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Functional connectivity is of central importance in understanding brain function. For this
purpose, multiple time series of electric cortical activity can be used for assessing the
properties of a network: the strength, directionality, and spectral characteristics (i.e.,
which oscillations are preferentially transmitted) of the connections. The partial directed
coherence (PDC) of Baccala and Sameshima (2001) is a widely used method for this
problem. The three aims of this study are: (1) To show that the PDC can misrepresent the
frequency response under plausible realistic conditions, thus defeating the main purpose
for which the measure was developed; (2) To provide a solution to this problem, namely the
“isolated effective coherence” (iCoh), which consists of estimating the partial coherence
under a multivariate autoregressive model, followed by setting all irrelevant associations
to zero, other than the particular directional association of interest; and (3) To show that
adequate iCoh estimators can be obtained from non-invasively computed cortical signals
based on exact low resolution electromagnetic tomography (eLORETA) applied to scalp
EEG recordings. To illustrate the severity of the problem with the PDC, and the solution
achieved by the iCoh, three examples are given, based on: (1) Simulated time series
with known dynamics; (2) Simulated cortical sources with known dynamics, used for
generating EEG recordings, which are then used for estimating (with eLORETA) the source
signals for the final connectivity assessment; and (3) EEG recordings in rats. Lastly, real
human recordings are analyzed, where the iCoh between six cortical regions of interest are
calculated and compared under eyes open and closed conditions, using 61-channel EEG
recordings from 109 subjects. During eyes closed, the posterior cingulate sends alpha
activity to all other regions. During eyes open, the anterior cingulate sends theta-alpha
activity to other frontal regions.

Keywords: causal intracortical connectivity, LORETA, isolated effective coherence, resting state electriphysiological

connectivity, alpha oscillation connectivity

INTRODUCTION
The type of problem that we are interested in can best be under-
stood with an informal hypothetical example.

Consider time series of local electric potential differences mea-
sured at five sites (i.e., nodes) on the cortex (electrocorticogram,
ECoG). Before connecting the five nodes, each one in isolation has
its distinct activity. For instance, node 1 oscillates at 28 Hz, node 2
at 16 Hz, and nodes 3, 4, and 5 at 23 Hz. In the next construction
step, some causal direct and directional connections with measur-
able time lags are established: node 1 sends to node 2; and node 2
sends identically to nodes 3, 4, and 5. The resulting connectivity
graph is shown in Figure 1.

Instantaneous connections, as considered, e.g., by Faes et al.
(2013), are not considered in this hypothetical example, i.e.,
ephaptic conduction is assumed to be absent, see e.g., Weiss et al.
(2013).

Note the distinction between “direct” and “indirect” connec-
tion paths. Examples in this hypothetical network are: (A) The
direct connection path from node 1 to node 2; (B) The indirect
connection path from node 1 to node 3 mediated by node 2.

Time series measurements from this hypothetical network
can be generated by means of a multivariate autoregressive
model, as will be shown in a quantitatively precise manner below
(Equations 1, 13).
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FIGURE 1 | Direct causal directed connections between nodes,

corresponding to the toy example defined by the multivariate

autoregressive model in Equation 13.

Given only the time series measurements, the problem of
interest here is to recover the detailed properties of the network
consisting of all the activity properties at each node, and the
nature of the direct causal connections, i.e., their strength, direc-
tion, and spectral characteristics of the oscillations that are being
transmitted.

This study is limited to this type of problem.
Moreover, this rather narrow and simple problem is, to this

date, of great interest, as can be seen, for instance, in a recent pub-
lication by Plomp et al. (2014), which provides a brief review of
methods and offers some benchmark data which will later be used
in this present study.

Upon reviewing the history and state of the art in frequency
domain causal connectivity studies, there are at least two note-
worthy contributions to this field:

1. The noise contribution ratio (NCR) of Akaike (1968). This
work has apparently gone unnoticed by most researchers in
this field. It has been extensively used and published under
other names, in particular by Saito and Harashima (1981),
Kaminski and Blinowska (1991), and Baccala et al. (1998).
Akaike’s NCR method discovers connections (direct and indi-
rect, without distinction), their directionality, and their spec-
tral characteristics.

2. The partial directed coherence (PDC) of Baccala and
Sameshima (2001), which is a measure designed to quan-
tify direct connections which are not confounded by indirect
paths, their directionality and their spectral characteristics.
This is a very widely used measure (cited 672 times at the
time of this writing according to “Google-Scholar”), prac-
tically considered the “golden standard” when all network
properties (and not just part of them) are of interest.

Recently, the PDC has been critically studied by Schelter et al.
(2009). They pointed out that the normalization used in the PDC,
i.e., the denominator in the PDC formula (see details below), con-
tains influences from the sender node of interest to all receiver
nodes, and as a consequence, the PDC decreases in the pres-
ence of many nodes, even if the relationship between a sender

and receiver of particular interest remains unchanged. The solu-
tion to this problem was given in the form of a renormalization
of the PDC, using the statistical variance of the strength of the
connection.

In this present study, rather the aiming at a re-normalization
of the PDC, such as that successfully achieved by Schelter et al.
(2009), we reformulate the problem from scratch, estimating the
partial coherence under a multivariate autoregressive model, fol-
lowed by setting all irrelevant associations to zero, other than
the particular directional association of interest. This procedure
is akin to Pearl’s “surgical intervention” for studying causality
(Pearl, 2000). This approach gives the isolated effective coherence
(iCoh) (Pascual-Marqui et al., 2014).

In the original Baccala and Sameshima paper (Baccala and
Sameshima, 2001), a number of simple toy examples were
designed to illustrate the superiority of the PDC as compared to
other competing methods. Following the same style, we here pro-
vide a new simple toy example, which compellingly shows how
the PDC can give incorrect information about the strength of a
connection, and incorrect information on its spectral character-
istics. And we show how the iCoh solves this problem.

To further illustrate the shortcomings of PDC as pointed out
by Schelter et al. (2009), both PDC and iCoh are compared below
in the analysis of publicly available benchmark data, consisting
of somatosensory responses in rats, measured on 15 skull elec-
trodes. The two methods produce dramatically different results,
with much reduced PDC values in some cases, consistent with the
observation made by Schelter et al. (2009), as discussed above.

In order to test the new iCoh measure as compared to the
PDC under more adverse realistic conditions, the following sim-
ulation was performed. Five time series with known dynamics
were generated, and used as the electrical activity assigned to
5 cortical sites. EEG recordings were computed by solving the
forward equations (see e.g., Fuchs et al., 2002; Gomez-Herrero
et al., 2008) at 19 scalp electrodes from these sources. The EEG
was then given to an inverse solver, namely eLORETA [exact low
resolution electromagnetic tomography (Pascual-Marqui, 2007,
2009; Pascual-Marqui et al., 2011)], producing estimated corti-
cal signals which were then used to compute iCoh and PDC. As
predicted and as will be shown below, iCoh recovers adequately
all the information about the network, whereas PDC also does so,
but reporting false results.

In a final example, real human recordings are analyzed, where
the iCoh between six cortical regions of interest (ROIs) are calcu-
lated and compared under eyes open and closed conditions, using
61-channel EEG recordings from 109 subjects (EEGs from public
data base, see Goldberger et al., 2000; Schalk et al., 2004). The
ROIs consist of the anterior and posterior cingulate cortices, the
inferior parietal lobules, and the dorsolateral pre-frontal cortices.
Statistical comparisons for every pair of ROIs, and for every dis-
crete frequency were based on non-parametric randomization of
the maximum-statistic (see e.g., Nichols and Holmes, 2002), thus
ensuring correction for multiple testing. During eyes closed, the
posterior cingulate significantly sends alpha activity to all other
regions. During eyes open, the anterior cingulate significantly
sends theta-alpha activity to the dorsolateral pre-frontal cortices.

For the sake of reproducible research, the software code imple-
menting the methods discussed here (using lazarus free-pascal
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“www.lazarus.freepascal.org”), including test data as a sim-
ple text file, are freely available at: https://sites.google.com/site/
pascualmarqui/home/icoh-isolated-effective-coherence.

METHODS
THE MULTIVARIATE AUTOREGRESSIVE MODEL
As described above, the definition of the iCoh is based on for-
mulating a multivariate autoregressive model, and calculating
the corresponding partial coherences after setting all irrelevant
connections to zero. All technical details can be found in Pascual-
Marqui et al. (2014). For the sake of completeness, a brief pre-
sentation is included here. General background and notation on
multivariate autoregressive models, frequency domain causality,
and spectral density matrices can be found, for instance, in Akaike
(1968) and Yamashita et al. (2005).

A stable, stationary multivariate autoregressive model of order
p ≥ 1, for q ≥ 2 time series X (t) ∈ R

q× 1, is written as:

X(t) =
p∑

k= 1

A(k) X(t − k)+ ε(t) (1)

where A(k) ∈ R
q×q are the autoregressive coefficients, ε(t) ∈

R
q×1 is the innovations (noise) vector, and t denotes discrete

time.
In general, the autoregressive coefficients [A(k)]ij, i.e., the ele-

ment
(
i, j

)
of the matrices A(k), quantify the direct causal influ-

ence for j→ i. This corresponds to Granger causality (Granger,
1969; Lütkepohl, 2007; Valdes-Sosa et al., 2011).

Given data sampled in discrete time, and given an
autoregressive order p ≥ 1, the autoregressive coefficients
and the innovation covariance matrix can be estimated by any
number of methods, one of which is least squares (see e.g.,
Akaike, 1968). The model order p can be estimated by means of
Akaike’s information criterion AIC (Akaike, 1974).

The frequency domain representation is:

X(ω) = A(ω) X (ω)+ ε(ω) (2)

where X (ω) ∈ C
q×1, A (ω) ∈ C

q×q, ε (ω) ∈ C
q×1 are the discrete

Fourier transforms, and where ω denotes discrete frequency.
From Equation 2, the Hermitian covariance, i.e., the spectral

density matrix, is:

Sx(ω) = (
Ă(ω)

)−1
Sε

(
Ă∗(ω)

)−1
(3)

with :
Ă(ω) = I− A(ω) (4)

where the superscript “∗” denotes matrix transpose and complex
conjugate, the superscript “−1” denotes matrix inversion, I is the
identity matrix, and Sε ∈ R

q×q is the noise covariance.

THE ISOLATED EFFECTIVE COHERENCE (ICoH)
From the spectral density matrix (Equation 3), the partial coher-
ences (see e.g., Brillinger, 2001) between any pair of nodes

(
i, j

)

can be calculated. The significance of the partial coherence in a
very general setting can be found in Radhakrishna Rao (1981).
In simple terms, the partial coherence is a measure of association
between two complex valued random variables after removing the
effect of other measured variables.

The full general equation for the partial coherence as a func-
tion of all the autoregressive coefficients contains information on
all possible connection paths. Technical details can be found in
Equations 8, 9 within Pascual-Marqui et al. (2014). However, in
order to “isolate” the direct and directional parts of a connec-
tion, all other possible paths must be severed. This is a procedure
commonly used in causality analysis, metaphorically known as
performing a “surgical intervention” (see e.g., Pearl, 2000).

For this reason, the isolated effective coherence (iCoh) for
j→ i is defined under the condition that the only non-zero
association between the time series is due to

[
Ă (ω)

]
ij �= 0. This

requires that all other possible associations be set to zero, i.e.,:

[A(ω)]kl ≡ 0 , for all (k, l) such that

(k, l) �= (
i, j

)
and k �= l (5)

and :
[Sε]kl ≡ 0 , for all (k, l) such that k �= l (6)

Note that the diagonal elements of Sε and A (ω) remain unmodi-
fied, since they do not “associate” different nodes.

Emphasis must be placed on the fact that this procedure
is meaningful only if the new system with a single association
remains stable and stationary.

When the constraints in Equations 5, 6 are applied to the gen-
eral partial coherence, we obtain the isolated effective coherence
(iCoh). In particular, iCoh for j→ i is defined as the squared
modulus of the partial coherence between i and j under the
constraints given by Equations 5, 6:

κi←j (ω) =
[Sε]−1

ii

∣∣∣[Ă (ω)
]

ij

∣∣∣2

[Sε]−1
ii

∣∣∣[Ă(ω)
]

ij

∣∣∣2 + [Sε]−1
jj

∣∣∣[Ă (ω)
]

jj

∣∣∣2
(7)

which clearly satisfies:

0 ≤ κi←j (ω) ≤ 1 (8)

The detailed, step by step derivations are shown in Pascual-
Marqui et al. (2014).

The iCoh can be described as the answer to the following
question:

“Given a dynamic linear system characterized by its autore-
gressive parameters, what would be the equation for the partial
coherence if all connections are severed, except for the single one
of interest?”

Note that the algorithm for computing the iCoh requires:

(1) The estimation of the full, joint, multivariate autoregressive
model (Equation 1). This step is performed only once.
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(2) For any given pair of nodes and any direction such as j→ i,
compute Equation 7 using the parameters from step (1).

THE PARTIAL DIRECTED COHERENCE (PDC) AND THE GENERALIZED
PARTIAL DIRECTED COHERENCE (gPDC)
These definitions are replicated here for the sake of completeness.

The PDC is:

∣∣π̄ij (ω)
∣∣2 =

∣∣∣[Ă(ω)
]

ij

∣∣∣2

[
Ă∗(ω) Ă(ω)

]
jj

=
∣∣∣[Ă (ω)

]
ij

∣∣∣2

q∑
k= 1

∣∣∣[Ă(ω)
]

kj

∣∣∣2
(9)

which corresponds to Baccala and Sameshima (2001), Equation
18 therein.

The gPDC is:

∣∣∣πw
ij (ω)

∣∣∣2 =
[Sε]−1

ii

∣∣∣[Ă(ω)
]

ij

∣∣∣2

q∑
k= 1

[Sε]−1
kk

∣∣∣[Ă(ω)
]

kj

∣∣∣2
(10)

which corresponds to Baccalá et al. (2007), Equation 11 therein.
Note that these measures are not proper partial coherences.

The squared modulus of a proper coherence or partial coherence
has a value between zero and one, and they do not have a column
or row sum value of 1.

STATISTICS
In some instances, results will be presented simply as the esti-
mated values of connectivities, without performing an actual
statistical test. This type of result is akin to showing the effect size.

In other cases, where specified, statistical tests are carried out
based on the method of non-parametric randomization of the
maximum-statistic, which has the advantage of correcting for
multiple testing, and of not relying on Gaussianity (Blair and
Karniski, 1994; Karniski et al., 1994; Nichols and Holmes, 2002;
Nichols, 2012).

A brief description of the multivariate non-parametric ran-
domization method follows. Technical details are not included
here because they can found in the specialized literature, see
e.g., Nichols and Holmes (2002) and the cited literature therein.
Consider an example where the data is represented as Xcki, con-
sisting of i = 1 . . . R variables, measured on k = 1 . . . N subjects,
under two conditions c = 1 and c = 2. The variables may corre-
spond to cortical spectral power at each voxel and each frequency,
or to direct and directed connection strength between each pair
of regions of interest and each frequency.

In this example, the aim is the discovery of the variables that
are significantly different between the two conditions. For this
purpose, the simple variable-by-variable t-statistic can be used
as a statistical measure of “distance” between the two conditions.
Other choices of statistics are equally valid. From the set of “R”
t-statistics (one for each variable), the absolute maximum is cho-
sen. Then its empirical probability distribution is estimated by
repeatedly randomizing the conditions “c,” and recalculation the
maximum-t’s under the null hypothesis. This empirical proba-
bility gives the threshold with correction for multiple (“R” tests)

testing, as explained in Nichols and Holmes (2002). The cor-
rection is exact (in the sense of Fisher’s exact test) for a large
number of randomizations, regardless of the original probability
distribution of the variables.

EEG: FORWARD AND INVERSE PROBLEMS
The equation of electrodynamics that links current density in
the brain to scalp electric potential differences is known as the
“forward” equation of EEG. This forward problem, which has a
well-defined solution, is typically solved with numerical methods.

Simulated EEG is easily created by placing sources of time
varying electric neuronal activity at any number of cortical sites,
and calculating the electric potential differences on scalp elec-
trodes, by means of the forward equation.

Formally, the forward equation of EEG in discrete form at time
instant “t” can be written as:

�t = KJt (11)

where �t ∈ R
NE × 1 denotes the instantaneous scalp electric

potential at NE electrodes, Jt ∈ R(3NV )×1 is the instantaneous cur-
rent density vector field at NV cortical voxels (consisting of three
components at each voxel), and K ∈ R

NE × (3NV ) is the lead field.
The inverse problem, which consists of estimating the corti-

cal activity (current density vector field) from measured scalp
EEG, is known to have no unique solution (see e.g., Helmholtz,
1853; Pascual-Marqui, 2009). This is the reason for the existence
of many different inverse solutions found in the literature. In
this study, the method known as exact low resolution electro-
magnetic tomography (eLORETA; Pascual-Marqui, 2007, 2009;
Pascual-Marqui et al., 2011) is used for estimating sources in
both simulated EEG and for real human EEG measurements. The
eLORETA solution has the following generic form:

Ĵt = T�t (12)

where T ∈ R(3NV )×NE is the eLORETA pseudoinverse (Pascual-
Marqui, 2007; Pascual-Marqui et al., 2011).

In the current implementation of eLORETA, computations
are made in a realistic head model (Fuchs et al., 2002), using
the MNI152 template (Mazziotta et al., 2001), with the three-
dimensional solution space restricted to cortical gray matter, as
determined by the probabilistic Talairach atlas (Lancaster et al.,
2000). The standard electrode positions on the MNI152 scalp
were taken from Jurcak et al. (2007). A total of 6239 cortical gray
matter voxels at 5 mm spatial resolution constitute the solution
space.

The estimated time varying electric neuronal activity at each
cortical voxel (given by Ĵt in Equation 12) consists of three time
series, one for each moment component of the current density
vector (i.e., dipole). In practice, this can be reduced to a sin-
gle time series, due to the fact that the current density vector is
anatomically constrained to have an orientation orthogonal to the
cortical surface (see e.g., Baillet et al., 2001). Under this assump-
tion, the 3× 3 covariance matrix for the current density vector
at each voxel must have rank 1, with the dipole orientation given
by its largest eigenvector (Mosher et al., 1992; Mosher and Leahy,
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1998). This procedure is applied in this study for the estimation of
single time series of electric neuronal activity at each voxel. Note
that this estimator for the current density vector field orientation
is a maximum variance estimator.

MATERIALS
A TOY EXAMPLE: FIVE TIME SERIES
Simulated recordings from five time series were generated from
the following stable, stationary multivariate autoregressive model
of order 2:

A(1) =

⎛
⎜⎜⎜⎜⎜⎝

1.5 −0.25 0 0 0
−0.2 1.8 0 0 0

0 0.9 1.65 0 0
0 0.9 0 1.65 0
0 0.9 0 0 1.65

⎞
⎟⎟⎟⎟⎟⎠
;

A(2) =

⎛
⎜⎜⎜⎜⎜⎝

−0.95 0 0 0 0
0 −0.96 0 0 0
0 −0.8 −0.95 0 0
0 −0.8 0 −0.95 0
0 −0.8 0 0 −0.95

⎞
⎟⎟⎟⎟⎟⎠
;

Sε = I (13)

The direct causal directed connections between nodes are illus-
trated as arrows in Figure 1.

Assuming a Gaussian distribution for the noise (zero mean,
unit variance, as shown in Equation 13), 25600 time samples were
generated (after discarding the first 1000 time samples) and used
for all estimation procedures.

Assuming that the times series are sampled at 256 Hz, the
main spectral properties of this network, by construction, are the
following:

(1) Node 1 in isolation oscillates at peak frequency 28 Hz.
(2) Node 2 in isolation oscillates at peak frequency 16 Hz.
(3) Nodes 3, 4, and 5 in isolation oscillate at peak frequency

28 Hz.
(4) Nodes 3, 4, and 5 are receiving identical information from

node 2.

SIMULATED EEG
In a different setting, the five time series generated in the previ-
ous subsection were used as the time varying electric neuronal
activities at the following cortical locations:

(1) Superior frontal gyrus (left), BA 10: X = −25, Y = 65,
Z = −5

(2) Middle Occipital Gyrus (right), BA 18: X = 20, Y = −100,
Z = 5

(3) Post-central Gyrus (left), BA 3: X = −50, Y = −20, Z = 60
(4) Middle Temporal Gyrus (left), BA 21: X = −65, Y = −15,

Z = −15
(5) Middle Temporal Gyrus (right), BA 21: X = 70, Y = −20,

Z = −10

FIGURE 2 | Schematic representation of the anatomical locations of

five cortical point sources used for generating EEG.

where (X, Y, Z) denotes the MNI coordinates in millimeters, and
BA denotes Brodmann area.

Figure 2 illustrates the five cortical locations.
Use was made of the forward equations previously explained

for generating EEG recordings at 19 scalp electrodes, correspond-
ing to the 10/20 electrode placement system. In this generation
process, two relatively large sources of noise were added:

(1) Biological noise, where independent and identically dis-
tributed uniform [0, 0.2] random values were assigned to the
current density at each cortical voxel and at each time sample.

(2) Measurement noise, where independent and identically dis-
tributed uniform [0, 0.2] random values were multiplied by
the potential at each electrode and time sample, and added to
potential.

RAT EEG
EEG recorded at 2 kHz sampling rate from 15 electrodes placed
directly onto the skull of rats, during a somatosensory experi-
ment, are publicly available from Plomp et al. (2014). A single
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recording from their repository, the data from the file named
“RN060915A2_STIMD,” was taken for analysis. This corresponds
to the average evoked response for one particular animal, with
unilateral whisker stimulation. The recording starts at −60 ms
relative to stimulus onset, and has a total duration of 180 ms.

HUMAN EEG RECORDINGS
Real human EEG recordings under eyes open and closed condi-
tions, using 64-channel EEG recordings from 109 subjects, are
publicly available from Goldberger et al. (2000), Schalk et al.
(2004). Each recording (218 in total) consists of 1 min. EEG, sam-
pled at 160 Hz. Three electrodes (T9, T10, and Iz) were discarded
for analysis, because they were spatial outliers relative to the other
61 electrodes that cover the scalp in an approximate uniformly
distributed manner.

RESULTS
A TOY EXAMPLE: FIVE TIME SERIES
Figure 3 shows the iCoh (Equation 7) and the gPDC (Equation
10) calculated for the network in Figure 1. In both cases, the
same estimated multivariate autoregressive model of order p = 3
was used. The results were essentially identical for autoregressive
order p = 2.

Of importance to note in Figure 3: the two methods give very
different results with respect to node #2 as sender (column 2).

SIMULATED EEG
The simulated EEG time series for 19 scalp electrodes, using as
generators the five cortical locations described in the materials

section (Figure 2), with time dynamics from the previous
example, were analyzed with eLORETA. We emphasize that this
EEG was corrupted with relatively large amounts of additive
biological and measurement noise. eLORETA was computed at
all 6239 cortical voxels. However, connectivity computations are
presented for the estimated electrical activities at the same cor-
tical sites as in Figure 2. Figure 4 shows the estimated iCoh and
gPDC. In both cases, the same estimated multivariate autoregres-
sive model of order p = 3 was used. The results were essentially
identical for autoregressive order p = 2.

Of importance to note in Figure 4:

(1) Ideally, Figure 4 should be identical to Figure 3. This is the
case to a very good approximation from a qualitative point
of view, despite the use of estimated signals using eLORETA,
from as few as 19 electrodes, and corrupted with relative high
levels of biological and measurement noise.

(2) The two methods give very different results with respect to
node #2 as sender (column 2).

RAT EEG
The average somatosensory evoked response for one rat was ana-
lyzed with a multivariate autoregressive model of order p = 8,
based on the model order determined in the original publication.
Although this data is clearly not stationary, it was analyzed as such
in the original publication (Plomp et al., 2014), using a recursive
least squares (RLS) algorithm with a forgetting factor, in order to
implement a time varying version of the autoregressive model.

FIGURE 3 | Estimated connectivity properties for the network in

Figure 1. Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Overlap of
both curves is shown in BLACK. Vertical axis: 0 to 1. Frequency axis: 1 to

127 Hz. Columns are senders, rows are receivers. Coherence peak in column
1 occurs at 28 Hz. Coherence peak for iCoh in column 2 occurs at 16 Hz.
Coherence peak for gPDC in column 2, row 1 occurs at 1 Hz; and Coherence
peak for gPDC in column 2, rows 3, 4, and 5 occur at 23 Hz.
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FIGURE 4 | Estimated connectivity properties for simulated EEG signals

(see Figure 2). Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Vertical axis: 0
to 1. Frequency axis: 1 to 127 Hz. Columns are senders, rows are receivers.

Coherence peak in column 1 occurs at 28 Hz. Coherence peak for iCoh in
column 2 occurs at 16 Hz. Coherence peak for gPDC in column 2, row 1
occurs at 1 Hz; and Coherence peak for gPDC in column 2, rows 3, 4, and 5
occur at 23 Hz.

The only particular and differentiating feature in this current
study is that there is no forgetting factor.

But regardless of these considerations, the sole purpose of this
rat data analysis is to show the extreme differences in network
properties estimated by iCoh and gPDC, as shown in Figure 5.

Of importance to note in Figure 5: the extremely low connec-
tivity values produced by gPDC as compared to iCoh, and the
number of missing spectral peaks in gPDC as compared to iCoh.

HUMAN EEG RECORDINGS
EEGs recorded from 109 subjects under eyes open and eyes closed
conditions were analyzed. Resting state, awake, eyes closed EEG is
characterized by the presence of alpha rhythm, as compared to the
eyes open condition.

In a first analysis step, the spectral density of electric neuronal
activity throughout the cortex was calculated with eLORETA at
all 6239 cortical voxels. The technical details on calculating cor-
tical activity spectra can be found in Frei et al. (2001). A voxel
by voxel, frequency by frequency comparison between eyes open
and closed conditions was performed. Figure 6 shows the three
main statistically significant results. Eyes open is characterized by
significantly stronger activity in frontal cortical regions oscillating
at 3 Hz and in the beta band 23–28 Hz. Eyes closed is character-
ized by significantly stronger activity in occipital cortical regions
oscillating at 10 Hz.

In a second analysis step, time series of electric neuronal activ-
ity were estimated with eLORETA at 6239 cortical voxels, from
which six cortical regions of interest were used for the connec-
tivity analyses. This procedure was applied to the EEGs recorded

in 109 subjects, under eyes open and eyes closed conditions. The
regions of interest are:

(1) Anterior Cingulate, BA 32: X = 0, Y = 45, Z = 10
(2) Posterior Cingulate, Precuneus, BAs 23, 31: X = 0, Y = −50,

Z = 30
(3) Inferior Parietal Lobule (left), BA 40: X = −45, Y = −45,

Z = 50
(4) Inferior Parietal Lobule (right), BA 40: X = 45, Y = −45,

Z = 50
(5) Dorsolateral Pre-frontal (left), BA 10: X = −40, Y = 40,

Z = 25
(6) Dorsolateral Pre-frontal (right), BA 10: X = 40, Y = 40,

Z = 25

iCoh was estimated for the six time series, in the 218 recordings,
using an autoregressive order p = 7, which corresponds to the
median order for all EEG recordings based on Akaike’s AIC (see
subsection “The multivariate autoregressive model”). A statisti-
cal comparison between eyes open and eyes closed conditions was
carried out, for each frequency, for each pair of regions of interest,
and for each direction of connection. The significant differences
at probability 0.05 with correction for multiple testing, are shown
in Figure 7.

Figure 8 summarizes the main statistically significant results.
During eyes closed, the posterior cingulate significantly sends
activity to all other regions. During eyes open, the anterior cin-
gulate significantly sends activity to the dorsolateral pre-frontal
cortices.
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FIGURE 5 | Estimated connectivity properties for rat EEG recordings from 15 skull electrodes. Isolated effective coherence (iCoh) shown in RED, and the
generalized partial directed coherence (gPDC) shown in BLUE. Vertical axis: 0 to 1. Frequency axis: 7.8 to 250 Hz. Columns are senders, rows are receivers.

DISCUSSION
The results corresponding to the toy example with five time
series demonstrate very clearly a major problem with the par-
tial directed coherence (PDC; Baccala and Sameshima, 2001) as
well as with its generalized version (gPDC; Baccalá et al., 2007).
By construction, node 2 sends identical information to nodes 3, 4,
and 5. And yet the gPDC gives very different results. Moreover, the
frequency responses of the gPDC are incorrect, with one missing
spectral peak and other peaks at incorrect frequencies.

This type of problem was already pointed out by Schelter et al.
(2009), and here we show a compelling example of how severe it
can be.

In contrast, the isolated effective coherence (iCoh) introduced
in this study recovers and reports correctly all the network prop-
erties for the toy example.

The results corresponding to the evoked response recordings
from an animal experiment (Plomp et al., 2014) demonstrate that
gPDC and iCoh can give very different results with real exper-
imental data. Because of the complex biological nature of the
data, the ground truth is not unambiguously known. Regardless,
this demonstrates that when there are many nodes (15 in this
case), the gPDC can give very low connectivity values and almost
featureless spectral properties as compared to iCoh.

By its very nature and definition, the gPDC does not report
information on a particular direct directed connection. Instead,
it is affected by many other connections, in such a way that it
can report incorrect values and spectral properties of the “sender-
receiver” pair of interest. The iCoh solves this problem, by its very
nature and definition (Pascual-Marqui et al., 2014).

In the neurosciences, one of the most interesting applications
of a method such as the iCoh is the elucidation of effective cortical

connections based on measurements of electric neuronal activity.
However, these are extremely invasive measurements. In order to
solve this problem non-invasively, one possible approach is to use
scalp EEG measurements, and to estimate with an inverse solution
the electric neuronal activity at any number of cortical locations.
It is then very important to prove that the estimated time series
are of sufficient quality to calculate iCoh reliably.

This was the aim of the experiment with simulated EEG.
Cortical signals were used for computing EEG, which was then
analyzed with the eLORETA inverse solution (which has no prior
information about the locations or about the dynamics of the
actual sources). Despite the low spatial resolution of eLORETA,
and despite the use of only 19 scalp electrodes, iCoh was esti-
mated very reliably. This is partly due to the fact that a measure
such as iCoh separates rather well instantaneous and lagged con-
nections, especially if the instantaneous connections are mediated
by the noise covariances, which explicitly do not affect iCoh (see
Equations 6, 7). However, the low spatial resolution of eLORETA
will mix the autoregressive coefficients, as is shown in Gomez-
Herrero et al. (2008). Both Gomez-Herrero et al. (2008) and Faes
et al. (2013) propose solutions to this problem, which can be
applied also to eLORETA signals.

Finally, an eLORETA-iCoh study was performed on real
human EEG which is available from a public repository
(Goldberger et al., 2000; Schalk et al., 2004). The research aim
here was to search for differences in brain function between two
resting states, namely eyes open and eyes closed. Two aspects of
brain function were explored:

1. The cortical location of the generators of different oscillatory
activity (functional localization).
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FIGURE 6 | Comparison of electric neuronal activity (eLORETA)

between eyes open and closed conditions. A Log-F-ratio statistic
with correction for multiple testing was used, with corrected
p = 0.05 at LogF = 0.91. Eyes open is characterized by significantly

stronger activity in frontal cortical regions oscillating at 3 Hz (A)

and in the beta band 23–28 Hz (C). Eyes closed is characterized
by significantly stronger activity in occipital cortical regions oscillating
at 10 Hz (B).

2. The network properties among a group of six very important
cortical sites (functional “effective” connectivity).

This type of study is of interest in understanding the resting state
of the brain. In particular, in understanding the functional role
of the alpha rhythm (Knyazev et al., 2011; Klimesch, 2012; Sigala
et al., 2014), and in understanding the functional changes during
the eyes open condition (Jao et al., 2013). The results show that
eyes closed alpha activity was localized to occipital areas, while
delta and beta activities were located in frontal cortical regions.

With respect to the network properties, the iCoh analysis demon-
strated that the posterior cingulate cortex is a major sender of
mainly alpha oscillations to all other regions. Interestingly, during
eyes open, this function is turned off, and the anterior cingu-
late activates as a sender of mainly theta-alpha oscillations to the
dorsolateral pre-frontal cortices.

OUTLOOK AND LIMITATIONS
The iCoh method can be extended to other conditions,
different from the particular ones considered here. For instance,
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FIGURE 7 | t-Statistics comparing eyes open minus eyes closed iCoh

for 109 subjects, in six regions of interest: anterior cingulate,

posterior cingulate, left and right inferior parietal, and left and right

dorsolateral pre-frontal cortices. Frequency axis: 1 to 30 Hz. Corrected
p = 0.05 was at t-threshold = 4.3, with vertical axis: −7 to +7. Blue

color denotes eyes closed significantly larger, red color denotes eyes
open significantly larger. The three numbers indicate the frequencies (Hz)
for the significant results: start, end, and the most significant oscillation
indicated with a superscript “∗.” Columns are senders (prefix “s”), rows
are receivers (prefix “r”).

instantaneous connections such as those considered in the gen-
eralized autoregressive model of Faes et al. (2013) can be directly
applied to iCoh. Moreover, since iCoh solely depends on the esti-
mated autoregressive coefficients and the noise variances, these
parameters can be estimated under non-stationary, time-varying
conditions, as for example in Plomp et al. (2014).

However, if the actual dynamics are non-linear or simply
do not follow a linear autoregressive model, then iCoh might
be invalid. Non-linear causality measures have been reviewed
in Marinazzo et al. (2011), where a novel method is pro-
posed: “kernel Granger causality.” Another method is the phase
slope index (Nolte et al., 2008), which is of a more non-
parametric nature, not relying on the parametric form of the
linear autoregression. However, these two alternative methods
do not distinguish the direct or indirect nature of the connec-
tions.

Interestingly, a very recent book entitled “Directed
Information Measures in Neuroscience” (Wibral et al., 2014)
barely deals with methods that reveal all properties of a neural
network, namely the spectral content of information flow, the
direct or indirect nature of the connections, and the actual
direction. One exception is a single chapter that refers to the
PDC of Baccala and Sameshima (2001), and to Geweke’s method
(Geweke, 1984) (which is based on the predictive approach of
Granger).

In our present study, the method of Geweke was not stud-
ied, and certainly deserves more attention in future research.
However, we note that Geweke’s method has been criticized

elsewhere (Chen et al., 2006) because it often produces negative
connectivity values that render it meaningless.

It is important to emphasize that the EEG simulation example
presented here is very limited, and only constitutes a “proof of
principle,” since the cortical signals used for analysis were close to
the actual locations of the sources. The effect of the choice of the
number of regions of interest and of their locations relative to the
actual unknown active network requires further study.

One common problem in all models that depend on fitting
a multivariate autoregressive model is the curse of dimension-
ality: for a large number of nodes and for a high autoregressive
order, the number of parameters to be estimated can be too large
to produce reliable estimators. One possible solution is the esti-
mation of sparse multivariate autoregressions as developed by
Valdes-Sosa et al. (2005). Alternatively, stable high dimensional
autoregressive models can be successfully estimated under spatio-
temporal constraints, such as those considered by Jiménez et al.
(1995).

The eLORETA method was used in this study. Other inverse
solutions can be used. The only requirement is that the selected
method needs to be capable of correct estimation of the neu-
ronal current density. This was the reason for choosing eLORETA,
because it is an improvement over the previous related tomo-
graphies known as LORETA (Pascual-Marqui et al., 1994) and
sLORETA (Pascual-Marqui, 2002), which have received consid-
erable and substantial validation (Pascual-Marqui et al., 2011).
We note that all these techniques can equally be applied to MEG
measurements as well.
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FIGURE 8 | Summary of the main statistically significant results

comparing the network properties between eyes open and closed

conditions. During eyes closed, the posterior cingulate significantly sends
mostly alpha oscillations to all other regions. During eyes open, the anterior
cingulate significantly sends mostly theta-alpha oscillations to the
dorsolateral pre-frontal cortices. PCC, posterior cingulate cortex; ACC,
anterior cingulate cortex; LIPL, RIPL, left and right inferior parietal lobule;
LDLPFC, RDLPFC, left and right dorsolateral pre-frontal cortex.

There is a severe limitation in the use and interpretation of
all connectivity measures (including iCoh) if they are applied to
scalp EEG signals. In this case, the results should never be inter-
preted as representing cortical connections. The reason is that
cortical activity does not project radially onto the scalp (see e.g.,
Lehmann et al., 2006, 2012). This problem applies to all EEG anal-
yses that naively map scalp measurements and features onto the
underlying cortex, which in general produce incorrect results.

In conclusion, iCoh is most certainly not intended as the gen-
eral solution to the problem of identifying network properties.
It is a very simple and particular measure for correctly assessing
direct connections that causally transmit oscillatory information
between nodes, under the assumption of a linear autoregres-
sive model. It is distinct from the PDC method of Baccala and
Sameshima (2001); Baccalá et al. (2007), which can produce
incorrect results.
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