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a b s t r a c t 

The human brain continuously generates predictions of incoming sensory input and calculates corresponding 

prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory 

cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error 

signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction 

error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer- 

specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index 

finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks 

increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI 

signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the 

delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short- 

delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep 

layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. 

The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the 

sensory cortex contributions to flexible communication between cortical layers or between cortical areas. 

1

 

r  

t  

f  

F  

c  

t  

t  

b  

i  

t  

b  

s  

c  

t  

t  

b  

h  

p  

T  

f  

(  

o

 

h

R

A

1

(

. Introduction 

For survival in a changing environment, humans learn from expe-

ience to predict future events. Critical to this capacity is the interpre-

ation of sensory input and the generation of internal prediction about

uture inputs ( de Lange et al., 2018 ; Mumford, 1992 ; Shipp et al., 2013 ).

or example, when humans perceive a rhythmic tactile sequence, they

an take advantage of the temporal regularity to form predictions about

he timing of future inputs ( Yu et al., 2019 ). If these predictions match

he temporal rhythms of actual sensory stimuli, this information can

e used to enhance the perception of subsequent inputs. Alternatively,

f an incoming signal does not match the prediction (e.g., occurs later

han predicted), the brain will generate prediction error signals that can
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e used to update the internal prediction, thereby improving future sen-

ory perception. This process is achieved within hierarchically organized

ortical structures in which higher-level areas generate predictions and

ransmit signals back to lower-level areas through top-down connec-

ions. In contrast, lower-level areas serve to calculate prediction errors

etween prediction and actuality and then transmit error signals back to

igher-level areas through bottom-up connections to optimize internal

rediction ( Barrett and Simmons, 2015 ; Keller and Mrsic-Flogel, 2018 ).

he human primary somatosensory cortex (S1) is essential not only

or receiving sensory input but also for receiving predictive feedback

 Yu et al., 2019 ), but the precise functions of individual cortical layers

f S1 in prediction error processing is unclear. 

The neural circuits underlying tactile prediction processing have

een mapped to area 3b of human S1. In our previous study ( Yu et al.,
cember 2021 
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019 ), we demonstrated that specific layers in area 3b are specialized

or receiving sensory information and predictive feedback. Specifically,

e found that the sensory inputs preferentially terminate in the middle

ortical layer 4 (L4), whereas the top-down predictive feedback from

igher-level areas project to superficial layers 2/3 (L2/3) and deep lay-

rs 5/6 (L5/6). Through these top-down pathways, superficial and deep

ayers received modulatory input for sensory prediction even in the ab-

ence of actual sensory inputs. Furthermore, anatomical and physiolog-

cal studies on non-human animals ( Constantinople and Bruno, 2013 ;

uiquempoix et al., 2018 ) indicate that L2/3 and L5/6 neurons receive

irect inputs from L4 neurons, thus serving a secondary function in cor-

ical processing of feedforward inputs. L2/3 pyramidal neurons are crit-

cal for receiving top-down signals from higher-level areas, whereas in-

erlaminar links within L2/3 and L5/6 neurons support the temporal in-

egration of feedforward and feedback signals for predicting future sen-

ations ( Kachergis et al., 2014 ; Manita et al., 2015 ; Quiquempoix et al.,

018 ; Roelfsema and Holtmaat, 2018 ; Thomson, 2007 ). Therefore, L2/3

nd L5/6 neurons are critical for integrating information related to sen-

ory input with cortical feedback to reduce prediction errors. 

Recent computational modeling studies have proposed that L2/3 and

5/6 neurons make distinct functional contributions to sensory pre-

iction and prediction error processing ( Barrett and Simmons, 2015 ;

astos et al., 2012 ). L2/3 pyramidal neurons are thought to compute the

rror between predicted and actual sensory inputs and then send error

ignals to higher-level areas (e.g., middle cingulate cortex ( Yang et al.,

021a )) and to L5/6 neurons in the same column. The cortico-cortical

onnections from L2/3 neurons to higher-level areas serve to transmit

rediction error signals so that these areas can generate more accu-

ate future predictions. In contrast, the intracolumnar projections from

2/3 to L5/6 modulate the gain of incoming sensory input strength

 Barrett and Simmons, 2015 ). These distinct functional roles of L2/3

nd L5/6 neurons are consistent with those reported in animal stud-

es ( Jordan and Keller, 2020 ; O’Connor et al., 2010 ; Pluta et al., 2015 ;

uiquempoix et al., 2018 ). In particular, a recent study ( Jordan and

eller, 2020 ) suggests that L2/3 neurons of the mouse visual cortex

ompute prediction errors by subtracting predicted and actual visual

ow inputs, whereas L5/6 neurons play a role in integrating visual flow

nd locomotion. To date, however, there is no empirical evidence for

uch precise contributions of L2/3 and L5/6 to prediction and prediction

rror in humans. This lack of knowledge is largely due to the technical

hallenges of capturing layer-specific brain activity in the relatively thin

about 2 mm) human sensory cortex ( Dumoulin et al., 2018 ; Finn et al.,

020 ; Self et al., 2019 ; Turner and De Haan, 2017 ; Uluda ğ and Blin-

er, 2018 ; Yang et al., 2021b ). 

In the present study, we aim to investigate the cortical layer-

pecific activity that is related to prediction error processing in hu-

an area 3b. We employed layer-specific functional magnetic resonance

maging (fMRI) at 7T using concurrent measures of vascular-space-

ccupancy (VASO) and blood oxygenation level-dependent (BOLD)

maging ( Huber et al., 2020 , 2017 , 2016 ). Following the perspective

f the previous findings ( Jordan and Keller, 2020 ), we hypothesize that

oth L2/3 and L5/6 of human area 3b will be involved in the prediction

rror processing, while each layer may have distinct functions. In par-

icular, L2/3 might receive the top-down feedback and feature for error

alculation, while the L5/6 might specialize in the integration and mod-

lation of multiple inputs such as incoming sensory input and top-down

eedback. To test this hypothesis, we designed three tactile temporal

rediction (TP) tasks. All participants received rhythmic tactile finger

oking in three TP tasks and were asked to predict a target poke to the

ndex finger. We manipulated the target timing such that index finger

oking occurred either on-beat (TPon task – no delay) or off-beat (TPoff

ask – delayed). The violation of the temporal rhythm in the off-beat

ask is referred to as prediction error condition, which allowed us to in-

estigate how the prediction error processing modulates the activity of

2/3 and L5/6 within area 3b. For the off-beat TPoff task, we further

anipulated the length of the temporal interval before the index finger
2 
oking (i.e., TPoff_short task - delayed by a one beat interval; TPoff_long

ask – delayed by a two beats interval). A long interval is expected to

ngage an inhibitory process ( Klein and Ivanoff, 2000 ; Nobre and Van

de, 2018 ) to affect the activity in the sensory cortex, which allowed us

o investigate how the extended off-beat delay period affects the activity

f L2/3 and L5/6 within area 3b. 

. Materials and methods 

.1. Human participants 

Eleven healthy right-handed volunteers (5 males and 6 females; age

ange 21–38 years) participated in the fMRI experiments. Six of them

articipated after providing informed consent to a protocol approved by

he National Institutes of Health Combined Neuroscience Institutional

eview Board (93-M-0170, ClinicalTrials.gov identifier: NCT00001360)

n accordance with the Belmont Report and U.S. Federal Regulations

rotecting human subjects. Additional five participants gave written in-

ormed consent under the local medical ethics committee at the National

nstitute for Physiological Sciences, Japan. One female was re-invited

o participate in an additional session (on a different day) to confirm

eproducibility; therefore, twelve experimental sessions ( n = 12) were

onducted in total. 

.2. Experimental session setup and image acquisition 

Each session consisted of one finger somatotopic mapping run of

.9 min duration and one or two prediction task runs of 16 min du-

ation. No participant was in the scanner for longer than 120 min per

ession. 

The same fMRI sequence and image reconstruction pipeline was

sed as in our previous study ( Yu et al., 2019 ). Slice-selective slab-

nversion concurrent measures of VASO ( Lu et al., 2003 ) and BOLD sig-

als were acquired using a 7T scanner (Siemens Healthineers, Erlangen,

ermany) equipped with a 32-channel RF coil (Nova Medical, Wilm-

ngton, MA, USA) and an SC72 body gradient coil. The VASO-relevant

R-loop acquisition settings were as follows: TI1 nulled = 1100 ms,

I2 BOLD = 2845 ms, and TR pair = 3490 ms. The coil-combined data com-

rised interleaved BOLD and VASO contrasts obtained as concomitant

ime series ( Huber et al., 2017 ). These time series are corrected for rigid

olume motion and are separated by contrast with the effective tempo-

al resolution of TR = 3490 ms for each individual contrast. The nominal

esolution was 0.71 mm across cortical depths with 1.8-mm thick slices

erpendicular to the postcentral bank of the right central sulcus with

D-EPI ( Poser et al., 2010 ). VASO contrast is corrected for BOLD con-

aminations by the division of blood nulled MR-signal and not-nulled

R-signal across consecutive TRs. This was performed based on 1–4

hort EPI test runs with 5 measurements and their online depiction in the

endor-provided 3D-viewer. The higher detection sensitivity of BOLD

with low layer specificity) was used to determine the single-voxel ac-

ivity scores for subsequence regions of interest (ROI) definition. The

igher layer specificity of VASO (with lower sensitivity) was used to

xtract layer-profiles of voxel-averages for each layer without venous

iases. 

.3. Experimental paradigm and procedures 

.3.1. Finger somatotopic mapping run 

To delineate the precise cortical ROI for individual participants, we

apped the somatotopic representation of the left four fingers (D2: in-

ex, D3: middle, D4: ring, and D5: pinky) in the contralateral area 3b

sing an on–off block design. A custom-designed finger stimulation de-

ice ( Yu et al., 2019 ) was used to poke each finger through the plastic

ticks under each fingertip. During on-phase (17.5 s), each of the four

ngers was randomly and independently poked at 4–5 Hz and each fin-

er was poked five times in one run. Participants were instructed with
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Fig. 1. Illustration of the experimental tasks and time chart. (A) Tactile stimulation sequences of the three temporal prediction (TP) tasks and the random 

sensory (RS) input control task. In the three TP tasks, the fingers were stimulated in set order (pinky to index), with the index finger receiving stimulation with 

the same interval as the other fingers (on-beat). In the TPoff_short and TPoff_long tasks, index finger stimulation was delayed by one beat (approximately 0.37 s) 

or by two beats (approximately 0.74 s), respectively. In the RS task, fingers were stimulated in a random order. (B) The four task blocks were presented for 34 s at 

20 s intervals, and each task block was repeated four times in each run. The order of the blocks was counterbalanced. TPon: Temporal Prediction on-beat, no delay; 

TPoff_short: Temporal Prediction off-beat, short delay; TPoff_long: Temporal Prediction off-beat, long delay; RS: Random sensory input across four fingers. 
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a  
he request: “Keep your attention on the left poked fingertips during

n-phase. ” Due to time limitations, one of the eleven participtants per-

ormed somatotopic mapping run only for D2 and D3. 

.3.2. Tactile temporal prediction (TP) task run 

In the following experiments, we investigated prediction and predic-

ion error-induced signals across cortical layers during a rhythmic tactile

timulation task. As shown in Fig. 1 A , participants received sequences

f tactile pokes to the four fingertips in two general patterns: (a) & (b)

equentially from the pinky to index (D5 to D2) in the three TP tasks;

c) randomly poking across the four fingers in the random sensory (RS)

nput control task. In the TP tasks, the interval between stimulation of

he pinky, ring, and middle fingers was held constant (at approximately

.37 s), whereas the interval between the middle and index fingers was

aried. 

(a) Tactile temporal prediction on-beat (TPon) task: The partici-

ants were instructed with the following text on the screen: "Pay atten-

ion to the poking on each finger and then predict when your left index

nger will be poked based on the temporal rhythm." The actual sensory

timuli involved the experimenter poking the participants’ four fingers

n an ordered fashion from D5 to D4 to D3 to D2. The temporal rhythm

etween each poking was approximately 0.37 s. In this case, the tem-

oral rhythm of D2 poking matched the predicted rhythm learned from

sochronous poking of the first three fingers. We expected that these

earned rhythmic modulations would generate predictive feedback sig-

als to the D2 region of area 3b. Thus, prediction of the D2 stimulus

ould improve by a consistent temporal relation. 

(b) Tactile temporal prediction off-beat (TPoff_short and

Poff_long) tasks: The experimental instruction was the same as the

Pon task. The actual sensory stimuli involved the experimenter poking

he four fingers of the participant in an ordered fashion from D5 to D4

o D3 to D2. The temporal rhythm between each poking from D5 to D3

as approximately 0.37 s. However, the last poking D2 was delayed by

 one beat interval (additional 0.37 s) for TPoff_short task and two-beats

nterval (additional 0.74 s) for TPoff_long task. In these cases, the tem-

oral rhythm of D2 poking mismatched the predicted rhythm learned
3 
rom isochronous poking of the first three fingers. Thus, we expected

hat a longer D3-to-D2 stimulus interval would induce prediction errors

anifested by distinct layer-specific activity patterns in the D2 region

f area 3b. 

(c) Random sensory (RS) input control task: The participants

ere instructed with the following text on the screen: “Pay attention

o the poking on each finger, but do not try to predict any pattern. ”

ven we cannot rule fully out the prediction effects since humans are

eeping predict the future inputs based on the predictive coding princi-

le ( Bastos et al., 2012 ; de Lange et al., 2018 ), it was expected to reduce

he prediction of the next poking position by presenting the finger pok-

ng in random order. Thus, the RS task was used to induce thalamic input

o the D2 region in area 3b with reduced stimulus-driven prediction. 

As shown in Fig. 1 B , all four task blocks were delivered for 34-s

eparated by a 20-s off period, and each task block was usually repeated

our times. The order of the blocks was counterbalanced. Furthermore,

o prevent adaptation, TPoff_short and TPoff_long blocks included 80%

elayed poking trials, and 20% of trials included rhythmic poking as

Pon task. By adding 20% no-delay (TPon) trials to TPoff blocks, the

mount of error components in the TPoff blocks was varied but still

ore significant than TPon blocks. Thus, the TPoff vs. TPon contrast

as expected to reflect the change in activity in layers that are more

esponsive to prediction error processing. 

.4. Data analysis 

.4.1. Motion correction 

All fMRI data were corrected for head motion using Statistical Para-

etric Mapping Version 12 software (Functional Imaging Laboratory,

niversity College London, UK) ( Friston et al., 2007 ). To minimize er-

ors on the motion estimation due to non-linear motion at air-tissue in-

erfaces, the motion parameter estimation was restricted to a manually

rawn ROI of the central sulcus. 

.4.2. Anatomical reference methods 

To avoid additional resolution loss due to repeated resampling steps

nd to avoid any errors of the distortion correction and registration, we
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Fig. 2. Somatotopic mapping of area 3b representing the 

index finger (D2) and middle finger (D3) for all partici- 

pants. (A) Imaging region and finger somatotopic map of one 

participant. Tactile poking of the participant’s left index and 

middle fingers induced clear activation along the contralateral 

(right hemisphere) area 3b. (B) Sample somatotopic maps of 

D2 and D3 finger representations for other ten participants. 

The finger-specific activation hotspots shown here were used 

to determine the ROIs for the extraction of layer profiles. Note 

that the depicted data refer to the BOLD contrast. 
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id not register the functional data to an anatomical reference dataset.

nstead, we used the functional data directly as an anatomical reference

s was performed previously ( Yu et al., 2019 ). 

.4.3. General linear model (GLM) analysis 

GLM was conducted using FSL5.0.9 (FMRIB Software Library, Uni-

ersity of Oxford, UK) ( Jenkinson et al., 2012 ). VASO and BOLD sig-

als for all runs were modeled with a BLOCK function convolved with

he canonical hemodynamic response function using the FEAT tool

f FSL. Furthermore, we also used several AFNI commands (Version

D = AFNI_18.1.08) for fMRI data processing ( Cox, 1996 ). 

.4.4. Layering methods and profile extraction 

Layer-specific analyses were conducted using the open software suite

AYNII ( https://github.com/layerfMRI/LAYNII ) ( Huber et al., 2021 ).

he borderlines between cerebrospinal fluid (CSF), gray matter (GM),

nd white matter (WM) were used as the basis to define cortical depths

a.k.a. layers). To avoid singularities at the edges in angular voxel space,

he cortical depths were defined on a five-fold finer grid than the orig-

nal EPI resolution. Then, we first create the finger ROI images contain

he segmentation of GM and its borders, which consists of four integer

alues (0 = irrelevant voxels, 1 = inner GM surface voxels, 2 = outer GM

urface voxels, 3 = pure GM voxels). By applying the layer classification

ommand to these ROI images, 11 equi-volume lines ( Waehnert et al.,

014 ) were calculated across the cortical depth in each ROI. These ROIs

ere used to extract the cortical depth-dependent profiles of all experi-

ental tasks. Please note that with a nominal 0.71 mm resolution and an

pproximate cortical thickness of 2 mm in area 3b, the effective resolu-

ion allows the detection of only 3 independent data points. Hence, the

efined 11 cortical depths do not represent the MRI effective resolution.

or visualization, cortical layer-specific smoothing was applied. How-

ver, all cortical activity profiles were evaluated from the unsmoothed

ata. 

.4.5. Statistical analysis 

The difference between any pair of task conditions were statistically

ssessed through a linear mixed-effects (LME) modeling approach using

he R package nlme ( R Core Team, 2013 ). With the pair-wise difference

t each layer from each participant as the data for the response variable,

he LME model was formulated with no intercept, with layers as a fixed-

ffects factor and with a random intercept for cross-sessions variability.
4 
. Results 

.1. Finger somatotopic mapping run 

The finger regions in area 3b were somatotopically mapped in this

un, in which fingers were separately poked. The examples of index fin-

er (D2, red) and middle finger (D3, blue) BOLD activation map of one

articipant is presented in Fig. 2 A . A clear representation of D2 and D3

ngers from the medial to lateral side was identified along area 3b in

ll participants ( Fig. 2 B ). These maps were subsequently used to de-

ermine the ROIs of each finger in relevant parts of area 3b during the

P and RS task runs. To reduce the overlap effect of adjacent fingers

epresentation in area 3b, we delineate the precise D2 ROI by avoiding

verlapping voxels with other fingers. 

.2. Temporal prediction (TP) and random sensory (RS) input control task

uns 

We examined the functional activity in area 3b during three TP tasks

nd compared them to those of a RS task ( Fig. 3 AB ). Spatial maps of re-

ults (shown for a representative participant in Fig. 3 B ) indicate that all

our tasks excite area 3b, which is consistent with our previous finding

 Yu et al., 2019 ). 

Averaged layer-specific VASO and BOLD response profiles in the D2

OI are shown for all four tasks in Fig. 4 A . These VASO activity pro-

les were highly consistent with the activity map for a single participant

hown in Fig. 3 B. Despite residual inter-participant variability, the re-

ponse profiles for all participants are almost consistently modulated

or the different tasks. Specifically, the TP tasks increased activity in

he superficial layers regardless of prediction error (VASO profiles in

ig. 4 B ). However, activity in the deep layers of area 3b differed across

he three TP tasks. Specifically, activity in deep layers increased during

he TPoff_short task (green dashed line) compared with during the TPon

ask, but during the TPon and TPoff_long tasks did not differ significantly

blue dashed line). In contrast to all TP tasks, the non-prediction RS task

voked strong activity in the middle layers but not in superficial or deep

ayers (black dashed line in Fig. 4 A ). Since the modulation of predic-

ion error activity was designed for D2, the activity of other finger ROIs

i.e., D3, D4, D5) showed mostly similar patterns across tasks which all

asks evoked the most robust activity in the middle layers. In contrast,

e can confirm task-related differences from the BOLD responses, but

he distinction between layers was less clear. This is because BOLD has

imited layer specificity and is biased toward the superficial layers and

https://github.com/layerfMRI/LAYNII
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Fig. 3. Illustration of the experimental tasks and the corresponding BOLD 

activation maps of a representative participant. (A) Tactile stimulation se- 

quences of the three temporal prediction (TP) tasks and the random sensory 

(RS) input control task. (B) Activation maps (FSL z statistic maps, clusters de- 

termined by z > 1.6) during the four tasks. Top row: raw data, Bottom row: with 

smoothing in each layer. The white dashed line demarcates the region of interest 

for the index finger representation in area 3b. All three TP tasks evoked strong 

activity in both superficial and deep layers regardless of whether a prediction 

error was present. In contrast, the RS task evoked more robust activity in the 

middle layers. 

l  

t  

T  

o  

p  

a  

m  

(

Fig. 5. Averaged VASO signal changes in superficial and deep layers of hu- 

man cortical area 3b and a layer-specific circuit model. (A) The bar graphs 

represent the average activity changes in superficial layers (cortical depths 2–4 

in Fig. 3 ) and deep layers (cortical depths 7–10) for all sessions. (B) A layer- 

specific circuit model of the primary somatosensory cortex (area 3b). ∗ : p < 0.05, 
∗ ∗ ∗ : p < 0.001. 
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t  
arge draining veins. Furthermore, we performed an additional analysis

o verify whether the different finger stimulation sequences (TPon and

Poff tasks versus RS task) affect the steady-state functional response

ver the blocks. In short, we did not find any specific functional response

attern for the RS task compared to other prediction tasks (Figures s1

nd s2). The analysis processing and results are provided in the Supple-

entary material. Notably, the more finely defined 11 cortical depths

data points) do not represent the effective resolution in our MRI data. 
5 
To quantify the layer-specific prediction and prediction error activ-

ty in superficial and deep layers of area 3b, we collected data points

rom superficial layers (data points 2–4) and deep layers (data points

–10) and compared VASO signal changes among the three TP tasks

nd RS task ( Fig. 5 A) . These contrasts revealed inverted V-shaped ac-

ivity in the deep layers that was dependent on the length of the de-

ay between middle and index finger poking, with enhanced activ-

ty in the deep layers during the short delay period [TPoff_short vs.

Pon, effect magnitude = 0.32 ± 0.09, p = 0.01] but reduced again dur-

ng the longer delay period [TPoff_long vs. TPoff_short, effect magni-

ude = 0.43 ± 0.09, p < 0.001]. Again, activity in deep layers during
Fig. 4. Layer-specific VASO and BOLD activ- 

ity profiles of the index finger region in con- 

tralateral area 3b. (A) Four tasks differentially 

modulated even both VASO and BOLD activity 

profiles, the distinction between layers of BOLD 

activity was less clear. (B) The VASO activity 

profiles show that for all three TP tasks com- 

pared to the RS task, the activation increased 

to the same level in superficial layers (left) 

but differentially in the deep layers (right). 

The TPoff_short task (green line) induced the 

strongest activation in the deep layers than the 

other two TP tasks. Here, n = 12 represents the 

number of individually conducted experimen- 

tal session (eleven participants with one retest). 

Error bars indicate the standard error of the 

mean across sessions. 
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f  
he TPon and TPoff_long tasks did not differ significantly [effect mag-

itude = 0.11 ± 0.09, p = 0.792]. Thus, activity in the deep layers was

nhanced by temporal prediction errors in the TPoff_short task, but these

aminar effects were inhibited when the stimulation was delayed for a

onger time (i.e., TPoff_long task). In contrast, there were no differences

n superficial layers activity among these three TP tasks (all p values >

.365). 

. Discussion 

Prediction error processing is a crucial part of adapting to changing

onditions. However, it remains unclear how prediction error process-

ng is implemented in sensory cortical layers. In the present study, we

esigned one TPon task with rhythmic poking from left pinky to index

nger and two TPoff tasks that are expected to engage the prediction

rror processing by manipulating the poking interval between the left

iddle and index finger (TPoff_short – delayed by a one beat interval,

Poff_long – delayed by a two beats interval). We showed distinct layer-

pecific activity in human area 3b ( Fig. 4 AB ) during three prediction

asks by using high-resolution fMRI at 7T. By comparing layer-specific

ctivity in area 3b during the three TP tasks, we showed that activity

n deep layers (L5/6) is selectively modulated by the error processing

hich occurred during the delayed period of the TPoff_short task, while

uperficial layers (L2/3) showed comparable activity during all TP tasks

 Fig. 5 A ). Our findings of the distinct layer profiles are roughly consis-

ent with our hypothesis that both superficial and deep layers of human

rea 3b will be involved in the prediction error processing while each

ayer contribute to distinct parts of this processing. 

The distinct activity profiles across cortical layers in Fig. 4 B showed

hat prediction and prediction error processing produce specific lami-

ar patterns of neural activity in the sensory cortex. We included the

S task as a control to characterize the layer-specific activity of sensory

nput without prediction and prediction error. We identified one peak

f activity in the middle layers (L4) of area 3b for the RS task (VASO

ignals, dashed black line, Fig. 4 A ), which is supported by the under-

tanding that the middle layer of the primary sensory cortex receives

halamic sensory inputs ( Douglas and Martin, 2004 ). Nevertheless, one

ould expect to observe more robust activity than we found in both

uperficial and deep layers during the RS task, which might be caused

y the basic sensory processing. That is, even though participants were

sked not to predict any pattern in the RS task, it is likely that this ac-

ivity cannot be consciously suppressed: the predictive coding principle

 Bastos et al., 2012 ; de Lange et al., 2018 ) suggests that this instinct is

eeply ingrained. These predictive signals are thought to increase the

ctivity in both superficial and deep layers. One possible explanation of

he decreased activity in the superficial and deep layers in the present

tudy is that cross-finger suppression in area 3b occurred as all partici-

ants’ four fingers were poked during the RS task. This cross-finger sup-

ression effect in area 3b has been confirmed in non-human primates

 Reed et al., 2011 , 2010 ) by stimulating two hand locations simultane-

usly or asynchronously. They found that the response suppression on

he adjacent fingers in area 3b neurons occurred for asynchrony adja-

ent fingers stimulation, but the maximum suppression effect occurred

t the stimulus interval of 30 ms and almost equally for all other longer

ntervals (up to 500 ms). In the present study, given all the intervals

etween the D3 and D2 stimulation are greater than 375 ms, we believe

hat this cross-finger suppression plays a negligible contribution to our

emporal prediction findings. 

The direct comparison of the TPon and TPoff_short tasks to the RS

ask provided the evidence to support our hypothesis that both super-

cial and deep layers of human area 3b are involved in prediction er-

or processing. Specifically, while both TPon and TPoff_short tasks in-

reased activity in superficial and deep layers compared to the RS task,

ctivity in deep layers was further strengthened by prediction errors

n the TPoff_short task. This enhanced activity within the deep layers

ay reflect the occurrence of predictive feedback and prediction error
6 
 Fig. 5 A ). These results are consistent with our previous layer-specific

MRI findings of top-down feedback input to the superficial and deep

ayers of area 3b ( Yu et al., 2019 ) and of layer-specific findings from the

isual modality ( Lawrence et al., 2018 ). Beyond these previous stud-

es, the present study showed that deep layers’ activation during the

Poff_short task could represent a distinct function in prediction error

rocessing. Assuming that the amplitude of prediction error is encoded

n deep layers ( Kanai et al., 2015a ), the prediction error signals could

e integrated with predictive feedback from high-level areas to inform

osterior expectations about tactile perception. 

Intriguingly, we found that the increased deep layers activity ob-

erved in the TPoff_short task was reduced by extending the off-beat

nterval in the TPoff_long task ( Fig. 5 A ). This reduced fMRI signal

n deep layers was thought to reflect the inhibitory neural activity

 Fracasso et al., 2018 ; Huber et al., 2014 ) during the TPoff_long task.

his phenomenon seems inconsistent with the previous findings that

he off-beat event during rhythm-based prediction results in larger be-

avioral costs and increased brain activity for violation of prediction

 Kanai et al., 2015b ; Lee and Mumford, 2003 ; Rao and Ballard, 1999 ).

ne possible interpretation is that inhibitory processing may dominate

uring the longer delay period (TPoff_long task) when presenting targets

utside the expected temporal window, thereby mitigating enhanced

eep layers activity from the prediction error. In this context, in the

resent study, such inverted V-shaped activity characteristics ( Fig. 5 A )

ight reflect the recruitment of deep layers’ excitatory neurons by pre-

iction error encoding depending on the temporal window during this

ynamic process. This “temporal tuning ” of deep layers activity may en-

ance the fidelity of sensory prediction, allowing flexible regulation of

ensory expectations at different temporal scales. 

The most straightforward functional interpretation of this inhibition

f deep layers’ activity is preparation for a stimulus that then fails to ar-

ive within the expected temporal window ( Adesnik, 2018 ; Pluta et al.,

015 , 2019 ; Slater et al., 2019 ). Given the nature of the TPoff_long

ask, feedforward connections rather than feedback connections may

redominate. In other words, there are no top-down predictions to ex-

lain responses in lower sensory areas, but there are inhibitory mecha-

isms to prepare for new bottom-up inputs. These shifts lead to disinhi-

ition of superficial layers and inhibition of deep layers. Previous non-

uman animal studies have suggested that excitatory and inhibitory in-

erplay in deep layers contribute to flexible communication between cor-

ical layers or between cortical areas ( Adesnik, 2018 ; Harris and Mrsic-

logel, 2013 ). Consistent with these studies, our findings suggest dom-

nating inhibitory activity in deep layers of the human sensory cortex

uring longer prediction periods. Further, these findings demonstrate a

imple and general mechanism in which prediction interacts with tem-

oral preparative processing (at least within a certain temporal range)

o influence perception. We speculate that time-dependent excitatory

nd inhibitory modulations in deep layers are critical for temporal pre-

iction. 

Our findings also provide insight into the temporal dynamics of in-

ibitory connectivity across areas and/or layers. Deep cortical layers

ommunicate widely with target areas via both thalamocortical and in-

racortical connections ( Slater et al., 2019 ). The canonical laminar or-

anization includes excitatory feedforward inputs from the thalamus

hat project dominantly into L4 but also into L5 and L2/3 ( Fig. 5 B )

 Constantinople and Bruno, 2013 ). Further, L2/3 provides feedforward

nput to both high-level areas and to L5/6, which in turn provides feed-

ack to the thalamus and projects to L2/3, forming a complete loop

 Adesnik and Naka, 2018 ). In contrast, other distinct inhibitory circuits

ay suppress activation in deep layers for processes such as adaptation

 Mease et al., 2014 ). One potential neural mechanism for suppression

f deep layers’ activity in area 3b is through thalamocortical connec-

ions ( Slater et al., 2019 ) during preparation for a predicted stimulus.

riefly, thalamocortical projections can carry excitatory signals to feed-

orward input layers when actual sensory stimulation occurs, whereas

eedback inhibitory connections may progressively dominate when ac-
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ual sensory input is delayed. Such reciprocal inhibitory connectivity

ay differentially modulate up- and downstream communication in re-

ponse to temporal input patterns. 

In summary, we used a well-established prediction task to investi-

ate how a mismatch between expected and actual temporal sensory

nput (an error signal) modulates layer-specific activity in the primary

omatosensory cortex. By manipulating the interval before an expected

hythmic stimulus to produce a time-dependent prediction error, we re-

ealed distinct laminar activation patterns in the human cortical area

b for prediction and prediction error tasks. These observations suggest

ayer-specific contributions to sensory prediction and prediction error

rocesses as well as provide new insights into how the brain generates

ensory-guided predictions. Moreover, we should point out that we took

dvantage of the high layer specificity of VASO to measure layer-specific

ctivity in area 3b; however, the sensitivity of VASO is still low. This

echnical limitation resulted in the on-off block design, which may in-

rease the block-wise bias and weaken the task effect. The current layer

MRI technique is becoming easier to use ( Bandettini et al., 2021 ); fu-

ure studies will focus on variation of temporal prediction processing

cross areas and layers with an event-related design. 
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