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ABSTRACT

How coherent neural oscillations are involved in task execution is a fundamental question in neuroscience. Although several electrophysiological studies have tackled
this issue, the brain-wide task modulation of neural coherence remains uncharacterized. Here, with a fast fMRI technique, we studied shifts of brain-wide neural
coherence across different task states in the ultraslow frequency range (0.01-0.7 Hz). First, we examined whether the shifts of the brain-wide neural coherence occur
in a frequency-dependent manner. We quantified the shift of a region’s average neural coherence by the inter-state variance of the mean coherence between the
region and the rest of the brain. A clustering analysis based on the variance’s spatial correlation between frequency components revealed four frequency bands (0.01-
0.15 Hz, 0.15-0.37 Hz, 0.37-0.53 Hz, and 0.53-0.7 Hz) showing band-specific shifts of the brain-wide neural coherence. Next, we investigated the similarity of the
inter-state variance’s spectra between all pairs of regions. We found that regions showing similar spectra correspond to those forming functional modules of the brain
network. Then, we investigated the relationship between identified frequency bands and modules’ inter-state variances. We found that modules showing the highest
variance are those made up of parieto-occipital regions at 0.01-0.15 Hz, while it is replaced with another consisting of frontal regions above 0.15 Hz. Furthermore,
these modules showed specific shifting patterns of the mean coherence across states at 0.01-0.15 Hz and above 0.15 Hz, suggesting that identified frequency bands
differentially contribute to neural interactions during task execution. Our results highlight that usage of the fast fMRI enables brain-wide investigation of neural

coherence up to 0.7 Hz, which opens a promising track for assessment of the large-scale neural interactions in the ultraslow frequency range.

Introduction

A prominent attribute of brain dynamics is coherent oscillatory ac-
tivity across separate areas. The frequency of the coherent oscillation
is determined by the anatomical and biophysical properties of the un-
derlying neural circuits. Such properties are hypothesized to specify cir-
cuits’ functionality in the network (Siegel et al., 2008). Recent studies
have found that the task modulation of neural interactions occurs in
a frequency-dependent manner (Bastos et al., 2015; Gregoriou et al.,
2009; Haegens et al., 2011; Hipp et al., 2011; Pesaran et al., 2008;
Siegel et al., 2008), supporting the idea that the frequency reflects
the functionality. Therefore, examining large-scale neural interactions
based on frequency-specific signals would promote better understand-
ing about the functional network organization of the brain than has the
corresponding examination based on the broadband signals. However,
because most of the studies have focused on limited regions of inter-
est, the way the whole-brain frequency-specific interactions change with
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cognitive states remains unknown. In this study, we aim to investigate
the frequency-specificity of the state-dependent modulation with em-
phasis on the whole brain network organization.

The modulation of the frequency-specific neural interactions in the
human brain has been mainly studied using electromagnetic record-
ings such as electroencephalography (EEG). Thanks to their high sam-
pling rates, studies have examined neural interactions across a broad
frequency range (1~1000 Hz) and have demonstrated some important
connections to cognitive functions (Aftanas and Golocheikine, 2001;
Hipp et al., 2011; Kitzbichler et al., 2011; Rodriguez et al., 1999;
Siegel et al., 2008). Since most of these methods measure mixed sig-
nals from multiple different sources, unmixing them is necessary in or-
der to identify the correct signal sources. However, accurate localiza-
tion is often impossible, especially for signals from deep subcortical ar-
eas. As such, these methods are not suitable for investigating whole-
brain neural interactions. In contrast, fMRI has a lower temporal reso-
lution but a spatial localizability that is higher than the electromagnetic
methods even in the deep areas. Ensuring accurate localization, rest-
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ing state fMRI measurements have better characterized the whole-brain
functional network and successfully revealed its attributes—such as the
existence of subnetworks consisting of functionally relevant regions with
dense interconnections, which are thought to work as functional mod-
ules (Bertolero et al., 2015; Crossley et al., 2013; Smith et al., 2009).
Furthermore, a recent study demonstrated that the multiband fMRI tech-
nique can detect relatively faster neural oscillations (~0.75 Hz) than
previously thought (Lewis et al., 2016). Moreover, neural interactions
observed through fMRI have the frequency-specificity in their strength
and topology when at rest (Chen and Glover, 2015; De Domenico et al.,
2016; Liao et al., 2013; Sasai et al., 2011, 2014; Thompson and Frans-
son, 2015). These pieces of evidence lead to the idea that fMRI po-
tentially enables the whole brain investigation of neural interactions’
frequency-specific task modulation in the ultraslow frequency range that
may subserve cognitive functions (He and Raichle, 2009). However, the
functional modulation has been studied so far only with broadband fMRI
signals.

To tackle this issue, we investigated whether the modulation of fMRI-
based whole-brain neural interactions occurs in the frequency depen-
dent manner. This was accomplished by comparing the relative regional
variance of frequency-specific neural interactions across multiple cog-
nitive states among different frequency components. The frequency-
specific neural interactions were defined based on the coherence of
signals obtained by the multiband fMRI, which we call the frequency-
specific functional connectivity, among 264 regions of interest cover-
ing whole brain (Power et al., 2011). To enhance generalizability, we
selected five different states including one resting and four task states
that require subjects to maintain different foci: (1) detection of changes
in luminance of a fixation point on the display (visual attention state),
(2) detection of changes in the tone of a sound stimuli (auditory at-
tention state), (3) heartbeat counting (interoceptive attention state),
and (4) self-referential memory recollection (self-referential state). Fur-
thermore, we quantified the similarity of the frequency-dependency of
the inter-state variance between all pairs of regions, and we examined
whether regions in the same module have spectral attributes that are
similar to the neural interactions.

Method
Participants

A total of 37 healthy adults (15 men and 13 women; age range, 22—
44 years) participated in this study. All participants were right-handed
according to the Edinburgh handedness inventory (Oldfield, 1971). No
participant had a history of neurological or psychiatric illness. The pro-
tocol of this experiment was approved by the institutional review board
of the National Institute for Physiological Sciences, Okazaki, Japan,
Japan, and the experiments were undertaken in compliance with na-
tional legislation and the Code of Ethical Principles for Medical Research
Involving Human Subjects of the World Medical Association (the Dec-
laration of Helsinki). To participate in the study, all participants gave
their written informed consent.

Experimental design

All participants completed fMRI at rest and during 4 cognitive tasks:
[1] a visual attention task, in which participants were instructed to keep
looking at a fixation point in the middle of a black screen to capture any
change of its luminance, [2] an auditory attention task, in which partic-
ipants were instructed to keep hearing a pure tone to try to capture any
change of the scale, [3] a heartbeat counting task, in which participants
were instructed to count all of their heartbeats during the scanning,
and [4] a self-referential memory recollection task, in which partici-
pants were instructed to reflect on their personality. For visual and au-
ditory tasks, we only used stationary stimuli, which are unchanged over
time. This allowed us to estimate the functional connectivity that cannot
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be explained by task designs. For example, we kept the fixation point’s
luminance identical over the visual task period. We continuously pre-
sented the same pure tone across the scan, with no breaks and no change
in frequency, during the auditory task period (see Fig. S1). Although we
used these stationary stimuli for both conditions, we instructed partici-
pants to try to detect changes in stimuli, as if the stimuli would change
during the tasks. This is because we wanted to help participants’ atten-
tion to the stimuli, while we needed to measure brain activities unaf-
fected by the change of the external inputs. The length of the recording
was 5.5 min for all sessions. After each fMRI scanning session, partici-
pants were asked to report the degree of drowsiness during the task, the
number of stimuli changes they captured (only after [1] and [2]), the
number of heartbeats they counted (only after [3]), and what they re-
flected on (only after [4]). Before any task fMRI session, all participants
completed resting state fMRI recordings.

Stimuli presentation

All stimulus presentation was conducted using presentation software
(Neurobehavioral Systems, Inc., USA) implemented on a personal com-
puter (dc7900; Hewlett-Packard, Ltd., USA). The resolution of visual
stimuli was 1024 x 768, and the refresh rate was 60 Hz. The visual stim-
ulus was projected onto a translucent screen by an LCD projector (CP-
$X12000; Hitachi, Ltd., Japan) located outside the shield room. Partici-
pants watched the projected visual stimulus via a mirror attached to the
32-ch head coil. The distance between the screen and each participants’
eyes was approximately 175 cm; the visual angle of stimuli was 13.8
(horizontal) x 10.4 (vertical). Audio stimuli, generated by the presen-
tation software, were presented to participants through MRI-contingent
headphones system (Kiyohara Optics, Inc., JAPAN).

Data acquisition

fMRI acquisition

We used a 3.0 Tesla scanner (Verio; Siemens, Ltd., Germany) with
a 32-ch phased-array head coil to acquire MRI data. The T2*-weighted
functional images were acquired using a multiband Echo-Planar Imaging
(EPI) sequence that simultaneously collects multiple EPI slices (Moeller
etal., 2010). We used the following parameters to cover the whole brain:
TR =700 ms; TE = 30 ms; FA = 80°; FOV = 192 mm; 56 slices with 2 mm
thickness; voxel size = 2 x 2 x 2 mm, slice gap = 0.5 mm; multiband fac-
tor = 8. For anatomical reference, we acquired T1-weighted scans that
covered the whole brain with the following parameters: TR = 1800 ms;
TE = 1.98 ms; FA = 9°; FOV = 256 mm; slice thickness = 1 mm; voxel
size =1 x 1 x 1 mm; slice gap = 0.5 mm.

Polysomnographic recording

We carried out the polysomnographic recording, i.e. EEG, vertical
and horizontal electrooculography (EOG), electrocardiography (ECG),
and respiration, simultaneously with all fMRI recordings, to obtain
the objective measure of arousal level based on the standard criteria
(Rechtschaffen and Kales, 1968) and to conduct retrospective removal
of physiological confounds in the fMRI signals (Anderson et al., 2011).

Twenty-seven channels of EEG, vertical and horizontal EOG, and
respiration were acquired using MRI-contingent amplifiers (BrainAmp
MR and BrainAmp ExG MR, Brain Products GmbH, Germany) and an
electrode cap with Ag/AgCl ring electrodes (BrainProducts GmbH, Ger-
many). All EEG electrodes were placed according to the international
10-20 system. Horizontal EOG was recorded from the left eye with an
Ag/AgCl ring electrode placed at the external canthi, and vertical EOG
was recorded from the left eye with an Ag/AgCl ring electrode placed at
a suborbital area. A reference electrode was placed at the middle point
between Fz and Cz. Whole raw data were recorded at 5 kHz with a band-
pass filter (0.016 and 250 Hz), using Brain Vision Recorder software
(Brain Products GmbH, Germany). In addition to polysomnographic
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recording, participants’ faces were monitored using an MRI-contingent
infrared video camera to guarantee participants did not fall asleep.

EEG processing

We used two MATLAB toolboxes for data preprocessing. First,
gradient-switching and pulse artifacts induced by simultaneous MR
imaging were removed by using FASST toolbox (Leclercq et al.,
2011; http://www.montefiore.ulg.ac.be/~phillips/FASST.html/). Then
the following processes were conducted by using EEGLAB toolbox
(http://scen.ucsd.edu/eeglab/): (1) a band-pass filter was used to keep
components between 1 and 30 Hz, (2) data periods showing large am-
plitude over 6 standard deviations from the mean were excluded, and
(3) independent components reflecting eye movement, remaining MR
artifacts, and anything generated by single channel were removed. To
make sure that subjects were awake during the experiments, manual
sleep scoring was performed over 30-s epochs for each state based on
standard criteria (Berry et al., 2015).

fMRI preprocessing

Functional MR volumes were motion-corrected using the SPM8 pack-
age (Wellcome Department of Imaging Neuroscience, London, UK). Af-
ter spatially smoothing the volumes with a 5-mm full-width-at-half-
maximum Gaussian blur, we registered them to the standard MNI space.
fMRI data are generally contaminated with physiological noises, such as
subject motion, respiration, and cardiac activities, resulting in coherent
signal fluctuations across the brain (e.g., global signals). To minimize
these effects on the functional connectivity estimation, we modified the
phase-shifted soft-tissue correction method (PSTCor; Anderson et al.,
2011). PSTCor is a general linear model-based denoising method that
subtracts nuisance regressors after optimally adjusting their time-lags
from the global signal. A limitation of PSTCor is that it does not use some
regressors significantly correlated with fMRI signals, such as heart rate
variability or heart rate time-course convoluted with cardiac response
function (Chang et al., 2009). Furthermore, it does not help address-
ing large amplitude spikes caused by head movements (Power et al.,
2012). Due to these limitations, we modified by using new regressors
on top of the original set of regressors introduced by Anderson et al.
The added regressors include: 1. RETROICOR regressors (Glover et al.,
2000), 2. white matter time series, 3. cerebrospinal fluid time series,
4. soft tissue time series, 5. respiration volume per time, 6. respiration
volume per time convolved with respiration response function, 7. heart
rate per time, 8. heart rate variability per time, 9. heart rate per time
convolved with cardiac response function, 10. time series of motion pa-
rameters from realignment procedure, 11. temporal derivatives of 1-10,
and 12. spike regressors due to Satterthwaite et al. (2013). We followed
the method introduced by Chang et al. (2009) to obtain regressors 5-
9. We selected this set of regressors after validating their effectiveness
in reducing confounds (see Figures §1-S3). The motion spike regressors
were made by identifying significant spike events present in each fMRI
time-series. Spikes were identifying by calculating a measurement called
framewise displacement (FD), which is the sum of the absolute values
of the differentiated realignment estimates (by backward differences)
at every time point (Power et al., 2012). We made a regressor for ev-
ery spike, so the number of regressors equals the number of identified
spikes (Satterthwaite et al., 2013). It has been shown that denoising
through the general linear model could artifactually transform strue-
tured functional patterns of low-frequency signals to the high-frequency
band (Chen et al., 2017). This effect can be mitigated by band-limiting
the low-frequency components. Thus, we denoised using signals and re-
gressors filtered before the regression (Hallquist et al., 2013). Specifi-
cally, we decomposed the full frequency range into the low-frequency
band (0.01-0.15 Hz) and the high-frequency band (0.15-0.7 Hz) based
on the power spectrum. After processing signals and regressors with
bandpass filters to remove components outside of the frequency band of
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interest, we denoised using the general linear model at each frequency
band separately.

ROI

A set of 264 regions of interest (ROI) introduced by
Power et al. (2011) was used to define nodes of the functional
connectivity network. Signals in voxels within each ROI (5 mm radii)
were averaged to obtain representative signals for the ROL

Frequency-specific functional connectivity

We estimated functional connectivity by the magnitude-squared co-
herence for all pairs of the ROIL. The coherence measures the linear and
time-invariant relationship between two signals x and y at frequency 4
and is defined as follows:

2
Py (4|
P (DP,,(D

C,, 00 =

where ny(/l) refers to the coherence, ny(}t) is the cross-spectrum of
x and y, P, (4) is the power spectrum of x, and Pyy(/l) is the power
spectrum of y. For each pair of signals, we obtained frequency-specific
functional connectivity matrices by averaging the coherence values
within 68 narrow, 50%-overlapping frequency bands with bandwidths
of 0.02 Hz (Fig. 1A). We have used the same definition of functional con-
nectivity in our previous studies (De Domenico et al., 2016; Sasai et al.,
2011, 2014).

Strength and diversity

The strength is defined as the sum of connectivity strengths of a node
in the functional connectivity network, quantifying the degree to which
the corresponding region coordinates with all other regions in the brain.
We define the diversity as the variance of the strength across all states.
As such, the diversity measures how much the region differentiates its
interactions with the rest of the brain across states on average. We ob-
tained strengths of all nodes at each frequency band as a row vector con-
taining the sum of each column of the frequency-specific functional con-
nectivity matrix, resulting in five 68-by-264 matrices (Fig. 1B, strength
matrices). Then we calculated the variance of strengths across five states
for each node at each frequency band and made the variance matrix
(Fig. 1C). Finally we standardized each element of the variance matrix
so that each row vector has a mean of 0 and a standard deviation of
1. We used this standardized variance to measure the relative diversity
of the nodal strength at each frequency. We refer to the standardized
variance matrix as the “diversity matrix,” its row vectors as “diversity
profiles,” and its column vectors as “diversity spectra” (Fig. 1D).

Frequency cluster and brain module detection

We used a network community detection method called the “Lou-
vain method” (Blondel et al., 2008) to find both frequency clusters and
brain modules. The Louvain method is one of the greedy methods. It
searches for clusters of nodes in a network by optimizing a cost function
called Modularity, the density of edges inside clusters to edges outside
clusters. We used a MATLAB function, “community louvain.m,” imple-
mented in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010),
to search the optimal cluster partitions based on similarity matrices (see
the next section). We applied this method to the similarity matrices we
chose to group, ones showing similarity between all pairs of units (fre-
quency or ROI). Two key parameters affect grouping results, (1) net-
work resolution parameter, and (2) threshold applied to the similarity
matrix. We optimized these parameters to maximize the stability of our
results as follows. First, we used the group-averaged similarity matrix
instead of individual similarity matrices separately. Specifically, in the
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brain module detection analysis, we obtained similarity matrices of di-
versity spectra for all subjects and averaged them to get the group-mean
similarity matrix. We also used the group-average similarity matrix in
the frequency cluster detection analysis. Then, we searched for optimal
parameters to provide the most stable partitions. The optimal network
resolution parameter was chosen by using the method introduced by
Traag et al. (2013). In the paper, they proposed the method to quantify
the significance and stability of community structure for a network res-
olution parameter. So, we used the product of the significance, which is
minus the logarithm of the probability that identified clusters appear in
a random graph of the same size, and the stability, which is the similar-
ity among 25 trials of community detection, as an evaluation function to
find the optimal resolution. As the stability, we used a recently proposed,
improved measure for the partition similarity called adjusted mutual in-
formation instead of Traag et al. ’s original measure (Jeub et al., 2018).
We changed the network resolution parameter from 0.1 to 10 in incre-
ments of 0.1 and found the optimal resolution parameter maximizing
the above measure. For the threshold applied to the similarity matrix,
we used the sparsity, the ratio of the number of edges over the possible
maximum number of edges. We explored optimal sparsity by evaluat-
ing the stability of the detected partitions by resampling the similarity
matrix through bootstrapping subjects. We quantified the similarity of
detected communities across the resamples using normalized mutual in-
formation of the partition. We looked for optimal sparsity by changing
it from 0.05 to 1 in increments of 0.05. Although we identified 1 as
the optimal sparsity for brain module detection, multiple sparsity val-
ues achieved the highest stability for the frequency cluster detection.
Thus, we further carried out the clustering using the summary matrix
of frequency cluster assignments across all sparsity values achieving the
highest stability. Specifically, we first made a binary matrix whose entry
shows that the corresponding pair of frequencies is in the same cluster
(1) or not (0). We made this matrix for the cluster assignment obtained
by using each threshold achieving the highest stability. Then, we aver-
aged these binary matrices together to get one summary matrix. Using
this matrix as a new similarity matrix, we conducted frequency detec-
tion with the Louvain method.

EEG-fMRI coherence analysis

We conducted a coherence analysis between EEG and fMRI signals.
To do so, we first obtained an EEG power time-course using time-
frequency analysis. Specifically, we estimated the EEG power spectrum
for each time-frame of fMRI acquisition (700 ms), and thus got a time-
course of the power for each EEG frequency component of an EEG chan-
nel. We repeated power estimation for all twenty-seven EEG channels.
The EEG power time-course was used for two analyses in this study:
(1) clustering analysis and (2) examination of the frequency-wise re-
lationship between fMRI and EEG. For the first analysis, we obtained
a coherence spectrum between an ROT’s fMRI time-course and an EEG
channel’s power time-course of an EEG frequency component. This esti-
mation of the coherence spectrum was repeated for all combinations of
fMRI RO, EEG channel, and EEG frequency component, which makes a
3-dimensional matrix (dimension 1: fMRI frequency, dimension 2: EEG
channel, and dimension 3: EEG frequency) for each fMRI ROI. Using
the 3-dimensional correlation of these matrices, we obtained a simi-
larity matrix, which we used for the clustering analysis (see the next
section). For the second analysis, we first obtained the mean fMRI time-
courses of each brain modules and those across all ROIs. Using the mean
time-courses instead of ROI-wise time-courses, we repeated the estima-
tion of the coherence spectrum mentioned above, which creates the
3-dimensional matrices for brain modules. Averaging the matrix over
the EEG channels, we obtained a matrix showing coherence between
each fMRI frequency component and each EEG frequency component.
To summarize the relationship with respect to each fMRI frequency band
identified in this study, we obtained the means of the matrix rows cor-
responding to the identified frequency band.
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It is known that there are substantial time-lags between neural events
captured by EEG and corresponding BOLD response. Usually, this issue
is addressed using the convolution of hemodynamic response function
(HRF) with EEG events. However, it remains unclear what type of HRF
is best suited here because the convolution of the canonical HRF func-
tions as a low-pass filter and significantly reduces the high-frequency
components of fMRI signals. Furthermore, Lewis et al. (2016) have al-
ready raised the possibility that high-frequency stimuli would produce a
hemodynamic response that reaches its peak in a much shorter duration
(~2 s) in comparison to the canonical HRF. Thus, we repeated the co-
herence analysis without the HRF, while changing the time-lag between
EEG and fMRI time-courses increments of 1 second, from 1 second to 5s.
Finally, we selected an optimal time-lag that maximizes the deviation
of the global mean coherence value from its null distribution obtained
through the phase shuffling of both EEG and fMRI time-courses.

Similarity matrices

The similarity matrix used to the frequency cluster detection was
obtained by quantifying the similarity of diversity profiles between all
pairs of frequency bands with Spearman’s correlation. We only used this
matrix for the frequency cluster detection. On the other hand, we used
three different similarity matrices for the brain module detection, which
are the similarity matrix of diversity spectra, functional connectivity ma-
trix, and the similarity matrix of EEG-fMRI coherence (see the previous
section). The matrix of diversity spectra was obtained with Spearman’s
correlation for all pairs of ROIs. The functional connectivity matrix was
obtained, calculating Pearson’s correlation coefficients of time-series for
all pairs of ROIs. The matrix of EEG-fMRI coherence was made as de-
scribed in the previous section.

Comparison of diversities among modules

We extracted the mean diversity spectrum for each detected mod-
ule by averaging the diversity spectra of all assigned ROIs. These values
were then compared among modules after being averaged in the follow-
ing 4 frequency bands identified by the clustering analysis in the fre-
quency band detection (see above): (1) 0.01-0.15 Hz, (2) 0.15-0.37 Hz,
(3) 0.37-0.53 Hz, and (4) 0.53-0.70 Hz. We conducted the analysis
of variance (ANOVA) to test if variances are the same across modules
and frequency ranges. We performed post-hoc tests to test the null hy-
pothesis that the average diversities for all pairs of modules have equal
means in each frequency range. The modified sequentially rejective mul-
tiple test procedure was used to account for the multiple comparisons
(Shaffer, 1986).

We also tried to investigate if any of the identified modules corre-
sponds to the flexible hubs reported by Cole et al. (2013). In their paper,
Cole et al. used Power et al. (2011)’s partition of brain modules and ar-
gued that the flexible hub is the frontoparietal network. Thus, we also
identified the most diversified module, according to Power’s definition
of module parcellations. Specifically, we obtained diversity values for
each ROI at each band, and we averaged these values for ROIs assigned
to the same module. Then, we identified the most diversified module
at each band based on the group-mean diversity value. We conducted
a paired t-test to statistically examine whether the variance of the most
diversified module is the same as those of other modules. We applied
the Bonferroni correction to get corrected p-values for these multiple
comparisons.

Comparison of inter-state variance in strengths among modules

To test if all modules differentiate connectivity strengths across states
in the same way, we standardized the mean functional connectivity
strength of a frequency range across states for each node and aver-
aged them in each module. By regarding the standardized strength in
each state as the coordinate of a dimension, we projected the strengths
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of all states of a module onto a point of a five-dimensional Euclidean
space. We calculated Euclidean distances among all projected points to
get quantities of dissimilarity of inter-state variance of strengths among
all modules. The mean dissimilarity across all subjects was statistically
compared to those obtained by permuting module labels to test the null
hypothesis of no dissimilarity.

Task-specific functional connectivity detection

We examined whether there is any task-specific functional con-
nectivity modulation at each frequency band. To do so, we ob-
tained a functional connectivity matrix for each task at each fre-
quency band by averaging coherence within the frequency band. We
applied the network-based statistical (NBS) analysis (Zalesky et al.,
2010) to test whether there are any significant task-specific FC pat-
terns at each identified frequency band. To run the NBS, we needed
to determine the test statistic threshold. As recommended in the
reference manual for the NBS connectome (https://www.nitre.org/
frs/download.php/5331/Reference_Manual NBS_v1.2.pdf), we changed
this threshold value from 2 to 4 in increments of 0.1. After confirming
that the results are qualitatively consistent across all the thresholds we
tried, we selected 2.5 as the threshold.

Results
Diversity profile and spectrum

We first developed a method to characterize the inter-state variance
of neural interactions in terms of their frequency-specific spatial pro-
file and local spectral property. These variance features were derived
from a matrix summarizing each ROI’s frequency-specific variance of
functional connectivity (diversity matrix, Fig. 1D), which was achieved
through the following procedure. We estimated coherence spectra for
all pairs of ROIs and obtained frequency-specific functional connectiv-
ity matrices in all task states by calculating band-limited coherence co-
efficients (Fig.1A). We assessed strength of an ROI's neural interactions

A frequency-specific functional connectivity matrix B

visual resting

264 ROIs

auditory

interoceptive self-referential

0.01-0.03 Hz &
g
0.02-0.04 Hz
[ ] [ ] [ ] [ ] [ ]
° ° ° ° °
. . . . .
0.68-0.70 Hz

Fig. 1. Strength and diversity profiles and spectra.
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with all the rest by sum of coherence coefficients (Fig.1B), and we de-
fined a measure of diversity as the standardized variance of the strength
across all task states (Fig.1C, D). The strength quantifies the degree to
which a ROI coordinates with the rest of the brain, while the diversity
measures how much the region differentiates the coordination across
task states. We used row vectors of strength and diversity matrices to
characterize whole brain profiles (strength or diversity profile), while
we used column vectors to extract their spectral features (strength or
diversity spectrum).

Diversity profile determines four frequency ranges

We attempted to clarify whether cognitive tasks differentiate re-
gions’ neural interactions in a frequency-specific manner. We evaluated
the similarity of diversity profiles between different frequency bands
through Spearman’s correlation (Fig 2A). Then, we tested whether there
are clusters of frequency bands based on similarity. We applied a clus-
ter detection algorithm called the Louvain method to the correlation
matrix at an optimal network resolution scale (see Method) and iden-
tified four clusters of contiguous frequency ranges: (1) 0.01-0.15 Hz,
(2) 0.15-0.37 Hz, (3) 0.37-0.53 Hz, and (4) 0.53-0.70 Hz. We also con-
firmed the network has a statistically significant cluster organization
(p=5.7 x 10717%).

Diversity spectra detect functional modules

The spectrum of regional diversity characterizes the regional
frequency-dependency of the inter-state variance. As such, its inter-
regional correlation enables the clustering of regions based on the
frequency-dependency of diversity. By applying the module detection
analysis to the correlation matrix, we found three separate modules
(Fig. 3A, B, p=1.0 x 1074%8). The first module contains the pre- and
postcentral gyri, the superior temporal gyrus, and some cingulate cor-
tical areas (Module 1). The second module includes the posterior pari-
etal cortices, the posterior cortices, and the cerebellum (Module 2). The
third module mainly consists of frontal cortical regions (Module 3). The
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(A) We estimated coherence for all pairs of ROIs in each task state with each individual data and averaged them at each frequency band to obtain a frequency-
specific functional connectivity matrix. (B) We calculated the nodal strength as the sum of each row vector of the frequency-specific functional connectivity matrix
and obtained a 68-by-264 matrix for each state. We call row vectors “strength profiles” in frequency bands, and we call column vectors “strength spectra.” (C) We
estimated the variance of the nodal strengths across states for each node at each frequency, and we obtained the variance matrix. (D) We standardized the variance
matrix such that each row vector has a mean of 0 and a standard deviation of 1, and we made the diversity matrix. We call the row vectors “diversity profiles” and
the column vectors “diversity spectra.”
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Fig. 2. Diversity profiles identify separate frequency ranges.

The correlation matrix of diversity profiles. Correlation coefficients were ob-
tained by Spearman’s correlation for all pairs of frequency bands. Detected fre-
quency clusters are indicated by color bands attached to the top and left of the
matrix.

fourth module is mostly formed by the temporal, subcortical, cerebellar,
and cingulate cortical regions (Module 4). Furthermore, we compared
this partition of brain modules with another partition obtained based on
the functional connectivity by using NMI (Fig. 3C). We found that the
NMI value was significantly higher than 0 (0.5623, p<10~°), indicating
that the modular partition is consistent with those based on functional
connectivity.

We also compared the observed modular partition with one previ-
ously reported by Power et al. (2011). We confirmed that both modular
partitions are significantly similar (NMI=0.356, p<107>). By referring
to the module labels in the previous study, we found that Module 1
included many areas of the somatosensory and auditory networks, as
well as some of the cingulo-opercular and ventral attention networks.
Module 2 contained all brain regions in the visual and cerebellar net-
works, and many of the dorsal and ventral attention networks, on top of
some areas in the somatosensory, auditory, frontoparietal, and default
networks. Module 3 included many regions forming salience and fron-
toparietal networks, as well as some of those forming cingulo-opercular,
default, and attention networks. Module 4 encompassed all brain regions
of subcortical networks; it also included small portions of default, audi-
tory, salience, cingulo-opercular, and somatosensory networks. Table 1
summarizes the correspondence between modules identified here and
those reported by Power et al. (2011).

A diversity spectra B

[Spearman corrlelation|

similarity matrix
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The most diverse module switches between high and low-frequency ranges

We next sought to recapture the frequency-specificity in the state-
dependent modulation of functional connectivity in terms of identified
modules’ diversity. We defined the diversity spectrum of a module as the
mean diversity spectra of regions assigned to the module (see Method
and Fig. 1). Fig. 4A shows the diversity spectra of modules. We found
that the diversity values of Modules 1 and 2 are the highest in the very-
low frequency range (<0.1 Hz). However, it decreased almost mono-
tonically along frequency and got lower than the diversity of Module 3
above 0.15 Hz. On the other hand, the diversity of Module 3 increased
along frequency and became the highest above 0.15 Hz. The diversity
of Module 4 was as low as or lower than those in other modules across
all frequency. To ensure the statistical significance, we averaged the di-
versity spectra of modules in the frequency ranges identified based on
similarity of diversity profiles (see above) and compared the mean val-
ues among modules. Specifically, we conducted ANOVA for the set of
frequency ranges to test if there was any significant difference in the
diversity across modules and states. As a result, we found significant
main effects for modules, states, and their interactions (p<0.0001 for
all). By conducting post-hoc multiple comparisons among modules, we
found that Module 1 and 2 showed significantly higher diversity than
other modules at 0.01-0.15 Hz, but values of these modules were sig-
nificantly lower than that of Module 3 at 0.15-0.7 Hz (Fig. 4B). We
confirmed that the diversity of Module 4 was significantly lower than
other modules in all frequency bands below 0.53 Hz (p<0.0001 for all
comparisons). Fig. 4C shows the change of the diversified areas across
frequency bands.

We also investigated if any of the identified modules corresponds
to the flexible hub reported by Cole et al. (2013). We calculated
Power et al. (2011)’s modules’ diversity values and identified the most
diversified module at each frequency band. As a result, the most di-
versified module is the sensorimotor network in 0.01-0.15 Hz; it is re-
placed with the salience network in the 0.15-0.70 Hz (Fig. 4D). In 0.01-
0.15 Hz, the visual system, visual attention system, and dorsal attention
system also show high diversity values comparable to that of the sensori-
motor system, while the frontoparietal system has high diversity values
comparable to that of the frontoparietal system in 0.15-0.70 Hz.

The relative connectivity strength across states is specific to the functional
module

We investigated whether all modules differentiate connectivity
strengths across states in the same way or in module-specific manners.
To do so, we standardized the functional connectivity strength across
states for each node and averaged them in each module. Fig. 5A shows
the mean standardized strengths in four frequency ranges. We evaluated
the dissimilarity of the strengths between all pairs of modules by calcu-
lating distances in the five-dimensional Euclidean space; the strength

Fig. 3. Diversity spectra detect functional modules.

(A) Correlation matrix of diversity spectra. Nodal assign-
ments to identified modules are indicated by color bars on
the top and left side of the matrix. (B) Spatial distributions of
the modules in the brain. Each sphere indicates the position

Sfoule of ROL The color indicates assigned module, correspond-
ing to those in (A). (C) Spatial distribution of the modules
¢ Module 2 detected based on functional connectivity. Because similar
modules were identified, the colors in (A) and (B) are reused
@ Module 3

to indicate the module assignments in order to show the cor-

respondence.
Module 4
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Table 1
Correspondence of modules.

Modules reported in Power et al. (2011) Module 1 Module 2 Module 3 Module 4

Visual 0% 100% 0% 0%

Somatosensory 86% 11% 0% 3%

Auditory 69% 15% 0% 15%

Dorsal Attention 0% 82% 18% 0%

Salience 6% 6% 83% 6%

Fronto-parietal 0% 32% 68% 0%

Cingulo-opercular 29% 0% 36% 36%

Default 5% 36% 43% 16%

Ventral attention 11% 56% 33% 0%

Subcortical 0% 0% 0% 100%

Cerebellar 0% 100% 0% 0%
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Fig. 4. Diversity of modules.

(A) Diversity spectra. Red, orange, blue, and yellow lines indicate the diversity spectrum of Modules 1, 2, 3, and 4. The coordinate of the X-axis stands for the center
frequency of each frequency band. The shaded areas represent standard errors. (B) Mean diversity in four frequency ranges. Colors correspond to those of curves in
(A), indicating modules. (C) Each ROI’s diversity indicated by the size of the sphere. Colors correspond to those of (A) and (B). (D) Diversity of Power et al.’s brain
networks at each frequency band. We tested whether the diversity of the most diversified network is significantly different from those of other networks.
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BAND 4
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Omodule 1 Omodule 2 O module 3 < module 4

® D[module 1, module 2] ® D[module 1, modue 3] ® D[module 1, module 4]

® D[module 2, module 3]

Fig. 5. Inter-state variance of connectivity strength is module-specific.

D[module 2, modue 4] = D[module 3, module 4]
(* p<0.1,* p<0.05,*** p<0.001)

(A) Spider charts of standardized functional connectivity strengths for all modules in four frequency ranges. Red, orange, blue, or yellow shaded area indicates
data of Module 1, 2, 3, or 4, respectively. Values along the vertical line in the leftmost chart represent standard scores. (B) Dissimilarity of standardized functional
connectivity strengths among modules. The values were calculated by Euclidean distance of connectivity strengths for all pairs of modules. Bar colors indicate pairs

of modules.

in each state was regarded as the coordinate of one spatial dimension.
The mean dissimilarity across all subjects was statistically compared by
those obtained by permuting module labels to test the null hypothe-
sis of no dissimilarity. We found that the inter-state variance (ISV) of
Module 3 was significantly dissimilar to those of modules consisting of
parieto-occipital regions, Module 1 or 2. For example, the difference of
ISV between Module 1 and 3 is significant in the first and the second
frequency bands (0.01-0.15 Hz and 0.15-0.37 Hz). We found a differ-
ence between Module 2 and 3, in the first and the third frequency bands
(0.01-0.15 Hz and 0.37-0.53 Hz). We also observed significant a differ-
ence in ISV between Module 1 and 2 in the first and the third frequency
bands. ISV of Module 4 also shows a significant difference from those of
Modules 1 and 2.

Task-specific functional connectivity analysis

We further examined whether there is any task-specific functional
connectivity (FC) in any identified frequency band. Thus, to test for any
significant task-specific FC patterns, we conducted a network-based sta-
tistical analysis (Zalesky et al., 2010). Fig. 6 shows FCs whose strengths
increased or decreased in a task-specific manner. We found significant
FCs in visual, auditory, heart, and resting conditions, while we could
not find such FCs in the self-task state. Interestingly, we found that the
network wiring patterns in the visual condition depend on the frequency
band where functional connectivity is estimated.

Module detection using EEG-fMRI coherence spectra

Lastly, we examined brain network organization in relation to EEG-
fMRI coherence. Specifically, we tested whether we can find consistent

brain modules using the similarity of the coherence among ROIs. As
a result, we successfully detected brain modules that are significantly
similar to those found by the similarity of diversity spectra (Fig. 7A,
NMI=0.5383, p<10~°). Next, we asked whether fMRI signals reflect sim-
ilar electrophysiological signals across all the fMRI frequency bands. To
do so, we obtained the mean EEG-fMRI coherence spectrum for each
module at each frequency band (Fig. 7B). We found that spectra within
the same frequency band are significantly correlated among modules
(Fig. 7C). While we also found significant correlations between differ-
ent frequency bands; these correlations were significantly lower than
those within the same frequency band, indicating that EEG frequency
components underlying fMRI signals depend on the fMRI signal’s fre-
quency band. To test this, we obtained the mean spectra for all modules
at each frequency band and examined the statistical significance of co-
herence for each EEG frequency. As a result, we found that each fMRI
frequency band shows significant coherence with a specific set of EEG
frequency components (Fig. 7D).

Discussion

We aimed to clarify whether cognitive states differentiate whole-
brain functional connectivity in a frequency-dependent manner. We
recorded whole brain activities with multiband fMRI at a high sampling
frequency of 1.4 Hz during resting and four task states. We quantified the
variance of the regional connectivity strengths, diversity, in the range of
0.01-0.7 Hz by dividing the frequency range into 68 narrow frequency
bands. By calculating the correlation matrix of the network-wide diver-
sity profiles between all pairs of frequency bands, we found that the
matrix is modular so that it can be decomposed to four contiguous clus-
ters of frequency bands (0.01-0.15 Hz, 0.15-0.37 Hz, 0.37-0.53 Hz, and
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A visual task
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C heart task

Fig. 6. Task-specific functional connectivity varies across frequency bands
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D resting state
BAND 1

— task-specific increase — task-specific decrease

We detected increased and decreased functional connectivity in each task at each frequency band through the network-based statistical analysis. Magenta edges
indicate functional connectivity significantly strengthened, while cyan ones indicate those significantly weakened. We only found such functional connectivity in (A)
visual task state, (B) auditory task state, (C) heart task state, and (D) resting task state. We only show the frequency bands where we found significant task-specific

functional connectivity.

0.53-0.70 Hz). Then, we examined whether the frequency-specificity of
the diversity relates to functional network organization. We evaluated
the similarity of diversity spectra between all pairs of regions and found
three modules. The sets of regions forming the modules were substan-
tially similar to those forming functional modules of the whole-brain
network. Interestingly, the modules showing the highest diversity were
switched from Modules 1 and 2, which largely consist of posterior re-
gions, to Module 3, which is mainly formed by frontal regions, across
frequency. Furthermore, we found that Modules 1 and 2 show a dissim-
ilar shifting pattern of connectivity strengths across states compared to
those of Module 3 below 0.15 Hz and above 0.15 Hz. Moreover, the EEG-
fMRI coherence analysis showed that fMRI signal fluctuations at 0.01-
0.15 Hz correlate with the power of EEG waves different from those
correlated with the fluctuations above 0.15 Hz.

To quantify the variance of functional connectivity, we used the vari-
ance of band-limited coherence strengths across resting and four task
states. This measure was selected to characterize the state-general mod-
ulation of the functional connectivity with reducing the state-specific ef-
fect. It has been shown that there are both task-general and task-specific
modulations of the functional connectivity (Cole et al., 2014). The task-
general modulation refers to changes in strengths common across tasks,
seen in a large number of functional connectivity. On the other hand,
the task-specific modulation refers to changes specific to the tasks, oc-
curring locally. Because of the task-specific modulation, the standard
pair-wise comparison between a single task state and the resting state
can introduce biases in evaluating the state-general modulations. Thus,
we selected four conditions requiring subjects to maintaining different

foci and used variance across multiple tasks as the measure of the state-
general modulation.

We selected the steady-state task design rather than the event-related
design. The more sophisticated connectivity analysis using event-related
designs is better for capturing instantaneous neural interactions in the
time domain than are those that use steady-state designs. This is be-
cause the connectivity analysis using event-related designs enables de-
tection of both event-dependent and event-independent connectivity by
using techniques such as generalized psychophysiological interactions
(McLaren et al., 2012). However, it remains unknown in what way
the event-related design can be combined with techniques estimating
frequency-dependent functional connectivity. Therefore, instead of the
event-related design, we used a steady-state design that requires sub-
jects to keep their cognitive states stable in order to assume that neural
interactions during the task are as stable as possible.

The fMRI’s blood-oxygenation-level-dependent (BOLD) signal can
be modeled as time-series of neural events convolved with a canoni-
cal hemodynamic response function that basically has the property of
a low-pass filter (Friston et al., 2000, 1998). Because of the sluggish-
ness of the hemodynamic response, it has been thought that fMRI can-
not measure neural activities occurring in higher frequency ranges even
if the sampling rate is improved. However, this point of view is chal-
lenged by the existence of a frequency cluster consisting of only high-
frequency components (>0.53 Hz) that are strongly attenuated by the
canonical hemodynamic response function. In line with this, a recent
paper reported fast oscillatory fMRI signals in response to stimuli oscil-
lating at up to 0.75 Hz and showed by a simulation that BOLD responses
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Fig. 7. EEG-fMRI correspondence is specific to the fMRI frequency band

(A) We detected four brain modules based on the similarity of EEG-fMRI coherence spectra (red, blue, yellow, and orange colors). Although the number of detected
modules is different from what we found using the similarity of diversity spectra, the similarity of network partition quantified by normalized mutual information is
significant (p<0.001). (B) The mean EEG-fMRI coherence spectrum of each module at each frequency band. (C) The mean Spearman’s correlation of intra-band/inter-
band pairs of coherence spectra. (D) The significant coherence in the averaged EEG-fMRI coherence spectrum across all modules.

become quicker for rapidly changing stimuli (Lewis et al., 2016). An- can capture neural interactions in frequency ranges higher than 0.1 Hz
other experimental study has shown that the coupling between cerebral so that we can investigate whole-brain functional organization in the
blood flow and volume changes during dynamic stimulation (Simon and slow-delta frequency range, which has been shown to be involved in
Buxton, 2015), indicating that hemodynamic response can be specific attentional selection (Lakatos et al., 2008).

to the time-scale of stimuli. Furthermore, additional previous studies It has been reported that the fMRI signal correlates with fluctua-

demonstrated that fMRI-based functional connectivity at rest persists in tions of EEG power (He et al., 2008; Sadaghiani et al., 2010). A recent
the frequency range above 0.1 Hz (Chen and Glover, 2015; Gohel and study has shown that EEG and fMRI dynamic functional connectivity ex-
Biswal, 2015; Liao et al., 2013). In the current study, we also revealed hibit shared dynamics (Wirsich et al., 2020). However, to the best of our

the existence of task-specific functional connectivity in this frequency knowledge, previous studies examined the relationship using fMRI sig-
range. Remarkably, task-specific functional connectivity observed dur- nals obtained using conventional time-resolution (TR~2 s). Utilizing the
ing both the visual task and the heart task state showed different spa- high temporal resolution, we investigated the correlation up to 0.7 Hz

tial patterns between frequency range below 0.15 Hz and that above and found that the frequency of EEG power correlation with fMRI is
0.15 Hz. Moreover, we confirmed that fMRI signal components signifi- dependent on the fMRI’s frequency ranges (Fig. 7B). It has been shown
cantly correlate with EEG signals all over the frequency bands (Figure that fMRI signals in the frequency range below 0.1 Hz have a significant
S4). Thus, despite fMRI’s low signal-to-noise ratio, it is likely that it correlation with the EEG power time-courses of frequency components

10
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around 10 and 20 Hz (Sadaghiani et al., 2010). Similarly, we found that
the fMRI signals in the first frequency band showed significant coher-
ence with the EEG power time-courses of components whose frequencies
are around 10, 17.1, and 21.4 Hz. Yet, the fMRI signals in the frequency
bands above 0.15 Hz demonstrated a differential relationship with EEG
frequency. For example, significant coherence with the fMRI signals in
the second and fourth frequency bands occurred more broadly. In the
second frequency band, we found significant coherence in the delta (1-
4.3 Hz), high alpha (11.4-17.1 Hz), and high beta bands (27.1-30 Hz).
The coherence in the fourth frequency band occurred in the theta (4.3-
7.1 Hz) and high alpha (11.4-17.1 Hz). In the third frequency band,
significant coherence with the fMRI signals occurred selectively around
1.4 Hz, 8.6 Hz, and 30 Hz. Notably, none of these high fMRI frequency
bands’ signals showed significant coherence around 10 and 21.4 Hz. This
indicates that fMRI frequency components in the high-frequency range
reflect different frequency components of electrophysiological activity
from those in the low-frequency range, which are typically used for func-
tional connectivity analysis. It should be noted that we obtained our re-
sults by averaging the fMRI-EEG coherence across all EEG channels to
summarize the results. A potential caveat is that the summarized results
for different EEG frequency bands may reflect different contributions
from different channels. Moreover, our results indicate that task-specific
functional connectivity patterns will vary with fMRI frequency compo-
nents. In sum, our results support the notion that the characterization
of functional connectivity in a frequency-specific manner is a promising
approach to obtain rich information about brain network organizations
that cannot be captured by conventional broadband characterization.
We assumed that the change in signal-to-noise ratio (SNR) along fre-
quency is similar across distinct regions. However, since our task design
is not suitable for estimating task-modulated activation, we could not
validate this assumption. Future studies exploring the network organi-
zation in frequency ranges above 0.1 Hz should clarify the SNR changes’
inter-regional relationship.

We found four brain modules based on the correlation matrix of the
diversity spectra. We confirmed that the modularity, a quantity eval-
uating the degree to which each module is separate from others, was
much higher than the canonical criterion for judging if a network has
a modular structure. The regional assignments to the modules were sig-
nificantly similar to those of the modules identified based on functional
connectivity. We also ensured that the regional assignments are signif-
icantly similar to those reported in the previous study (Power et al.,
2011). These results demonstrate that the frequency-specificity of the
inter-state variance is similar among regions forming the same fune-
tional modules. Interestingly, we found that the modules consisting of
posterior regions show the highest diversity in 0.01-0.15 Hz; whereas,
a different module formed by frontal regions shows the highest diver-
sity above 0.15 Hz. This relationship between these modules was also
observed by comparing mean frequency-specific functional connectivity
strengths. Altogether, the results indicate that a module playing a key
role in the network-wide interactions switches between posterior and
frontal modules across frequency.

Because each module consists of regions playing specific functional
roles in the brain, modules might show different task-specific modu-
lations of functional connectivity. However, as mentioned above, such
effects cannot be captured with the diversity. Thus, we further inves-
tigated the relative connectivity strengths across states. We found the
patterns in Module 3, a module consisting of frontal regions, were signif-
icantly dissimilar to those in Modules 1 and 2, mainly including parieto-
occipital regions, both in the range of 0.01-0.15 Hz and above 0.15 Hz.
Taking it into account that in the low-frequency range (0.01-0.15 Hz)
the modules with parieto-occipital regions contribute more to the brain-
wide neural interactions than does Module 3 and that they are switched
in the high-frequency range (above 0.15 Hz), it is likely that neural inter-
actions in these frequency ranges play distinct roles in brain function.
Interestingly, the spatial layout of these modules also implies a fune-
tional distinction between frequency ranges; Module 1 and 2 basically
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consist of sensor and motor areas, while Module 3 is mainly formed by
higher-order association areas. Expecting the inter-frequency functional
distinctions to be highlighted by the difference in the attentional mod-
ulation, we used 2 exteroceptive and 2 interoceptive tasks in this study.
However, we could not find any commonalities amongst the 2 tasks of a
given type; rather, each task seems to have a specific modulatory effect
on the functional network organization. It will be important for future
research to investigate the association of fMRI-based frequency-specific
connectivity by using task sets designed to perturb brain states in many
directions in order to clarify the canonical functions of neural interac-
tions in the frequency ranges.

Recent advances in the framework for multilayer networks have en-
abled a new vista for network science. This framework can deal with net-
works whose nodes are interacted in multiple different ways, and it can
provide an improved characterization of networks by taking the multiple
interactions into account. The brain is one of the multilayer networks,
for it has several ways of interactions among its parts, such as time-
varying interactions and frequency-dependent interactions. The multi-
layer brain modeling has been getting popular recently, while most of
the application is that of time-varying interactions. The main shortcom-
ing of constructing a multi-frequency-layer network with fMRI is its poor
frequency-resolution. However, the current study demonstrates that fast
fMRI techniques can derive rich information about frequency-specific
functional networking at least in the ultraslow frequency range. Further-
more, our previous study demonstrated that the multilayer modeling can
provide unique information about the spatial distribution of brain hubs,
bringing better discriminability between the healthy and schizophrenic
populations (De Domenico et al., 2016). Since the frequency domain
would contain different information about inter-regional interactions
compared to those in the time domain, our results encourage the multi-
frequency-layer modeling of fMRI-based networks for a better under-
standing of the large-scale functional brain organization.
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