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The electric field produced in the brain is the main physical agent of transcranial direct current stimulation
(tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS.
Here,we usemultiple-subject analysis to study the strength and variability of the group-level electric fields in the
standard brain space.
Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The
finite-elementmethodwasused to computationally estimate the individual electricfields, whichwere registered
to the standard space using surface based registration.Motor cortical and frontal tDCSweremodelled for 16 elec-
trode montages.
For each electrodemontage, the group-level electricfields had a consistent strength and direction in several brain
regions, which could also be located at some distance from the electrodes. In other regions, the electric fields
were more variable, and thusmore likely to produce variable effects in each individual. Both the anode and cath-
ode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. Formotor
cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for
frontal tDCS, the group-level electricfieldsweremore variable, and the electrode locations had onlyminor effects
on the group average fields.
Our results reveal the electric fields and their variability at the group level in the standard brain space, providing
insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and
interpreting tDCS studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Direct currents applied to electrodes attached to the intact scalp can
be used to modulate brain activity (Priori et al., 1998; Nitsche and
Paulus, 2000). The effects of stimulation can be altered by reversing
the polarity or changing the amplitude of the current (Nitsche and
Paulus, 2000; Nitsche and Paulus, 2001; Furubayashi et al., 2008). Trans-
cranial direct current stimulation (tDCS) can modify brain plasticity,
which refers to dynamic changes in the central nervous system connec-
tivity due to normal external and internal stimuli or brain damage. Be-
cause tDCS is well tolerable and affordable (Fregni and Pascual-Leone,
2007; Hummel et al., 2008; Tanaka and Watanabe, 2009; Brunoni
et al., 2012; Meron et al., 2015), it is promising as an alternative treat-
ment strategy for diverse neurological or psychiatric diseases that
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involve pathological plasticity (Kuo et al., 2014). For instance, tDCS
has shown effectiveness for depression (Meron et al., 2015), chronic
pain (Kuo et al., 2014), or stroke recovery (Marquez et al., 2015).

Currently, the main limitation of tDCS is the variability in its effects
depending on each individual (Wiethoff et al., 2014; López-Alonso
et al., 2014; Chewet al., 2015; López-Alonso et al., 2015). The underlying
reason for the inter-subject variability may be that physically tDCS acts
by giving rise to an electric field that polarizes the brain tissue. However,
every brain is different, and themagnitude and direction of the polariz-
ing electric field in each brain are also different. Estimating the electric
fields requires numerical analysis, because the stimulating current fol-
lows a complex path between the electrodes, passing through the
scalp, skull, meninges, and cerebrospinal fluid (CSF) before reaching
the brain. Recently, modelling studies have shown that these anatomi-
cal features are the defining factors of the individual brain electric fields
(Truong et al., 2013; Bai et al., 2014; Laakso et al., 2015; Opitz et al.,
2015). The electric field is unevenly spread on the cortex, having several
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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hotspots both under and between the electrodes (Datta et al., 2009,
2012; Bai et al., 2014; Shahid et al., 2014; Laakso et al., 2015;
Saturnino et al., 2015). Because of the inter-individual variability in
the electric fields, it is still not clear which of these hotspots are preva-
lent in a considerable portion of subjects, and which are singularities
due to individual brain anatomy.

Changing the locations of the electrodes has been shown to alter the
electric field in the brain (Bikson et al., 2010; Bai et al., 2014). In exper-
iments, the effects of tDCS depend on the locations of both the stimulat-
ing and reference electrodes (Nitsche and Paulus, 2000; Nitsche et al.,
2007; Bikson et al., 2010; Moliadze et al., 2010; Mehta et al., 2015), as
well as their size and orientation (Ho et al., 2016). Therefore, the elec-
trode montage could potentially be used to steer the effects of tDCS
(Bai et al., 2014). However, we do not know how much the electrode
montage can be used to control the electric fields in a group of subjects,
or if the electric fields tend to always concentrate in the same regions
despite electrode montage.

Here, we propose a systematic way to investigate the electric fields
on the population level by registering individually calculated electric
fields to a standard brain space. The approach helps identifying the af-
fected brain areas in the standard space, allowing retrospective analysis
of existing tDCS studies and guiding the selection of the electrode mon-
tage for future studies.

Methods and models

Subjects and imaging methods

All MRI scans were acquired using a 3.0 T MRI scanner (Verio; Sie-
mens, Ltd., Erlangen, Germany). The study was approved by the local
ethics committee of the National Institute for Physiological Sciences.

Structural T1-weighted MRI of 44 subjects (19–38 years, 12
female) were acquired using a Magnetization Prepared Rapid
Acquisition in Gradient Echo (MPRAGE) sequence (TR/TE/TI/FA/FOV/
voxel size/number of slices = 1800 ms/1.98 ms/800 ms/9°/256 mm/
1.0 mm × 1.0 mm × 1.0 mm/172 to 192). In addition, T2-weighted MRI
were acquired for the same subjects (TR/TE/FOV/voxel size/slice num-
ber=4500ms/368ms/256mm/1.0mm×1.0mm×1.0mm/224 slices).
Additionally, T1- and T2-weighted structural MRI of 20 male subjects
(21–55 years) were obtained from a freely available repository (NAMIC:
Brain Multimodality, 3.0 T MRI scanner, data and imaging parameters
available online at http://hdl.handle.net/1926/1687). Two of the
additional subjects were excluded from further analysis owing to poor
image quality.

Fig. 1 shows the distribution of age, gender, ethnic group, and hand-
edness in the study group. In total, the number of subjects was 62 (age:
29.2 ± 11.2 years, 12 female).

Cortical reconstruction and registration

Cortical surfaces were reconstructed from the MR images using the
FreeSurfer image analysis software (Dale et al., 1999; Fischl et al.,
Fig. 1. Study population. Columns describe the data for each subject. The colour scale is
normalized as following: age: 0 corresponds to 19 years and 1 corresponds to 55 years;
gender: 0 = female, 1 =male; ethnicity: 0 = Caucasian, 1 = Japanese; and handedness:
0 = left, 1 = right. The data marked with grey were not available.
1999; Fischl and Dale, 2000; Desikan et al., 2006) (version 5.3.0, down-
load and documentation available online at http://surfer.nmr.mgh.
harvard.edu). The individual subjects' brain surfaces were registered
using the spherical demons algorithm (Yeo et al., 2010) to a custom av-
erage template created using all 62 subjects. The effect of the registra-
tion method on the results is studied in Section 0. To present the
results in the standard space, FreeSurfer was used to generate the
brain surface of the Montreal Neurological Institute (MNI) ICBM 2009a
nonlinear asymmetric template (Fonov et al., 2009, 2011), which was
then registered with the custom template using the spherical demons
algorithm. This allowed mapping of individually calculated electric
fields to the MNI template brain (Fig. 2).
Volume conductor models

T1- and T2-weighted MRI of 62 subjects were segmented using in-
house software (Laakso et al., 2015) that uses FreeSurfer for brain seg-
mentation. Briefly, tissue compartments (scalp, outer skull, inner skull,
greymatter, whitematter, cerebellar greymatter, cerebellarwhitemat-
ter, brainstem, nuclei, ventricles, and eyes) were first constructed from
MR images. The compartments were further segmented based on both
MR image intensities and geometrical information: the scalp compart-
ment was segmented into skin, fat, and muscle; the skull into compact
and spongy bone; and the space between the skull and grey matter
into cerebrospinal fluid (CSF), blood vessels, and dura. The quality of
the inner skull surface was verified slice-by-slice by visual inspection
and errors were corrected when necessary. The constructed inner
skull surface was used instead of the default skull strip procedure of
FreeSurfer to remove dura and make sure that there was at least
0.5 mm separation between the skull and cortex. Other tissue bound-
arieswere verified by two examinerswho inspected both the 3D surface
representations of tissue boundaries and a number slices of the seg-
mented models.

Tissue conductivities were assumed to be linear and isotropic. Mea-
sured grey matter conductivities have typically varied between
0.1–0.3 S/m in the literature (Freygang and Landau, 1955; Ranck,
1963; Stoy et al., 1982; Tay et al., 1989; Gabriel et al., 1996; Latikka
et al., 2001; Akhtari et al., 2006, 2010). Therefore, the grey matter con-
ductivity was chosen as 0.2 S/m. The white matter conductivity was as-
sumed 30% lower than that of the grey matter (Freygang and Landau,
1955; Stoy et al., 1982; Gabriel et al., 1996). Other tissue conductivities
were: blood (0.7 S/m; Gabriel et al., 1996), compact and spongy bone
(0.008 and 0.027 S/m; Akhtari et al., 2002, values increased by 30% to
compensate for room temperature measurements), CSF (1.8 S/m;
Baumann et al., 1997), muscle (0.16 S/m; Gabriel et al., 2009), skin
and fat (0.08 S/m; Gabriel et al., 2009), eye humour (1.5 S/m;
Lindenblatt and Silny, 2001), and dura (0.16 S/m, same asmuscle, an ar-
bitrary choice).

The final volume conductormodels were represented in a grid of cu-
bical voxels. Fig. 3 shows a coronal slice of a volume conductor model
generated using the voxel size of 0.5mm. The voxelswere assigned con-
ductivity values differently if theywere divided by a brain tissue bound-
ary: the voxels on the boundary between the grey matter and CSF were
given the average conductivity of greymatter and CSF, and similarly, the
boundary between the grey andwhite matter was assigned the average
conductivity of the grey and white matter.

Potential problems in themodelswere that parts of the superior sag-
ittal or transverse sinuses were sometimes misclassified as skull, and
thin structures, such as blood vessels and falx cerebri, were not neces-
sarily continuous. The effects of these segmentation errors on the
electric fields were expected to be small. To test this, we performed
electric field simulations of motor cortical tDCS (anode at C3 and cath-
ode at Fp2) in ten subjects and modified the conductivity of blood by
±20%. The changes in the electric fields over the left hemipshere were
at most 4% of the maximum absolute value.

http://hdl.handle.net/1926/1687
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 2. Analysis procedure. (1) Segmentation, (2) individual electric field calculation, (3) registration to standard brain. After registration, all individual electricfields are represented in the
MNI space, and can be analysed statistically. The electric fields are normalized by the 99th percentile calculated over the left hemisphere.
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Numerical electric field modelling

The electric scalar potential ϕ was determined from the scalar po-
tential equation ∇⋅σ∇ϕ=− i, where σ (S/m) is the conductivity and i
(A/m 3) is the current source, which is nonzero only at the connector,
satisfying ∫ idV=0 and I ¼ 1

2 ∫ jijdV where I (A) is the stimulation
current.

The equation was solved numerically using the voxels of the volume
conductor model as the elements and piecewise linear basis functions,
as described previously (Laakso and Hirata, 2012). The degrees of free-
dom were the values of the potential at the corners of each voxel. The
equation system was solved to the relative residual of 10−8. The electric
fields were calculated from the gradient of the scalar potential at each
vertex of a polygonal surface located 1mmbelow the greymatter surface.

Electric field simulations for one subject were run to determine the
most suitable voxel size, see Supplementary note 1. Based on the results,
a 0.5 mm voxel size was chosen because it gave good agreement with
finer resolutions, and provided an average computational time of 40 s
(33×106 elements on average) on a computer with Intel Core i7-
5820K @ 3.30 GHz running Ubuntu Linux 14.04 and MATLAB R2014a.

Electrode montages

The locations of the EEG electrodes were estimated using an auto-
matic procedure. First, the locations of Iz, Oz, T7 and T8 in the MNI
Fig. 3. Electrical conductivity for the voxel size of 0.5 mm.
space (Jurcak et al., 2007) were mapped to the individual subject
space using an affine registration between the individual MRI and the
MNI template (Johnson et al., 2007). Then, the closest points on the in-
dividual scalp surface were selected as the locations of Iz, Oz, T7 and T8.
The rest of the EEG electrode locations were determined automatically
from these four using the standard procedure for EEG electrode posi-
tioning (Jurcak et al., 2007).

Sixteen electrode configurations were considered for two targets,
the left primary hand motor cortex, and the left dorsolateral prefrontal
cortex (DLPFC). The reference locations of the anodes were over C3
and F3, respectively. The anodes were moved in anterior and posterior
directions in 1 cm increments, up to ±3 cm for C3 and up to ±2 cm
for F3. The cathode locations were either right supraorbital (Fp2), con-
tralateral (C4 or F4), or extracephalic (monopolar stimulation). The
stimulating current was 1 mA.

The electrodes were modelled based on a realistic two-compartment
model proposed by Saturnino et al. (2015). They consisted of circular
sponges saturatedwith normal saline (area 35 cm2, thickness 6mm, con-
ductivity 1.6 S/m). A circular 1-mm thick rubber sheet (conductivity
0.1 S/m) was inserted in the sponge, as illustrated in Fig. 4A. A connector
modelled as a disk with a radius 5 mm was placed on top of the rubber
sheet, serving as a current source, with a source or sink current distribut-
ed uniformly on the disk. A 1-mm bulge was added to the rubber elec-
trode so that the connector was covered by 1 mm of rubber in every
direction. As shown in Fig. 4B, the electrodes produced a current distribu-
tion with the current density maxima both directly under the connector
and under the electrode edges, similarly to the findings of Saturnino
et al. (2015). The electrode models were inserted into the volume
conductor models by assigning each voxel a conductivity value propor-
tional to the relative volumes of sponge and/or rubber in each voxel
(see Fig. 3 for an example). For the monopolar electrode montages, the
extracephalic reference electrode was modelled by a volumetric current
source distributed evenly on the inferior boundary of the computation
domain.
Electric field analysis

The electric fields calculated on each individual brain surface
were mapped to the MNI template brain surface using the inter-
subject registration method. The resultant electric field dataset
consisted of the electric field values at 277,837 vertices on the



Fig. 4. Electrode models (A) and current density on a surface located 1 mm below the scalp (B).
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cortical surface of the MNI template brain, for 62 subjects and 16
electrode configurations.

Electric fields perpendicular to the cortical surface can cause facilita-
tion or inhibition of cortical activity depending on the field direction
(Bindman et al., 1964). Therefore, we focused on studying the inner nor-
mal component of the electric field En, which can be either positive (‘an-
odal’) or negative (‘cathodal’). The role of other field components
(Rahman et al., 2013) is less clear because of the isotropy of horizontally
oriented neurones. For completeness, we also reported the absolute
value of the electric field |E |.

The sample mean value was used as the metric of the group level
electric field strength and the sample standard deviation was used as
themeasure of variation. To compare the electric fields of different elec-
trode montages, the change in the electric field ΔE=E−E0 was studied
by calculating the sample means of its absolute value |ΔE | and normal
component ΔEn. The reference electric field E0 is the electric field calcu-
lated using the C3–Fp2 or F3–Fp2 electrode montages.
Results

Electric fields of motor cortical tDCS

Fig. 5 shows the electric field data of motor cortical tDCS with the
C3–Fp2montage, calculated over all 62 subjects, overlaid on the inflated
surface of theMNI template brain. The data of other eightmotor cortical
electrode montages can be found in online Supplementary material.

Several regions showed electric fields with highly consistent direc-
tions at the group level (Fig. 5E). These regions were not necessarily
confined to the vicinity of the electrodes, but could also be found far
from the electrodes, e.g., on the opposite hemisphere or in the medial
wall. Some of the regions with consistent field directions also had a
high electric field magnitude (Fig. 5A), producing anodal or cathodal
electric field hotspots (Fig. 5C). One of the hotspots was in the close vi-
cinity of the targeted hand area. Others could be found especially in
sulcal pits and superficial parts of sulcal walls. At several of these
hotspots, the group level electric field was dominantly in the normal di-
rection, i.e., the normal component was larger/smaller than �jEj=

ffiffiffi

2
p

.
The regionswith a consistentfield direction and highmagnitude can

be seen as regions with a low relative variability in Fig. 5D, e.g., near the
hand knob region. However, especially frontal and parietal regions
showed a large inter-subject variability, indicating that there could be
high electric fields in some subjects, but in others, thefields had variable
locations and/or directions. We also note that, despite small standard
deviation in most of the hand knob, a small region in the dorsal/medial
part showed variable electric fields due to inconsistent field directions
(anodal, cathodal, or tangential) in each subject (Fig. 5E).

Compared to the normal component, the absolute value was more
evenly spread and showed hotspots at several sites under and between
the electrodes (Fig. 5A). Topographically, the sites with the highest
absolute value were located in gyral crowns and sulcal pits (Fig. 5E).
Variability in the absolute value was smaller than that in the normal
component (Fig. 5B), because it did not account for variable field direc-
tions in different subjects. Also, the variability in the absolute value did
not show clear regions with a smaller or larger inter-subject variability
(Fig. 5B).

Fig. 6 shows the effects of the electrode configuration on the electric
field. Moving the reference electrode to the bilateral or extracephalic
positions altered the electric fieldswithin and around the hand knob re-
gion. In some regions, the changes had a consistent effect in either anod-
al or cathodal directions. In other regions, the changeswere either in the
tangential direction or the direction of the change varied between sub-
jects. Larger changes were induced by moving the location of the stim-
ulation electrode.Moving the anode anteriorlymade the electric field in
the anteriorwall of the central sulcus less anodal, andmoving the anode
posteriorly induced opposite changes. We found that, in the case of
large sponge-type electrodes studied herein, the optimal electric field
in the ventral/lateral part of the hand knob was obtained when the
anode was moved 2 cm posterior to C3 (Supplementary Fig. 7).

Electric fields for tDCS of the dorsolateral prefrontal cortex

Fig. 7 shows the electric fields for the F3–Fp2 electrodemontage. The
data for six other DLPFC electrode montages are presented in Supple-
mentary Figs. 11–16.

The averaging procedure revealed several regions with consistent
electric field directions despite inter-subject variation (Fig. 7E). These
regions were found on the lateral walls of superior frontal and middle
frontal regions, and were mostly concentrated on sulcal walls facing
the anode. Also notable were the consistent electric fields in the medial
wall, negative on the anodal hemisphere and positive on the cathodal
hemisphere. Strong electric fields reached the depth of the cingulate
sulcus.

Comparison of Figs. 5D and 7D indicated that the relative standard
deviation of the electric field was larger for frontal tDCS than for
motor cortical tDCS. Whereas motor cortical tDCS had a low-
variability high-field region under the anode, no similar region was vis-
ible for frontal tDCS. The higher degree of variability was due to more
variable field directions, because the variation in the magnitude of the
electric field was comparable to that of motor cortical tDCS (Figs. 5B
and 7B).

Fig. 8 shows the effect of the electrode locations on the electric fields.
Changing the reference electrode location to the bilateral location only
had a minor impact on the electric fields. In contrast, changing to an
extracephalic reference electrode reduced the overall field magnitude
(see Supplementary Fig. 12). Moving the anode had inconsistent effects
on the electric field depending on each individual. As the result, while
the absolute changes in the electric field were of similar magnitude to
those for motor cortical tDCS, the normal component changed little, es-
pecially compared to the higher inter-subject variability (Fig. 5D).



Fig. 5.Mean electricfields and their variability formotor cortical tDCS calculated over 62 subjects. The anode is located at C3 and the cathode over contralateral supraorbital (Fp2). A, B: The
mean value of the electric field absolute value and its standard deviation. C, D: Themean value of the electric field normal component and its standard deviation. E: The distribution of the
normal component direction among the subjects. High or low values indicate that the field directions are consistently anodal or cathodal at the group level. F: Cortical folding pattern and
parcellation produced by FreeSurfer. Insets show the results on the medial wall of the left hemisphere. Colour scales are truncated at the 99th percentile.

144 I. Laakso et al. / NeuroImage 137 (2016) 140–151
Robustness

Group size
The effect of the group size on the group-level electric fields was

studied using Monte Carlo simulations. Two non-intersecting groups
of equal size were selected randomly from among the 62 subjects and
the correlations in the group electric field datawere calculated. The pro-
cess was repeated 500 times for each group size, and the sample mean
and standard deviation of the correlation were calculated. Fig. 9 shows
the correlations in the group-level electric fields calculated over the
whole left hemisphere and over the left hand knob region for the C3–
Fp2 electrode montage. The correlations in the absolute value are
stronger than those in the normal component, indicating that a
larger number of subjects is needed for investigating the field with di-
rectional information. For the normal component, the correlation
reaches r = 0.90 for a group size of 13 and r = 0.95 for a group size of
26. For the absolute value, similar correlations can be obtained with
groups of three and seven subjects, respectively. A much larger number
of subjects is needed to reliably estimate the standard deviation of the
electric field: 22 subjects for r = 0.90 and approximately 44 subjects
for r = 0.95 (extrapolated).

Inter-subject registration
To investigate the effect of the registration method on the group-

level electric field data, four different surface-based registration
methodswere applied for the same data. Themethods were the follow-
ing: FreeSurfer (Fischl et al., 1999) with the default FS40 template,
FreeSurfer with a custom template, the spherical demons algorithm
(Yeo et al., 2010) with the example atlas constructed from 39 subjects
(DW Atlas 1 to 39), and the spherical demons algorithmwith a custom
template. The custom templates were generated from all 62 subjects
using the respective algorithms for registration (Klein et al., 2010).

Fig. 10 shows the distribution of the electric field directions deter-
mined using each registration method. Despite slight differences, all
four registration methods produced qualitatively similar results, identi-
fying the same regions with a low variability in the field direction. We



Fig. 6.Differences inmean electricfields due to electrode locations for themotor cortical target. The electricfields of (A, B) C3–C4, (C, D)monopolar C3, (E, F) anode2 cmanterior to C3, and
(G, H) anode 2 cmposterior to C3 are compared to the electric fields of the C3–Fp2montage. The left column shows themeandifference in the electric field and the right column shows the
mean difference in the normal component. The values are normalized by the mean absolute value of the electric field for the C3–Fp2 montage (Fig. 5A).
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chose to use the spherical demons algorithm with a custom template,
because using a study-specific template has been previously shown to
improve the registration quality compared to generic templates (Klein
et al., 2010; Winkler et al., 2012).

Discussion

The prime novelty compared to previous computer simulation stud-
ies is that our approach allows investigation of the electric fields on the
population level. Simulations in 62 subjects and surface-based registra-
tion allowed us to construct a surface-based “atlas” of likely areas affect-
ed by tDCS, without a need to take into account the singularities of
individual brain anatomy. The results can be presented in the standard
brain space, which allows relating the electric fields with neuroimaging
data or anatomical or functional atlases (Van Essen and Dierker, 2007).

Regions with positive and negative electric fields

The results showed that there are brain regions where the electric
fields are oriented similarly and are consistently strong among the pop-
ulation. Another class of regions consisted of high-variability regions
where the electric fields could be strong depending on the individual,
but at the group level, the fields had variable strengths and/or direc-
tions. Both the low- and high-variability regions with strong electric
fields are potential sources of physiological effects of tDCS. We hypoth-
esize that the modulation of high-variability regions causes effects that



Fig. 7. Electric fields for DLPFC stimulation. The anode is located at F3 and the cathode over the contralateral supraorbital (Fp2). A, B: Themean value of the electric field absolute value and
its standard deviation. C, D: Themean value of the electric field normal component and its standard deviation. E: The distribution of the normal component direction among the subjects.
High or low values indicate that the field directions are consistently anodal or cathodal at the group level. F: Cortical folding pattern and parcellation produced by FreeSurfer. Insets show
the results on the medial wall of the left hemisphere. Colour scales are truncated at the 99th percentile.
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are likely to be variable in a group of subjects, and could be one of the
origins of the variability in tDCS. Oppositely, a statistical analysis of a hy-
pothetical tDCS study would only detect effects that are similar in mul-
tiple subjects and more likely to originate from the low-variability
regions.

For motor cortical tDCS with a contralateral frontopolar cathode, the
electric fields were strong and directed consistently into the cortex in
the anterior wall of the central sulcus (Brodmann area BA4) near the
hand knob region. This finding is similar to our previous study, where
we observed concentration of electric fields in the hand motor area
(Laakso et al., 2015). However, in the dorsal/medial part of the hand
knob, the field directionswere variable between subjects, whichwe attri-
bute to anatomical variations in the shape of the hand knob: depending
on the individual hand knob anatomy, the current may enter the hand
knob laterally and exit medially, enter the cortex uniformly over the
whole hand knob region, or flow tangentially following the course of
the central sulcus.

In addition to the handknob, therewere several other regionswith a
highmean electric field and low variability. For instance, strong electric
fields comparable to those in the hand knob region could be found in
the premotor areas (BA6), the fundus of the central sulcus (BA3a), the
postcentral gyrus (BA1), and the postcentral sulcus (BA2). These stimu-
lation hotspots are not artefacts, but features that are common for a
considerable portion of subjects, i.e., tDCS typically induces electric
fields in these areas. Thus, they could play a part in the mechanisms of
tDCS.



Fig. 8.Differences inmean electricfields due to electrodemontage for frontal tDCS. The electricfields of (A, B) F3–F4, (C, D)monopolar F3, (E, F) anode 2 cmanterior to F3, and (G, H) anode
2 cm posterior to F3 are compared to the electric fields of the F3–Fp2 montage. The left column shows the mean difference in the electric field and the right column shows the mean
difference in the normal component. The values are normalized by the mean absolute value of the electric field for the F3–Fp2 montage (Fig. 7A).
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We note that, even directly under the anode, the electric field direc-
tion can be consistently cathodal, i.e., out of grey matter. The phenome-
non is visible both in individual (Fig. 2) and group electric field data
(Fig. 5E). It occurs when the current enters and leaves a gyrus at oppo-
site sites. Examples are the anteriorwalls of the post-central (BA3b) and
pre-central gyri (BA6) formotor cortical tDCS (Fig. 5). Although not vis-
ible in thefigures, therewere also consistently cathodal electricfields on
the ceiling of the lateral sulcus, near the location of the secondary so-
matosensory cortex.

For frontal tDCS, the electric fields were more variable than for
motor cortical tDCS. Still, strong consistently anodal electric fields
were found in the lateral walls of the superior frontal and middle
frontal gyri (BA9 and BA46). These sites are in agreement with the
data from two subjects in a previous study (Bai et al., 2014). The elec-
tric fields were most consistent on the walls of the interhemispheric
fissure, negative on the anodal hemisphere, and positive on the op-
posite hemisphere. Contrary to motor cortical tDCS, there were no
areas with consistently negative electric fields under the anode,
even though such areas existed in individual subjects (Fig. 2). The
larger variability in the individual electric fields may be important
for explaining the variable effectiveness of frontal tDCS (Tremblay
et al., 2014).



Fig. 9. Effect of group size on the group electric field data for the C3–Fp2 electrode
montage. The mean electric field normal component, mean absolute value, and standard
deviation were calculated for two groups of equal size in the whole left hemisphere and
in the hand knob region. Correlations in the vertex-wise data were calculated between
500 randomly selected pairs for each group size (mean ± standard deviation).
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Group effects of electrode montage

Moving the anode±2 cm in the anterior–posterior direction altered
the mean electric field in the hand M1 by up to ±40%. We note that
therewere some subjectswhose electric fields changed very little or op-
positely compared to the group average. In experimental work, the
anode is typically located at the hotspot identified using transcranial
magnetic stimulation (TMS). However, previous studies have shown
that the TMS hotspot may be shifted anteriorly compared to the ana-
tomical location of the hand knob or C3 (Diekhoff et al., 2011; Sparing
et al., 2008). Here, we found that an anterior location of anode may re-
duce the electric field, and thus, the anode should be placed posteriorly
for optimal stimulation of the motor cortex. When using a paired mon-
tage of two large electrodes with the cathode over the contralateral
orbit, the optimal anode location for targeting the anterior wall of the
central sulcus was 2 cm posterior to C3.

The sensitivity of the group-level electric fields to the displacement
of the anode is advantageous on one hand, because it indicates that
stimulation can be optimized or targeted at the group level by moving
the electrodes. On the other hand, the effects of the stimulating elec-
trode location may have important implications on studies of intra-
individual variability of tDCS (Chew et al., 2015; López-Alonso et al.,
Fig. 10. Comparison of four surface-based registration methods. The registered electric field dir
montages are C3–C4 and F3–F4, respectively. Each registrationmethod produces consistent fiel
in e.g. parietal and frontal areas.
2015). If a 1 cm difference produces a 20% change in the brain electric
fields, and possibly more in individual subjects, accurately controlling
the electrode placement between tDCS sessions is essential for control-
ling intra-subject variability. We note that an earlier study showed only
minor effects of electrode displacement in two subjects (Bai et al.,
2014), possibly because the electric fields were averaged over a larger
region.

Moving the reference electrode to the contralateral M1 or to an
extracephalic position altered the electric field in the left M1 and
other regions. Depending on the montage and region, the fields could
either increase or decrease. Experimental studies have observed varia-
tions in the effects of tDCS depending on the reference electrode loca-
tion. For instance, monopolar tDCS has a decreased effectiveness
compared to a frontopolar reference (Moliadze et al., 2010). Our results
suggest that this may be due to a decreased (approximately 10–20%)
mean electric field in the primary motor cortex in the anterior wall of
the central sulcus.

A few studies have observed differential effects of unilateral and bi-
lateral tDCS (Lindenberg et al., 2013; Sehm et al., 2013). Here, there
were only relatively small differences in the electric fields in the hand
M1 for unilateral and bilateral electrode montages. Therefore, differen-
tial physiological effects, such as inter-hemispheric inhibition (Curtis,
1940), are most likely due to simultaneous stimulation of the bilateral
M1. However, we cannot exclude the possibility of contributions from
other regions with high electric fields (Fig. 6). Interestingly, there
were large differences in the electricfields on themedialwall, where bi-
lateral tDCS has shown enhanced connectivity compared to unilateral
tDCS (Lindenberg et al., 2013).

For frontal tDCS, the electric fields weremore variable, whichwe at-
tribute to the larger variability in the cortical folding pattern in the fron-
tal regions. It was also difficult to manipulate these fields at the group
level by changing the electrode configuration. Even though the elec-
trode configuration affected the individual electric fields, themean elec-
tric fields did not show large changes because, as the field decreased in
some subjects, in others it increased. Thus, the electric fields cannot be
easily controlled at the group level using large electrodes as considered
herein.

High-variability regions identified in this study cannot be consis-
tently stimulated at the group level using traditional tDCS electrode
montages that consist of a pair of large electrodes. For targeting these
regions, alternative approaches are needed. For instance, personalized
electrode optimization methods could be used to remove inter-subject
variability (Dmochowski et al., 2011; Sadleir et al., 2012; Ruffini et al.,
2014). These approaches use individual electric field simulations to
ections are shown for bilateral tDCS of the motor cortex (A) and DLPFC (B). The electrode
d directions in the same regions. Differences between the registrationmethods can be seen
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design an electrodemontage that produces a desired electric field in the
targeted area andminimizes the electric field in non-target regions. An-
other possibility would be to design electrode montages that minimize
the variability at the group level. For instance, here we found that the
medial part of the hand knob, which showed a large variability, could
be targeted by moving the anode 3 cm posteriorly (Supplementary
Fig. 9). However, none of the studied montages could reduce the vari-
ability in the DLPFC. It remains future work to study whether the vari-
ability in the group-level electric fields could be reduced by using
smaller electrodes or electrode montages that feature multiple elec-
trodes, such as high-definition tDCS (Minhas et al., 2010; Kuo et al.,
2013).

Mechanisms of tDCS

Our results suggest that if tDCS produces strong enough electric
fields to affect one area in a group of subjects, e.g. the hand M1, it
would also affect several other regions at the group level simultaneous-
ly, either with anodal or cathodal field directions. The electric fieldmag-
nitudes peaked at around 0.5 V/m, which is comparable to
experimentally measured thresholds for modulation of neuronal activi-
ty (Bindman et al., 1964; Francis et al., 2003).

tDCS can induce changes in a variety of regions also distant from the
electrodes (Lang et al., 2005), and alter intra- and interhemispheric con-
nectivity between brain areas (Polanía et al., 2011a, b; Lindenberg et al.,
2013; Sehmet al., 2013). Onepotential hypothesis is that tDCS affects an
area directly under the electrode, inducing local changes that manifest
itself in increased or decreased connectivity to other regions, leading
to functional changes that are more widespread than the stimulated
area only. In view of our results, spatial spread of tDCS and alterations
in connectivity may as well be related to simultaneous facilitation/inhi-
bition ofmultiple separate areas. If this is the case, relating electric fields
to the effects of tDCS requires analysis that must consider functional in-
teractions in addition to local electric field values.

There is evidence of non-linearity or non-monotonicity in responses
to tDCS, the effects reversing at higher current magnitudes (Batsikadze
et al., 2013). Possible individual differences in the responses to different
stimulation current intensities have also been reported (Chew et al.,
2015). We hypothesize that these effects are either due to local effects
of electric fields, i.e., in each affected region, the response is a non-
linear function of the local electric field; or they are of global nature,
i.e., as the currentmagnitude increases,more brain areas become affect-
ed, among them areas with either anodal or cathodal field directions.

The network effects of stimulation and potential non-linearity have
so far been studied using large electrodes. However, as shown here,
these types of electrodes produce widespread electric fields with
many potential loci of stimulation, not only in individuals but also at
the group level. More focal tDCS techniques that use multiple smaller
electrodes (Kuo et al., 2013; Miranda et al., 2013; Ruffini et al., 2014)
could be used to study whether the underlying mechanisms are due
to local or widespread modulation of cortical activity.

Limitations

Because our approach requires mapping the electric fields to a com-
mon template, it is affected by the quality of the inter-subject registra-
tion. We found that different registration methods identified the same
low-variability regions, and none of the methods provided systemati-
cally smaller variability than the others. The methods produced slightly
different results in e.g. frontal regions, which also showed a high vari-
ability in the electricfields. Therefore, some of the variability in these re-
gionsmay originate from errors in the registration procedure. However,
we note that all variability in the electric fields is due to anatomical fac-
tors, and is thus expected to be larger in regionswith a larger anatomical
variability, e.g., in frontal regions, which have complex cortical folding
patterns. Lastly, even if all anatomical landmarks were registered
perfectly, the same might not be true for functional regions, which
could be located in different anatomical locations in different
individuals.

The tissue DC conductivity values are an important uncertainty fac-
tor. In our results, the electric field magnitudes were higher than
those in previous studies (Datta et al., 2012; Truong et al., 2013;
Miranda et al., 2013; Bai et al., 2014), mainly because we assumed a
lower conductivity for the scalp. Previouswork has shown that decreas-
ing the scalp conductivity to 25% increases the magnitude of the brain
electric fields by about 70%, but has only minor effects on their spatial
distribution (Laakso et al., 2015; Saturnino et al., 2015). There were
also differences in other conductivity values, including those of the
brain. For instance, the greymatter conductivity has typically been cho-
sen to be 0.33 S/m or 0.276 S/m, as derived from the literature data by
Haueisen et al. (1997) andWagner et al. (2004). Inter-individual varia-
tions in brain conductivity have also been reported (Akhtari et al., 2006,
2010). Such variations could alter individual electric fields but are un-
likely to affect the group-level electric field data presented herein. An
additional uncertainty factor is that we did not model the electrical an-
isotropy of white matter (Suh et al., 2012; Shahid et al., 2014; Wagner
et al., 2014). However, the effect of anisotropy on the electric field is ex-
pected to be smaller in the cortical grey matter than deep inside white
matter (Suh et al., 2012; Shahid et al., 2014; Wagner et al., 2014).

Lastly, we note that the results presented herein are only valid for
paired montages of large electrodes, which are the most commonly
used configurations for tDCS (Nitsche et al., 2008). However, our
inter-subject registration and averaging approach can be used without
modifications to study other kinds of electrode montages as well.

Conclusion

Weproposed amethod for studying the electric fields of tDCS on the
group level. The approach allows investigation of areas affected by tDCS
in a standard brain space, and with minor modifications is also applica-
ble to other transcranial electrical neuromodulation techniques, includ-
ing transcranial alternating current stimulation and random noise
stimulation.

Several brain regions had consistently strong electric fields in the
population and are potential sources of the effects of tDCS. There exist
both regionswhere the group-level electric fields are consistently anod-
al or cathodal, depending on the electrode montage, as well as regions
with a high inter-subject variability in the electric field directions. The
question as towhether simultaneousmodulation of multiple areas con-
tributes to tDCS-induced plasticity needs to be further explored. For this
purpose, the approach presented here could be used to design focal
tDCS techniques that minimize the spatial spread and variability of the
group-level electric fields. The group-level electric field magnitudes
can be estimated using only a few subjects, but investigating thefield di-
rections and variability may require more than 20 individual models
(Fig. 9).

We observed effects of the stimulating and reference electrode loca-
tions not only on the individual but also on the group-level electric
fields. Therefore, the electrode locations must be accurately controlled
for reducing both inter-study and intra-subject variability. Lastly, the
electric fields of frontal tDCS were highly variable and could not be con-
trolled at the group level by moving the electrode locations. We expect
that frontal tDCS will produce variable results unless the electric fields
are controlled using individual modelling and/or new kinds of electrode
montages.
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