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Associations between altered DNA methylation of the ser-
otonin transporter (5-HTT)-encoding gene SLC6A4 and 
early life adversity, mood and anxiety disorders, and amyg-
dala reactivity have been reported. However, few studies 
have examined epigenetic alterations of SLC6A4 in schizo-
phrenia (SZ). We examined CpG sites of SLC6A4, whose 
DNA methylation levels have been reported to be altered 
in bipolar disorder, using 3 independent cohorts of patients 
with SZ and age-matched controls. We found significant 
hypermethylation of a CpG site in SLC6A4 in male patients 
with SZ in all 3 cohorts. We showed that chronic admin-
istration of risperidone did not affect the DNA methyla-
tion status at this CpG site using common marmosets, and 
that in vitro DNA methylation at this CpG site diminished 
the promoter activity of SLC6A4. We then genotyped the 
5-HTT-linked polymorphic region (5-HTTLPR) and inves-
tigated the relationship among 5-HTTLPR, DNA methyl-
ation, and amygdala volume using brain imaging data. We 
found that patients harboring low-activity 5-HTTLPR al-
leles showed hypermethylation and they showed a negative 

correlation between DNA methylation levels and left amyg-
dala volumes. These results suggest that hypermethylation 
of the CpG site in SLC6A4 is involved in the pathophys-
iology of SZ, especially in male patients harboring low-
activity 5-HTTLPR alleles.

Key words:   DNA methylation/CpG island shore/serotonin 
transporter/5-HTTLPR/brain imaging/major psychosis

Introduction

The serotonin transporter (5-HTT), encoded by SLC6A4, 
is a major monoamine transporter that regulates sero-
tonin (5-HT) neurotransmission at the synaptic cleft, 
affecting emotions and stress responses1; thus, 5-HTT is 
a target protein of antidepressants. SLC6A4 has a func-
tional polymorphism at a promoter region known as the 
5-HTT-linked polymorphic region (5-HTTLPR), ie, clas-
sified into short (S) and long (L) alleles,2 with the S allele 
exhibiting weaker transcriptional activity.3,4 Caspi et  al5 
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reported that gene-by-environment (G × E) interactions 
between 5-HTTLPR and adverse life experiences are as-
sociated with the development of anxiety and depression. 
To date, numerous case-control association studies have 
been performed, and several meta-analyses have valid-
ated the G × E interactions.6–9 However, their existence 
remains controversial,10,11 and the largest meta-analysis12 
as well as the largest case-control study13 failed to repli-
cate the findings.

In addition to 5-HTTLPR, altered DNA methylation 
of the promoter region of this gene has been reported to 
be associated with childhood maltreatment,14–17 bullying,18 
low socioeconomic status,19,20 stressful life events,21,22 sui-
cide,23 depressive symptoms,24–26 major depression,27–30 
and bipolar disorder (BD).31 Although patients with 
schizophrenia (SZ) frequently exhibit depressive symp-
toms in various stages of the illness, few studies have ana-
lyzed the DNA methylation status of SLC6A4 in SZ.32

We previously identified hypermethylation of SLC6A4 
in the context of BD through promoter-wide screening 
using lymphoblastoid cell lines (LCLs) derived from mon-
ozygotic twins discordant for BD.31 Hypermethylation 
was detected at 2 CpG sites (chr17:30,235,246-30,235,247 
and chr17:30,235,271-30,235,272, named CpG3 and 
CpG4, respectively) within the CpG island shore (defined 
as the region within 2 kb of a CpG island) in the promoter 
region of SLC6A4. We confirmed that hypermethylation 
of the 2 CpG sites existed in LCLs and in postmortem 
prefrontal cortices from individuals with BD.31

In this study, we first confirmed the previous finding 
of hypermethylation of SLC6A4 in BD using periph-
eral blood cells (PBCs). We then examined DNA meth-
ylation levels in SZ and found that CpG3 was also 
hypermethylated in PBCs from patients with SZ in 3 co-
horts. Animal model experiments using common mar-
mosets suggested that this epigenetic change was unlikely 
to be the result of medication. In vitro methylation anal-
ysis revealed that DNA methylation of CpG3 resulted in 
loss of promoter activity in the cultured cell lines. To ex-
amine the relationship between 5-HTTLPR and CpG3 
DNA methylation, we genotyped 5-HTTLPR in detail. 
Strikingly, we found that male patients with BD and SZ 
harboring low-activity 5-HTTLPR alleles showed higher 
CpG3 DNA methylation than those harboring allele 
with high promoter activity. Furthermore, in vivo brain 
imaging analysis revealed a negative correlation between 
CpG3 DNA methylation and left amygdala volume in pa-
tients harboring low-activity alleles, suggesting a patho-
physiological role of SLC6A4 hypermethylation.

Materials and Methods

Samples

All subjects were unrelated to each other and were eth-
nically Japanese. We used genomic DNA of PBCs de-
rived from patients with SZ (N = 440) and age-matched 

controls (CTs) (N = 488). We also used genomic DNA of 
PBCs derived from an independent SZ group (N = 100), 
a first-episode SZ (FESZ) group (N = 16), and a group 
of the same number of age-matched CTs. The details of 
the samples before and after quality control, which in-
volved removal of subjects with low signal intensity in 
pyrosequencing or with genotyping errors, are summar-
ized in supplementary table S1. Details of selection cri-
teria for FESZ and CTs were described in supplementary 
methods.

Animals

Six adult male common marmosets (CLEA Japan, 
Inc, Tokyo, Japan) were used to test the effects of anti-
psychotics. The detailed methods have been previously de-
scribed33 and are described in the supplementary methods. 
In brief, 3 marmosets were administered risperidone at 
a dose of 0.1  mg/kg (Wako Chemical, Tokyo, Japan), 
and the other 3 were given only vehicle. The substances 
were administered orally once a day for 28 days. All ex-
periments were approved by the Institutional Animal 
Care and Use Committee and were conducted in ac-
cordance with the guidelines of the Central Institute 
for Experimental Animals (CIEA, Kanagawa, Japan), 
which comply with the Guidelines for Proper Conduct of 
Animal Experiments published by the Science Council of 
Japan Animal Care.

Molecular Methods

Detailed descriptions of the following molecular methods 
can be found in the supplementary methods: DNA prep-
aration from PBCs of humans and animals, bisulfite 
modification of genomic DNA, pyrosequencing assays, 
5-HTTLPR genotyping, and luciferase reporter assays 
for the 5-HTTLPR allele and for an in vitro-methylated 
CpG construct.

Brain Imaging Analysis

Brain images were acquired using 1.5- and 3.0-Tesla 
MRI scanners (Signa Horizon 1.5 T, Signa HDxt 3.0 
T; GE Healthcare, Milwaukee, WI, United States) 
at the University of Tokyo Hospital as part of the 
Cognitive Genetics Collaborative Research Organization 
(COCORO) consortium.34 In this study, 41 CTs (32 
males and 9 females) and 57 SZ patients (33 males and 
24 females; 3 first-episode and 54 chronic) who had valid 
DNA methylation and 5-HTTLPR genotyping data were 
chosen for further analysis. A detailed description of the 
method can be found in the supplementary methods.

Statistics

Comparisons of  DNA methylation levels were con-
ducted using a nonparametric Mann-Whitney U test. 
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The DNA methylation level in marmoset was inde-
pendently measured 5 times, and the trimmed means 
were compared using Welch’s t test. Differences in 
luciferase activity among the constructs were evaluated 
using the Tukey-Kramer test. The correlation between 
the DNA methylation and the amygdala volume was 
assessed with Pearson’s correlation. All statistical com-
parisons were 2-sided. Statistical significance was set at 
P < .05.

Results

Hypermethylation of the CpG Island Shore of SLC6A4 
in Male Patients With BD

We previously identified hypermethylation at 2 CpG sites 
(named CpG3 and CpG4) within the CpG island shore 
of SLC6A4 in BD using LCLs31 (figure 1A). Because the 
sample sizes were relatively small and because LCLs con-
tain artificial epigenetic modifications,35,36 we tried to rep-
licate our previous findings in a large number of PBCs 
from patients with BD (N = 447) and from CTs (N = 454) 
by pyrosequencing. We validated hypermethylation at 
one of the 2 CpG sites, CpG3 (P = 3.84 × 10−4, supple-
mentary table S2). Consistent with a previous report,27 
we observed apparent DNA methylation differences be-
tween male and female subjects (supplementary figure 
S1). Subgroup analysis considering sex revealed signifi-
cant hypermethylation at CpG3 in male patients with BD 
(P = .003) but not in female patients with BD (figure 1B, 
supplementary table S2).

Hypermethylation in PBCs of Male Patients With SZ

We then examined the DNA methylation levels at 2 
CpG sites of  SLC6A4 in PBCs from patients with SZ 
(N = 407) and from CTs (N = 468) (set 1). Similar to the 
case for BD, hypermethylation at CpG3 was also found 
in male patients with SZ (figure 1C, supplementary table 
S3). Male-specific CpG3 hypermethylation was robustly 
replicated in the independent group of  patients with SZ 
(set 2, figure  1D, supplementary table S4) and in the 
group of  patients with FESZ (figure 1E, supplementary 
table S5).

Effects of Antipsychotics on DNA Methylation at CpG3 
in Common Marmosets

To assess the effects of antipsychotics, we examined 
CpG3 methylation levels in the blood of common mar-
mosets treated chronically with risperidone. Notably, the 
genomic context around CpG3, but not CpG4, was found 
to be evolutionarily conserved among primates but not 
among rodents (supplementary figure S2). CpG3 DNA 
methylation levels were not detectable in the risperidone-
treated group (N = 3) compared with the control group 
(N = 3, mean ± SD: 4.4 ± 0.7%).

In Vitro DNA Methylation at CpG3 Represses 
Promoter Activity

We next performed a luciferase reporter assay using con-
structs containing the sequences around the CpG3 region 
in the rat serotonergic RN46A cell line.37 We detected sig-
nificant promoter activity around the CpG3 region. This 
promoter activity was abolished upon introduction of 
CpG3 DNA methylation (P < .01, Tukey-Kramer test) 
(figure 2).

Genotyping of 5-HTTLPR and Promoter Assay of the 
Asian-Specific L Allele

To assess the effect of  5-HTTLPR on DNA methyla-
tion, we genotyped 5-HTTLPR in CTs and patients with 
BD and SZ (set 1) in detail. Consistent with a previous 
report on a Japanese population,2 the subjects showed 
a complex distribution of  allele frequencies (AFs) (sup-
plementary table S6).2 In addition to the predominant 
S allele (AF: 75.0%), there were 3 evenly distributed L 
alleles: LA, LG, and L16-C (AFs: 8.1%, 6.9%, and 6.4%, 
respectively). It should be noted that L16-C has not been 
reported in the Caucasian population. Given that LA 
has the highest promoter activity and that LG shows 
low promoter activity equal to that of  SA,38,39 we de-
termined the promoter activity of  L16-C. We found that 
L16-C showed low promoter activity, similar to SA (sup-
plementary figure S3).

Patients Harboring Low-Activity 5-HTTLPR Alleles 
Showed High DNA Methylation Levels at CpG3

We then conducted a case-control DNA methyla-
tion analysis considering the 5-HTTLPR genotype. 
Consistent with previous reports,24,31 we observed sig-
nificant hypermethylation in patients with SZ harboring 
homozygous SA compared with CTs with the same al-
leles (P  =  .040, table  1). While patients harboring LA 
did not show any DNA methylation differences, those 
harboring L16-C or LG showed hypermethylation com-
pared with CTs (P = .049). Given that only LA showed 
high promoter activity, while the others showed sim-
ilar levels of  low activity, we then conducted a pro-
moter activity-based case-control analysis. We found 
that patients with low-activity alleles (SA, L16-C, or LG 
alleles) showed more robust hypermethylation than 
CTs (P = .006, table 1). The same relationship was also 
maintained in BD, though the effect of  the low-activity 
alleles seemed to be different from that in SZ, likely due 
to the limited sample sizes (supplementary table S7). 
We examined CpG3 DNA methylation in females in 
the same datasets but did not find any significant dif-
ferences in patients with SZ or BD compared with CTs 
(supplementary table S8).
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Fig. 1.  Altered DNA methylation of SLC6A4 in male patients with BD and SZ. (A) Gene structure of SLC6A4 and the targeted 
CpGs (CpG3: chr17:30,235,246-30,235,247 and CpG4: chr17:30,235,271-30,235,272). Comparison of DNA methylation levels was 
performed between male CTs and male patients with BD (B), SZ (set 1) (C), SZ (set 2) (D), or FESZ (E). The number of subjects is given 
in parentheses. *P < .05. Note: 5-HTTLPR, serotonin transporter-linked polymorphic region; CT, control; BD, bipolar disorder; SZ, 
schizophrenia; FESZ, first-episode schizophrenia.
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Data From Patients With SZ Harboring Low-
Activity 5-HTTLPR Alleles Showed a Negative 
Correlation Between DNA Methylation Levels and 
Amygdala Volumes

The amygdala is essential for emotional processing, and its 
activation is thought to be associated with 5-HTTLPR.40 
Recently, large-scale cross-sectional studies have re-
vealed that amygdala volumes are significantly reduced 
in patients with SZ compared with healthy subjects.34,41 
Furthermore, previous studies have reported an associa-
tion between SLC6A4 promoter region methylation and 
increased threat-related activity in the left amygdala.20,42 
Using 3-dimensional brain images from our samples, we 
found that CpG3 DNA methylation levels were negatively 

correlated with left amygdala volumes in male patients 
with SZ harboring low-activity alleles (n = 24, Pearson’s 
R  =  −0.454, P  =  .026) but not in male CTs (n  =  26, 
Pearson’s R = −0.099, P = .631) (figure 3). A significant 
negative correlation was observed only in male patients 
with SZ (supplementary figure S4).

Discussion

In this study, we identified hypermethylation of the pro-
moter region of SLC6A4 in blood samples from male 
patients with SZ. Hypermethylation was evident in male 
patients with low-activity 5-HTTLPR alleles and was in-
versely correlated with amygdala volume. It should be 
noted that we could not apply multiple testing corrections 

Fig. 2.  Luciferase promoter assay of a construct containing in vitro-methylated CpG3. Left, in vitro-methylated (or unmethylated) 
plasmid constructs including the CpG3 sequence were cotransfected with internal control plasmids into RN64A cells. Right, DNA 
methylation at CpG3 suppressed promoter activity. *P < .01. Note: n.s., not significant.

Table 1.  Case-Control DNA Methylation Analysis of SZ Considering the Promoter Activity of 5-HTTLPR

Allele (SA Background) Diagnosis N

CpG3

DNA Methylation Level (%)

P-Value (Cohen’s d)(Mean ± SD)

SA CT 149 25.5 ± 4.9 .040 (0.200)
SZ 145 26.5 ± 5.0

LA CT 34 26.2 ± 4.2 .822 (0.031)
SZ 21 26.3 ± 4.5

L16-C/LG CT 50 25.1 ± 4.3 .049 (0.377)
SZ 37 26.8 ± 5.2

SA/L16-C/LG (all low-activity alleles) CT 199 25.4 ± 4.7 .006 (0.240)
SZ 182 26.6 ± 5.0

Note: CT, control; SZ, schizophrenia; 5-HTTLPR, serotonin transporter-linked polymorphic region. Significant P-values are shown in 
bold.
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in our analyses because performing stratified compari-
sons reduced the sample sizes. Instead, we used several 
independent sample groups to corroborate the results.

Effects of Sex Differences, Age, and Medication

Based on the apparent DNA methylation differences be-
tween males and females (supplementary figure S1), we 
decided to separately analyze DNA methylation levels 
with regard to sex rather than including sex as a covariate. 
Previous studies have also reported higher DNA methyl-
ation in females than males at the CpG island or CpG 
island shore of SLC6A4 in cord blood,43–45 PBCs,46 and 
postmortem prefrontal cortices.47 Although the under-
lying mechanism of the elevated DNA methylation in fe-
males remains elusive, choline, a precursor for the methyl 
group donor betaine, might be a key molecule given the 
enhanced endogenous reserves and de novo biosynthesis 
of choline by estrogen in females.48,49 Indeed, dietary cho-
line supplementation or deficiency in rats results in global 
and site-specific DNA methylation changes in metabolic-
related and neural development-related genes,50–52 and 
some of these differences are sex-dependent.51 The reason 
for the allele-dependent DNA methylation differences 
between patients of different sexes also remains unclear. 
The significant hypermethylation of SLC6A4 in male pa-
tients suggests that this modification may be associated 
with differences in the clinical features and courses of 
psychosis between males and females.53

To analyze the contributions of age and diagnosis to 
CpG3 DNA methylation status, we conducted a multiple 
linear regression analysis and identified significant contri-
butions or tendencies toward contributions of diagnosis 

and age in the male BD-control analysis (P = .011), the 
male SZ-control (set 1) analysis (P = .011), and the male 
SZ-control (set 2) analysis (P = .054). However, no signif-
icant contributions were detected in females. These ob-
servations indicate that CpG3 DNA methylation status is 
modulated not only by diagnosis but also by age in males.

Age of disease onset may be a confounding factor 
for DNA methylation changes. To address this issue, we 
examined the DNA methylation levels of male SZ pa-
tients separated by age of disease onset: 1 group included 
patients less than 20  years old (the “under-20 group”; 
n  =  57, average onset age  =  16.9  ± 1.5), and the other 
included patients from 20 to less than 40 years old (the 
“over-20 group”; n = 134, average onset age = 27.1 ± 4.7). 
The average age at blood sampling was matched between 
the 2 groups (under-20 group  =  43.8  ± 11.7, over-20 
group = 44.0 ± 10.4). The results revealed that the DNA 
methylation levels at CpG3 did not significantly differ be-
tween the 2 groups (under-20 group = 26.8 ± 5.4, over-20 
group = 26.6 ± 4.8), suggesting that the age of onset did 
not affect the DNA methylation changes at CpG3.

Regarding medication, we tested the influence of anti-
psychotics on the DNA methylation level of CpG3 using 
PBCs from common marmosets and found decreased 
rather than increased DNA methylation in the PBCs of 
antipsychotic-treated marmosets compared with those of 
control animals. A similar decrease in DNA methylation 
of CpG3 was previously reported in a cell line cultured 
with mood stabilizers.54 These findings suggest that med-
ication is unrelated to the increased DNA methylation at 
CpG3 in patients. These results also suggest that medi-
cation may play a role in decreasing CpG3 methylation 
levels, though further mechanistic studies are needed 
to address this possibility. It should be noted that the 
number of animal samples was too small to reach a con-
clusion and that these findings should be independently 
replicated.

Complexity of 5-HTTLPR and Its Association With 
DNA Methylation

In this study, SA was present at a significantly higher fre-
quency in cases than in controls (SZ-BD vs CT: P < .001, 
SZ vs CT: P < .008, BD vs CT: P < .003, Fisher’s exact 
test, supplementary table S6). This finding is consistent 
with previous reports.5–8 However, careful interpretation 
is needed because a recent large-scale studies did not sup-
port such associations with 5-HTTLPR.12,13

Previous studies have revealed that DNA methyla-
tion changes in SLC6A4 are associated with childhood 
abuse, stressful life events, and depression in S allele 
carriers.15,21,24,26,55 Consistent with these findings, rhesus 
macaques harboring the S allele exhibit higher DNA 
methylation levels in SLC6A4 and lower SLC6A4 expres-
sion in PBCs when exposed to maternal or social sepa-
ration than those not harboring the S allele.56 However, 
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Fig. 3.  Correlation between DNA methylation levels at CpG3 and 
left amygdala volumes. DNA methylation levels at CpG3 were 
negatively correlated with left amygdala volumes in male patients 
with SZ carrying low-activity alleles (solid line) but not in male 
CTs (broken line). Note: CT, control; SZ, schizophrenia.

D
ow

nloaded from
 https://academ

ic.oup.com
/schizophreniabulletin/advance-article/doi/10.1093/schbul/sbaa075/5859552 by N

ational Institute for Basic Biology user on 26 N
ovem

ber 2020

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data


Page 7 of 10

Hypermethylation of SLC6A4 in Schizophrenia

other studies have failed to identify S allele-linked DNA 
methylation changes in depressed subjects.22,25,30 These 
inconsistent findings could partly stem from the com-
plexity of 5-HTTLPR genotypes, which results in vari-
able SLC6A4 promoter activity. Hu et al38 revealed that 
the LG allele, which is the minor L allele with a G sub-
stitution (rs25531), exhibits lower promoter activity than 
the major L allele with an A substitution (LA) and that 
the S and LG alleles exhibit nearly equivalent promoter 
activity. In addition to LG, we revealed that L16-C, one of 
the major L alleles in the Asian population2,57 but not in 
the European population (supplementary table S6), has 
low promoter activity similar to that of the S and LG al-
leles (supplementary figure S3).

We found that low-activity 5-HTTLPR alleles were 
robustly associated with higher DNA methylation 
levels in patients through a promoter activity-based 
case-control association approach. Our findings will 
be important for future 5-HTTLPR studies across dif-
ferent ethnic populations and may contribute to un-
derstanding the contradictory results of  5-HTTLPR 
genetic association studies. The molecular mechanism 
that connects genotype to DNA methylation status re-
mains unclear. One hypothesis involves the participa-
tion of  the G-quadruplex within 5-HTTLPR,58 which 
is a 4-stranded noncanonical B-form DNA structure 
and is known to interact directly with DNA nucleotide 
methyltransferase enzymes.59

Functional and Pathophysiological Role of CpG3 DNA 
Methylation

We confirmed the existence of CpG3 hypermethylation in 
a group of male patients with SZ (set 1), an independent 
group of patients with SZ (set 2), a group of patients with 
FESZ, and a group of patients with BD (supplemen-
tary tables S2–S5), implicating the existence of common 
DNA methylation changes in individuals with psychosis. 
Hypermethylation was found in both the first episode 
and in chronic stages of SZ, suggesting that this epige-
netic change occurs at an early stage and lasts for a long 
time during the course of the illness. Future studies will 
include longitudinal assessments of patients with consid-
eration of their ratings of symptom severity.

Associations between SLC6A4 DNA methylation 
and SLC6A4 expression have previously been repor
ted,16,27,42,60,61 and we previously demonstrated an inverse 
correlation between CpG3 DNA methylation levels and 
SLC6A4 expression levels in LCLs.31 In this study, we 
could not assess SLC6A4 expression levels in PBCs be-
cause of the unavailability of RNA samples. However, 
we found that DNA methylation of CpG3 was sufficient 
for gene silencing in a cell culture model using a CpG3-
specific in vitro-methylated reporter.

Although the DNA methylation changes at CpG3 in 
patients were subtle, our in vitro luciferase assays sug-
gested the importance of the patterns of methylated al-
leles. If  2 CpG3 alleles in a cell are methylated, that cell 
does not express SLC6A4 at all. Elevations in the num-
bers of such cells may cause more dysfunction than 
elevations in the numbers of cells with only one methyl-
ated allele, even though the apparent DNA methylation 
changes seemed to be subtle.

The genomic region around CpG3 is conserved among 
primates but not among rodents (supplementary figure 
S2). Using the JASPAR transcription factor binding 
profile database (http://jaspar.genereg.net/) and the 
Genotype-Tissue Expression (GTEx) gene expression da-
tabase (https://www.gtexportal.org/), we found that the 
putative binding sites of Elk-1 (ELK1) and Meis home-
obox 3 (MEIS3), which are highly expressed in the brain, 
were predicted to overlap with the sequence containing 
CpG3 (data not shown). Interestingly, MEIS3 is strongly 
expressed in the amygdala and anterior cingulate cortex, 
suggesting a possible link between the function of the 
CpG3 site and the development of the primate brain.

Recent large-scale cross-sectional analyses have re-
vealed significant alterations in amygdala volume in pa-
tients with SZ.34,41 Previous studies have suggested that 
S allele carriers have smaller amygdala volumes than L 
homozygotes do.62–64 Another study reported reduced vol-
umes and excessive threat-related reactivity in the amyg-
dala of depressed patients.65 In addition, 2 studies have 
shown increased threat-related left amygdala reactivity is 
positively correlated with DNA methylation changes in 
SLC6A4.20,42 Taken together, these findings suggest that 
amygdala volume may be associated with DNA meth-
ylation in SLC6A4 and 5-HTTLPR alleles. We there-
fore specifically examined this association and found 
a significant inverse correlation between CpG3 DNA 
methylation levels and left amygdala volumes in male pa-
tients with SZ harboring low-activity alleles (figure  3). 
Although it remains unclear about the mechanisms by 
which DNA methylation status in PBCs correlates with 
the brain volume, a recent epigenome-wide meta-analyses 
indicated their relationship.66 Besides, previous findings 
that LCLs and postmortem brain from patients with 
BD share a common CpG3 hypermethylation31 and that 
SLC6A4 DNA methylation status in amygdala tissue is 
indeed associated with its expression42 could support our 
observations. Given that increases in DNA methylation 
of SLC6A4 are followed by increases in threat-related left 
amygdala reactivity,20 the reduced amygdala volumes we 
observed may have been accompanied by altered threat-
related reactivity in the patients. More comprehensive 
studies involving large-scale in vivo imaging experiments 
are needed to elucidate the effects of altered DNA meth-
ylation on other brain regions.

D
ow

nloaded from
 https://academ

ic.oup.com
/schizophreniabulletin/advance-article/doi/10.1093/schbul/sbaa075/5859552 by N

ational Institute for Basic Biology user on 26 N
ovem

ber 2020

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa075#supplementary-data
http://jaspar.genereg.net/
https://www.gtexportal.org/


Page 8 of 10

T. Ikegame et al

Considerations of Cell Type and Blood-Brain 
Correlations

Blood cell type affects DNA methylation status67 and has 
been proposed to be a confounding factor for SLC6A4 
DNA methylation.68 In this study, we could not consider 
the effect of blood cell composition. However, consid-
ering that CpG3 hypermethylation was initially identi-
fied and replicated in LCLs,31 which are established from 
B cells, blood cell type may not be a major confounding 
factor in this study. Besides, we confirmed that CpG3 
hypermethylation affected SLC6A4 promoter activity in 
the rat serotonergic cell line, implicating the blood-brain 
DNA methylation correlations for CpG3. However, cell 
type-specific analysis is needed to determine whether 
other cell types have common DNA methylation changes.

Conclusion

We report that male patients with SZ and BD harboring 
low-activity 5-HTTLPR alleles exhibited increased DNA 
methylation levels at the CpG island shore of SLC6A4. 
This epigenetic change started at a very early psychotic 
stage and could associate with reduced amygdala volume 
via SLC6A4 downregulation. Further mechanistic 
studies and in vivo imaging studies would be useful for 
elucidating the pathophysiology of epigenetic alteration 
of SLC6A4.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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