1. Principal Researcher
 Name: Tomomi Shimogori
 Title: Team Leader
 Affiliation: Brain Science Institute RIKEN

2. Project Title:
 Genomic analysis of mouse hypothalamus and nuclei specific gene expression.

3. Japanese Group
 Tomomi Shimogori
 Team Leader
 Brain Science Institute RIKEN
 Asuka Matsui
 Collaborating Research Members
 Brain Science Institute RIKEN
 Miyako Hirabayashi
 Collaborating Research Members
 Brain Science Institute RIKEN
 Aya Yoshida
 Collaborating Research Members
 Brain Science Institute RIKEN

4. U.S. Group
 Seth Blackshaw
 Associate Professor
 Johns Hopkins University School of Medicine

5. Research Period, from/to (mm/dd/yyyy) and total number of years.
 Apr. 1. 2010 To Mar. 31. 2013 (3 Years)

6. Abstract, Results, and Research Significance (300 words):
 The mammalian hypothalamus controls a large range of physiological processes, but the
 mechanism by which it is patterned during development is poorly understood. We have used
 microarray-based expression profiling and large-scale two-color in situ hybridization to
 conduct a detailed characterization of gene expression during mouse hypothalamic neurogenesis. We have determined that a combination of transcription factors define unique
domains along the anterior-posterior axis of the developing prethalamus and hypothalamus, implying that these diencephalic regions form a single developmental compartment patterned by common differentiation factors. Furthermore, we have determined that
developing hypothalamic nuclei selectively express different Lhx family transcription factors, which are known to direct cell fate specification. Using both targeting in utero electroporation and knockout mice, together with the large collection of nuclear and cell subtype-specific molecular markers identified in our screen, we will investigate
whether candidate morphogens such as Shh and Wnt3a control anterior-posterior patterning of
the prethalamus and hypothalamus, and investigate whether the transcription factors also
directly regulate this process. We will likewise use similar techniques to determine whether
more transcription factors direct development of the dorsomedial and posterior hypothalamic nuclei.

7. Other (Research-related concerns, particular points of note):
*Please attach any reference materials as necessary.