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Abstract

Adaptation to changing environments involves the appropriate extraction of environmental information to achieve a

behavioral goal. It remains unclear how behavioral flexibility is guided under situations where the relevant behavior is

ambiguous. Using functional brain mapping of machine learning decoders and directional functional connectivity, we show

that brain-wide reversible neural signaling underpins task encoding and behavioral flexibility in ambiguously changing

environments. When relevant behavior is cued ambiguously during behavioral shifting, neural coding is attenuated in

distributed cortical regions, but top-down signals from the prefrontal cortex complement the coding. When behavioral

shifting is cued more explicitly, modality-specialized occipitotemporal regions implement distinct neural coding about

relevant behavior, and bottom-up signals from the occipitotemporal region to the prefrontal cortex supplement the

behavioral shift. These results suggest that our adaptation to an ever-changing world is orchestrated by the alternation of

top-down and bottom-up signaling in the fronto-occipitotemporal circuit depending on the availability of environmental

information.
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Introduction

Executive control guides flexible adaptation to changing envi-

ronments and is most developed in humans throughout evo-

lution (Miller and Cohen 2001; Stoet and Snyder 2009). Shifting

between different types of behavior is one of the core executive

control functions (Allport et al. 1994; Rogers and Monsell 1995),

and task switching paradigms have been often used to inves-

tigate behavioral flexibility and its underlying neural mecha-

nisms. Previous neuropsychological and neuroimaging studies

of human and nonhuman animals suggest a critical role of the

prefrontal cortex in switching tasks and rules (Dove et al. 2000;

Rushworth et al. 2002; Bunge et al. 2005; Derrfuss et al. 2005;

Crone et al. 2006; Yeung et al. 2006; Kim et al. 2012; Nee and

D’Esposito 2016; Bissonette and Roesch 2017; Malagon-Vina et al.

2018; Fouragnan et al. 2019; Fig. 1A).

Importantly, executive control depends on perceived infor-

mation of external environments, and relevant information

is appropriately extracted from the external environment to

achieve a behavioral goal. Perception of sensory information

from the external environment guides the course of action,

which is referred to as perceptual decision-making (Gold and

Shadlen 2007; Hanks and Summerfield 2017). It involves the

extraction of goal-relevant information, which is integrated

to form a relevant decision. Studies of perceptual decision-
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Figure 1. Experimental design and behavioral results. (A) Schematic illustration of a brain-wide model of interaction of behavioral flexibility and perceptual decision-

making. Behavioral flexibility associatedwith prefrontal areas is subject to appropriate perception of the external world implemented in stimulus-modality-dependent

occipitotemporal areas. (B) Hierarchical structure of task sets. Task sets are presented in a 3-tiered decision tree. Behavioral flexibility is guided by the cue stimulus,

which indicates relevant behavior (judging faces or places) and bridges the upper layers in the hierarchical structure. Based on the task to be performed, target stimulus

is judged [male (M) or female (F) in the face task; indoor (In) or outdoor (Out) in the place task]. (C, D) Behavioral task. (C) Stimuli. Cue stimulus indicates the task to

be performed (face or place task) and is composed of a set of white moving dots presented within a donut-shaped display circle (indicated by dotted lines). The arrow

indicates the motion direction of each dot, and overall motion was either upward or downward. Upward motion and downward motion indicate face and place tasks,

respectively. Motion strength of the cue stimulus was manipulated by coherence of dot motion. The target image was superimposed picture of face and place, which

was presented at the center of screen. Participants judged whether the face picture was male or female, or the place is indoor or outdoor, depending on the task to

be performed. (D) Task procedure. Trials with simultaneous presentation of a dot cue and target (switch and repeat; N and N+M th trials) were followed by target-

only trials (N+1, N+2 and N+M+1 th trials). Switch and repeat trials were dependent on the performed task prior to the cue presentation. (E, F) Behavioral results.

Accuracy (E) and RTs (F) as a function of motion coherence. Solid and dotted lines indicate face and place tasks, respectively, and orange, blue, and green lines indicate

switch, repeat, and target-only trials, respectively. Error bars indicate standard error of the mean across participants.
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making have used behavioral tasks that demand discrimination

of sensory stimuli involving perceptual uncertainty (Newsome

and Pare 1988; Corbetta et al. 1991; Kurikawa et al. 2018).

By manipulating perceptual uncertainty, neurophysiological

and neuroimaging studies have examined cortical mechanisms

of the perceptual decision-making. For example, the middle

temporal (MT) region is known to play an important role in the

perception of moving stimuli (Newsome and Pare 1988; Shadlen

et al. 1996; Beauchamp et al. 1997; Huk et al. 2002; Kayser et al.

2010). It has been also suggested that the fusiform face area

(FFA) and parahippocampal place area (PPA) are associated with

the perception of face (Kanwisher et al. 1997; McCarthy et al.

1997; Ishai et al. 1999; Gazzaley et al. 2005; Freiwald and Tsao

2010) and place (Epstein and Kanwisher 1998; Ishai et al. 1999;

Gazzaley et al. 2005) stimuli, respectively.These collective results

suggest that temporal and occipital regions play important roles

in perceptual decision-making and are functionally segmented

depending on the modality of the stimulus (Fig. 1A).

In our daily life, goal-relevant information in external envi-

ronments is not always evident. Such situation can be well

illustrated by an incorporation of behavioral shifting and per-

ceptual decision-making. Prior studies have explored neural

mechanisms during task switching under situations where tar-

get stimuli involved perceptual uncertainty (Kayser et al. 2010;

Mante et al. 2013; Zhang et al. 2013; Kumano et al. 2016). More

recently, we showed that increased uncertainty of target stimu-

lus engaged top-down signals from prefrontal to occipitotem-

poral cortices, which complemented task switching in such

situations (Tsumura et al. 2021).

Notably, the task switching paradigm is composed of hierar-

chically structured configuration of a set of task rules, called task

sets (Koechlin et al. 2003; Bunge et al. 2005; Badre 2008; Jimura

and Braver 2010; Fig. 1B). Those prior studies above manipulated

perceptual uncertainty of the target items within the lower

layers of the task set hierarchy (Kayser et al. 2010; Mante et al.

2013; Zhang et al. 2013; Kumano et al. 2016; Tsumura et al.

2021). In other words, the target stimulus to be discriminated

was presented ambiguously, but the task per se was cued with-

out ambiguity. To our knowledge, it remains unclear how task

switch is achieved when the relevant task is indicated by a

cue involving perceptual uncertainty. As such, the uncertainty

of relevant task information in the upper layers of the task-

set hierarchy may provide a novel and important opportunity

to examine the relationships between executive control and

perceptual decision-making (Fig. 1A,B).

One potential approach to elucidate underlying neuralmech-

anisms is to identify the signal contents of responsible brain

regions; this has recently been demonstrated for perception

by neural decoding techniques (e.g., Kamitani and Tong 2005;

Haynes and Rees 2006; Norman et al. 2006). In particular, prior

neuroimaging studies have shown that mental and behavioral

states can be decoded from neural coding by machine learning

techniques that classify distributed patterns of brain activity

(Kamitani and Tong 2005; Haynes and Rees 2006; Norman et al.

2006; Nishimoto et al. 2011; Loose et al. 2017; Qiao et al. 2017;

Chikazoe et al. 2019; Wang et al. 2020). One commonly used

technique is the support vector machine (SVM; Vapnik 1998;

Kamitani and Tong 2005; Misaki et al. 2010; Jimura and Poldrack

2012; Nakahara et al. 2016), which enables categorical discrim-

ination by dividing multidimensional space composed of brain

activation pattern using a linear hyperplane. Convolutional neu-

ral network (CNN) classifier (Krizhevsky et al. 2012; LeCun et al.

2015) is one of the deep neural network classifiers consisting

of multiple feature-aggregating layers, enabling more robust

classification. Importantly, recent technical advancements of

CNN allow mapping that highlights image locations character-

izing a classified image (Selvaraju et al. 2017). The mapping

technique may provide novel information about neural coding

and functional localization of the brain.

The current study aimed to elucidate relationships between

behavioral flexibility and perceptual decision-making under cue

uncertainty and to explore the underlying neural mechanisms

(Fig. 1A,B). Functional magnetic resonance imaging (fMRI) was

administered while human participants performed a task-

switching paradigmwith a cue involving perceptual uncertainty.

Standard univariate analysis identified brain regions associated

with task switching,motion strength, and taskmodality. In order

to elucidate causal network dynamics during task switching

under cue ambiguity,we examined effective connectivity among

the task-related brain regions. Finally, whole-brain exploratory

analyses based on machine learning techniques, CNN and SVM,

were performed to identify brain regions that coded relevant

task information.

Materials and Methods

Participants

Written informed consent was obtained from 30 healthy right-

handed subjects (age range: 18–22; 11 females). Experimental

procedures were approved by the institutional review board of

Keio University and Kochi University of Technology. Participants

received 2000 yen for each of the training and scanning ses-

sions. One participant was excluded from analyses due to low

behavioral performance; accuracy was lower than 30% in one of

the experimental conditions. The number of participants was

determined prior to the collection of the current data based on

the effect sizes in pilot behavioral experiments and our previous

relevant study (Tsumura et al. 2021).

Behavioral Procedures

The experiment consisted of 2 sessions administered on sep-

arate days. The first day was a training session, in which par-

ticipants practiced discrimination tasks (random dot motion;

Tsumura et al. 2021) and switching between 2 tasks (face and

place tasks; see below for more details). On the second day,

while fMRI scanning was administered, the participants per-

formed the switching paradigm identical to those practiced in

the training sessions.

Stimuli

All stimuli were generated in Matlab version 2012a, using the

Psychophysics Toolbox (Brainard 1997) extension version 3.0.10,

and were visually presented on a computer screen. The current

task cue stimuli were randomly moving dot stimuli similar to

those used in previous studies of perceptual decision-making

(Chen et al. 2015; Tsumura et al. 2021). Each motion stimulus

involved 60 dots moving inside a donut-shaped display patch

with a white cross in the center of the patch on a black back-

ground (Fig. 1C). The display patch and cross were centered on

the screen and extended from 6 to 12 degrees of visual angle

(dva). Within the display patch, every dot moved at the speed

of 10 dva/s. Some dots moved coherently toward one direction

(upward or downward) while the others moved randomly. The

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab324/6369970 by O

kazaki N
tl R

es Inst user on 26 January 2022



4 Cerebral Cortex, 2021, Vol. 00, No. 00

percentage of coherently moving dots determined the “motion

coherence,” which was set to 3 levels (20, 40, and 80%).

Dot presentation was controlled to remove local motion sig-

nals following a standard method for generating motion stimuli

(Newsome and Pare 1988; Britten et al. 1993; Palmer et al. 2005;

Chen et al. 2015; Tsumura et al. 2021). Namely, upon stimulus

onset, the dots were presented at new random locations on each

of the first 3 frames. They were relocated after 2 subsequent

frames, such that the dots in frame 1 were repositioned in frame

4, and the dots in frame 2 were repositioned in frame 5, and so

on.When repositioned, each dot was either randomly presented

at the new location or aligned with the predetermined motion

direction, depending on the predetermined motion strength on

that trial. Each stimulus was composed of 18 video frames with

a 60 Hz refresh rates (i.e., 300-ms presentation).

Within the center circle mask of the donut-shape motion

stimulus, a face/place superimposed stimulus was presented

simultaneously (Fig. 1C). The face image set consisted of an

image of picture of 4 male and 4 female unfamiliar Japanese

faces, and the place image set consisted of 4 indoor and 4

outdoor unfamiliar places; this resulted in 64 overlaid images.

Task Procedure

At the beginning of the task, a dot patch and face/place stimulus

were simultaneously presented. The direction of the dot patch

(up or down) indicated the task to be performed (discrimination

of face or place). Depending on the motion direction, partic-

ipants were required to judge whether the face was male or

female, or whether the place was indoor or outdoor (Fig. 1C),

and pressed the corresponding button with their right thumb.

The simultaneous presentation of cue (motion dots) and target

(face/place picture) stimuli was aimed to maximize the behav-

ioral effect of switching and motion coherence by minimiz-

ing preparatory processes triggered by the presentation of cue

stimulus (Sakai et al. 2008).

Participants made button responses using the left or right

buttons in both tasks. We used this procedure to prevent an

“action switch,” derived from alternating different button sets

depending on the tasks, which is known to involve separate

prefrontal mechanisms (Kim et al. 2012). Stimulus–response (SR)

mapping of the face and place task was counterbalanced across

participants. Specifically, each participant was assigned to 1 of

the 4 SR maps: 1) female: left, male: right, indoor: left, outdoor:

right; 2) female: right, male: left, indoor: left, outdoor: right;

3) female: left, male: right, indoor: right, outdoor: left; and 4)

female: right, male: left, indoor: right, outdoor: left.

Both of accuracy and speed were stressed. Stimulus was

presented for 1.8 s, followed by a 0.7-s intertrial interval. If par-

ticipants made an incorrect response or did not respond within

1.8 s from the stimulus onset, feedback stimulus indicating an

error (X) was presented for 1.0 s, followed by high-coherence

(80%) cue trials for the same task dimension. The cue trials

immediately after the error were discarded from analyses. SR

and cue-task associations for the 2 tasks were identical on days

1 and 2 and counterbalanced across participants.

The trial with simultaneous cue/target presentation was fol-

lowed by trials with presentation of the face/place target stimu-

lus without the dots cue stimulus (target only trials). The target-

only trials were repeated for 3–5 times (Fig. 1D). In the target-

only trials, participants were required to discriminate the center

image stimulus along the same dimension until the next task

cue (moving dots) was presented. One task block lasted for

approximately for 90 s, and 20-sec fixation blocks were inserted

between task blocks. Each functional run involved 3 task blocks

and lasted for 305 s. The first trial at the beginning of each task

block presented the dot cue with highest coherence (80%) and

was discarded from analysis.

Practice Procedure

On the first day, participants practiced the tasks outside of

the scanner. They first practiced a discrimination task for the

moving dot stimulus and were required to judge the direction

of overall motion (up or down) and to press the correct corre-

sponding button as quickly as possible (Tsumura et al. 2021).

The response window was 1050 ms. Each practice run involved

70 trials, and 5 runs were administered for each participant.

The first 5 trials and last 5 trials in each run used the highest

coherence level (80%). Thus, the middle 60 trials were composed

of 20 trials for each of coherence levels (20, 40, or 80%).

The participants then practiced discrimination tasks for the

face and place stimulus (see above). Across task switching prac-

tice runs, the switching frequency and coherence levels of the

moving dot cue were manipulated such that the cue trials grad-

ually became more difficult (i.e., more switch trials with low-

coherence cue). Participants were instructed to first judge the

motion direction and then to discriminate the picture based on

the motion direction in the cue trials. They received 8 practice

runs approximately for 40 min involving 120 cue trials.

Behavioral Procedure in Scanning Session

On the second day, after practicing task switching for 1 run, the

participants performed 9 runs of task switching with identical

procedure as for day 1 (see above) while functional MRI was

administered. The frequency of switch and repeat trials and

coherence level were approximately equivalent across runs.

Imaging Procedure

MRI scanning was administered by a 3T MRI scanner (Siemens

Verio, Germany) with a 32-channel head coil. Functional images

were acquired using amultiband acceleration echo-planar imag-

ing sequence (Moeller et al. 2010) (repetition time [TR]: 0.8 s;

echo time [TE]: 30 ms; flip angle [FA]: 45 degree; 80 slices; slice

thickness: 2 mm; in-plane resolution: 3 × 3 mm; multiband

factor: 8). Each functional run involved 385 volume acquisi-

tions. The first 10 volumes were discarded from analysis to

take into account the equilibrium of the longitudinal magneti-

zation. High-resolution anatomical images were acquired using

an magnetization-prepared rapid gradient echo T1-weighted

sequence (TR: 2500 ms; TE= 4.32 ms; FA: 8 deg; 192 slices; slice

thickness: 1 mm; in-plane resolution: 0.9 × 0.9 mm2).

Behavioral Analysis

Trials were classified into 3 types in terms of switching: 1) task

switch trials presenting the random dot cue and target stimuli

simultaneously, where the task to be performed alternated (i.e.,

face to place or place to face); 2) task repeat trials presenting

the random dot cue and target stimuli simultaneously, where

the same task was repeated; and 3) target-only trials presented

after the switch and repeat trials, and their subsequent trials

without random dot cue stimuli presentation (Fig. 1D). These

trial types were analyzed separately. Trials were also classified

by task dimension (face or place), and switch and repeat trials
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Task Switching under Ambiguous Cues Tsumura et al. 5

were examined at each coherence level (20, 40, or 80%). Accuracy

and reaction times (RTs) were calculated for each trial condition

and then compared. Statistical testing was performed based on

repeated measures ANOVAs implemented in SPSS Statistics 24

(IBM Corporation, New York, NY).

Image Preprocessing

MRI data were analyzed using SPM12 software (http://fil.io

n.ac.uk/spm/). All functional images were initially temporally

realigned across volumes and runs, and the anatomical

image was coregistered to a mean image of the functional

images. The functional images were subsequently spatially

normalized to a standard Montreal Neurological Institute (MNI)

template with normalization parameters estimated based on

the anatomical scans. The images were resampled into 2-mm

isotropic voxels and spatially smoothed with a 6-mm full-width

at half-maximum Gaussian kernel.

Imaging Analysis

Single-Level Analysis

A general linear model (GLM) approach (Worsley and Friston

1995) was used to estimate parameter values for task events.

The events of interest were correct switch, repeat, and target-

only trials. For switch and repeat trials, the normalized (z-scored)

coherence level of the dot stimuli was also added as a paramet-

rical effect of interest (Tsumura et al. 2021). Error trials in all con-

ditions were separately coded in GLM as nuisance effects. Those

task events were time-locked to the onset of target images and

then convolved with canonical hemodynamic response func-

tion implemented in SPM. Additionally, 6-axis head movement

parameters, white-matter signals, lateral-ventricle signals, and

parametrical effect of RTs normalized across trials were also

included in GLM as nuisance effects. The parameters were then

estimated for each voxel across the whole brain.

Group-Level Analysis

Maps of parameter estimates were first contrasted within

individual participants. Contrast maps were collected from all

participants and subjected to a group-level paired t-test. For the

coherence effect, the contrast maps were subjected to a one-

sample group-mean test, with maps weighted and summed

based on normalized coherence levels. Voxel clusters were

identified using an uncorrected threshold of P< 0.001 based

on voxel-wise t-statistics. The voxel clusters were tested for a

significancewith a threshold of P<0.05 corrected by family-wise

error (FWE) rate based on permutation methods (Nichols and

Holmes 2001) (5000 permutations) implemented in randomise

in FSL suite (http://fmrib.ox.ac.uk/fsl/). This group analysis

procedure was validated to appropriately control false-positive

rates in a prior study (Eklund et al. 2016). Peaks of significant

clusters were then identified and listed on tables. If multiple

peaks were identified within 12 mm in one cluster, the most

significant peak was retained. When exploring brain regions

associated with motion coherence, exploration was restricted

within a mask obtained from Neurosynth (Yarkoni et al. 2011)

(http://neurosynth.org/) for the search word “motion” (z> 3.0,

for uniformity test), in order to ensure the extraction of motion-

related regions, because the current cue trials simultaneously

presented face/place stimuli in addition to cues indicating task

switching tasks between face and place discrimination.

Effective Connectivity Analysis

The current analysis was designed to test the hypothesis that

functional connectivity among brain regions associated with

task switching, motion perception, face perception, and place

perception identified in univariate analysis (Fig. 2A–C) is mod-

ulated by task manipulations and brain signals. Dynamic causal

modeling (DCM; Friston et al. 2003) analysis implemented in

SPM12was performed in order to examine functional connectiv-

itymechanisms associatedwith task switching under cue uncer-

tainty (Fig. 2D,E and Supplementary Figs S1 and S2). DCM allows

us to explore the effective connectivity among brain regions

under the premise that the brain is a deterministic dynamic

system that is subject to environmental inputs and produces

outputs based on the space-statemodel. Themodel constructs a

nonlinear system involving intrinsic connectivity, task-induced

connectivity, and extrinsic inputs. Specifically, a model for neu-

ral activitywas formulated as a linear time-invariant space-state

dynamic system,

dx(t)
dt

= Ax(t) + u(t)Bx(t) + u(t)C

= [A + u(t)B] x(t) + u(t)C
(1)

where x(t) denotes the states of neural activity in k brain regions

(k × 1 vector; k = 2, 3, or 4) at time t, u(t) denotes inputs to the

system from task events at time t (scalar value),A denotes intrin-

sic connectivity (k × k matrix), B denotes effective connectivity

(k × k matrix), and C denotes the direct influence of the task

variable on neural activity (direct extrinsic input; k × 1 vector).

Because the time derivative of neural activity (left side in eq. 1)

is modulated by [A + u(t)B]x(t), the directionality of connectivity

is reflected in the A and B matrices. More specifically, the rows

and columns of the A and B matrices indicate the target and

source of the directionality. The A, B, and C matrices involved

k2, k(k − 1), and k parameters, respectively (only nondiagonal

elements are parameters formatrix B). Thus, themodel involved

2k2 parameters in total. The unit of the connectivity is arbitrary.

Next, the neural activity x(t) in the model (eq. 1) was trans-

formed as

y(t) = λ
(

x(t)
)

(2)

where λ denotes nonlinear function providing fMRI signals from

neural activity.

Then, parameters of the nonlinear system (A, B, and C) are

estimated based on fMRI time series and task variable/events.

The use of a high temporal resolution sequence for functional

imaging enables us to collect more scan frames to increase the

signal-to-noise ratio of the DCM analysis (Penny et al. 2004;

Stephan et al. 2010; Tsumura et al. 2021).

Four regions of interest (ROIs) were first defined based on

univariate analysis and prior studies of task switching and per-

ceptual decision-making: 1) task switching (left lateral prefrontal

cortex [lPFC]; Dove et al. 2000; Konishi et al. 2002; Rushworth

et al. 2002; Bunge et al. 2005; Derrfuss et al. 2005; Crone et al.

2006; Yeung et al. 2006; Jimura and Braver 2010; Kim et al.

2012; Tsumura et al. 2021; Fig. 2A, see also Results); 2) motion

perception (MT; Gold and Shadlen 2007; Newsome andpare 1988;

Shadlen et al. 1996; Beauchamp et al. 1997; Huk et al. 2002;

Kayser et al. 2010; Hanks and Summerfield 2017; Tsumura et al.

2021; Fig. 2B, see also Results); 3) face perception (FFA; Kanwisher

et al. 1997; McCarthy et al. 1997; Ishai et al. 1999; Gazzaley et al.

2005; Freiwald and Tsao 2010; Fig. 2C, see also Results); 4) place

perception (PPA; Epstein and Kanwisher 1998; Ishai et al. 1999;
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Figure 2.Whole-brain exploration activation and functional connectivity analyses (A–C). Statistical activation map of univariate analysis and functional connectivity

analysis.Maps are overlaid onto the 3D surface of the brain.Hot and cool colors indicate positive andnegative effects, respectively. (A) Switch effect (switchminus repeat

trials). (B) Motion coherence effect (high- vs. low-coherence trials). Green solid line on the surface indicates the axial section on the right. (C) Task effect (face minus

place tasks in target-only trials). ITS, inferior temporal sulcus. (D, E) Effective connectivity analysis. The interregional connectivity shows parameter estimates of the

matrix B in eq. 1 (effective connectivity), and the direct extrinsic input to each region represents parameter estimates of the matrix C in eq. 1. (D) Effective connectivity

and extrinsic inputs modulated by the contrast switch versus repeat trials during face (left) and place (right) tasks (coherence levels collapsed). Red arrows indicate

greater connectivity or inputs in switch relative to repeat trials, and blue arrows indicate greater connectivity or inputs in repeat relative to switch trials. The values

next to the arrows indicate the magnitude of connectivity enhancements (positive: switch > repeat; negative: repeat > positive). (E) Effective connectivity and extrinsic

inputs modulated by motion coherence during face (left) and place (right) tasks (switch and repeat trials collapsed). Red arrows indicate greater connectivity or inputs

in high-coherence relative to low-coherence trial and blue arrows indicate greater connectivity or inputs in low-coherence relative to high coherence trials. The values

next to the arrows indicate the magnitude of connectivity (positive: high coherence > low coherence; negative: low coherence > high coherence). Arrows with solid

line indicate statistically significant connectivity (P<0.05, uncorrected). The arrows, circles, and labels in the panels indicate same locations.

Gazzaley et al. 2005; Fig. 2C, see also Results). More specifically,

meta-analysismaps were obtained fromNeurosynth (http://neu

rosynth.org/; Yarkoni et al. 2011) using a keyword search for

“switching,” “mt,” “ffa,” “place” to obtain themeta-analysismaps

for lPFC, MT, FFA, and PPA ROIs, respectively. ROI images were

then created with 6-mm radius spheres centered in the peak
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Task Switching under Ambiguous Cues Tsumura et al. 7

coordinates in the meta-analysis activation maps thresholded

above z> 10 (uniformity test).

Given these ROIs, we first tested whether the switch-related

prefrontal region sends (or receives) a task-related signal toward

(or from) the stimulus-modality-dependent occipitotemporal

region of the target (i.e., FFA/PPA) during task switching (Fig. 2D).

If this was the case, then we tested whether signaling between

prefrontal and occipitotemporal regions changed depending on

the uncertainty of cue stimuli (Fig. 2E).

Signal time courses (3375 scanning frames) of 4 ROIs and

regressors in events of interest were extracted from first-level

GLMs. The events of interest were cue (switch and repeat) trials

and target-only trials of each task. For switch and repeat trials,

the contrast of the 2 trials (switch: 1; repeat: −1) and normalized

coherence level of the dot stimuli were added as parametrical

effects of interest.Nuisance effects of headmotion,whitematter

signal, ventricle signal, functional run, and contrast were sub-

tracted out from the ROI timecourses. The input matrix was U

mean-centered.

For each trial effect, causal models were defined as those

that differed in external inputs and modulatory effects among

ROIs. We were interested in strengths of effective connectivity

between pairs of ROIs (i.e., lPFC, MT, and FFA/PPA), rather than

exploration of a model that best fits to the data. Thus, we con-

sidered all theoretically possible models. As the current models

involved 2 or 3 ROIs (Fig. 2D,E), the tested models included 16 or

512 types (i.e., 22 inputs and 22 connection effects or 23 inputs

and 26 connection effects). Connectivity matrices reflecting 1)

first-order connectivity, 2) effective change in coupling induced

by the inputs, and 3) extrinsic inputs on MRI signal in ROIs

were estimated for each of the 16 or 512 models based on DCM

analysis implemented in SPM12. Parametric regressor (switch vs.

repeat/coherence) was used as an extrinsic effect for effective

connectivity between ROIs and ROI inputs.

In order to estimate the strength of effective connectivity, a

Bayesian model reduction method (Friston et al. 2016) was used.

The reduction method reduces the number of models based on

model evidence (free energy; Penny. 2012) and calculates poste-

rior densities for all reduced models, which were then inverted

to a fully connectedmodel. In the current analysis for the switch

effect, out of the 16 possible models, 10 and 8 models were

selected for parameter estimations of the face task and place

task, respectively (minimum free energy: −639.1 [face], −677.8

[place]). For the coherence effect, out of the 512 possible models,

203 and 61 models were selected for parameter estimations of

the face task and place task, respectively (minimum free energy:

−737.6 [face], −742.8 [place]).

The reduced models were then supplemented by second-

level parametric empirical Bayes (Friston et al. 2016) to apply

empirical priors that remove subjects’ variability from each

model.

Next, the parameters of these models were estimated based

on Bayesian model averaging (Friston et al. 2003) to estimate

group-level statistics. Because the current analysis aimed to

identify effective connectivity observed as an average across

participants, we used a fixed effect (FFX) estimation assuming

that every participant uses the same model. This is in contrast

to using a random effect (RFX) estimation assuming different

participants use different models, which is often used to test

group differences in effective connectivity (Penny et al. 2010).

The significance of connectivitywas then tested by thresholding

at a posterior probability at the 95% confidence interval. We

used the uncorrected threshold, because the current analysis

aimed to test if connectivity between 2 specific brain regionswas

enhanced depending on task manipulation and brain activity,

not to explore onemodel involving connectivity amongmultiple

brain regions that best fits to the imaging and behavioral data

(Tsumura et al. 2021).

Additionally, in order to test the robustness of the functional

connectivity (c.f. Smith et al. 2011), we performed supplemental

analyses. We estimated model parameters 1) without an empir-

ical prior (Supplementary Fig. S2C,D); 2) changing the number

of the ROIs in the models (Supplementary Fig. S2E,F), and 3)

changing the definition of the ROIs (Supplementary Fig. S2G,H).

When changing the ROI definition, we used a leave-one-out

procedure; the centers of ROIs of 1 participant were determined

based on group-level univariate activation maps of correspond-

ing contrasts (i.e., lPFC: switch vs. repeat trials; MT: high vs. low

coherence trials; FFA/PPA: face vs.place of target-only trial) with-

out the participant in order to circumvent circular analysis. The

ROIs were created as spheres with 6 mm radius for individual

participants. Complete results can be provided upon request.

Even with these analysis procedures and supplementary

analyses above, we acknowledge that better fitting models

would be possible if appropriate sets of ROIs were defined.

CNN Classifier

In order to explore brain regions involving task-related neural

representation, a CNN classifier (Krizhevsky et al. 2012; LeCun

et al. 2015) was used. The layer weights of CNN represent

convolutional filters that extract physical features of images,

such as edges, shapes, and spatial frequency. Serial multiplica-

tion of the convolutional layers enables multilevel abstraction

for image classification (Krizhevsky et al. 2012; LeCun et al.

2015).

The current CNN model was based on VGG16 (Simonyan

and Zisserman 2015), with 5 convolution layers for extracting

image features and 2 fully connected layers for binary classi-

fication. Initial parameters of convolution layers were set to

parameters pretrained with concrete object images provided

from ImageNet (http://www.image-net.org/; Deng et al. 2009;

Supplementary Fig. S3A).

The VGG16/ImageNet model is capable of classifying con-

crete object images into 1000 item categories. Importantly, it has

been demonstrated that the pretrained model can learn novel

image setsmore efficiently than the nontrainedmodel by tuning

convolution and fully connected layers and fully connected lay-

ers only (Donahue et al. 2014; Pan and Yang 2010; Fig. S3C). Thus,

the current analysis retrained the pretrained VGG16-ImageNet

model to classify brain activation maps.

Training data were single-subject second-level z-maps

during the N-back working memory (WM) task from the S1200

release of the Human Connectome Project (N=992; HCP; http://

www.humanconnectomeproject.org/; Barch et al. 2013; Glasser,

Smith, et al. 2016a). From each participant, statistical z-maps

for activation contrasts for face versus fixation and place

versus fixation (2-back and 0-back corrupted) were collected.

We used grayscaled flat 2D cortical maps (Glasser, Coalson,

et al. 2016b) provided from HCP (992 images; face: 496, place:

496; Supplementary Fig. S3B) for dimensional compatibility of

images between VGG16-ImageNet and activation maps. The

training data set was divided into 10 subsets, and 9 subsets

were used for retraining and the remaining 1 set was used

for validation, enabling a 10-fold cross-validation test. Then,

the pretrained VGG16 model was retrained by the activation
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maps such that the model classifies face and place trials. Model

training and testing were implemented using Keras (https://kera

s.io/) under Tensorflow backend (https://www.tensorflow.org/)

(input image size: 480 × 1280 pixels; batch size: 10; epoch: 50;

learning rate: 0.0001; optimizer: Stochastic Gradient Descent;

Supplementary Fig. S3C top).

After retraining of the HCPWMmaps, themodel with highest

classification accuracy was further retrained to classify activ-

ity maps for face and place tasks during target-only trials of

the current dataset (Supplementary Fig. S3C bottom). For each

functional run of each participant, a single-level GLM estima-

tion was performed with regressors identical to those in the

univariate analysis as described above. The GLM estimations

were performed within standard MNI space. Activation z-maps

for the contrasts for face versus fixation and place versus fixa-

tion during correct target-only trials were collected from each

functional run. Activity maps for the contrast for face ver-

sus fixation and place versus fixation were then grayscaled

and flattened such that these maps were anatomically and

geometrically identical to those from the HCP WM task using

Connectome Workbench (https://www.humanconnectome.org/

software/connectome-workbench/). The training dataset con-

sisting of 522 images (261 face and 261 place maps from each of

9 runs of 29 participants) was divided into 10 subsets, enabling

a 10-fold cross-validation test.

Given the limited number of images available from the

current experiment, this 2-step retraining of the model was

found to be effective when classifying current tasks, because

1) training randomly initialized models failed in classifying

the current target-only trials (Supplementary Fig. S4A) and in

classifying the HCP WM conditions (Supplementary Fig. S4B);

2) retraining VGG16-ImageNet was successful in classifying

the HCP WM conditions (Supplementary Fig. S4B); 3) retraining

VGG16-ImageNet model failed in classifying the current target-

only trials (Supplementary Fig. S4A); and 4) retraining VGG16-

ImageNet/HCP was successful when classifying the current

face/place tasks (Supplementary Fig. S4A).

After learning of the target-only trials from the current

dataset, the retrained 10 models were tested to classify

activation maps during task switching and repeat trials where

the dot cue stimulus was presented to indicate the task to

be performed. Testing data were created based on a GLM

analysis where switch and repeat trials at differential coherence

levels were coded separately. For each functional run of each

participant, a single-level GLM estimation was performed, and

activation contrast z-maps for face versus fixation and place

versus fixation were collected during those correct switch

and repeat trials. Grayscale 2D activation maps were created

for the contrasts for face versus fixation and place versus

fixation during 6 types of cue presentation trials (switch/repeat

× high/middle/low coherence). Importantly, the testing data

were independent of the 2 sets of retraining data (HCP WM

and current target-only trials). The maps were tested, and

accuracy was averaged across cross-validation models within

each participant. A statistical test of classification accuracy was

performed based on repeated measures ANOVAs implemented

in SPSS Statistics 24 (IBM Corporation, New York, NY).

In a separate supplemental analysis, in order to examine

whether the current results were biased by subject-specific

characteristics of image data, we used a leave-one-subject-out

procedure to retrain the CNN classifier to classify activation

maps of the target only trials and then tested the remaining

subject (Supplementary Fig. S6, see also Results).

A recent study demonstrated that a CNN model successfully

learned and classified task-related fMRI images without flatten-

ing the images (Wang et al. 2020). Although retraining of the

classifier was also effective for small data sets, this technique is

available only for blocked-design experiments as the model was

trained and tested based on fMRI time series, which increased

the number of the training data. The model also normalizes

and convolves the time series along the temporal axis. Because

the current study used event-related design, only activation

maps estimated by single-level GLM analyses were available for

training and testing. Because of the nature of GLM analysis, the

number of available images was limited in comparison with

fMRI time series. Thus, retraining of pretrained model based on

flattened 2D activation maps is effective for small size dataset

of event-related fMRI.

Visualization of Activations of Convolution Layers

When an image is given to CNN, the CNN extracts image tensor

information through convolutional layers, which is reflected in

the activation of the layers (Krizhevsky et al. 2012; LeCun et al.

2015). Thus, the magnitudes of the layer activations involve

critical information to classify performed tasks (i.e., face or place

task).

To identify brain regions involving such critical information,

the current study used gradient-weighted class activation map-

ping (Grad-CAM; Selvaraju et al. 2017). Grad-CAM aggregates

activations of convolution layers and creates maps of the aggre-

gated activations, enabling us to highlight image locations crit-

ical for classification (Fig. 3C). Specifically, a greater layer acti-

vation in an image location indicates that the location involves

more critical information to classify the image. The map can

be created for each image because the layer activations are

calculated for each image.

Aggregated layer activations were visualized onto 2D brain

surface maps for each tested map. For each participant, the

aggregated layer activation maps were averaged across maps

within each of the 6 cue trial conditions (switch/repeat ×

high/middle/low coherence cue). The averaged maps were

contrasted between switch and repeat trials to explore brain

regions showing differential activations between switch and

repeat trials within participants. For coherence the effect, 3

maps for coherence level trials were weighted and summed

based on behavioral accuracy estimated by sigmoid fitting

within participants. For each contrast, maps were collected

from all participants, and pixel-wise z-values were calculated

treating participants as a random effect, and the z-values were

mapped on the 2D surfaces of the cortical areas. Because we

made activation contrasts, sign and magnitude of the activation

contrasts (Fig. 3D,E and Supplementary Fig. S7B,C) indicate

relative difference in the aggregated layer activations.

In order to statistically test dissociable activation patterns

during cue trials in the FFA and PPA, ROI analyses were per-

formed (Fig. 3F). ROIs were defined based on Neurosynth, which

were identical to those used in theDCManalyses. Fromeach ROI,

aggregated layer activation magnitudes were collected for each

of the trial conditions: task (face/place), switching (switch/re-

peat), and cue coherence (high/middle/low: 80/40/20%) and then

averaged within ROIs for each participant. Statistical tests were

then performed based on repeated measures ANOVA.

In order to test the robustness of the ROI analysis against

the definition of ROIs, we redefined ROIs as regions showing

greater activation in the contrast of face minus place tasks
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Figure 3.CNN classifier mapping. (A) CNNmodel was based on VGG16 pretrained by ImageNet data. Themodel was retrained to classify performed task (face or place).

Retraining of brain maps was based on fine-tuning from the fifth convolution layer to the full-connected layers. (B) Classification accuracy for each task condition.
∗P<0.005; ∗∗P<0.001. High: high-coherence (80%) trials; Mid: middle-coherence (40%) trials; Low: low-coherence (20%) trials. (C) Activations of convolution layers were

aggregated across layers and then visualized to identify cortical regions involving more information to classify tasks. (D) Visualization of aggregated layer activation

contrasts for switch versus repeat trials in face task (left) and place task (right). Statistical maps are overlaid onto flat cortical anatomical images with a statistical

threshold of |z|>2.0 (top). Positive z-values indicate greater activations in switch relative to repeat trials, and negative z-values indicate greater activations in repeat

relative to switch trials. Gray and black closed lines overlaid on flat map indicate brain regions significantly activated during face and place tasks in univariate analysis,

respectively (Fig. 2C and Supplementary Fig. S5). Occipitotemporal regions in rectangular boxes with green broken lines were expanded below.Maps were overlaid onto

flat maps masked by the univariate activation contrast face versus place tasks for target-only trials (gray and black closed lines in the top panels). The FFA and PPA

are indicated by arrow heads and the same locations in Fig. 2A–E. (E) Visualization of aggregated layer activation contrast for coherence effect in face task (left) and

place task (right). Positive z-values indicate greater activations in high-coherence relative to low-coherence trials, and negative z-values indicate greater activations in

low-coherence relative to high-coherence trials. The formats are similar to those in panel (D). (F) ROI analysis. Aggregated layer activation magnitudes were collected

for each cue trial conditions and ROIs. All error bars in the figure indicate standard errors of the means across participants.
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or place minus face tasks (Fig. 2C; Supplementary Fig. S5 and

Supplementary Table S3), independently of the cue trials.

SVM Analysis for Whole-Brain Cortical Regions

In order to supplement the CNN classifier analysis, multivariate

pattern analyses (MVPA) based on SVM were performed. The

SVM classifier was trained to perform bivariate classification

for face and place tasks. Training and testing were implemented

using scikit-learn package (https://scikit-learn.org/stable/) with

a Tensorflow backend (https://www.tensorflow.org/). We used a

linear kernel and adjusted C parameters (C=0.1, 1.0, 10.0). As the

overall results were maintained with the C adjustment, then we

reported the results with the default parameter (C=1.0).

For classifier training, we used the image set of single-

subject second-level z-maps during the N-back WM task (face

vs. fixation and place vs. fixation) obtained from the S1200 HCP

(N=992), which was identical to those used in the CNN classifier

training. The classifier was trained by the activation images,

such that it classified face and place tasks during the HCP N-

backWM task.Weights of the trained classifier were mapped on

the 2D cortical surface.

The testing dataset was also identical to those used in the

CNN classifier analysis: 2D z-maps for activation contrast of

switch and repeat trials (switch vs. fixation and repeat vs. fix-

ation) at each coherence level (20, 40, 80%) of the current exper-

iment (Supplementary Fig. S3B). Testing activation images were

subject to the trained classifier for each cue trial condition of

each participant, and classification accuracy was averaged for

each trial condition across participants (Fig. 4A). In a separate

analysis, the SVM classifier was trained based on single-level z-

maps during target-only trials from the current dataset (N=29),

and the identical image set was tested (Supplementary Fig. S8).

Searchlight SVM

In order to explore brain regions in which local activity patterns

involve information about a performed task (face/place), search-

light MVPA (Kriegeskorte et al. 2006) was conducted. Bivari-

ate classification based on SVM was used to decode the per-

formed task (face or place). A searchlight procedure with a 5-

voxel radius was used to provide a measure of decoding accu-

racy in the neighborhood of each voxel. Training and testing

were performed based on the Decoding Toolbox (TDT; version

3.95; https://sites.google.com/site/tdtdecodingtoolbox/). Again,

training and testing data were independent, based on differ-

ent behavioral tasks and data sets (training: HCP WM; test-

ing: current task switching with male/female or indoor/outdoor

judgments).

Training data were 3D single-subject second-level z-maps

during N-backWM task (N=1000) fromHCP S1200 release (Barch

et al. 2013; Glasser, Smith, et al. 2016a). Similar to the CNN

analysis, we used activation contrasts for face task versus fix-

ation and for place task versus fixation (2-back and 0-back

corrupted). These activation contrasts were collected from each

participant, and the whole dataset was divided into 10 subsets

(N=100 each). For each subset of the training data, a classifier in

each searchlight was trained based on these z-maps such that

it classified face and place conditions during the HCP N-back

WM task.

Test data were single-subject z-maps during switch, repeat,

and target-only trials of the current experiment. For each func-

tional run of each participant, single-level GLM estimation was

performed with regressors identical to those in the univariate

analysis as described above. Activation maps for face versus

fixation and place versus fixation during switch and repeat

correct trials were collected from each functional run. These

GLM analyses were performed within standard MNI space.

Another set of testing data was created based on a sepa-

rate GLM analysis with correct cue (switch and repeat) trials

separately coded at each coherence level (20/40/80%). For each

functional run of each participant, a single-level GLM estimation

was performed, and activationmaps for face versus fixation and

place versus fixation were collected for each coherence level.

For each training subset, the classifier was tested onwhether

it correctly classified the performed task (face or place task) for

each trial condition (i.e., switch/repeat/target only and coher-

ence level). Classification performance was then collected from

all functional runs and averaged within participants for each

searchlight. The performance of classification was calculated

as the accuracy minus chance level for bivariate classification.

Accuracy maps were then averaged across testing data sets

within participants.

Accuracy maps for switch, repeat, and target-only trials

were first averaged across training subset models within

participants, and averaged accuracy maps were collected from

all participants. Voxel-wise one-sample group-mean test was

performed for each trial condition, with a procedure similar

to that in the univariate analysis as stated above. In order

to explore brain regions showing differential classification

accuracy between switch and repeat trials, voxel-wise group-

level paired test was performed, and significance was tested

similarly.

Accuracy maps for each coherence level trials were also

averaged across training subset models within participants, and

the averaged accuracy maps were collected from all partici-

pants. Voxel-wise one-sample group-mean test was performed

for each coherence level, and significance was tested similarly.

In order to examine coherence effect, the maps for 3 coher-

ence levels were weighted and summed based on behavioral

accuracy estimated by sigmoid fitting. Voxel-wise one-sample

group-mean test was performed, and significance was tested

similarly.

In separate analyses, all group-level tests above were also

performed for each of the 10 training subset models, and we

confirmed that overall results were consistent.

ROI analysis was performed to compare classification accu-

racy across experimental conditions in FFA and PPA. ROIs were

identical to those used in DCM analyses defined based on Neu-

rosynth.

Results

Behavioral Results

Human participants performed a task-switching paradigm

(Koechlin et al. 2003; Bunge et al. 2005; Badre 2008; Jimura and

Braver 2010; Tsumura et al. 2021), in which they alternated

discrimination tasks for face and place stimuli (Fig. 1C,D).

The relevant task was indicated by a cue stimulus involving

perceptual uncertainty, which was manipulated by the motion

strength of randomly moving dots.

In the face task, participants made correct responses for

30.0± 4.8 (mean±SD) switch trials, for 29.9± 4.4 repeat trials, for

21.3± 3.1 high-coherence trials, for 19.8± 3.2 middle-coherence

trials, and for 18.7± 3.3 low-coherence trials. In the place

task, they made correct responses for 29.5± 4.4 switch trials,
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Figure 4. Multivariate pattern analysis (MVPA) with SVM. (A) Classification accuracy for each task condition with SVM classification in the whole brain. The model

was trained for classification of face and place tasks with the working memory task in the HCP and tested with each condition of cue trials in the current study. Error

bars indicate standard error of the mean across participants. ∗P<0.05; ∗∗P<0.005; ∗∗∗P<0.001. (B) Visualization of weight assigned to the pixels for classification

of face and place tasks in the working memory task in the HCP. Formats are similar to those in Figure 3D,E. (C–E) Statistical significance maps for searchlight MVPA

(left). Classifiers were trained to classify the performed task. Maps are overlaid onto a 2D flat map of the brain and displayed from a ventral view. White and black

closed lines overlaid onto the 2D flat map of the brain indicate significant clusters for contrast face versus place tasks in univariate analysis, respectively (Fig. 2C and

Supplementary Fig. S5). The FFA and PPA are indicated by blue arrow heads and the same locations in Figs 2A–E and 3D,E. ROI analysis (right). Voxel-wise classification

accuracy was averaged within FFA and PPA and compared across experimental condition. Error bars indicate SEM across participants. (C) Target-only trial. Hot and cool

colors indicate statistical level for classification accuracy relative to chance level. (D) Accuracy difference between switch and repeat trials. Hot and cool colors indicate

higher accuracy in switch and repeat trials, respectively. (E) Differential classification accuracy depending on the coherence effect. Hot and cool colors indicate higher

accuracy in high- and low-coherence trials, respectively.
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for 29.2± 4.9 repeat trials, 20.7±4.0 high-coherence trials,

for 19.3± 3.6 middle-coherence trials, and for 18.7± 2.6 low-

coherence trials. The number of the trials is comparable to those

in our previous study (Tsumura et al. 2021).

Accuracy was lower in low-coherence (i.e., more uncertain)

trials compared to high-coherence trials [F(1, 28) = 12.7; P< 0.005;

Fig. 1E] and became lower in switch trials than in repeat

trials [F(1, 28) = 11.8; P< 0.005]. Likewise, RTs were longer in

low-coherence trials compared to high-coherence trials [F(1,

28) = 69.9; P< 0.001; Fig. 1F] and were longer in switch trials

than in repeat trials [F(1, 28) = 43.2; P< 0.001]. These behavioral

results suggest that the current behavioral task successfully

manipulated task switching (Allport et al. 1994; Rogers and

Monsell 1995; Dove et al. 2000; Rushworth et al. 2002; Crone et al.

2006; Yeung et al. 2006; Jimura and Braver 2010; Tsumura et al.

2021) and perceptual decision-making (Newsome and Pare 1988;

Shadlen et al. 1996; Palmer et al. 2005; Kayser et al. 2010; Hanks

and Summerfield 2017; Tsumura et al. 2021). The interaction

effects of trial type (switch/repeat) and coherence levels did not

reach statistical significance [Accuracy: F(1, 28) = 1.8; P=0.19. RT:

F(1, 28) = 2.1; P=0.16].

In trials without cue presentation, occurring after the switch

and repeat trials until the next cue trials (target only trial;

Fig. 1D), accuracy was lower after lower coherence cue trials

[F(1, 28) = 16.3; P < 0.001; Fig. 1E], but RTs remained unchanged

after lower coherence cue trials [F(1, 28) = 1.0; P=0.32]. Explicit

presentation of the cue stimulus involves encoding of the cue

stimulus and implementation of the task set even in repeat trials

(Sakai 2008; Tsumura et al. 2021). On the other hand, when the

cue stimulus was presentedwith lower coherence dots in switch

and repeat trials, the accumulation of visual evidence about

cue information became slower (Palmer et al. 2005). The slower

accumulation of the cue information may delay the completion

of task set encoding and implementation, and task preparation

may not be sufficient for the next target-only trial (Sakai 2008).

RTs were longer in place than face tasks [F(1, 28) = 5.0; P< 0.05;

Fig. 1F].

Exploration of Switch-Related and
Stimulus-Modality-Dependent Brain Regions

We first explored brain regions associated with task switching,

motion coherence, and the perception of face and place based on

univariate GLM analysis. Figure 2A shows brain regions showing

significant increases and decreases in univariate brain activity

during switch relative to repeat trials (P< 0.05 corrected with

cluster-wise FWE rate based on nonparametric permutation

tests; see Materials and Methods). Robust activation increases

were observed in the left frontal regions, including the inferior

frontal cortex (IFC), dorsolateral prefrontal cortex (DLPFC), infe-

rior frontal junction (IFJ), and pre-supplementary motor area

(pre-SMA), and in left parietal regions, including posterior pari-

etal cortex (PPC), consistent with prior studies (Dove et al. 2000;

Konishi et al. 2002; Rushworth et al. 2002; Bunge et al. 2005;

Derrfuss et al. 2005; Crone et al. 2006; Yeung et al. 2006; Jimura

and Braver 2010; Kim et al. 2012; Tsumura et al. 2021). A full list

of brain regions is shown in Table S1.

We then explored brain regions associated with motion

coherence. Figure 2B shows brain regions showing significant

modulation of brain activity in relation to motion coherence

during the cue (i.e., switch and repeat) trials. In low-coherence

trials, activation was increased in multiple frontoparietal

regions including IFC, DLPFC, IFJ, pre-SMA, and PPC (Fig. 2B and

Supplementary Table S2), consistent with prior studies (Kayser

et al. 2010; Tsumura et al. 2021). In contrast, activation was

greater in high-coherence trials in the MT region (Fig 2B right;

Supplementary Table S2), which is also consistent with prior

studies of perceptual decision-making for motion (Newsome

and Pare 1988; Shadlen et al. 1996; Beauchamp et al. 1997; Huk

et al. 2002; Kayser et al. 2010; Tsumura et al. 2021).

We next explored brain regions associated with face and

place tasks (Fig. 2C and Supplementary Table S3). Consistent

with prior studies of perception of face (Kanwisher et al. 1997;

McCarthy et al. 1997; Ishai et al. 1999; Gazzaley et al. 2005;

Freiwald and Tsao 2010) and place (Epstein and Kanwisher 1998;

Ishai et al. 1999; Gazzaley et al. 2005), in the face task, activity

was greater in the FFA, whereas in the place task, increased

activity was observed in the PPA.

We also performed whole-brain exploratory univariate

activation analyses for the interactions between 1) switch and

coherence effects, 2) switch and task effects, and 3) coherence

and task effect and found no significant regions showing the

interactions.

These collective univariate activation results suggest that

the current univariate activation analysis successfully identified

brain regions associated with task switching in addition to the

perception of face, place, and motion stimulus and that those

regions were cooperatively engaged in task switching when the

cue stimulus involved perceptual uncertainty.

Reversal of Functional Connectivity Depending on Cue
Uncertainty

The whole-brain exploratory analyses of univariate activation

identified 3 types of brain regions: 1) left PFC associated with

task switching and perceptual uncertainty (Fig. 2A,B); 2) MT

region associated with motion coherence of task cue (Fig. 2B);

and 3) FFA and PPA associated with discrimination of face and

place stimuli, respectively (Fig. 2C). One possible mechanism to

explain these regions playing differential roles in task switching

with cue uncertainty is that lPFC, MT, and FFA/PPA mutually

received or sent task-related signals during switching, which

wasmodulated by cue coherence, such that the task-related sig-

nal complemented the engagement of these regions depending

on cue uncertainty and the task to be performed.

In order to test this hypothesis, we performed an interre-

gional effective connectivity analysis based on DCM that allows

the examination of directionality of task-related functional

connectivity based on the state-space model (see Materials

and Methods). The ROIs in lPFC, MT, and FFA/PPA were defined

independently of the current results. The lPFC ROI showed

a joint effect of switching (greater activity in switch relative

to repeat trials) [t(28) = 3.70, P< 0.001] and negative coherence

(greater activity in low-coherence relative to high-coherence tri-

als) [switch: t(28) =−2.47, P< 0.05; repeat: t(28) =−5.2, P< 0.001].

The MT ROI showed a significant positive coherence effect

(greater activity in high coherence trials) in both hemispheres

[left: t(28) = 2.49; P< 0.05; right: t(28) = 3.92; P<0.001]. The FFA

ROI showed greater activity during face relative to place task

[t(28) = 6.54; P< 0.001], and the PPA ROIs showed greater activity

during place relative to place task [t(28) = 12.9; P< 0.001].

We first examined the task-related effective connectivity

during task switching and found that the connectivity was

enhanced from the lPFC toward the FFA during switch relative to

repeat trials of the face task (i.e., switch-to-face vs. repeat-face

trials; Fig. 2D left and S1A top) and also enhanced from the lPFC
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toward the PPA in switch relative to repeat trials of the place

task (Fig. 2D right and Supplementary Fig. S1A bottom). These

results are in line with the well-known role of the left lPFC in

behavioral flexibility (Konishi et al. 2002; Derrfuss et al. 2005;

Crone et al. 2006; Yeung et al. 2006; Jimura and Braver 2010; Kim

et al. 2012; Tsumura et al. 2021) and suggest top-down signaling

from the prefrontal cortex to stimulus-modality-dependent

occipitotemporal regions during task switching (Tsumura et al.

2021).

We then asked a critical question whether the top-down

signaling from the lPFC to the stimulus-modality-dependent

regions is modulated depending on the uncertainty of the

relevant task (i.e., multitask level) that was manipulated

by the motion coherence of task cue. During face tasks

with high-coherence cue, the task-related effective connec-

tivity was enhanced from the MT and FFA regions to the

lPFC, and the directionality of connectivity between these

regions was reversed in low-coherence trials (Fig. 2E left and

Supplementary Fig. S1B top). Likewise, the effective connectivity

was enhanced from the MT and PPA regions to the lPFC during

the place task with the high coherent cue, and the directionality

of the connectivity was also reversed in low-coherence trials

(Fig. 2E right and Supplementary Fig. S1B bottom). The term

“reverse” here refers to the connectivity in the reverse direction

between a pair of brain regions (e.g., lPFC and MT) showing an

opposite task-related effect (e.g., connectivity from MT to lPFC

became greater in high-coherence relative to low-coherence

trials, whereas connectivity from lPFC to MT became greater in

low-coherence relative to high-coherence trials).

In order to test the reliability and robustness of the results

above, we estimated the effective connectivity by 1) using an

alternative estimation method (Supplementary Fig. S2A,B), 2)

changing the number of the ROIs in the models (Supplemen-

tary Fig. S2C,D), and 3) changing the definition of the ROIs

(Supplementary Fig. S2E,F) (see Materials and Methods). Overall

results were maintained, confirming that the connectivity

results were robust against estimation procedures, model

structures, and model parameters. Task-unrelated intrinsic

connectivity is shown in Supplementary Fig. S2G,H.

These collective results of effective connectivity suggest

that, when relevant task was indicated ambiguously, top-

down signal from prefrontal regions become stronger toward

stimulus-modality-dependent occipitotemporal regions (i.e.,

MT and FFA/PPA for face/place tasks). On the other hand, when

task cue information is more evident, bottom-up signals from

the occipitotemporal regions to the prefrontal regions become

stronger.

Whole-Brain Decoding by a CNN Classifier

Given the brain regions associated with tasks, switching tasks,

and perceptual decision-making identified by univariate acti-

vation analysis and their effective connectivity mechanisms,

we explored brain regions that code relevant task information

using a CNN classifier (LeCun et al. 2015). More specifically, we

examined whether brain activity patterns involve discriminable

information about face and place tasks during task switching

with cue uncertainty and then identified brain regions involving

critical information about the relevant task.

The current analysis used VGG16 (Simonyan and Zisserman

2015) that was trained to classify a concrete object image

dataset provided by ImageNet (http://www.image-net.org/;

Krizhevsky et al. 2012; Supplementary Fig. S3A). We retrained

the VGG16-ImageNet model using flat whole cortical activation

maps (Fig. 3A and Supplementary Fig. S3B) such that it classified

face and place tasks based on fine-tuning (Donahue et al.

2014; Supplementary Fig. S3C). The retraining was performed

based on cortical maps that were independent of the tested

maps. We retrained the model using flat maps during a

WM task for face and place stimuli obtained from the HCP

(Supplementary Fig. S3C top; see also Materials and Methods),

followed by additional retraining based on flat activation maps

during target-only trials of the current task in which only the

face/place target stimulus was presented without the dot cue

stimulus (Fig. 1D and Supplementary Fig. S3C bottom).

Classification accuracy for target-only trials was 82.1± 5.0%

(mean±SD with 10-fold cross validation), which was signif-

icantly greater than chance level (P< 0.001) (Supplementary

Fig S4A; see Materials and Methods). Interestingly, direct

retraining of VGG16-ImageNet model to classify the current

target-only trial maps showed little increase in accuracy

(Supplementary Fig. S4A). Training of a randomly initialized

VGG model to classify HCP WM maps was also not successful

(Supplementary Fig. S4B). Thus, these results demonstrate that

the current 2-step retraining of the VGG16-ImageNet model was

sufficient for the CNN model to learn from small sample data

sets of brain images.

Given that the CNN model successfully classified face and

place tasks during the target-only trials with high accuracy,

we then examined the classification accuracy for cue trials

(Supplementary Fig. S3D). Accuracy was higher than chance

level in switch trials at all coherence levels [80% switch:

t(28) = 4.7, P< 0.001; 40% switch: t(28) = 5.5, P< 0.001; 20% switch:

t(28) = 5.4, P< 0.001] and 80% repeat trials [t(28) = 3.6, P< 0.005]

(Fig. 3B), which ensured those maps contained information

about performed tasks. More importantly, classification accu-

racy was higher in switch than in repeat trials [F(1, 28) = 10.9;

P< 0.005], suggesting that cortical activation patterns involve

more information about task dimension in switch than in repeat

trials, although the coherence effect was absent [F(1, 28) = 0.3;

P=0.6]. The interaction effect of switch and coherence was

insignificant [F(1, 28) = 0.8; P=0.4].

Because participantsmade button responses using the left or

right buttons in both of the place and face tasks (Materials and

Methods), correct responses could be made even if participants

perform an incorrect alternative task. It is thus possible that the

classification performance of the CNN classifier is affected by

the mislabeling of activation images due to this button press

procedure. However, switch effect on classification accuracy

(switch vs. repeat: 0.137) was greater than that on behavioral

accuracy (0.033) [t(28) = 2.53; P< 0.05], suggesting that the switch

effect on classification accuracy cannot be fully explained by the

image mislabeling due to the current button press procedure.

Visualization of Activation of CNN Convolution Layers

When an image was given to CNN, the CNN classifier extracts

critical information through convolutional layers, which is

reflected in the activations of the layers. We thus visualized

activations of convolution layers to identify brain regions

involving critical information to classify the face and place

tasks. We used Grad-CAM (Selvaraju et al. 2017) that aggregates

layer activations and highlights image locations with greater

activations when important information to classify the image

are involved (Fig. 3C; Materials and Methods). Because the layer

activations were available for each classification, the aggregated
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layer activation map was created for each of the tested images.

Then, the aggregated maps were collected for each of the

tasks (face/place), switching conditions (switch/repeat), and

coherence levels (high/mid/low).

We first contrasted the aggregated layer activation maps

between switch and repeat trials and calculated pixel-wise

group-level z-statistics with participants treated as a random

effect (Fig. 3D). Prefrontal, parietal, and occipitotemporal areas

including FFA and PPA (see Fig. 2C and Supplementary Fig. S5

for references in 3D surface and 2D flat maps) showed greater

layer activations in switch trials than in repeat trials (Fig. 3D).

In particular, the layer activations became greater in trials

switching to face task but not to place task in the FFA (Fig. 3D

left). On the other hand, greater layer activations were observed

in trials switching to the place task but not to face task in the PPA

(Fig. 3D right). These results suggest that modality-dependent

FFA and PPA encode task-relevant information to a greater

degree during the switch to the task that demands stimulus

discrimination of optimal modality. Next we examined the

coherence effect during cue trials by calculating the weighted

sum of layer activations for each pixel (Fig. 3E). The FFA and

PPA also showed greater layer activations in high-coherence

trials than low-coherence trials in both of the face and place

tasks.

In order to statistically test dissociated layer activation pat-

terns in the FFA and PPA during cue trials, ROI analysis was

performed (Fig. 3F). ROIs were identical to those used in the

DCM analyses (see Materials and Methods), and layer activation

magnitudes were extracted from the ROIs. In the FFA, the layer

activations were greater during the face task than the place task

[F(1, 28) = 15.1, P< 0.01], and in the PPA, layer activations were

greater during the place task than the face task [F(1, 28) = 75.4,

P< 0.001]. For the layer activationmagnitudeswith optimal task–

region relationships (i.e., face task in FFA and place task in PPA),

activations became greater in switch relative to repeat trials

[F(1, 28) = 6.0, P< 0.05] and in high-coherence relative to low-

coherence trials [F(1, 28) = 12.5, P< 0.01 with linear contrast];

however, there was no switching-by-coherence interaction [F(1,

28) = 0.9, P=0.36].

To examine the robustness of these results against the defi-

nition of ROIs, FFA and PPA ROIs were redefined based on target-

only trials, independently of the cue trials (see Materials and

Methods), and the aggregated layer activation magnitudes were

calculated similarly (Supplementary Fig. S6). Again, in the FFA,

layer activation was greater during the face task than the place

task in the FFA [F(1, 28) = 15.2, P< 0.01] and was greater during

the place task than the face task in the PPA [F(1, 28) = 66.5,

P< 0.001]. For layer activation magnitudes with optimal task–

region relation (i.e., face task in FFA and place task in PPA),

activations became greater in switch relative to repeat trials [F(1,

28) = 6.4,P< 0.05] and in high relative to low-coherence trials [F(1,

28) = 13.4,P< 0.01with linear contrast]. The switch-by-coherence

interaction was insignificant [F(1, 28) = 0.1, P=0.75].

Additionally, in a separate analysis, we used a leave-one-

subject-out procedure when retraining the classifier to classify

the activation maps of the target only trials and then tested

the remaining subject (Supplementary Fig. S7). Overall results

are consistent, suggesting that subject-specific noises are not

dominant in our results.

These results suggest that the FFA and PPA involve more

modality specialized task-related pattern information in high-

coherence trials. Thus, modality-dependent occipitotemporal

regions may encode relevant task information (i.e., FFA for face

task and PPA for place task), which is enhanced in switch trials

with a high-coherence task cue.

Whole-Brain Decoding by SVM

In order to complement decoding and mapping by the CNN

classifier, we performed another decoding analysis using an

SVM classifier. Similar to the CNN classifier analysis above, the

classifier was trained based on HCP WM task such that the

classifier discriminates the dimension of the tasks (face or place)

(see Materials and Methods). We then tested the experimental

data to examine classification performance for face and place

tasks of the cue trials.

We found that accuracy was higher than chance level in

switch trials at all coherence levels [80% switch: t(28) = 4.5,

P< 0.001; 40% switch: t(28) = 2.5, P<0.05; 20% switch: t(28) = 3.3,

P< 0.005; Fig. 4A] and higher in switch than repeat trials [F(1,

28) = 5.0; P<0.05], which is consistent with the CNN classifier

results. Main effect of coherence and the interaction of switch

and coherence effects were insignificant [coherence: F(1,

28) = 1.4, P=0.26; interaction: F(1, 28) = 1.2, P=0.28]. Switch effect

on SVM accuracy (0.086) was greater than that on behavior

(0.033) [t(28) = 2.4, P< 0.05], consistent with CNN classification.

Weights of the SVM classifier were mapped onto 2D cortical

surface of the brain in order to identify brain regionswith greater

weights to classify the face and place tasks. Occipitotemporal

regions including the FFA and PPA showed prominent reverse

directed weights (Fig. 4B), indicating that these regions involve

important information to classify the 2 tasks. Notably, these

maps are consistent with the CNN-based mapping, especially

in the FFA and PPA (Fig. 3D,E). We also trained another SVM

based on target-only trials in the current task and found that

the classification accuracy of cue trials (Supplementary Fig. S8A)

and weight maps (Supplementary Fig. S8B) was consistent

to those with the CNN classifier (Fig. 3B,D,E) and whole-

brain SVM (Fig. 4A,B). We note that SVM weight maps (Fig. 4B

and Supplementary Fig. S8B) reflect a hyperplane calculated

by training data (i.e., maps for HCP WM or current target-

only trials), whereas CNN activation maps reflect degree of

contribution to classify tested image (i.e., current cue trial maps)

(see also Discussion).

Decoding Mapping by Searchlight SVM

The above CNN and SVM classifiers were based on pattern

information of whole-brain cortical regions. Another SVM anal-

ysis was also performed using the searchlight procedure (see

Materials and Methods). By exploring across the whole brain,

searchlight was used to identify brain regions where local image

voxels involved pattern information about the performed task to

classify face and place tasks. Again, the classifier in each search-

light was trained using HCP datasets, and thus the training and

testing datasets were independent.

For target-only trials, classification accuracy was sig-

nificantly higher in the FFA and PPA regions (Fig. 4C and

Supplementary Table S4; see Supplementary Fig. S9A for 3D

surface maps), suggesting that modality-dependent occipi-

totemporal regions involve relevant task information; this result

is consistent with the univariate analysis (Fig. 2C). We also

performed ROI analysis to examine accuracy in FFA and PPA.

ROIs were identical to those defined in DCM analyses, and both

of the PPA and FFA ROIs showed significant higher accuracy than
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chance level to classify target-only trial [FFA: t(28) = 8.8, P< 0.001;

PPA: t(28) = 10.7, P< 0.001] (Fig. 4C right).

Voxel-wise classification accuracy maps were contrasted

between switch versus repeat trials for each participant, and

group-level statistical tests were performed in order to identify

brain regions where discriminable pattern information is

greater in switch trials than in repeat trials. Occipitotemporal

regions showed a significant effect of switching (Fig. 4D and

Supplementary Table S5; see Supplementary Fig. S9B for 3D

surface maps), indicating that, in these regions, classification

accuracy is higher in switch relative to repeat trials, consistent

with our previous study Tsumura et al. 2021). Interestingly, these

regions were spatially located in-between the FFA and PPA,

where pattern information of searchlight classifiers may mod-

estly involve both of face-related and place-related information,

possibly in a balanced manner (Tsumura et al. 2021). In order to

examine whether PPA and FFA show differential classification

accuracy between the switch and repeat trial, ROI analysis was

performed. The classification accuracy for the switch and repeat

trials was significantly higher than chance level in both FFA

and PPA [ts(28)> 4.4; Ps< 0.001; Fig. 4D right]. More importantly,

the classification accuracy for the switch trial was significantly

higher than that for the repeat trial in both FFA and PPA [FFA:

t(28) = 2.1, P< 0.05; PPA: t(28) = 5.2, P< 0.001].

These regions also showed a coherence effect with higher

accuracy in high-coherence trials (Fig. 4E and Supplementary

Table S6; see Supplementary Fig. S9C for 3D surface maps). In

FFA and PPA ROIs, the coherence effect was also significant [FFA:

t(28) = 2.4, P< 0.05; PPA: t(28) = 3.7, P< 0.01; Fig. 4E right]. Notably,

these results were consistent with layer activation mapping of

the CNN classifier (Fig. 3D,E).

It is important that these regions showed significantly higher

classification accuracy than chance level in switch and repeat

trials (Supplementary Fig. S10A,B and Supplementary Tables S7

and S8), and cue trials at each coherence level (Supplementary

Fig. S10C–E and Supplementary Tables S9–S11). This assures that

the differential accuracies between switch and repeat trials, and

across coherence levels were attributable to accuracy enhance-

ment in switch trials with the high-coherence cue.

Whole-brain exploratory analysis for the infarction effect

between switching and coherence did not reveal significant

brain regions.

These collective results suggest that occipitotemporal

regions adjacent to stimulus-modality-dependent FFA/PPA areas

involve information about ongoing task and that the infor-

mation amount is increased during task switching with more

coherent cue presentation. These results are also consistent

with those of the classification performance andmapping based

on whole-brain CNN and SVM classifiers. Such differential

classification accuracy was not observed in frontoparietal

regions well known to be involved in executive control

(Supplementary Fig. S10F,G and Supplementary Tables S5 and

S6), even when the classifier was trained by target-only trials in

the current experiment (Supplementary Fig. S10H,I).

Discussion

The current study examined neural mechanisms during task

switching under situation where task cue involved uncertainty.

Task-related neural coding in FFA/PPA became more evident

during task switching and also when the relevant task was cued

more explicitly. When task cue was distinct, the lPFC received

task-related signals from the MT region and PPA/FFA, and the

direction of the signal was reversed when the task cue involved

more ambiguity. These results suggest a distributed cortical

network of fronto-occipitotemporal regions for behavioral flex-

ibility where task-related signal among these regions helps to

implement task representation depending on the ambiguities of

external cue (Fig. 5).

Neural Mechanism for Task Switching and Perceptual
Decision-Making

Prior work of task switching has examined switch-related neural

mechanisms under situations where perceptual uncertainties

were applied to target stimulus (Kayser et al. 2010; Mante et al.

2013; Zhang et al. 2013; Kumano et al. 2016; Tsumura et al.

2021). In contrast, the current study manipulated uncertainty of

the task cue that involves multitask information (Figs 1C,D and

5). Notably, the task cue indicates relevant task dimension at

the upper layers of the hierarchical task set structure (Koechlin

et al. 2003; Bunge et al. 2005; Badre 2008; Jimura and Braver

2010; Fig. 1B), and thus, the current study allowed us to elucidate

higher-level cognitive functions governing task switching and

perceptual decision-making.

In the cue trials, dot cue and face/place target stimuli were

simultaneously presented, as we aimed to maximize the behav-

ioral switch and coherence effects (see Materials and Methods).

Due to this presentation procedure, it is possible that the coher-

ence effect involved general task difficulty derived from the

perception of dual stimulus. However, in the cue trials, it was

impossible to correctly discriminate the target picture without

appropriate perception of motion direction, because the motion

direction indicated the dimension of the discrimination (i.e.,

face or place). This is because the current task constitutes the

hierarchical structure of a task set (Fig. 1B), where the upper

layer representation (i.e., task to be performed) governs the

lower layer representation (i.e., male/female or outdoor/indoor

discrimination). Participants were also instructed to first judge

the motion direction and then to discriminate the face/place

picture based on the motion direction to prevent them from

simultaneously perceiving the motion dot stimulus and face/-

place picture (see Materials and Methods). Given the nature of

the current task design and training procedures, it seems less

likely that the dual perception in low coherent trials dominate

the negative coherence effects.

For putativemechanisms to achieve task switching under cue

uncertainty, 3 hypotheses are possible: 1) a unitary mechanism

implements task switching under perceptual uncertainty in a

task cue; 2) distinctmechanisms for perceptual decision-making

and task switching interactively guide successful task switch-

ing; and 3) a hub-like region links the 2 distinct mechanisms.

Behaviorally, an interaction between switching and coherence

levels was absent (Fig. 1E,F; see also Results); this is consistent

with the univariate imaging analysis and CNN classifier map-

ping showing no interaction effect. The absence of an interac-

tion effect, together with distinct brain regions associated with

cue/target perception and task switching (Figs 2A–C and 3D–F),

suggests distributed mechanisms for task switching under cue

ambiguities, which supports the second hypothesis. This is con-

sistent with our previous study, in which the interaction effect

of switching and coherence of the target stimuli was absent

(Tsumura et al. 2021). Thus, bymodulating effective connectivity

and interregional signaling depending on cue ambiguity, these

regions cooperatively guide behavioral flexibility (Fig. 5). This

interpretation is also compatible with the central role of frontal
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Figure 5. Putative model of behavioral flexibility under perceptual uncertainty. Schematic diagrams for functional mechanism among the MT region, FFA, PPA, and

lPFC during task switching with cue uncertainty. The arrows indicate signal directions.

regions for flexible task control (Egner and Hirsch 2005; Kayser

et al. 2010; Cole et al. 2013; Waskom et al. 2014).

The current results and interpretations are consistent with

our recent study (Tsumura et al. 2021) in that complementary

cortical mechanisms are engaged in task switching under situa-

tions where goal-relevant information is ambiguous, but extend

it by showing homologous and more elaborated mechanisms

help to achieve task switching when perceptual uncertainty is

involved in the task cue instead of the target stimuli.

Specifically, in our previous study (Tsumura et al. 2021), the

target stimulus involved perceptual uncertainty of dot motion

and color, and the cue stimulus was presented without per-

ceptual uncertainty. Top-down signals from the prefrontal to

occipitotemporal cortices guide task switching, which is supple-

mented by the contralateral prefrontal regions when the target

stimulus involved more uncertainty.

On the other hand, in the current study, the cue stimuli

involved the perceptual uncertainty of the motion dot stimulus.

The dot stimuluswas identical to that used in the previous study

(Tsumura et al. 2021). The signaling between the prefrontal and

occipitotemporal cortices was reversed depending on the per-

ceptual uncertainty of the cue stimulus,whichwas not observed

in the previous study that manipulated the perceptual uncer-

tainty of the target stimulus.

In reference to the task set hierarchy (Fig. 1B), our previ-

ous study applied perceptual uncertainty of dot motion to the

lower layer of the hierarchy (i.e., target), while the current study

applied an identical perceptual uncertainty to the upper layer of

the hierarchy (i.e., cue). Because task-relevant information in the

lower layer is under the control of upper layer information, task-

related signals flow from the upper to lower layers (Koechlin

et al. 2003; Badre 2008), which our previous study demonstrated

in the prefrontal and occipitotemporal cortices (Tsumura et al.

2021).

On the other hand, in the current study, when the cue was

presented more distinctively, bottom-up signals from the occip-

itotemporal to prefrontal cortices helped to guide task switching,

because the upper layer information about the relevant task

requires an appropriate perception of the dot motion stimulus.

One common, important observation in our current and pre-

vious studies is thatwhenperceptual uncertaintywas increased,

activation was enhanced in the prefrontal cortex, and top-down

signals from the prefrontal to occipitotemporal regions became

more prominent. This signaling may complement the accu-

mulation of stimulus evidence in the occipitotemporal cortex

when the visual stimulus involved more uncertainty (Gold and

Shadlen 2007).

The complexity and sophistication of the mechanisms

are attributable to the increased number of occipitotemporal

regions: In the current study, 3 regions, MT, FFA, and PPA, are

involved, whereas 2 regions, MT and ventral visual complex, are

involved in our prior study (Tsumura et al. 2021).

Fronto-occipitotemporal Network Mechanisms

DCM analyses revealed top-down signal from the lPFC to the

FFA or PPA, depending on the task to be switched, and this top-

down signaling is enhanced when task cue involved ambiguity

during switching (Fig. 5). The top-downmechanismsmay reflect

supplemental attention to visual stimulus required to collect

task cue information about the tasks to be performed (Zanto

et al. 2011; Lee andD’Esposito 2012). The supplemental attention

involving frontal engagement may complement stimulus-

modality-dependent activation in occipitotemporal regions

(Desimone and Duncan 1995; Kastner and Ungerleider 2000;

Corbetta and Shulman 2002; Lewis-Peacock and Postle 2008).

In contrast, bottom-up signaling with increased cue infor-

mation may reflect the conversion of sensory information to
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behavioral information through an information stream from the

visual sensory area to executive control areas (Desimone and

Duncan 1995; Kastner and Ungerleider 2000). Thus, when the

task cue was apparent, the bottom-up signal was strengthened

because cue-related information is more available, which may

help to enhance task switching performance.

On the other hand, such signal reversal did not occur in

our prior study, and the top-down signals from prefrontal to

occipitotemporal regions complement switching independently

of the uncertainty of the target stimulus (Tsumura et al. 2021). It

is possible that the signal reversal is characteristic of the uncer-

tainty of the cue stimulus, as the cue stimulus indicates more

abstract information in the upper layers of the task-set hierarchy

(Fig. 1B). Thus, the uncertainty of the abstract information may

implicate more complex mechanisms to implement task sets to

be performed (Koechlin et al. 2003; Bunge et al. 2005; Badre 2008;

Jimura and Braver 2010).

The stronger connectivity from FFA/PPA to lPFC in high-

coherence trials may reflect the efficient generation of response

for the face/place task derived from quicker judgment about the

motion direction. On the other hand, in low coherence trials,

because the direction judgment was slower, the stronger top-

down signal from lPFC and FFA/PPAmay complement the slower

judgment tomake a correct response for the face/place stimulus.

Additionally, from the overall inspection of the entire set

of connectivity results (Fig. 2E and Supplementary Fig. S2B,D,F),

there seems to be a small tendency for the connectivity to be

stronger between MT and FFA in the high-coherence face trials

and between MT and PPA in the high-coherence place trials.

In the cue trial, after the judgment for dot motion direc-

tion, the dot motion stimulus became unnecessary to make a

correct response, but participants then needed to perceive face

or place in the picture in accordance with the judgment. Such

an attention shift from dot motion to face/place picture may

occur faster in high-coherence trials than in low-coherence trial.

Additionally, stimulus evidence of motion direction in MT was

accumulated faster in high-coherence trials (Gold and Shadlen

2007), and moreover, the MT, FFA, and PPA engagements in

the cue trial reflect the perception of goal-relevant information

rather than a simple response to visual stimulus (Kayser et al.

2010; Tsumura et al. 2021; Fig. 2C and Supplementary Fig. S5).

Thus, the direct connectivity between occipitotemporal regions

in high-coherence trialsmay reflect enhanced signaling, reflect-

ing faster accumulation of task-relevant stimulus evidence in

MT and a swift attention shift from the dot motion to the

face/place picture.

Comparisons of Classification and Mapping among
Machine Learning Techniques

In the current study, whole-brain exploration of task-related

neural representation was performed by 3 approaches based on

3machine learning techniques, 1) CNN classifier, 2) whole-brain

cortical SVM, and 3) searchlight SVM.

CNN classified activation maps along task dimensions based

on all pixels across whole cortical regions, and the classification

accuracy was higher in switch trials than repeat trials. One

novel signature of the current CNN classifier approach is that

brain regions involving critical information to classify cue trials

weremapped by aggregated activation across convolution layers

based on the Grad-CAM technique. It is notable that this CNN

activation mapping is available on image-by-image basis for

testing data, which is not the case for the SVM mapping using

whole cortical images. Then, the aggregated layer activation

mapping of CNN revealed that task representation in the FFA

during the face task and in the PPA during the place task was

enhanced in switch and more coherent trials than in repeat and

less coherent trials. Increased task-related activation (Fig. 2C

and Supplementary Fig. S5) may be associated with higher clas-

sification accuracy and enhanced task representation.

Standard voxel-wise univariate GLM analysis identifies brain

regions where the MRI signal is differentiated between task

conditions but does not necessarily indicate that identified brain

regions are critical for task performance; this makes it hard to

identify brain regions playing an important role in cognitive

functions (i.e., reverse inference). In contrast, the current CNN

classifier demonstrated that the visualization of convolution

layers of the classifier for brain activation is useful in identifying

brain regions that characterize task performance.

The analysis based on the CNN classifier was complemented

by a standard SVM analysis for whole-brain cortical maps that

tested identical map images. The classification accuracy of cue

trials was highly consistent between the 2 classifiers. Addition-

ally, SVM weight maps also showed differential weights in the

FFA and PPA, which is also consistent with the CNN classifier.

One notable technical limitation of the SVM is that weight

mapping for testing classification for cue trials was unavailable,

unlike Grad-CAM of CNN classifier. Thus, the SVM weight map

indicates that the FFA and PPA are critical to classify tasks for the

HCPN-backWM task or target-only trials in the current task (i.e.,

training data), but not necessarily for cue trials of the current

task (i.e., testing data). Nonetheless, together with differential

classification accuracy among cue conditions, the SVM weight

maps suggest that pattern information in the FFA and PPA is

distinct (i.e., distant from separating hyperplane) in switch trials

than in repeat trials.

Another approach to identify brain regions that characterize

task performance is the searchlight SVM, which also allows

whole-brain exploration of activation patterns, but individual

classifications were restricted in local brain regions (Fig. 4C–E;

Supplementary Figs S9 and S10). This is in contrast to the CNN

classifier and whole-brain cortical SVM that are trained and

classified based on a whole-brain image. Nonetheless, results

were complementary to those whole brain-based classifiers in

that 1) occipitotemporal regions adjacent to the FFA and PPA

were capable of task classification, and 2) the classification

performance in these regions became higher in switch andmore

coherent trials.

The higher classification accuracy in switch trial is consistent

with our recent study (Tsumura et al. 2021) whereas previous

MVPA studies of task switching suggested that task coding in

frontoparietal regions is attenuated in a switch trial (Qiao et al.

2017), and task coding is independent of task switching (Loose

et al. 2017). Interestingly, those previous studies used task-

cueing paradigms, where a task cue was presented in each trial

(Loose et al. 2017; Qiao et al. 2017); conversely, the current study

and our recent study used an intermittent cue paradigm in

which the switch trial occurred after successive correct trials for

the alternative taskwithout presenting a cue (Fig. 1C,D; Tsumura

et al. 2021). The variability in the cueing procedures among the

studies may yield the variability of classification accuracy.

In the current task, correct responses could be made even if

participants perform an incorrect alternative task, because the

identical set of buttonswas used in the place and face tasks.Due

to this button press procedure, the classification performance

of the whole-brain CNN and SVM classifiers could be affected
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by the mislabeling of activation images. However, the greater

switch effect on classification accuracy than behavioral accu-

racy suggests that the switch effect on classification accuracy

cannot be fully explained by the imagemislabeling. On the other

hand, the absence of the coherence and interaction effects on

the classification accuracy may be attributable to the image

mislabeling.Nonetheless, in low-coherence trials, because of the

increased perceptual uncertainty, participants were uncertain

about the task to be performed, rather than certain to perform

the incorrect task by incorrectly perceiving themotion stimulus.

Thus, it seems less likely that the mislabeling due to the perfor-

mance of the incorrect task with certainty produces critical bias

for our results regarding the coherence effects on classification

accuracy.

Classifier Training Using Independent Open Resource
Data

Onenotable analysis procedure in the currentmachine learning-

based functional brain mapping is that classifier was trained

using an open resource dataset that was independently col-

lected from the current experiment. This procedure ensured

independence between the training and testing data.

Task switch and WM may involve distinct cognitive con-

trol demands, with the former related to behavioral flexibil-

ity (Allport et al. 1994; Rogers and Monsell 1995) and the lat-

ter related to active maintenance and updates of goal-relevant

information (D’Esposito and Postle 2015). However, the 2 tasks

used common visual stimulus categories (face and place); thus,

perceptual demands may involve some degree of commonality.

Recognition demands for the presented stimuli were also dis-

tinct: the current task-switching paradigm used male–female

and indoor–outdoor discriminations during face and place tasks,

respectively, but HCP WM tasks used discrimination of identi-

calness to past stimuli. Additionally, the current task used face–

place superimposed stimuli, and thus, the identical stimulus set

was used during face and place tasks, whereas HCP WM task

used distinct visual stimulus sets during face and place blocks.

Thus, task representation examined in the current study may

reflect visual perception or attention rather than low level visual

features.

For the CNN classifier, training involved 2 steps: retraining

of HCP WM maps and additional retraining of target-only tri-

als. CNN classifies maps based on whole cortical areas includ-

ing frontoparietal regions in which differential subregions are

recruited during task switching (Dove et al. 2000; Rushworth

et al. 2002; Koechlin et al. 2003; Bunge et al. 2005; Derrfuss et al.

2005; Crone et al. 2006; Yeung et al. 2006; Jimura and Braver 2010;

Kim et al. 2012; Nee and D’Esposito 2016; Bissonette and Roesch

2017; Malagon-Vina et al. 2018; Fouragnan et al. 2019; Tsumura

et al. 2021) andWM (Courtney et al. 1997; Miller and Cohen 2001;

D’Esposito and Postle 2015). Thus, additional retraining of the

CNNmodel based on identical recognition demands (i.e., target-

only trials) was effective in classifying tasks to optimize the

CNN model for classification using whole cortical images. Dis-

tinct layer activation differences in the parietal cortex (Fig. 3D,E)

may partially be attributable to higher performance with the

additional retraining.

Because incremental training of HCP WM trials and the

target-only trials in the current study is irrelevant to SVM,

these 2 datasets were separately trained for whole-brain

cortical SVM, and weight maps were consistent especially in

occipitotemporal regions (Fig. 4B and Supplementary Fig. S8B).

Importantly, classification accuracy for the cue conditions was

consistent in SVMs with the 2 training datasets and also with

the CNN classifier. The sample size was much smaller for the

current target-only trials than HCP dataset, but classification

performance was comparable between those 2 classifiers

(Fig. 4A and Supplementary Fig. S8A). Thus, SVM may thus not

require a larger sample size like the HCP data for training, while

CNN training needed incremental training even with large sets

of image data.

The searchlight SVM using HCP WM maps as training data

identified occipitotemporal regions spatially closed to the

FFA/PPA showing higher classification accuracy for target-only

trials. Moreover, classification accuracy was higher in high-

coherence switch trials. Interestingly, these classification results

were absent in frontoparietal regions, well known to be involved

in executive control (Supplementary Fig. S10F,G), even when the

searchlight classifier was trained by the target-only trials of

the current task (Supplementary Fig. S10H,I). One possibility for

this discrepancy is that control and recognition demands are

incompatible while perceptual modality is compatible in HCP

WM trials, target-only trials, and switch/repeat trials. Then, the

distinct control and recognition demands might be reflected in

classification incompatibility in the frontoparietal regions.

A CNN model successfully learned and decoded task-related

fMRI images of HCP without flattening the images, and retrain-

ing of the classifier was also effective for small subset of the

HCP data (Wang et al. 2020). However, this technique is unavail-

able for the current experiment using event-related design (see

Materials and Methods for more details), and retraining of the

VGG16/ImageNet model based on flattened 2D activation maps

was powerful for the current dataset.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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