenzie, 1980) have been introduced. Interactions between the
movements of the two hands (inter-manual cross-talk) are assumed to
result from neural cross-talk at multiple levels between the signals
controlling the two limbs. The lowest level of cross-talk supposedly
occurs downstream from the specification of movement parameters,
possibly through the ipsilateral corticospinal tract (Cattaert et al.,
1999), as each effector receives signals from both contralateral and
ipsilateral descending pathways. The mirror-symmetrical condition
requires the activation of homologous muscles, and so the signals of
both pathways are always congruent. By contrast, the parallel
condition requires non-homologous muscles to be activated, and so
conflict between crossed and uncrossed cortical pathways might arise
(cross-talk). This is supported by the findings of Kagerer et al. (2003),
who reported that participants in whom transcranial magnetic
stimulation (TMS) elicited distal ipsilateral motor-evoked potentials
exhibited higher variability during a bimanual parallel circling task
than participants whose ipsilateral pathways could not be activated
transcranially. This suggests that the common signal sent to both
effectors through the contralateral and ipsilateral pathways enhanced
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the stability of mirror-symmetrical movement as compared to parallel
movement, resulting in the increased variability during parallel
movement (Cattaert et al., 1999).

Cross-talk might also occur at a higher level through interhemi-
spheric interaction (Kennerley et al., 2002). Kennerley et al. (2002)
reported that callosotomy patients exhibited a lack of temporal
coupling during continuous circle drawing, with the two hands
oscillating at non-identical frequencies. They concluded that synchro-
nization between the hands depends on interhemispheric transmis-
sion across the corpus callosum.

Several neuroimaging studies support the concept that interhe-
mispheric interaction exists during the phase transition. Meyer-
Lindenberg et al. (2002) demonstrated neuronal dynamics conform-
ing to the predictions made by the non-linear system theory. Using
positron-emission tomography (PET), they depicted the cortical
regions related to the extent of behavioral instability, assuming that
neuronal activity in these “unstable” areas increases as the frequency
of the movement increases. Within these areas, they found that minor
disruption by double-pulse TMS to the right dorsal premotor cortex
(PMd) evoked large-scale phase transitions in participants' perfor-
mance. Meyer-Lindenberg et al. (2002) concluded that an increase in
behavioral instability corresponds to increasing neural instability
represented in the right PMd.

Using event-related functional MRI (fMRI), Aramaki et al. (2006a)
depicted the transition-related activity in multiple right-lateralized
parieto-premotor regions. These areas were different from the regions
activated by bimanual movement execution. Aramaki et al. (2006a)
concluded that at the phase transition, the cortical neural cross-talk
occurs in distributed networks upstream of the primary motor cortex
through asymmetric interhemispheric interaction.

These studies imply that there is some “default” setting by which
the two hands are linked together to produce identical motor output,
and that an additional mechanism is required to uncouple the hands
in order to generate different movements (Evans and Baker, 2003).
However, the neural substrates of the default linking that makes
bimanual mirror-symmetrical movement so stable have remained
unknown, particularly at the cortical level.

The purpose of the present study was to delineate the cortical
cross-talk that stabilizes mirror-symmetrical movement. Using fMRI,
we compared the kinematic relationship between both hands and the
neural relationship between the primary motor cortices of both
hemispheres during mirror-symmetrical and parallel bimanual
cyclical movements. We focused on cross-talk at the level of the
bilateral primary motor cortices (M1s), where movement parameters
are specified and transmitted to the effectors.

We used a continuous circle-drawing task instead of a discrete
movement task, such as tapping, for mainly technical reasons:
continuous kinematic data are more easily handled by the multi-
variate autoregressive (MAR) model of time-series analysis. Pre-
viously, it was supposed that the neural substrates for continuous
bimanual coordination might differ from those for discrete move-
ments (Kennerley et al., 2002; Spencer et al., 2003). In split-brain
patients, bimanual coordination during discrete tasks was well
preserved (Preilowski, 1972; Franz et al., 1996; Ivry and Hazeltine,
1999), whereas coordination was impaired during a continuous
bimanual task (Kennerley et al., 2002). However, this does not
necessarily restrict the transcallosal neural cross-talk to the contin-
uous cyclical movements (Bonzano et al., 2008).

Previous kinematic studies (Stucchi andViviani,1993; Semjen et al.,
1995; Treffner and Turvey, 1995, 1996; Swinnen et al., 1996; Byblow et
al., 2000; Kennerleyet al., 2002) have indicated right-handdominance.
Previous clinical and imaging studies have shown that the left
hemisphere is dominant for the representation of motor skills (Sirigu
et al., 1996; Haaland et al., 2000), including bimanual coordination
(Serrien et al., 2003). Accordingly, we predicted that asymmetric cross-
talk from the leftM1 to the rightM1 ismore prominent than vice versa.
We further hypothesized that this asymmetric cortical cross-talk is
more prominent during mirror-symmetrical movement than during
asymmetric parallel movement. During themirror-symmetrical mode,
the movement command from the dominant left hemisphere would
facilitate, or at least not negatively influence, symmetric movements.
In this sense, the cross-talk at the cortical level during mirror
movement can be understood as a gating of the signal from one
hemisphere to its homonymous counterpart, in order to ensure shared
neural control of the movements of both limbs in which homologous
muscles are to be activated. During the asymmetric parallel mode, by
contrast, there would be ongoing interference due to conflicting
information. Parallel asymmetric movement usually requires a greater
workload than mirror-symmetrical movement, which is represented
as more prominent activation in the supplementary motor area (SMA)
and the right PMd (Sadato et al., 1997). Double-pulse TMS of the right
PMd caused a phase shift from the parallel mode to the mirror mode
(Meyer-Lindenberg et al., 2002). Thus, this additional workload was
interpreted as the conversion of themotor program or the suppression
of conflicting information issued in the left hemisphere to its right
counterpart, and hence no gating occurred during the parallel mode.

As signal gating might not be depicted by the increment of the
neural activity, we adopted statistical time-series modeling. The MAR
model represents a general statistical time-series model that
propagates information from the past to the future. The Akaike
noise-contribution ratio (NCR; Akaike, 1968) quantifies the portion of
the power-spectral density of an observed variable from the
independent noise of the MAR, which becomes a measure of causality
among variables. It allows interpretation of the causality from one
hand to the other, or from the motor cortex of one hemisphere to the
other. Thus, the extent of cross-talk can be quantified by the causality
that is represented by the NCR. Unlike the mathematical formulation
of the dynamic-systems model that is usually employed to deal with
the relative phase via a differential equation in order to evaluate the
stability of the system (Haken et al., 1985; Schöner and Kelso, 1988;
Meyer-Lindenberg et al., 2002; Kennerley et al., 2002), which cannot
be directly applied to neuroimaging datasets, the MAR can be applied
to both kinematic data and neural activities. According to our a-priori
hypothesis, the gating might be represented as the asymmetric NCR
from the left M1 to the right M1, which, in turn, brings the asymmetric
NCR from the right hand to the left hand during mirror-symmetrical
movement more prominently than during parallel movement.

Materials and methods

Participants

In total, 19 subjects participated in the fMRI study. None of the
subjects had a history of psychiatric or neurological illness. The
protocol was approved by the Ethical Committee of the National
Institute of Physiological Sciences, Japan. All subjects gave their
written informed consent for participation in the study. During the
experiment, we stopped the testing of one subject due to stomach
pain, and one subject fell asleep; the data from these two subjects
were excluded from the analysis. The 17 participants included in the
analysis comprised eight men and nine women, aged between 20 and
32 years, all of whom were strongly right-handed according to the
Edinburgh Handedness Inventory (mean score±standard deviation
[SD]=0.956±0.072; Oldfield, 1971).

Subject setup

The subjects lay supine in a 3.0 T MR scanner (Allegra; Siemens,
Erlangen, Germany). Their elbows and wrists were slightly flexed and
relaxed so that each hand could be placed on the non-ferromagnetic
frames set over the participant's body. On the frame, two discs were
placed on both sides of the subject (Fig.1). Each discwas attached to the



Fig. 1. Experimental setup. Subjects lay supine in the scanner with their elbows and wrist junctions placed on the non-ferromagnetic frame in a slightly flexed and pronated position.
During scanning, each participant's head was located at the center of the magnet, while both their hands and the discs were outside of the magnet. In this position, the subjects could
not see their hand movements (left). The discs were rotated with the index fingers (right). Hand movements were registered automatically with the input devices connected to a
personal computer.
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MRI-compatible rotary encoder (HEDS5701, Hewlett-Packard, Palo Alto,
CA; spatial resolution=1°) to register finger movements at a sampling
rate of 1000 Hz. The encoders were connected to a personal computer
(Dimension 8200; Dell Computer, Round Rock, TX) to record the
rotation-related time-series data. As the axial length of themagnet was
130 cm, both hands were outside of the magnet. In this position, the
subjects could not see their finger movements. To minimize head
motion, we used tight but comfortable foam padding placed around
each subject's head. For visual and auditory stimulus presentation, we
used Presentation 0.92 (Neurobehavioral Systems, Albany, CA) software
implementedonapersonal computer (Dimension8200;Dell Computer,
Round Rock, TX). A liquid-crystal display projector (DLA-M200L; Victor,
Yokohama, Japan) located outside and behind the scanner projected
instruction cues and a cross-hair onto a translucent screen. Subjects
viewed the screen via a mirror attached to the head coil of the MRI
scanner. The subjects wore MRI-compatible headphones (Hitachi,
Yokohama, Japan). We did not measure electromyographic activity
during the fMRI, mainly because of movement-related artifacts due to
the movement of electrical leads caused by bimanual coordination.

Tasks

The subjects performed an auditory-paced bimanual disk-rotation
task. They were asked to rotate the discs with their index fingers. To
ensure constant timingandanequal numberof cycles across conditions,
the bimanual movements were paced by auditory cues at 0.6 Hz. The
auditory cues (260Hz, 50ms)were administered continuously through
the headphones during the scanning session (both task and rest
periods). The volume of the sound was adjusted for each subject to an
appropriate level for task execution, taking into account theMR scanner
noise. Subjects performed both mirror-symmetrical and parallel move-
ments. In themirror-symmetrical mode, the directions of rotationwere
symmetrical with regard to the midline of the body in the outward
direction (the right hand moved the disk in a clockwise direction
whereas the left handmoved the disk in a counterclockwise direction).
During the parallel mode, both hands rotated in the same clockwise
direction. A task session consisted of a 180-s task period with rest
periods before (15 s) and after (20 s) the task period. Each subject
performed nine sessions: three sessions in the parallel mode, three
sessions in the mirror-symmetrical mode, and three rest sessions. The
baseline periods were added for the functional definition of the M1s by
contrasting themwith the 180-s task condition. Aswe aimed to evaluate
the causality during the parallel mode and the mirror mode, we
obtained the longer-term data separately for each condition.
MRI data acquisition

A time-course series of 215 volumes was acquired in each session
using T2⁎-weighted gradient echo-planar imaging (EPI) sequences. To
maximize the sampling time points within an appropriate session
duration that did not cause fatigue among the subjects (b4 min), the
interval between two successive acquisitions of the same image (the
repetition time [TR]) was set to 1000 ms. Each volume consisted of 17
axial slices (the maximum number of slices at a TR of 1000 ms). The
slice thickness was 3 mm with a 0.45-mm gap. The slices covered a
region extending from the top of the head to the anterior commisure–
posterior commisure line (AC–PC line), including both M1s for all of
the subjects. The echo time (TE) was 30ms. The flip angle (FA)was 65°.
The transaxial field of view (FOV) was 192 mm, and the in-plane
matrix size was 64×64 pixels with a pixel dimension of 3×3×3 mm.
The images were scanned in a descending manner.

For anatomical imaging, T1-weightedmagnetization-prepared rapid-
acquisition gradient-echo (MP-RAGE) images were obtained
(TR=2500 ms; TE=4.38 ms; FA=8°; FOV=230 mm (one slab); distant
factor=50%; number of slices per slab=192; voxel dimensions=
0.9×0.9×1.0 mm) to cover the entire cerebral and cerebellar cortices.

Time-series analysis of kinematic data

Preprocessing of time-series data
Time-series datawere extracted for 170 s following the initiation of

the task. As the spatial resolution of the encoder was 1°, a time
resolution higher than 10 Hz would not give useful information, so the
data were down-sampled to a sampling rate of 10 Hz. The linear trend
of the increase or decrease of the datawas subtracted using first-order
differences; as the recording device accumulated the rotated angles,
the data included monotonic increases or decreases in a gradient of
roughly 216°/s, which was caused by the rotation rate of 0.6 Hz
(movement in an anti-clockwise direction was recorded as increasing,
and movement in a clockwise direction was recorded as decreasing).
In this way, the preprocessed data indicated any deviation from the
expected movement (°/s).

Stability
The phase difference between hands was computed by subtracting

the phase angle of both hands every 100 ms. During the mirror-
symmetrical mode, both hands moved in opposite directions, and so
the absolute values of the phase angle were used to calculate the
phase difference. To obtain the signed relative phase, the phase of the
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left hand was subtracted from that of the right hand, and so negative
values indicated a phase delay of the right hand. The signed phase
difference at the initiation of the movement, the average, and the SD
throughout the sessionwere calculated. The SD of the phase difference
was used as an estimate of the stability of the mode of movement
(Swinnen et al., 1996).

Modeling and quantifying directional connectivity
The causal relationship between the index fingers in the different

movement modes (parallel, mirror-symmetrical, and rest) were
studied. A statistical time-series model was fitted to the data in
order to explain the spatiotemporal dynamics of the data and the
causal relationships between the movements of both hands. An AR
model can be used to elucidate the propagation of information from
the past to the future; however, it is difficult to describe causal
relationships when the driving noise variances are highly correlated
(Yamashita et al., 2005; Wong and Ozaki, 2007). One solution is to
Fig. 2. ROIs of the M1s. The ROIs were defined as the local maxima of the activated areas by t
inverted-omega shape (b) that was a landmark of the hand area (c, blue blobs). (a) SPMs of th
on the transaxial plane of the T1-weighted high-resolution MRIs of the subjects. The T score
white. The threshold for the SPM{t} was set at a FWE of pb0.001. The cross-hair indicates the
data of the BOLD signal were obtained.
obtain data at a finer temporal resolution; another is to include a
hidden variable to absorb the common dynamic among the variables
(Wong and Ozaki, 2007). Besides the two oscillations that explained
the individual dynamics of each hand, we introduced a hidden
variable to measure the dynamics that were common to both the left
hand and the right hand. The two time series were reconstructed to
these three oscillations, which were mutually orthogonal. The
following state-space model was applied:

State equation xt ¼ Fxt−1 þ Gωt

Observation equation yt ¼ Hxt þ et

Here, yt denotes the preprocessed data. These data were projected
from the state vector xt through a projection matrixH. xt was assumed
to follow from first-order multivariate AR dynamics through the
transitionmatrix F, andwas driven bymultivariateGaussian noiseGωt.
he bimanual rotation of the discs (a), within or closest to the hand-knob structure of the
e enhanced neural activity during bimanual movement. Activated foci are superimposed
is as indicated by the color bar; the statistical significance increases as red changes to
local maximumwithin the anatomically defined hand area, fromwhere the time-series



Table 1
Normalized coordinates of the M1s of subjects

Subject Left M1 Right M1

MNI coordinates T value MNI coordinates T value

x y z x y z

1 −44 −22 54 10.79 32 −24 54 10.09
2 −34 −28 58 17.61 36 −28 60 25.16
3 −38 −26 60 32.13 30 −32 62 22.21
4 −40 −20 64 20.83 36 −14 64 19.89
5 −30 −26 50 22.26 40 −24 52 27.94
6 −38 −28 60 21.77 32 −32 56 22.08
7 −36 −26 56 15.48 46 −30 54 20.31
8 −38 −24 56 15.58 38 −26 60 30.13
9 −34 −24 56 13.01 36 −22 58 19.20
10 −42 −16 62 24.13 38 −28 60 14.08
11 −44 −18 56 24.11 44 −20 52 12.89
12 −42 −22 58 29.47 42 −24 62 31.19
13 −38 −24 62 21.48 32 −28 58 16.58
14 −36 −26 60 17.93 42 −14 54 23.31
15 −42 −20 52 13.43 36 −22 54 16.97
16 −36 −18 60 23.47 32 −26 64 24.32
17 −42 −20 52 11.01 44 −14 52 16.15
Mean −38.47 −22.82 57.41 19.68 37.41 −24.00 57.41 20.74
S.D. 3.91 3.68 3.92 6.12 4.94 5.83 4.23 5.96

MNI coordinates (x, y, z) and T value of the M1s of participants. The functionally and
anatomically definedM1s of each subject were normalized into space registered byMNI
coordinates.

1299Y. Maki et al. / NeuroImage 42 (2008) 1295–1304
xt usually has a higher dimension than yt. εt represents the bivariate
Gaussian noise. In this paper, F, G, and Hwere designed in a particular
parameterization structure, which is included in Appendix A.

Directional causality was quantified using the NCR, which is the
proportion of spectral power corresponding to the causal variable
(Akaike, 1968). The NCR gives a proportion of directional causality
over the frequency interval from 0 Hz to the Nyquist frequency, which
was 5 Hz in this study. The calculation of the NCR is straightforward
(Wong and Ozaki, 2007). The spectral power over the frequency band
of each component was computed using Simpson's numerical
integration rule. The contribution of the three components was
obtained by normalizing the corresponding integrated spectral power.
Hereafter, we refer to the NCR in this integrated form.

For example, the left-hand oscillation can be explained by the
linear summation of the contribution of the left-hand component, the
contribution of the right-hand component, and that of the common
component, all of which are normalized so that the sum of the three
components is 1. In the same way, the right-hand oscillation can be
explained by the linear summation of the NCR of the left-hand
component, the NCR of the right-hand component, and that of the
common component.

The NCR values of different subjects were collected and included in
the two-way analysis of variance (ANOVA), which incorporated the
effects of the direction of contribution (right hand to left hand vs. vice
versa) and the mode (parallel vs. mirror-symmetrical).

fMRI data

Preprocessing
The first five volumes of each fMRI sessionwere discarded because

of unsteady magnetization. The data were analyzed using statistical
parametric mapping (SPM5; Wellcome Department of Imaging
Neuroscience, London, UK; Friston et al., 1995a,b, 2007) implemented
in Matlab (Mathworks, Sherborn, MA). Following slice-timing correc-
tion, the fMRI data were realigned to the first image for head-motion
correction. The realigned data were then coregistered to the
anatomical MRI. Finally, the fMRI data were spatially smoothed
using a Gaussian kernel of 4 mm full width at half maximum in the x,
y, and z axes. Anatomical normalization was not performed to avoid
possible artifacts.

Region of interest (ROI) definition
The ROI of the M1s was defined on an anatomical and functional

basis without spatial normalization. This was intended to avoid any
artifacts accompanying the spatial normalization processes. For the
first step, the ROIs were identified by means of the data from the task
sessions analyzedwith SPM software. A general linearmodel was used
to identify voxels with task-related signal changes (Friston et al.,
1995b). The signal time-course of each subject was modeled with two
boxcar functions (that is, parallel andmirror-symmetrical movement),
convolvedwith a hemodynamic-response function, high-pass filtering
(128 s), and session effects. To test hypotheses about regionally-
specific condition effects, the estimates for each condition were
compared by means of the linear contrasts. The resulting set of voxel
values for each comparison constituted a statistical parametric map of
the t-statistic (SPM{t}). The threshold for the SPM{t} was set at a
highly conservative family-wise error rate (FWE) of pb0.001. M1 was
defined by the activation peaks that were located on the hand-knob
segment of the precentral gyrus by visual inspection; the hand knob is
a reliable landmark for identifying the hand motor area (Yousry et al.,
1997; Fig. 2). When the activation peaks were not found on the hand
knob, the activation peaks closest to the hand knob were selected. In
fact, a lack of hand representation at the hand knob was observed in
three subjects (two unilateral left and one unilateral right). However,
all of them showed hand representation at the bilateral central sulci
adjacent to the hand knob. Table 1 shows the individually definedM1s
inwhich the coordinates were normalized into space registered by the
Montreal Neurological Institute (MNI) coordinates, in order to confirm
that the ROI definition was appropriate.

Time-series data extraction
The non-smoothed time-series data of each coordinate were

extracted using MarsBaR software (http://marsbar.sourceforge.net/)
in a spherical ROI (radius=3mm). The time-series data of the two ROIs
were extracted from nine sessions for each subject (three each of the
parallel, mirror-symmetrical, and rest sessions). The 10 points (10 s)
from the beginning of the movement were discarded to exclude the
influence of any instability due to movement initiation.

Modeling and quantifying directional connectivity
The state-space modeling was applied to the preprocessed fMRI

time-series data. The idea of a hidden variable was applied again with
a modification of the parameterization (for a detailed explanation, see
Appendix B). For each set of time-series data, the AR order p was
chosen using the Akaike Information Criterion (AIC), such that the
model with the smallest AIC was selected. Similar to kinematic data,
the NCR was calculated from the estimated state-space models. The
NCR values for different subjects were collected to use in the two-way
ANOVA incorporating the effects of the direction of contribution
(right M1 to left M1 vs. vice versa) and mode (parallel vs. mirror-
symmetrical).

Results

Phase difference

At the initiation of the parallel movement, there was a significant
right-hand lead (mean±SD=4.71±7.87°, t(16)=2.465, p=0.025, one-
sample t-test), but this was not significant for mirror movement
(−0.77±4.78°, t(16)=−0.659, p=0.519, one-sample t-test). The mode
effect was significant (t(16)=2.447, pb0.026, paired t-test). This was
consistent with previous studies (Stucchi and Viviani, 1993; Semjen et
al., 1995; Treffner and Turvey, 1995, 1996; Swinnen et al., 1996;
Kennerley et al., 2002; Debaere et al., 2004). By contrast, the signed
phase difference averaged throughout the session showed the reverse
pattern: there was a significant left-hand lead (−16.19±18.03°, t(16)=

http://marsbar.sourceforge.net/
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−3.702, p=0.002, one-sample t-test), but this was not the case for the
mirror movement (−7.959±16.988°, t(16)=−1.932, p=0.071, one-
sample t-test). The mode effect was not significant (t(16)=−1.600,
p=0.129, paired t-test). The SD around the phase difference
(coordination stability) for the mirror-symmetrical mode was 21.01±
12.76°, which was significantly smaller than that for the parallel mode
(36.30±21.59°; t(16)=4.811, p(16)b0.001; paired t-test). This indicated
that the mirror-symmetrical movement was more stable than the
parallel mode.

Angular velocity

During the symmetric-mirrormode, the angular velocity (mean±SD)
of the right hand was 231.63±51.63°/s and that of the left hand was
222.85±52.32°/s. During the parallel mode, the angular velocity of
the right hand was 232.46±51.81°/s and that of the left hand was
229.03±38.45°/s. The two-way ANOVA (mode×hand) showed no
significant difference in either main effects or interaction effect
(mode, F(1,16)=0.601, p=0.449; hand, F(1,16)=0.405, p=0.534; inter-
action, F(1,16)=1.575, p=0.228). This finding indicated that the
angular velocity was constant across the hands and modes.

During the symmetric-mirror mode, the variability of the angular
velocity (mean±SD) of the right hand was 95.26±24.57°/s and that of
the left hand was 102.88±25.93°/s. During the parallel mode, the
variability of the right hand was 90.90±20.58°/s and that of the left
hand was 96.11±25.19°/s. The two-way repeated measures ANOVA
Fig. 3. (a) NCR between hands during the parallel mode and the mirror mode. The
contribution from the left hand to the right hand is shown by open bars, and the
contribution from the right hand to the left hand is shown by closed bars. (b) NCR
betweenM1s during parallel, mirror, and rest modes. The contribution from the left M1
to the right M1 is shown by open bars, and the contribution from the right M1 to the left
M1 is shown by closed bars during the mirror and parallel modes. During the rest mode,
the NCRs of both directions are shown by closed gray bars. ⁎pb0.05 (two-way ANOVA).
(mode×hand) showed a significant hand effect (F(1,16)=5.396;
p=0.034), but not a main effect of mode (F(1,16)=3.330; p=0.087) or
an interaction effect (F(1,16)=0.536; p=0.475). This finding indicated
that the right hand was more stable than the left hand, irrespective of
the mode.

Interaction between the hands

The two-way ANOVA (contribution direction×mode) indicated a
significant interaction effect (F(1,16)=5.021; p=0.040; Fig. 3, top). Post
hoc analysis with the Bonferroni correction indicated that the contribu-
tion from the right hand to the left hand was significantly larger than
vice versa during themirror-symmetrical mode (t(16)=2.791; p=0.013),
but not during the parallel mode (t(16)=0.035; p=0.972). There was no
significant main effect of contribution direction (F(1,16)=1.468;
p=0.243) or mode (F(1,16)=3.757; p=0.070).

fMRI ROI analysis

The two-way ANOVA (contribution direction×mode) of the fMRI
data indicated a significant interaction effect (F(1,16) =5.493;
p=0.032; Fig. 3, bottom). Post hoc analysis with the Bonferroni
correction indicated that the contribution from the left M1 to the right
M1 was significantly larger than vice versa during the mirror-
symmetrical mode (t(16)=2.555; p=0.021), but not during the parallel
mode (t(16)=0.299; p=0.769). There was no significant main effect of
contribution direction (F(1,16)=1.998; p=0.177) ormode (F(1,16)=2.457;
p=0.137). During the rest session, the difference between the contribu-
tion from the left M1 to the right M1 and vice versa was not significant
(t(16)=0.264; p=0.795).

There was no significant correlation between the NCR of the hands
and that of the M1 activity, probably reflecting the fact that the
interaction between the hands might represent the effect of both
cortical cross-talk through the corpus callosum, and subcortical neural
cross-talk through the ipsilateral corticospinal tract.

Discussion

Kinematic analysis

Regarding the initiation phase difference, the right hand leads the
left hand, particularly during parallel movement. This is consistent
with previous studies (Stucchi and Viviani, 1993; Semjen et al., 1995;
Treffner and Turvey, 1995, 1996; Swinnen et al., 1996; Kennerley et al.,
2002; Debaere et al., 2004). By contrast, on average duringmovement,
the left hand leads the right hand. This tendency was particularly
prominent during parallel movement. We utilized the clockwise
rotation for the parallel mode in which the left (subdominant) hand
led the right hand. Byblow et al. (2000) reported that the direction of
the rotation had an effect on the hand that “led” in asymmetric
patterns, which varied between the anti-clockwise (dominant hand)
and clockwise (subdominant hand) directions. Byblow et al. (2000)
suggested that neither handedness nor time-keeping localization was
likely to be the cause of this phenomenon. The signed phase difference
explains a relative phase between left and right, representing
instantaneous causality, whereas the MAR model for two time series
provides causality from some past points to future points, and thus a
better evaluation of cross-talk is expected. Actually the likelihood
function (Box and Jenkins, 1970) using the kinematic data showed the
superiority of our MAR model over the signed phase difference model
(data not shown).

The SD of the phase difference between the handswas significantly
smaller during mirror-symmetrical movement than during parallel
movement. This finding confirms the previous studies showing that
mirror-symmetrical movement is more stable than parallel
movement.
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Right-hand dominance during mirror-symmetrical movement
The time-series analysis of the kinematic data using Akaike

causality showed that the asymmetric causality from the right hand
to the left hand was specific to mirror-symmetrical movement. This
right-hand dominance suggests two points. First, it is consistent with
the idea of cross-talk, such that the control signals directed to one
hand are also sent to the other hand during mirror-symmetrical
movement, which in turn stabilizes the movement. Second, the left
hemisphere is dominant for this inter-manual cross-talk, because the
movement of the left hand is more strongly influenced by the right-
hand movement than vice versa.

Neuronal activities

Left M1 dominance during mirror-symmetrical movement
Corresponding to the kinematic results, the fMRI data revealed that

the asymmetric causality from the left M1 to the right M1was specific
to mirror-symmetrical movement. This left hemisphere dominance in
the cortico–cortical relationship between the bilateral M1s implies
that the cross-talk or signal gating occurs at the transcallosal level
during mirror-symmetrical movement.

Paired TMS studies have providedevidence that themotor cortexhas
clear interhemispheric facilitatory effects (Ugawa et al., 1993) and
inhibitory effects (Ferbert et al., 1992), probably working via the corpus
callosum (Di Lazzaro et al., 1998). Whereas transcallosal inhibition
seems to play a crucial role in suppressing the mirror-symmetrical
activationof the ipsilateralmotorcortexduring intendedunilateral hand
motor tasks (Nass, 1985), the functional significance of this facilitatory
effect is unknown, particularly during bimanual movement. However,
the present findings and the unstable bimanual coordination in
callosotomy patients raise the possibility that high-level cortico-cortical
interference from the dominant hemisphere occurs in the non-
dominant M1 during bimanual mirror-symmetrical movement.

Possible pathways for interhemispheric interaction
The TMS literature suggests a physiologically relevant connection

among both of the M1s as documented in the intact human brain
(Ferbert et al., 1992; Meyer et al., 1995; Di Lazzaro et al., 1998) and the
lesioned human brain (Boroojerdi et al., 1996; Murase et al., 2004;
Duque et al., 2005). Using interhemispheric inhibition by means of
TMS, Murase et al. (2004) showed an abnormally high interhemi-
spheric inhibitory drive from the M1 in the intact hemisphere to the
M1 in the lesioned hemisphere during the process of generation of a
voluntary movement by the paretic hand. This finding suggests that
motor output from the lesioned hemisphere might be additionally
influenced by pathologically enhanced inhibitory influences from the
intact hemisphere. This physiological evidence of a relevant connec-
tion between both M1s prompted us to examine the effective
connectivity between them.

Anatomically, the direct connection between the bilateral M1s is
known to be sparse in non-human primates (Rouiller et al., 1994; Liu
et al., 2002). Instead, a dense indirect connection between the left and
right M1s exists via the SMAs (Morecraft and Van Hoesen, 1992;
Luppino et al., 1993; Rouiller et al., 1994;Wiesendanger et al., 1996; Liu
et al., 2002) or the PMd (Marconi et al., 2003).

Recently, Wahl et al. (2007) examined the callosal motor fibers that
connect the primary motor cortices of the two hemispheres of the
human brain. They examined the topography and somatotopy of the
callosal motor fibers (CMFs) using a combined fMRI and diffusion-
tensor imaging (DTI) fiber-tracking procedure. The functional con-
nectivity between the M1s was measured by interhemispheric
inhibition using paired-pulse TMS. The CMFs of the hand areas were
represented in the posterior part of the body of the corpus callosum.
This posterior location was interpreted to be caused by the prefrontal
interhemispheric connection, which occupies the anterior half of the
human corpus callosum. They also found a significant and topogra-
phically-specific positive correlation between the fractional aniso-
tropy (FA) and interhemispheric inhibition; they interpreted this as
evidence of a direct link between the microstructure and functional
connectivity. Another study with DTI and paired-pulse TMS explored
the fact that the FA of the projection from the PMd to the contralateral
M1 was correlated with the TMS-indexed functional connectivity
during action selection (Boorman et al., 2007). Thus, the pathways for
interhemispheric interaction might be task-dependent.

During bimanual coordination, higher activation in the SMA and
the right PMd during the parallel mode compared to the mirror-
symmetrical mode is a well-replicated finding (Sadato et al., 1997;
Toyokura et al., 1999; Immisch et al., 2001; Meyer-Lindenberg et al.,
2002; Ullen et al., 2003; Debaere et al., 2004, Wenderoth et al.,
2005, Aramaki et al., 2006a,b), which highlights the important role
of the SMA and PMd in bimanual coordination. A TMS study in
humans revealed that interhemispheric PMd-to-M1 interactions
added to the M1-to-M1 interaction (Baumer et al., 2006). Bonzano
et al. (2008) measured the absolute value of the timing difference
between the simultaneous bimanual finger–thumb opposition
movements (inter-hand interval) made by multiple sclerosis patients
with demyelinated lesions in the corpus callosum. The extent of the
damage in the anterior callosal portions was positively correlated
with the inter-hand interval, particularly the movement phase
preceding the finger touch. This finding indicates that the anterior
portion of the corpus callosum is essential for performing
temporally-interdependent bimanual finger movements (Bonzano
et al., 2008). Thus, the interhemispheric interaction between the
right and left M1 regions during mirror-symmetrical movement
might be mediated indirectly by areas involved in higher motor
functions, such as the SMA and the PMd, in addition to the possible
direct interaction between the M1s.

Left-hemisphere dominance for bimanual coordination

Ziemann and Hallett (2001) proposed two different, although not
mutually exclusive, models to explain the functional differences of the
human cerebral hemispheres. One model assumes that asymmetrical
motor performance is a consequence of intrinsic hemispheric
specialization. The other proposes that both motor cortices have
identical motor capabilities in controlling the contralateral hand, but
that hemispheric differences occur due to asymmetric interactions
between the two motor cortices.

Previous functional neuroimaging studies have shown left-
lateralized activation during mirror-symmetrical movement (Jancke
et al., 1998; Viviani et al., 1998), implying that the left hemisphere is
specialized for controlling mirror-symmetrical bimanual movement.
Aramaki et al. (2006b) found that activation in the right M1 was
significantly weaker during the mirror-symmetrical mode than
during the parallel mode, a difference that was not observed in the
left M1. They speculated that the non-dominant M1 entrusted a part
of hand control to the dominant M1, implying a cortico-cortical
interaction.

The present study showed that the cross-talk during mirror-
symmetrical movement occurs at the level of theM1, possibly through
the corpus callosum from the left hemisphere to the right. This cross-
talk appears to stabilize mirror-symmetrical movement compared
with non-symmetrical movement. This provides additional evidence
of left-dominant asymmetric interhemispheric interaction during
bimanual movement.

Methodological considerations for the evaluation of effective
connectivity

Akaike causality (Akaike, 1968) has been applied previously to
fMRI data by Yamashita et al. (2005) and by Wong and Ozaki (2007).
Granger (1963, 1969) causality is another representative causality
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analysis based on the MAR model that has been applied in
neuroscience research (for example, Bernasconi and Konig, 1999;
Goebel et al., 2003). Granger causality analysis compares the residual
variance of the full model to that of sub-models, and obtains a
causality conclusion through the significance of the difference in
variance. Akaike causality and Granger causality have two major
similarities: first, they should both be applied with the assumption
that they are based on an optimal model; and second, they both use
information about a second-order moment (that is, variance, auto-
covariance, or spectrum) of themodel, and therefore the second-order
moment of the time-series model should be defined (using, for
example, the MAR model). However, Akaike causality and Granger
causality use the variance information differently: the former is
concernedwith the partition of the variance in terms of noise variance
within one model, while the latter is concerned with the additional
partition of the variance of the data when additional regressors are
introduced. An important merit of Akaike causality is that the
computational load is less than that for Granger causality. Also, in
the latter, it is ambiguous as to which feedback system should be
chosen, leading to problems with pair-wise marginal causality or
conditional causality. Akaike causality does not have this problem
because it only looks at one feedback system. Therefore, to evaluate
the causality across many regions in functional neuroimaging, Akaike
causality has significant advantages over Granger causality in terms of
the computational load and the unambiguous feedback system. One
disadvantage of Akaike causality is that the noise-covariancematrix of
the model must be diagonal; thus, it is not suitable for multiple time-
series data with strong instantaneous causality, except when a latent
variable can remove the common dynamics bymeans of a linear state-
space model (Wong and Ozaki, 2007). With this, instantaneous
causality can be included and the diagonal noise-covariance assump-
tion is not violated.

The dynamic causal modeling (DCM) is a hypothesis-driven
approach, which was specifically designed to evaluate the intrinsic
and task-dependent influences that a particular brain area exerts over
the activity of another area (Friston et al., 2003; Stephan et al., 2004;
Grefkes et al., 2008). The DCM treats the brain as a deterministic
system, in which external input causes changes in neural activity that,
in turn, lead to changes in the fMRI signal. This is in contrast with the
MAR model, which treats the brain as a dynamic network, the
activities of which are driven by a stochastic effect termed
“innovation”. The DCM needs high anatomical–functional precision,
and thus cannot be used as an exploratory tool. Due to the dramatic
increase of the number of free parameters to be estimated, the
number of ROIs is usually limited to eight or less. The DCM and MAR
models are not mutually exclusive. In the future, MAR models
including Akaike causality might be applied to neural parameters
with the biophysical modeling adopted in the DCM (Stephan et al.,
2004). The evaluation of effective connectivity by means of these
sophisticated methodologies will contribute to the understanding of
the mechanisms of bimanual coordination, such as hemispheric
dominance under frequency stress (Kelso, 1984), in both normal and
pathological conditions.

Conclusion

The asymmetric interhemispheric interaction from the left M1 to
the right M1 during bimanual mirror-symmetrical movement might
represent cortical-level cross-talk, which contributes to the stabiliza-
tion of bimanual mirror-symmetrical movement.
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Appendix A. State-space modeling of kinematic data

A linear state-space model was used to analyze the kinematic data.
A hidden variable was introduced in order to take away common
dynamics from the bi-channel time series. By taking away the
common dynamics, the remaining information in the time series
wasmodeled by a first-order autoregressive (AR)model. The following
model was applied.

State equation xt ¼ Fxt−1 þ Gωt

Observation equation yt ¼ Hxt þ et

Here, yt denoted our preprocessed data. This was projected from
the state vector xt through a projection matrix H. xt was assumed to
follow from a first-order multivariate AR dynamics through the
transition matrix F, and was driven by multivariate Gaussian noise
Gωt. xt usually has a higher dimension than yt. εt was a bivariate
Gaussian noise of measurement error. In this paper F, G, and H were
designed in a particular structure of parameterization as follows:

F ¼

n1 1
n2 1
n3 1
n4 1
v O
np−1 1
np 0 N 0
0 N 0 f1 f2
0 N 0 f3 f4

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

p : AR orderð Þ

G ¼

1 0 0
0 N 0
v v
0 N 0
0 1 0
0 0 1

0
BBBBBB@

1
CCCCCCA

Hj ¼ h jð Þ 0 N 0 1 0
0 1 0 0 0 N 0 0 1

� �

h jð Þ ¼
1 0 0 0ð Þ if j ¼ 1
0 1 0 0ð Þ if j ¼ 2
0 0 1 0ð Þ if j ¼ 3
0 0 0 1ð Þ if j ¼ 4

8>><
>>:

Q ¼
σ 1ð Þ2 0 0
0 σ 2ð Þ2 0
0 0 σ 3ð Þ2

0
@

1
A

R ¼ 0

Here,Fwasa (p+2)×(p+2) squarematrix, a transitionalmatrixof state
xt from state xt−1. It can be considered as a block diagonal matrix of ap×p
matrix and a 2×2 matrix. The p×p block matrix was intended to explain
the common dynamics, and the 2×2 block was intended to explain a
coupling of the remaining information. p therefore denoted the AR order
of the process of the common dynamics. ωt was a three-dimensional
system noise vector. With this given G, the three elements of ωt were
distributed to the first, the second to last, and the last element of xt.

H was a 2×(p+2) observation matrix. When we fitted this model,
we allowed at each time step H choosing from H1, H2, H3, or H4,

whichever maximized the likelihood function at that time step. The
four different H values gave a degree of freedom to the jittering
motion of the rotating fingers. In the case of (1 0 0 0), the right-hand
phase preceded the left-hand phase by one time point (10 ms). In the
case of (0 1 0 0), the precedence of the phases of both hands was the
same. In the case of (0 0 1 0), the left hand preceded the right hand by
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one time point (10 ms). In the case of (0 0 0 1), the precedence of the
left hand was two time points (20 ms). We adapted this procedure
such that the fitted model explained the data by absorbing the
fluctuation of the unsteady hand movement.

Q was the variance of ωt and R was the variance of observation
error εt. Q was assumed to be the diagonal of three elements: σ(1)2,
σ(2)2, and σ(3)2. For simplicity, R was set to zero, as the measurement
error was less than 1°.

The set of free parameters comprised p+4 parameters in F and
three parameters in Q. For each value of p, a set of model parameters
was estimated from the given data by the maximum likelihood
method. Given a set of model parameters, the computation of the
likelihood from the errors of the data predictions, as obtained by the
application of the Kalman filter, was straightforward (see Åström and
Kallstrom, 1973, for a detailed treatment). Comprehensive introduc-
tions to state-space models and Kalman filtering have been provided
by Kalman (1960) and by Kitagawa and Gersch (1996).

As p increased, the likelihood function also increased; however, an
optimal order pwas chosen using theAkaike Information Criterion (AIC),
such that the model with the smallest AIC was selected (Akaike, 1977).

Appendix B. State-space modeling of preprocessed fMRI data

State-space modeling was used to analyze the preprocessed fMRI
time series. The idea of a hidden variable was applied again with a
modification of the parameterization. For the fMRI data, we restricted
the common dynamics to the first order, and let the coupling part have
a higher order; by contrast, for the kinematic data, we allowed the
common dynamics to have a higher order but allowed the coupling
part only the first order, because the fMRI data did not show any
prominent common periodicity as the kinematic data did. The state-
space model described in Appendix Awas applied, with the following
parameterization:

F ¼

f111 f112 1 0 1
f121 f122 0 1 c
f211 f212 1 0 0
f221 f222 0 1
v O v

fp11 fp12 N 0 0
fp21 fp22 0 0 0
0 0 : : : 0 0:05

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

p : AR orderð Þ

G ¼
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0 1 0
0 N 0
v v
0 N 0
0 0 1

0
BBBBBB@

1
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Hj ¼ 1 0 0 0 0 N 0
0 1 0 0 0 N 0
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Q ¼
σ 1ð Þ2 0 0
0 σ 2ð Þ2 0
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0
@

1
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R ¼ 0:042 0
0 0:042
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Here, Fwas a (2p+1)×(2p+1) square matrix. The upper left 2p×2p
element was a canonical form of a bivariate AR(p) process (Aoki,1990),
capturing the main characteristics of the time series. p was chosen
using the AIC, such that the bivariateMARmodel with the smallest AIC
was selected (Akaike, 1977). The common dynamics process, aimed at
capturing the instantaneous dynamics, was adopted by introducing
the last element of F. This near-white AR process was coupled to the
observed states by the coefficients 1 and c (Wong and Ozaki, 2007).

The three elements of the system noise ωt were distributed to the
first, the second, and the last element of xt through the designed G. As
the coupling of the hidden variable and the observed states happened
in F, the observation matrix H helped in taking only the first two
elements of xt.

Again, Q was the variance of ωt and R was the variance of the
observation error εt. Q was assumed to be the diagonal of three
elements: σ(1)2, σ(2)2, and σ(3)2. As the measurement error of the fMRI
data was about ±0.25, we set the observation noise variance at 0.042.

The set of free parameters included 4p+1 parameters in F and
three parameters in Q. These were again estimated by the maximum
likelihood method.
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