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The posterior insula (pIns) is a major brain region that receives itch-related signals
from the periphery and transfers these signals to broad areas in the brain. Previous
brain imaging studies have successfully identified brain regions that respond to itch
stimuli. However, it is still unknown which brain regions receive and process itch-related
signals from the pIns. Addressing this question is important in identifying key functional
networks that process itch. Thus, the present study investigated brain regions with
significantly increased functional connectivity with the pIns during itch stimuli with 25
healthy subjects by using functional MRI. Electrical itch stimuli was applied to the left
wrist. Similar to previous brain imaging studies, many cortical and subcortical areas were
activated by itch stimuli. However, not all of these regions showed significant increments
of functional connectivity with the pIns during itch stimuli. While the subjects perceived
the itch sensation, functional connectivity was significantly increased between the right
pIns and the supplementary motor area (SMA), pre-SMA, anterior midcingulate cortex
(aMCC), anterior insula (aIns), secondary somatosensory cortex (SII), and basal ganglia
(BG), suggesting that this is a key network in processing itch. In particular, intensity of
functional connectivity between the pIns and BG was negatively correlated with itch
rating. The functional pIns-BG pathway may play an important role in regulation of
subjective itch sensation. This study first identified a key brain network to process itch.

Keywords: itch, posterior insula, basal ganglia, functional connectivity, fMRI

INTRODUCTION

Itch is an unpleasant somatic sensation provoking the desire to scratch. The periphery nerve
fibers that transmit this sensation are unmyelinated fibers (C-fibers) and some thin myelinated
fibers (Aδ-fibers) (LaMotte et al., 2014). A majority of somatosensory signals conveyed by these
peripheral fibers reaches the posterior insula (pIns) via the spinothalamic tracts (STT) and thalamus
(Andrew and Craig, 2001; Simone et al., 2004; Davidson et al., 2007; Dum et al., 2009; Craig, 2010;
Segerdahl et al., 2015). The pIns further transmits these signals to broad areas in the brain, which
eventually generate somatic sensations include the pain, itch and thermal sensations (Craig, 2010;
Garcia-Larrea et al., 2010; Isnard et al., 2011; Peltz et al., 2011). Therefore, applying electrical stimuli
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to the pIns can provoke various somatic sensations (Ostrowsky
et al., 2002; Stephani et al., 2011; Mazzola et al., 2012). This
evidence demonstrates that the pIns is an important hub
brain region that constitutes a brain network in the processing
of somatosensory neural signals and this network plays an
important role in perceptions of somatic sensations. A previous
functional connectivity MRI study found that the pIns increases
functional connectivity with various brain regions involved in
pain processing during pain and thermal stimuli, indicating that
these brain regions constitute a key network to process pain- and
thermal-related neural signals from the pIns (Peltz et al., 2011).
In itch studies, previous brain imaging studies have identified
brain regions activated by itch stimuli including the prefrontal
cortex (PFC), supplementary motor area (SMA), premotor cortex
(PM), somatosensory cortex, lateral and medial parietal cortex,
midcingulate cortex (MCC), claustrum, anrterior insula (aIns),
pIns, basal ganglia (BG), the thalamus, and cerebellum (Hsieh
et al., 1994; Darsow et al., 2000; Drzezga et al., 2001; Mochizuki
et al., 2003, 2007, 2008, 2014; Walter et al., 2005; Leknes et al.,
2007; Herde et al., 2007; Valet et al., 2008; Schneider et al.,
2008; Ishiuji et al., 2009; Bergeret et al., 2011; Papoiu et al.,
2012, 2014; Kleyn et al., 2012; Napadow et al., 2014). However,
it is still unknown which brain regions constitute a functional
network with pIns in the process of itch. Thus, the aim of the
present study was to identify brain regions increasing functional
connectivity with the pIns during itch stimuli using functional
connectivity MRI.

MATERIALS AND METHODS

Subjects
Twenty five healthy subjects (age: 28 ± 9 years old), 7 of
whom were women, participated in this study. Written informed
consent was obtained from all subjects. The study complied with
the Declaration of Helsinki, and the Ethics Committee of the
National Institute for Physiological Sciences (Japan) approved the
experimental procedures.

Electrical Itch Stimulus
An electrical stimulation method was used to evoke the itch
sensation in the present study (Ikoma et al., 2005; Mochizuki
et al., 2008, 2009). Similar to our previous studies (Mochizuki
et al., 2009, 2014), electrical stimuli were applied to the left
wrist through electrodes (Vitrode, F-150M, Nihon Kohden,
Tokyo, Japan). There were six blocks in a session. Each
block was 22.5 s. The interval between the end of a block
and the beginning of a following block varied between 40
and 50 s. Continuous application of electrical itch stimuli
during a whole block (i.e., 22.5 s) can induce habituation
effects such as decay or disappearance of the itch sensation
during the stimuli. To avoid this risk, a short duration of
itch stimuli (2.5 s) was applied 5 times with interval of 5 s
(i.e., 5 s from the beginning of a 2.5 s-itch stimulus until
the beginning of a following itch stimulus) in each block.
The conditions of electrical itch stimulus were 0.35 mA,
(current intensity), 50 Hz (frequency), a 10 m s-pulse width

and 125 repetitions of the pulses. To minimize effects related
to evaluation of itch intensity on brain activity during each
block, subjects were asked to rate average itch sensation of
itch stimuli during the six blocks using numerical rate scaling
(NRS) ranging from 0 (no itch) to 10 (the worst itch) at the
end of the session.

MRI Measurements and Preprocessing
The MRI experiment was conducted with a 3-T MRI scanner
(Allegra, Siemens, Erlangen, Germany) at the National Institute
for Physiological Sciences in Japan. For functional imaging
during each session, a series of 156 volumes was acquired
with T2∗-weighted, gradient-echo, echo-planar imaging (EPI)
sequences. Each volume consisted of 39 transaxial slices, each
having a thickness of 3.0 mm, with a 0.5-mm gap between
slices to cover the entire cerebrum and cerebellum [repetition
time (TR) × 2,500 ms; echo time (TE) × 30 ms; flip angle
(FA) × 80◦; field of view (FOV) × 192 mm; 64 × 64 matrix].
Oblique scanning was used to exclude the eyeballs from images.
The first three EPI volumes of each session were eliminated to
allow for stabilization of the magnetization. Thus, the fourth
scan was the first volume. The functional MRI data were
analyzed with statistical parametric mapping eight software
(SPM8, The Wellcome Trust Centre for Neuroimaging, London,
United Kingdom1). All EPI volumes were realigned, and the first
volume was normalized to the Montreal Neurological Institute
(MNI) EPI image template using an affine transformation and
a non-linear basis function. The same parameters were applied
to all EPI volumes, which were spatially smoothed in three
dimensions with a Gaussian kernel with 6-mm full width
at half-maximum.

Itch-Related Brain Regions
Individual activity associated with electrical itch stimuli was
identified using the regressor (Duration: 9 scans, Repetition:
6) convolved with a canonical hemodynamic response function
(First-level analysis). To make inferences at a population
level, individual data were summarized and incorporated into
a random-effects model (second-level analysis) (Holmes and
Friston, 1998). The statistical threshold for significant change
in activity was uncorrected P < 0.001 for intensity and family
wise error rate (FWE) corrected P < 0.05 for cluster (whole
brain) for the analysis mentioned above. We also conducted
correlation analysis to identify brain regions in that activity
is significantly correlated with itch NRS rating (Threshold:
uncorrected p < 0.001 and p < 0.05 FWE corrected for
the whole brain).

Psychophysiological Interaction Analysis
of Activity in the pIns
We used psychophysiological interaction (PPI) analyses
implemented in SPM (Friston et al., 1997) to search for brain
regions showing greater functional connectivity with the seed
region (i.e., the right pIns) during itch stimuli. The time series of

1http://www.fil.ion.ucl.ac.uk/spm
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the blood oxygenation level–dependent (BOLD) signal within a
3-mm radius sphere around the coordinates of the pIns identified
in the above analysis (i.e., Itch-related brain regions). The PPI
was calculated using the time series data. The interaction term
was subsequently reconvolved with the hemodynamic response
function. The reconvolved interaction term was then entered as a
regressor in a first-level model together with the time series of the
seed region and the psychological vector of interest (i.e., regressor
used to identify brain region activated by itch stimuli). Then,
the models were estimated (first-level analysis). Subsequently,
a second-level random effects analysis was performed. We
identified brain regions that showed significantly increased
or decreased connectivity with the seed region during itch
stimuli (threshold: uncorrected p < 0.001 with cluster level FWE
whole brain corrected P < 0.05). As our interest is functional
connectivity between brain regions that are significantly activated
during itch stimuli and the pIns, the second-level analysis was
masked with brain regions significantly activated by itch stimuli.
In addition, we investigated in which brain regions intensity
of functional connectivity with the pIns showed significant
correlations with itch NRS rating (threshold: uncorrected
p < 0.001 and FWE corrected p < 0.05 for the whole brain).

RESULTS

Itch NRS Rating and Brain Regions
Significantly Activated During
Itch Stimuli
Itch rating was reported at the end of six blocks of itch stimuli
in the present study. No subjects reported that there was robust
decay in perceived itch sensation in each block or that there was
a block that they did not perceive the itch sensation. Each subject
perceived similar intensity of itch sensation during the whole
session. Average itch NRS rating of all subjects (mean ± SD)
was 4.3 ± 1.7. As shown in Figure 1A, the itch stimuli induced
significant activation of the contralateral pIns (i.e., the right
pIns). In addition significant activations were observed in the
PFC including the fronto-polar cortex (FPC) corresponding to
the brodmann area (BA) 9/10 and ventrolateral PFC (vlPFC)
corresponding to the BA 44, pre-SMA/SMA, premotor cortex
(PM), secondary somatosensory cortex (SII), parietal cortex,
orbitofrontal cortex (OFC), aIns, BG including the striatum and
globus pallodius (Gp), anterior midcingulate cortex (aMCC),
posterior MCC (pMCC), cerebellum (Table 1). No brain region
showed significant correlation with itch NRS rating.

Functional Connectivity With the pIns
During Itch Stimuli
Brain regions showing significant functional connectivity with
the seed region (i.e., the right pIns) during itch stimuli were
observed in the bilateral pre-SMA/SMA, aMCC, SII, aIns, BG,
temporal cortex, and vlPFC (Figure 1A and Table 1). Since
activation of the thalamus due to itch stimuli did not reach
our cluster size threshold (i.e., FWE p < 0.05), this brain
region was excluded in the functional connectivity analysis (see

section “Materials and Methods”). However, it is important to
investigate whether the thalamus and pIns increases functional
connectivity during itch stimuli to confirm that the pIns used for
the functional connectivity analysis receives itch-related signals
from the thalamus. Thus, we conducted functional connectivity
analysis focusing on the right pIns and thalamus. That is, we
applied a mask image of the thalamus (PickAtlas2) instead
of brain regions activated by itch stimuli in the second-level
analysis of functional connectivity with the posterior. An applied
threshold was the same as that used in other analyses (i.e.,
uncorrected p < 0.001 and FWE p < 0.05 for the whole brain).
As shown in Figure 1B, these brain regions showed significant
functional coupling during itch stimuli. Intensity of functional
connectivity between the seed region (i.e., the right pIns) and
left BG including the striatum [MNI coordinate of statistical
peak: (−30, 6, 0), z-score: 4.3] and Gp [MNI coordinate of
statistical peak: (−18, 0 6), z-score: 4.27] was significantly and
negatively correlated with itch NRS rating (Figure 2). Functional
connectivity between the seed region and BG within the same
hemisphere (i.e., the right hemisphere) also showed negative
correlation with itch NRS rating in two regions (significant
for intensity threshold in both regions), however, they did not
reach our cluster size threshold [The striatum: MNI statistical
peak coordinate: (16, −2, 14), z-score: 3.91, k = 57, Correlation
coefficient: r = −0.64; The Globus pallidus: MNI statistical peak
coordinate: (26, −6, −2), z-score: 3.89, k = 56, Correlation
coefficient: r = −0.68].

DISCUSSION

This is the first study to investigate the brain network
that processes itch-related signals conveyed from the
periphery to the pIns using functional connectivity MRI.
Our results suggest that the functional coupling between
the pIns and pre-SMA/SMA, aMCC, aIns, SII BG, is
a key network to process itch. In particular, the pIns-
BG pathway plays an important role in the regulation of
subjective itch sensation.

The pIns Activated by Itch Stimuli
In the present study, we observed a significant activation of
the contralateral pIns: i.e., the pIns innervating the body side
where itch stimuli were applied. No other location of the
pIns in both hemispheres showed significant activation during
itch stimuli. The location in the pIns that we observed was
similar to that reported in previous studies (Drzezga et al.,
2001; Leknes et al., 2007; Papoiu et al., 2012). The pIns is
a major brain region receiving neural signals from the STT
via the thalamus (Dum et al., 2009; Craig, 2010). In the
present study, we observed significant increment of functional
coupling between the pIns and thalamus during itch stimuli
(Figure 2), indicating transmissions of itch-related signals from
the thalamus to the pIns.

2http://fmri.wfubmc.edu/software/pickatlas
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FIGURE 1 | Activation and functional connectivity maps during itch stimuli. (A) brain regions showing significant activation (Activation) and significant increment of
functional connectivity (F.C.) during itch stimuli. (B) Functional connectivity between the pIns and thalamus. MNI coordinate (x, y, z) of statistical peak of the thalamus
in the PPI analysis: (10, –16, 2), Z-score: 4.63. MNI brain template: https://www.nitrc.org/projects/mricron.
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Brain Regions Showing Significant
Increment of Functional Connectivity
With the pIns
In the present study, we observed significant activations due
to itch stimuli in key brain regions associated with itch such
as the aIns, SII, and BG. These brain regions receive fiber
projections from the pIns in humans and primates (Mesulam

TABLE 1 | Activation and functional connectivity during itch stimuli.

Activaion during
itch stimuli

Functional connectivity
during itch stimuli

Brain region MNI coordinate z score MNI coordinate z score

x y z x y z

FPC 32 36 22 4.33

(BA 9/10) 32 52 22 4.32

20 60 20 4.41

44 48 2 4.3

−42 46 12 4.17

−32 36 10 4.29

vlPFC 56 12 2 4.69 54 18 0 4.8

(BA 44) −60 8 4 4.72 −60 2 10 5

OFC −32 48 −18 4.57

Premotor 48 10 50 5.59

Pre-SMA/SMA 10 16 60 4.56 10 14 66 3.89

6 24 44 4.24 4 16 40 4.28

aMCC 12 28 26 4.44 8 20 28 4.43

−14 20 58 4.22 −4 24 28 4.54

pMCC −2 −18 38 4.25

alns 40 4 4 4.7 34 14 6 4.81

42 16 −4 4.51 40 2 4 5.31

42 8 −12 4.96 −40 2 8 5.49

−36 0 4 4.8

−34 16 2 4.35

−44 10 −12 4.59

pIns 40 −12 2 4.71

BG 30 12 4 4.88 30 −6 6 5.34

30 8 −8 4.65 34 14 6 4.81

−10 10 8 4.24 34 −4 −4 5.46

−22 2 4 4.7

−16 4 2 4.62

Temporal −56 2 6 4.6 40 0 −20 5.3

54 −2 4 4.58

−54 −38 −16 4.59

SII 62 −16 16 4.3 62 −22 16 4.99

−64 −20 22 4.98 −56 −26 18 5.07

Parietal 52 −56 44 4.03

54 −40 26 5.19

−44 −54 46 3.47

−66 −48 20 5.03

FPC, fronto-polar cortex; BA, brodmann area; vlPFC, ventrolateral prefrontal cortex;
PM, premotor cortex; OFC, orbitofrontal cortex; SMA, supplementary motor area;
aMCC, anteiror midcingulate cortex; aIns, anterior insula; pIns, posterior insula; BG,
basal ganglia; SII, secondary somatosensory cortex.

and Mufson, 1982; Chikama et al., 1997; Cerliani et al., 2012;
Ghaziri et al., 2017, 2018; Failla et al., 2017). In accordance
with these anatomical projections, we observed that the right
pIns showed significant increments of functional connectivity
with the SII, BG, and aIns in the same hemisphere (i.e.,
the right hemisphere) during itch stimuli. The SII in the
opposite hemisphere (i.e., the left hemisphere) also showed
significant increments of functional connectivity with the right
pIns during itch stimuli. The right and left hemispheres are
connected to each other through the corpus callosum. A previous
magnetoencephalogray (MEG) study reported that itch-related
signals are transmitted from the SII in one hemisphere to
that in the other hemisphere through the corpus callosum
(Mochizuki et al., 2009). This transmission may explain the
significant increments of functional coupling of the SII and pIns
across the hemispheres during itch stimuli in the present study.
In addition to the SII, functional coupling was also observed
between the pIns in the right hemisphere and BG and aIns
in the opposite hemisphere. Activity of the BG and insula is
strongly synchronized between the hemispheres through the
anterior commissure and/or corpus callosum (O’Reilly et al.,
2013; Sun et al., 2015; Qi et al., 2016; Su et al., 2016). This may
explain why the pIns increased functional connectivity with
the BG and aIns not only in the same hemisphere but also
opposite hemisphere. Another possibility may be that itch-related
neural signals reached to the SII in the left hemisphere via the
corpus callosum were traveled to the BG and aIns in the same
hemisphere (i.e., the left hemisphere) (Chikama et al., 1997;
Cauda et al., 2011; Cloutman et al., 2012). The pre-SMA/SMA
and aMCC have robust anatomical connections with aIns, but
not with the pIns (Mesulam and Mufson, 1982; Cerliani et al.,
2012; Ghaziri et al., 2017). There is an anatomical connection
between the pIns and aIns (Failla et al., 2017), speculating a
possible transmission from the pIns to the pre-SMA/SMA and
aMCC via the aIns.

Previous brain imaging studies reported that activity in the
pre-SMA/SMA, aMCC, BG, and aIns were significantly and
positively correlated with temporal change in itch sensation
induced by pruritogens such as histamine and allergens
(Leknes et al., 2007; Mochizuki et al., 2007). The same
relationship was observed in temporal changes between activity
in unmyelinated fibers provoked by histamine-induced itch
and the itch sensation (Schmelz et al., 1997). These findings
suggest that activity in the pre-SMA/SMA, aMCC, BG, and
aIns represents or is in parallel with activity in unmyelinated
fibers due to itch. These brain regions may be a key
network encoding precise somatosensory stimulus features.
Unlike these brain regions, activity in the SII does not show
significant correlation with temporal change in subjective
itch sensation (Leknes et al., 2007; Mochizuki et al., 2007).
Response of the SII to itch stimuli seems to be transient
or lasts only a short period (Herde et al., 2007; Mochizuki
et al., 2009, 2014). An fMRI study with monkeys reported
that the SII and pIns constitute distinct networks with
different brain regions and these networks are joined in
the process of pain via the SII-pIns connection. Perhaps,
the SII may constitute another network with different brain
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FIGURE 2 | Correlation with itch NRS rating. Functional connectivity between the right pIns and left BG during itch stimuli had significant and negative correlation
with itch NRS. Scatter plot: Mean parameter estimates of the cluster (cluster size: 157 voxels) and itch NRS rating. Parameter estimate reflects intensity of functional
connectivity between the right pIns and left BG. MNI brain template: https://www.nitrc.org/projects/mricron.

regions in the processing of itch, and functional connectivity
between the SII and pIns during itch stimuli could reflect
connections between the network involving the SII and
network composed of the pIns, pre-SMA/SMA, aMCC, BG,
and aIns. It was reported that the SII is associated with
detections of salient events or change of somatosensory stimuli
(Chen et al., 2008; Yamashiro et al., 2009; Mouraux et al.,
2011; Otsuru et al., 2011). The SII may play an important
role in the prompt recognition of itch or changes in itch
intensity so as to initiate appropriate reactions to itch, such
as scratching. The FPC, PM, pMCC, parietal cortex, and
cerebellum significantly activated by itch stimuli did not
show significant increments of functional connectivity with
the pIns during itch stimuli, indicating that these brain
regions are not primarily involved in the process of itch
originated from the pIns.

Negative Correlation of Functional
Connectivity With Itch NRS Rating
in the BG
In the present study, physical intensity of itch stimuli
were the same in all subjects (i.e., 0.35 mA). However,
subjective itch sensation (i.e., itch NRS) varied from 1 to
8. This variation was negatively correlated with intensity
of functional connectivity between the right pIns and left
BG in the present study. That is, subjects who reported
stronger itch sensation had weaker functional connectivity
between the right pIns and left BG during itch stimuli.
It was possible to interpret that the left BG, but not the
right BG, plays an important role in regulation of subjective
itch sensation. However, though it did not reach our cluster
size threshold, two regions in the right BG showed that

intensity of functional connectivity with the right pIns had
negative correlation with itch NRS (at least significant for
intensity threshold for both regions). Considering strong
interhemispheric connectivity of the BG (O’Reilly et al., 2013;
Qi et al., 2016), functional network composed of the pIns
and bilateral BG may play an important role in regulation of
subjective itch sensation.

There are some potential mechanisms that can explain the
relationship between subjective itch sensation and functional
pIns-BG connectivity observed in the present study. For
example, the BG constitutes a large loop circuit with the
thalamus and cortex related to somatosensory processing
including the SI, SII, cingulate cortex, insula, prefrontal cortex,
and parietal cortex (Chudler and Dong, 1995). The process
of itch-related signals in the circuit may be influenced by
intensity of functional connectivity between the pIns and
BG, which could affect subjective itch sensation. Another
putative explanation for this finding is related to a descending
itch modulation. The striatum has neurons sending nerve
fiber to the medullary dorsal reticular nucleus (RVM)
(Borsook et al., 2010; Barceló et al., 2012). The RVM sends
descending pathway to the spinal cord and modulates pain
and itch (Millan, 2002; Zhao et al., 2014). Perhaps, increased
functional connectivity between the pIns and BG could
activate the descending neural pathway and suppressed itch at
the spinal level.

Another interesting mechanism associated with
functional pIns-BG connectivity may relate to the
desire to scratch. The BG is a core of motivation and
cravings (Vijayaraghavan et al., 2008; Adam et al., 2013;
Berridge and Robinson, 2016; Volkow et al., 2017) and
also associated with the desire to scratch provoked
by itch (Leknes et al., 2007; Mochizuki et al., 2014).
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The network composed of the BG, aIns, and anterior cingulate
cortex (ACC) plays an important role in regulation of craving
(Naqvi et al., 2014). It was reported that this network is
involved in the desire to scratch provoked by viewing pictures
depicting itch (Mochizuki et al., 2013). Considering that the
desire to scratch is a major component of the itch sensation,
functional connectivity between the pIns and BG may influence
subjective itch sensation by modulating connection of the BG
with the aIns and ACC.

Limitations
In the present study, we investigated a functional network to
process itch using mechanical itch stimuli. However, it was
uncertain whether chemical itch such as histamine- and cowhage-
induced itch constitute the same network as we observed
in the present study. Brain regions activated by electrical
itch stimuli and functional network originated from the pIns
observed in the present study were similar to many sites in
pain studies (Apkarian et al., 2005; Peltz et al., 2011). As
we did not examine pain perception in the present study,
future studies should compare brain activations and functional
connectivity between itch and pain to identity itch selective brain
network, which would further advance our understanding of the
brain processing of itch. This study was conducted in healthy
subjects. It would be of interest to examine whether functional
connectivity of the pIns differs between healthy subjects and
chronic itch patients.

CONCLUSION

In the present study, we observed that the pIns increased
functional connectivity with key brain regions associated with
itch such as the pre-SMA/SMA, aMCC, aIns, SII, and BG during

itch stimuli. In particular, it was suggested that the functional
connectivity between the pIns and BG is important in regulation
of subjective itch sensation in healthy. These findings support the
central role of functional network originated from the pIns in
itch perception.
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