自然科学研究所年報

第39巻

2018
（2017年度業務報告書）
はじめに

生理学研究所年報第39巻をここに刊行し、2017（平成29）年度における大学共同利用機関としての生理学研究所の事業活動、研究成果を報告させていただきます。

生理学研究所は、1977年5月に開設され、2004年4月の法人化により大学共同利用機関法人自然科学研究機構を構成する研究機関となり現在に至っています。その間、生理学研究所は、「人体基礎生理学の研究と研究者育成のための大学共同利用機関」としての役割を果してきた。2017年度におきましても、コミュニティ研究者の皆様のご協力と、所員一同の努力によって、多数（163件；法人化以前の約2倍）の共同研究・共同利用実験を行い、成果をあげたと思います。今後とも研究レベルの向上と大学共同利用機関としての更なる機能強化に努力していく所存であり、関係者各位の評価を仰ぐ次第です。今後とも皆様方のご支援・ご鞭撻を心よりお願い申しあげます。

2018年10月

生理学研究所 所長 井 本 敬 二
生理学研究所年報

目次

<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>職員（2017年度）</td>
<td>i</td>
</tr>
<tr>
<td>研究活動報告</td>
<td></td>
</tr>
<tr>
<td>分子細胞生理研究領域</td>
<td>10</td>
</tr>
<tr>
<td>生体機能調節研究領域</td>
<td>19</td>
</tr>
<tr>
<td>基盤神経科学研究領域</td>
<td>27</td>
</tr>
<tr>
<td>システム脳科学研究領域</td>
<td>35</td>
</tr>
<tr>
<td>個別研究</td>
<td>53</td>
</tr>
<tr>
<td>研究連携センター</td>
<td>56</td>
</tr>
<tr>
<td>脳機能計測・支援センター</td>
<td>59</td>
</tr>
<tr>
<td>行動・代謝分子解析センター</td>
<td>64</td>
</tr>
<tr>
<td>岡崎統合バイオサイエンスセンター</td>
<td>68</td>
</tr>
<tr>
<td>動物実験センター</td>
<td>70</td>
</tr>
<tr>
<td>技術課</td>
<td>74</td>
</tr>
<tr>
<td>研究発表</td>
<td></td>
</tr>
<tr>
<td>a. 発表論文</td>
<td>91</td>
</tr>
<tr>
<td>b. 学会発表</td>
<td>111</td>
</tr>
<tr>
<td>一般共同研究報告</td>
<td></td>
</tr>
<tr>
<td>計画共同研究報告</td>
<td>143</td>
</tr>
<tr>
<td>超高圧電子顕微鏡共同利用実験報告</td>
<td>169</td>
</tr>
<tr>
<td>生体機能イメージング共同利用実験報告</td>
<td>215</td>
</tr>
<tr>
<td>研究会報告</td>
<td>227</td>
</tr>
<tr>
<td>各種シンポジウム</td>
<td></td>
</tr>
<tr>
<td>2017（平成29年度）生理研国際シンポジウム</td>
<td>251</td>
</tr>
<tr>
<td>トレーニングコース</td>
<td></td>
</tr>
<tr>
<td>第28回生理科学実験技術トレーニングコース</td>
<td>485</td>
</tr>
<tr>
<td>セミナー報告</td>
<td>491</td>
</tr>
<tr>
<td>大学院特別講義</td>
<td>525</td>
</tr>
</tbody>
</table>
職員（2017年度）

所長 井 本 敬 二

【分子細胞生理研究領域】

神経機能素子研究部門
教授 久 保 義 弘
准教授 立 研 博
助 教 下 村 拓 史
特任助教授 陳 以 珊

NIPSリサーチフェロー 条 健一郎（～2017.11.30）

大学院生 ANDRIANI, Rizki Tsari

特別共同利用研究員 平 澤 輝 一（2017.4.1～）

技術支援員 内 藤 知 津 江

分子神経生理研究部門
教授 池 中 一 裕

助教授 大 野 雅 彦（～2017.5.14）

助教授 清 水 慎 也（～2017.7.31）

NIPSリサーチフェロー 長 内 康 幸（～2017.5.8）

生体膜研究部門
教授 深 田 正 紀
準教授 深 田 優 子

助 教 横 井 紀 彦

特任助教授 平 田 哲 也（～2017.4.1～）

NIPSリサーチフェロー 京 順 志（～2017.4.1～2018.3.31）

大学院生 宮 崎 純 理

特別共同利用機関研究員 平 野 瑠 子（～2017.4.1～）

技術支援員 鈴 木 優 美

神経発達・再生機構研究部門
客員教授 澤 本 和 延

NIPSリサーチフェロー DEROUICHE, Sandra

研究員 宇治澤 知 代（～2017.10.1）

大学院生 山 野 井 遊

特別共同利用機関研究員 服 部 宣 子（2018.1～）

技術支援員 重 本 久 実

事務支援員 伊 藤 嘉 美

心循環シグナル研究部門
教授 西 田 基 宏

助 教 富 田 拓 郎

特任助教授 西 村 明 幸
職員

技術支援員 太田知宏（～2018.3.31）
技術支援員 庭木由紀（～2018.3.31）

認知行動発達機構研究部門
教授 磯田昌岐
特任准教授 東康広
助教 吉田正俊

NIPS サーチファロール 植松明子（2017.7.1～）
大学院生 鈴木迪諒（～2018.3.31）

生体システム研究部門
教授 南部篤
助教 片中伸彦

NIPS サーチファロール DWI WAHYU, Indrani（2017.6.1～）

心理生理学研究部門
教授 定藤規弘
客員教授 LE BIHAN, Denis（2017.6.16～）
准教授 福永雅喜
助教授 小池耕彦（2017.4.1～）

研究員 畠山峰道（～2017.9.30）

日本学術振興会特別研究員
間野（米田）陽子（～2018.3.31）

日本学術振興会外国人特別研究員
廣谷昌子（2017.4.2～2017.12.31）

【個別研究】
個別研究（大橋研究室）
助教 大橋正人

個別研究（毛利研究室）
助教 毛利達磨

【研究連携センター】
センター長（併任）久保義弘

共同利用研究推進室
助教（併任）久保義弘
助教（併任）坂本貴和子

学術研究支援室
客員教授 畠野方伸

特任准教授（併任）丸山めぐみ
生理学研究所年報 第 39 巻 (Dec,2018) 職員

特任専門員 林 愛
事務支援員 土井 優

NBR事業推進室
教 授（併任）南部 篤
特任助教 東濃 篤德
事務支援員 岡本 友紀

流動連携研究室

国際連携研究室

【脳機能計測・支援センター】
センター長（併任）藤原 規弘
形態情報解析室
准教授 村田 和義
研究員 水谷 幸則
事務支援部 齋藤 善平 (2017.4.1～)

多光子顕微鏡室
教授（併任）鍋倉 淳一
准教授 越秀 治
技術支援員 恩田 麻紀
事務支援員 河口 美江 (2018.3.31)

電子顕微鏡室
教授（併任）吉村 哲夫
准教授 村田 和義
技術支援員 佐藤 愛子

電気顕微鏡室
教授（併任）鍋倉 淳一
准教授 深田 正紀
技術支援員 佐藤 健成 (2018.3.31)

生体機能情報解析室
教授（併任）藤原 規弘
准教授 安 哲一
技術支援員 丹羽 開紀 (2017.6.1～)

【行動・代謝分子解析センター】
センター長（併任）池中 一 裕

ウイルスベクター開発室
教授（併任）南部 篤
准教授 小林 憲太
技術支援員 彦山 梨衣

遺伝子変換動物作製室
教授（併任）平林 真澄
助教 小林 俊寛 (2017.7.1～)
研究員 後藤 哲平
特任専門員 山下 真記 (2017.4.1～2017.7.31)

【情報処理発信センター】
センター長（併任）深田 正紀 (2017.4.1～)

アーカイブ室

医学生理学教育開発室
教授（併任）富永 真琴

【安全衛生管理室】
教 授（併任）柿木 隆介 (2017.4.1～)

【研究力強化戦略室】
教 授（併任）鍋倉 淳一
" (併任) 深田 正紀
" (併任) 吉 村 由美子
" (併任) 箕 越 靖 彦
" (併任) 久保 義弘
特任教授 浦野 徹
" (併任) 鹿川 幸史 (2017.10.31)
特任准教授 丸山 めぐみ
助 教 坂本 貴和子
特任専門員 内山 千保美
事務支援員 安井 亜紀 (2018.3.31)
岡崎共通研究施設（生理学研究所関連）
【岡崎統合バイオサイエンスセンター】
バイオセンシング研究領域
細胞生理研究部門（兼務）
（i 頁の細胞生理研究部門を参照）
生体制御シグナル研究部門
特任准教授 佐藤幸治
技術支援員 住田明日香
生命時空間設計研究領域
心循環シグナル研究部門（兼務）
（i 頁の心循環シグナル研究部門を参照）
生命動秩序形成研究領域
【動物実験センター】
センター長（併任）冀越靖彦
特任教授（併任）浦野徹
助教 王振吉
特任専門員 山中絵里
技術支援員 水野みどり
** 松永ゆう子
** 不退久恵
** 岩瀬悦子（2017.4.1～）
** 小林明子
** 倉岡一乃
** 浦川裕乃（2017.4.1～）
** 本多千佳
事務支援員 水谷絵里子（2017.11.1～）
【動物実験コーディネータ室】
研究員 山根到
事務支援員 鈴木邦子（2018.3.31）
** 内藤真琴（2018.2.1～）
【技術課】
課長 大河原浩
研究領域技術班
課長補佐（班長） 戸川森雄（2017.4.1～）
分子細胞生理研究系 技術係
係長 佐治俊幸
主任 山本友美
係員 稲橋宏樹
生体機能調節研究領域 技術係
係長 永田治
主任 福田直美
** 石原博美（2017.10.1～）
係員 石原博美（2017.9.30）
基盤神経科学研究領域 技術係
係長 山口登
主任 高木正浩
** 吉友美樹
システム脳科学研究領域 技術係
係長 竹島康行
主任 佐藤茂基
** 髙橋直樹（2017.10.1～）
係員 髙橋直樹（2017.9.30）
研究施設技術班
班長 吉村伸明（2017.4.1～）
研究連携 技術係
脳機能計測・支援 技術係
係長 伊藤喜邦
係員 山田元
情報処理・発信 技術係
係長 吉村伸明
主任 村田安永（2017.10.1～）
係員 村田安永（2017.9.30）
動物実験 技術係
係長 廣江猛
主任 田田美津子（2017.10.1～）
係員 田田美津子（2017.9.30）
** 神谷絵美
特任専門員 山中絵里（2018.3.31）
行動・代謝分子解析 技術係
係長 齊藤久美子
主任 三寛誠
研究基盤 技術係
係長 伊藤昭光（2018.3.31）
主任 森将浩
研究力強化戦略室
特任専門員 内山千保美
** 岡安友美
<table>
<thead>
<tr>
<th>技術支援員</th>
<th>福岡 慶子</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>藤森 美樹</td>
</tr>
<tr>
<td></td>
<td>不退 小恵</td>
</tr>
<tr>
<td></td>
<td>本多 千佳</td>
</tr>
<tr>
<td></td>
<td>松永 ゆう子</td>
</tr>
<tr>
<td></td>
<td>水野 みどり</td>
</tr>
<tr>
<td></td>
<td>山田 幸子</td>
</tr>
<tr>
<td></td>
<td>渡辺 美香</td>
</tr>
<tr>
<td>技術支援員</td>
<td>石村 香奈子</td>
</tr>
<tr>
<td></td>
<td>石神 久美子</td>
</tr>
<tr>
<td></td>
<td>磯谷 ひとみ</td>
</tr>
<tr>
<td></td>
<td>三村 修</td>
</tr>
<tr>
<td></td>
<td>小坂 小百合</td>
</tr>
<tr>
<td></td>
<td>岩瀬 悦子（2017.4.1〜）</td>
</tr>
<tr>
<td></td>
<td>岩瀬 恵</td>
</tr>
<tr>
<td></td>
<td>太田 知宏</td>
</tr>
<tr>
<td></td>
<td>（2017.4.1〜2017.11.30）</td>
</tr>
<tr>
<td></td>
<td>大西 皆子（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>大場 多津子</td>
</tr>
<tr>
<td></td>
<td>小原 正裕（2017.4.1〜）</td>
</tr>
<tr>
<td></td>
<td>加藤 三津子</td>
</tr>
<tr>
<td></td>
<td>亀岡 一乃</td>
</tr>
<tr>
<td></td>
<td>小林 明子</td>
</tr>
<tr>
<td></td>
<td>斎藤 善平（2017.4.1〜）</td>
</tr>
<tr>
<td></td>
<td>澤栄 恵（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>鈴木 あき子（2017.6.16〜）</td>
</tr>
<tr>
<td></td>
<td>鈴木 規子（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>鈴木 則子（2018.3.16〜）</td>
</tr>
<tr>
<td></td>
<td>鈴木 由美</td>
</tr>
<tr>
<td></td>
<td>田口 拓恵（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>田中 美穂（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>内藤 千津江</td>
</tr>
<tr>
<td></td>
<td>新聞 奈央子</td>
</tr>
<tr>
<td></td>
<td>林 めぐみ</td>
</tr>
<tr>
<td></td>
<td>廣岡 裕子（〜2017.6.30）</td>
</tr>
<tr>
<td></td>
<td>技術支援員</td>
</tr>
<tr>
<td></td>
<td>福岡 慶子</td>
</tr>
<tr>
<td></td>
<td>藤森 美樹</td>
</tr>
<tr>
<td></td>
<td>不退 小恵</td>
</tr>
<tr>
<td></td>
<td>本多 千佳</td>
</tr>
<tr>
<td></td>
<td>松永 ゆう子</td>
</tr>
<tr>
<td></td>
<td>水野 みどり</td>
</tr>
<tr>
<td></td>
<td>山田 幸子</td>
</tr>
<tr>
<td></td>
<td>渡辺 美香</td>
</tr>
<tr>
<td></td>
<td>事務支援員</td>
</tr>
<tr>
<td></td>
<td>岩瀬 千春（2017.5.1〜）</td>
</tr>
<tr>
<td></td>
<td>浦川 裕乃</td>
</tr>
<tr>
<td></td>
<td>小澤 祐子（〜2018.2.28）</td>
</tr>
<tr>
<td></td>
<td>小林 文絵</td>
</tr>
<tr>
<td></td>
<td>（〜2017.4.30，2017.11.1〜）</td>
</tr>
<tr>
<td></td>
<td>坂本 愛</td>
</tr>
<tr>
<td></td>
<td>佐藤 明子（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>柴田 利江（〜2017.12.31）</td>
</tr>
<tr>
<td></td>
<td>芝村 賞子</td>
</tr>
<tr>
<td></td>
<td>（〜2017.5.31，2017.12.1〜）</td>
</tr>
<tr>
<td></td>
<td>杉山 朋美</td>
</tr>
<tr>
<td></td>
<td>（〜2017.6.30，2018.2.1〜）</td>
</tr>
<tr>
<td></td>
<td>高松 香（〜2018.3.31）</td>
</tr>
<tr>
<td></td>
<td>長尾 法子（2017.10.1〜）</td>
</tr>
<tr>
<td></td>
<td>永田 みづほ</td>
</tr>
<tr>
<td></td>
<td>（2017.4.16〜2017.11.15）</td>
</tr>
<tr>
<td></td>
<td>水谷 絵里子（2017.11.1〜）</td>
</tr>
<tr>
<td></td>
<td>安井 亜紀（〜2018.3.31）</td>
</tr>
</tbody>
</table>
【研究活動報告】
研究活動報告

【 目 次 】

分子細胞生理研究領域

神経機能素子研究部門 ... 10

概 要

Ptn3 の機能解明に向けた、floxB マウスからの遺伝子破壊ホモマウスの作成
（本山英之，陳 以珊，周 麗，久保義弘，崎村健司）

抗ヒスタミン薬 Terfenadine による GIRK チャネルの活性阻害機構の解明
（陳 以珊，久保義弘，上杉志成）

代謝型グルタミン受容体 2 型と Gq 共役型受容体の相互作用に関する研究
（立山善博，久保義弘）

Two-pore Na+ channel 3（TPC3）のホスホイノシチド感受性についての解析
（下村拓史，久保義弘）

Voltage Clamp Fluorometry 法を用いた Two-pore Na+ channel 3（TPC3）の膜電位依存性制御機構の解析
（平澤輝一，下村拓史，久保義弘）

FRET 解析を用いた hERG チャネルの細胞内ドメイン間相互作用の研究
（条 慎一郎，久保義弘）

ATP 受容体チャネル P2X2 の膜電位と ATP に依存する構造変化の光学的手法による検出
（Rizki Tsari Andriani，久保義弘）

線虫の温度記憶と温度走行に関与する Ca2+ 依存性電位依存性 K+ チャネル（Slo-2）の機能解析
（青木一郎，森 郁恵，立山善博，下村拓史，久保義弘）

分子神経生理研究部門 ... 14

概 要

オリゴデンドロサイトおよびミクログリアの機能と病態
（李 佳益，大野伸彦，清水健史，池中一裕）

生体膜研究部門 ... 15

概 要

LGI1–ADAM22 複合体の分子構造基盤の解明
（宮崎裕理，横井紀彦，深田優子，深田正紀，山形敬史，深井伸也，後藤哲平，三寶 誠，平林真澄）

LGI1–ADAM22 の分子病態機構の解明
（横井紀彦，宮崎裕理，深田優子，深田正紀，後藤哲平，三寶 誠，平林真澄）

ADAM22 の分子病態機構の解明
（平野和也，稲橋宏樹，深田正紀，深田優子，後藤哲平，三寶 誠，平林真澄）

PSD–95 の脱パルミトイル化酵素 ABHD17 の性状解析
（平野和也，稲橋宏樹，横井紀彦，深田優子，深田正紀，後藤哲平，三寶 誠，平林真澄）

パルミトイル化反応の光操作プローブの開発
（京 卓志，深田優子，深田正紀）

神経発達・再生機構研究部門 ... 17

概 要

成体脳内における新生ニューロンの高速移動を制御する超微細構造の解析
（松本真実，澤田雅人，金子奈穂子，澤本和延）

多光子顕微鏡を用いた嗅球ニューロンのターンオーバーを制御する微小環境の可視化解析
（住野 崇，澤田雅人，澤本和延）
生体機能調節研究領域

細胞構造研究部門

概要
上皮極性形成におけるタイトジャンクションの役割の解析
(大谷哲久, 古瀬幹夫)
上皮バリアのホメオスタシスにおける細胞競合の役割の解析
(大谷哲久, 古瀬幹夫)
トリセルラータイトジャンクション形成における膜タンパク質アンギュリンの機能の解析
(菅原太一, 古瀬幹夫)
タイトジャンクション欠損培養上皮細胞の樹立
(古瀬幹夫, 大谷哲久, 菅原太一)
ショウジョウバエ腸管の恒常性における上皮バリア機能の役割
(泉裕士, 古瀬幹夫)

細胞生理研究部門

概要
カルシウム活性化クロライドチャネル阻害剤の発見
(高山靖規, 富永真琴)
グリーンアノールトカゲ TRPA1 の熱による活性化への細胞外カルシウムの必要性
(Erkin Kurganov, 齋藤 茂, 富永真琴)
リソフォスファチジン酸による痒み発生の分子メカニズム
(橘髙裕貴, 富永真琴)
鎮痒薬クロタミトンの作用メカニズムの解明
(山野井 遊, 高橋英貴, 富永真琴)

心循環シグナル研究部門

概要
高血糖時における心筋 TRPC6 タンパク発現増加の生理的意義の解明
(小田紗矢香, 富田拓郎, 北島直幸, 外山聡, 西田基宏)
ドキソルビシン心筋症における TRPC3-Nox2 複合体の役割
(島内 司, 富田拓郎, 伊藤智哉, 松金良佑, 西田基宏)
シルニジピンによるミトコンドリア分裂制御と難治性疾患への適応拡大
(西村明幸, 島内 司, 田中智弘, 下田 翔, 西田基宏)
活性イオウによるミトコンドリア品質管理の分子制御機構
(西村明幸, 田中智弘, 西田基宏)

生殖・内分泌系発達機構研究部門

概要
DREADD 法を用いた視床下部腹内側核 SF1/Add4BP ニューロンによる摂食, 代謝調節機構の解析
(Eulalia A. Coutinho, 岡本士毅, 畑越靖彦, 石川理子, 吉村由美子, 小林憲太, 坂田泰, 小川佳宏)
レプチン-交感神経系による骨格筋での糖取込促進作用
(岡本士毅, 戸田知得, Eulalia A. Coutinho, 畑越靖彦, 志内哲也, 三浦進司, 江崎 治)
新規神経ペプチド Neurosecretory protein GL による摂食・代謝調節作用
(岩越栄子, 鹿野健史朗, 内藤邦裕, 古満芽久美, 梶越祐太, 水戸和義, George E. Bentley, Lance J. Kriegsfeld, 佐々木 努, 岡本士毅, 畑越靖彦)

基盤神経科学研究領域

神経シグナル研究部門

概要
エタノールのグルタミン酸輸送体機能亢進作用: メカニズムの検討
(佐竹伸一郎, 井本敬二)
海馬依存性記憶とカルシウム・カルモジュリンキナーゼ II 活性の関係
(山脇葉子, 柳川右千夫, 井本敬二)
痛みの情動における前帯状回－青斑核連関機構の解明
（古江秀昌, 山田彬博, 中川達貴, 井本敬二）

大脳神経回路論研究部門

概 要
視床－皮質神経線維の大脳皮質でのシナプス結合特性の解析
（篠田芳之, 畑田小百合, 江川尚美, 北啓子, 木村, 井口泰雄, 倉本恵恵子）
前頭皮質網状細胞と GABA 作動性細胞のサブタイプ依存的相互結合様式
（森岡美緒子, 井川泰雄）
皮質－線条体のシナプス投射様式
（大塚岳, 川口泰雄）
学習に伴う大脳皮質運動野神経回路再編の描写
（木村, 窪田芳之, 井川泰雄）

生体恒常性発達研究部門

概 要
In Vivo 多光子顕微鏡を用いグリアによる大脳皮質神経回路再編機構の解析
（堀内浩, 春田航一, 江藤圭, 楊妻正和, 塩倉淳一）
慢性疼痛の脳内機序の解明
（竹田育子, 江藤圭, 金善光, 塩倉淳一）
細胞内 Cl- 制御分子 KCC2 の発現制御と生体機能
（戸田拓弥, 中村佳代, Dennis Cheung, Andrew Moorhouse, 塩倉淳一）

感覚情報処理研究部門

概 要
サル下側頭皮質細胞の不活性化による光沢識別行動への影響
（馬場美香, 西尾亜希子, 小松英彦）
実物素材の視触覚経験がサルの行動反応に与える影響
（横井功, 郷田直一, 小松英彦）

認知行動発達機構研究部門

概 要
ヒト精神疾患・高次認知機能解明のための霊長類モデル動物の開発
（郭康広）
マカクザルを用いた半側空間無視動物モデルの確立
（吉田正俊, 辻本憲吾, 福永雅喜）
統合失調症患者の静止画自発時の視線計測データのサリエンシーカーナ分けモデルによる解析
（吉田正俊, 三浦健一郎, 橋本亮太）
マーモセットの静止時自由視時の視線データの計測
（吉田正俊，デニス・マトロフ，伊佐 正，三浦健一郎，南本敬史，須原哲也）

社会的コンテキストにおける報酬情報処理の神経機構
（則武 厚，二宮太平，磯田昌岐）

社会的コンテキストにおける動作情報処理の神経機構
（二宮太平，則武 厚，磯田昌岐）

自発的行動による学習促進の神経基盤
（植松明子，磯田昌岐）

生体システム研究部門

概 要
パーキンソン病モデルマーモセットにおける視床の神経活動
（畑中伸彦，若林正浩，南部 篤）

大脳基底核における上肢運動ストップ課題遂行中の活動調節
（畑中伸彦，Zlata Polyakova，南部 篤）

小脳による視床－大脳皮質投射の活動制御機構
（知見聡美，佐野裕美，小林憲太，南部 篤）

パーキンソン病モデルシルバーバーの逆相関
（Woranan Wongmassang，長谷川 拓，知見聡美，南部 篤）

大脳皮質－線条体路が制御する神経生理機能の解明
（佐野裕美，小林憲太，加藤成樹，小林和人，南部 篤）

線条体投射ニューロンが制御する運動機能と大脳基底核の神経活動の解明
（佐野裕美，田中謙二，南部 篤）

ジストニア様症状を示す変異マウスの病態生理学的解析
（佐野裕美，堀江正男，吉岡 望，知見聡美，竹林浩秀，南部 篤）

ソニサミドがL-DOPA誘発性ジスキネジアに与える影響の解析
（佐野裕美，南部 篤）

マーモセット前頭皮質の神経生理学的マッピング
（纈纈大輔，南部 篤）

マカクザル視床下核の化学遺伝学的抑制による不随意運動の誘発
（長谷川 拓，知見聡美，小林憲太，南部 篤）

統合生理研究部門

概 要
触覚性注意効果の空間的勾配
（木田哲夫，田中絵実，柿木隆介）

手指の巧緻的な運動時における一次体性感覚野の働きの解明
（和柄俊昭，木田哲夫，柿木隆介）

自然シーンにおける人物認知の初期発達と神経基盤の検討
（小林 恵，Alice J. O'Toole，山口真美，柿木隆介）

体性感覚系と運動系の干渉作用における選択性
（木田哲夫，田中絵実，柿木隆介）

心理生理学研究部門

概 要
7テスラ MR による高度脳計測基盤技術の開発
（福永雅喜，菅原 翔，山本晉也，Denis Le Bihan，定藤規弘，梅田稔宏，栗林浩秀）

統合失調症の多施設横断的脳MRI研究
（福永雅喜，橋本直樹，岡田直大，越山太輔，河本亮太）

Does joint attention help adults learn new words?
（Masako Hirotani，Koji Shimada，Shuntaro Okazaki，Hiroki C. Tanabe，Nonhiro Sadato）

リアルタイムでのアイコンタクトの神経基盤：Dual fMRIおよびDual脳波-fMRIを用いた研究
（小池耕彦，中川恵理，角谷基文，定藤規弘）

共同注意から共感へ：Dual MRIを用いた研究
（小池耕彦，田邊宏樹，中川恵理，角谷基文，定藤規弘）

運動記憶痕跡と関連する安静時ネットワーク変化
（菅原 翔，福永雅喜，賀野友希，吉本隆明，定藤規弘）
身体感覚野における手指表象とミエリン密度分布の関係
（菅原 翔, 福永雅喜, Matthew F. Glasser, 山本哲也, 濱野友希, 定藤規弘）

第二言語学習時の意味的および文法的符号化の神経基盤 統語的プライミングを用いた fMRI 実験による検討
（中川恵理, 小池耕彦, 菅原 翔, 濱野友希, 定藤規弘）

身の行動に随伴した社会的な承認反応の神経基盤
（中川恵理, 菅原 翔, 濱野友希, 定藤規弘）

7T 機能的絶縁磁気共鳴撮影を用いた脊髄損傷後の回復過程における大脳機能連関の解析
（高橋晴香, 福永雅喜, 山本哲也, 伊佐 正, 山口玲於奈, 中川 澄）

7テスラ高分解能 MRI における空間的歪みの定量評価とその対策
（山本哲也, 福永雅喜, 菅原 翔, 濱野友希, 定藤規弘）

表情の被模倣に関する神経基盤の解明
（宮田紘平, 小池耕彦, 中川恵理, 原田宗子, 定藤規弘）

自閉スペクトラム症における視床―皮質間および皮質―皮質間における脳機能結合: 安静状態における fMRI 研究
（中川 澄, 高橋晴香, 宮田紘平, 定藤規弘）

Decoding of Global Activation Patterns from Local Activation Patterns
（Balbir Singh, Tetsuya Yamamoto, Koji Jimura, Junichi Chikazoe, Norihiro Sadato）

自己の幸せ感情を表象する神経基盤の解明
（宮田紘平, 大星有美, 小池耕彦, 定藤規弘）

手指系列運動の初期学習による記憶痕跡の神経基盤
（菅原 翔, 山本哲也, 定藤規弘）

多波動パッケージ解析で明らかになった前頭眼窩皮質(OFC)における対象の同一性の表象
（古田隆明, 近藤淳一, 岡崎俊太郎, 菅原 翔, 濱野友希, 定藤規弘）

個別研究

個別研究（大橋研究室） ... 53

細胞内膜系の選別輸送のメカニズムと発生シグナル関得
大橋正人, 槇下真行

個別研究（毛利研究室） ... 53

精子付着点近傍のカルシウムと電位依存性精子侵入阻止機構の研究
（毛利達磨, Ivonnet, PI, McCulloh DH）

ウニ卵受精時のカルシウム遊離機構と電気的変化の研究
（毛利達磨）

イトマキヒトデ卵母細胞の成熟過程におけるカルシウム遊離機構と膜電流変化の研究
（毛利達磨, 経塚敬一郎）

研究連携センター ... 56

共同利用研究推進室 ... 56

学術研究支援室 ... 57

NBR事業推進室 ... 57
脳機能計測・支援センター

形態情報解析室

概 要
世界最大のウイルス「ピソウイルス」の詳細な構造を低温電子顕微鏡で解明
（宋 致宖, 村田和義, 岡本健太）
統合失調症および知的障害のモデル「Schnurri-2 ノックアウトマウス」が示す脳の海馬歯状回における
未成熟な形態学的特徴の解析
（宮崎直幸, 山田幸子, 村田和義, 中尾章人, 大平耕司, 宮川 剛）
凝聚したタンパク質を再生するタンパク質 ClpB の動的な構造変化の可視化
（宋 致宖, 村田和義, 飯野亮太, 内橋貴之, 渡辺大輝, 渡辺洋平, 中崎洋介, 山崎 孝, 内山 進, 丸野孝浩, 石井健太郎, 安藤敏夫）

多光子顕微鏡室

概 要
光応答性 CaMKII 分子の開発とシナプス可塑性研究への応用
（柴田明裕, 村越秀治）
分子間相互作用検出のための色素蛍光タンパク質の開発
（村越秀治, 堀内 浩, 鍋倉淳一）
分子間相互作用検出のための“無蛍光”黄色蛍光タンパク質の開発
（村越秀治, 柴田明裕）

生体機能情報解析室

概 要
人工知能と神経基盤の相互参照アプローチによる視覚-価値変換機構の解明
（吉本隆明, 丹羽開紀, 高橋陽香, 内山隆太郎, 定藤規弘, 近添淳一）
局所脳活動からの全脳活動の解読
（Balbir Singh, 平山淳一郎, 山本哲也, 定藤規弘, 近添淳一）
味覚の神経基盤
（近添淳一, Daniel Lee, Nikolaus Kriegeskorte, Adam K. Anderson）

行動・代謝分子解析センター

ウイルスベクター開発室

概 要
脳機能解析に有用なウイルスベクターの開発・提供と共同研究の推進
（小林憲太）
線条体-黒質投射ニューロンによって制御される運動機能のメカニズム解析
（小林憲太, 佐野裕美, 黒田啓介, 貝淵弘三, 南部 篤）
遺伝子変換動物作製室

概 要
雄性発生胚ならびに雌性発生胚からの半数体ラット ES 細胞株の樹立
（平林真澄）

代謝生理解析室

概 要
表皮ケラチノサイトにおける温度感受性 TRP チャネルの役割
（松井 毅, 鈴木喜郎, 富永真琴）
脳損傷時の冷却における TRP チャネル
（藤山雄一, 鈴木論保, 富永真琴）
活性イオウによる心循環機能制御
（赤池孝章, 熊谷健人, 西村明幸, 田中智弘, 西田基宏）
心筋細胞の NO 生成における TRPC5 チャネルの役割解析
（Caroline Sunggip, Supachoke Mangmool, 下田 翔, 小田穂矢香, 西田基宏）
ラット輪回し行動に及ぼすグレリンの効果
（宮武有子, 志内哲也, 田中 浩, 北村忠弘, 後藤礼郎, 笠越靖彦）
岡崎統合バイオサイエンスセンター

オリオンプロジェクト 生体制御シグナル研究部門 68
概 要
匂い認識における嗅粘液の役割の解明
(佐藤幸治)
幹細胞から誘導される腸管オルガノイドのイメージング法の確立
(佐藤幸治)

動物実験センター .. 70
概 要
管理運営
研 究
教 育
社会貢献

技術課 ... 74
概 要
施設の運営状況
①システム脳科学研究領域
(1) 生体磁気計測装置 (統合生理研究部門)
(竹島康行)
(2) 磁気共鳴装置 (心理生理学研究部門)
(伊藤嘉邦)
②脳機能計測・支援センター
(1) 形態情報解析室
(山田元, 斎藤善平)
(2) 電子顕微鏡室 (生理研・基生研共通施設)
(山田元, 小原正裕)
(3) 機器研究試作室 (生理研・基生研共通施設)
(佐治俊幸)
③情報処理・発信センター
(1) ネットワーク管理室
(古村伸明, 村田安永)
④岡崎共通研究施設
(1) 動物実験センター
(伊藤昭光, 廣江猛, 窪田美津子, 神谷絵美)
【概要】
イオンチャネル、受容体、G タンパク質等の膜関連蛋白は、神経細胞の興奮性とその調節に重要な役割を果たし、脳機能を支えている。本研究部門では、これらの神経機能素子を対象として、生物物理学的興味から「その精妙な分子機能のメカニズムと動的構造機能連関についての研究」に取り組み、また、神経科学的興味から「各素子の持つ特性の神経系における機能的意義を知るための個体・スライスレベルでの研究」を進めている。

今年度、これまでに引き続き、神経機能素子の遺伝子の単離、変異体やキメラ分子の作成、タンデムリピートコンストラクトの高効率作成、tag の付加、非天然塩基型アミノ酸の導入等を進め、卵母細胞、HEK293 細胞等の遺伝子発現系における機能発現の再構成を行った。また、2 電極膜電位固定法、パッチクランプ等の電気生理学的手法、細胞内 Ca²⁺イメージング・全反射照明下での FRET 計測・一分子イメージング・蛍光非天然アミノ酸を用いた膜電位固定下蛍光変化測定等の光生理学的手法、細胞生物学的研究手法により、その分子機能調節と構造機能連関の解析を行った。また、生理研内外の研究室との共同研究により、遺伝子改変マウスの作成と行動解析、免疫組織化学的解析、赤外分光による膜タンパク質の構造変化の解析等も進めている。以下に、今年度実施した研究課題とその内容の要約を記す。

Prrt3 の機能解明に向けた、flox マウスからの遺伝子破壊ホモマウスの作成

山本友美、陳 以珊、久保義弘
周 麗、夏目里恵、崎村建司（新潟大学脳研究所細胞神経生物学分野）

我々は、代謝型グルタミン酸受容体や GABAA 受容体と同じく、大きな N 末端細胞外領域と 7 回横貫部位を持つ、Family C に属するオーファン代謝型受容体 (Prrt3) の機能の解析に取り組んでいる。機能に関する手がかりを得るために、過去に、KOMP Repository (UC Davis) 由来の Targeted ES 細胞を用いて Prrt3 遺伝子破壊 (KO) マウスを作成した。しかし、KO ホモマウスは 1 週間以内に高率に死亡し、生存した場合でも明らかに体が小さかった。やむを得ず KO ヘテロマウスを用いて綿密な行動解析を行い、空間記憶の長期保持および恐怖条件付け記憶の長期保持が低下していることを明らかにした。しかし、その後の Microarray 解析により近傍遺伝子の発現レベルの大きな変化が認められたため、KO ホモの高率な致死性および KO ヘテロの行動異常が、真に Prrt3 遺伝子の KO によるものか確定できなかった。そこで、改めて、Prrt3 遺伝子の flox マウスを作成し、Actβ-Cre マウスとの交配により、新たに KO ホモマウスを得ることを試みた。Flox マウス由来の KO ホモマウスは、高い致死性を示さず、体が小さくても、また近傍遺伝子の発現レベルの大きな変化も認められなかった。KO ホモマウスの Prrt3 タンパク質の完全欠如は、Western blot 法及び免疫組織化学的解析により確認された。この KO ホモマウスを用いて再度の行動解析を行うための十分な個体を確保することを目指して交配を続けている。
抗ヒスタミン薬 Terfenadine による GIRQ チャネルの活性阻害機構の解明

陈 以珊, 久保義弘
上杉志成（京都大学化学研究所ケミカルバイオロジー・京都大学 iCeMS）

オーファン代謝型受容体 Prt3 のリガンドの同定を目的として、ツメガエル卵母細胞に Prt3 と GIRK チャネルを共発現させ、GIRQ チャネル電流を指標とした小分子ライブラリーのスクリーニングを行った。その過程で、抗ヒスタミン薬に属する Terfenadine の投与が GIRK 電流を減少させることを見出したが、その効果は Prt3 の共発現無しでも見られた。よって、Terfenadine が Prt3 のリガンドとして機能しているわけではなく、GIRQ チャネルの活性を直接阻害することが明らかとなった。その活性阻害機構の解明に向けた実験を行い、Terfenadine による GIRQ チャネル電流減少作用は GIRK1 subunit 選択性があることが明らかとなった。GIRK1 の変異体の機能解析による Terfenadine 作用部位の同定を行い、その結果、GIRK1 の第 1 膜貫通領域と第 2 膜貫通領域をつなぐ pore region 上に位置する Phe137 が Terfenadine による電流阻害に重要であることがわかった。さらに、GIRQ2 の該当部位の変異体 Ser148Phe の機能解析を行い、この pore helix に位置するアミノ酸残基は、Terfenadine による GIRQ チャネル活性阻害とイオン選択性を制御していることが明らかとなった。

代謝型グルタミン受容体 2 型と Gq 共役型受容体の相互作用に関する研究

立山充博, 久保義弘

G タンパク質共役型受容体は単体としてシグナル伝達を担うが、一部あるいはヘテロ受容体同士の相互作用によりシグナル伝達路線や効率が変化することが報告されている。近年、Gq 共役型セロトニン受容体 2A (5-HT2AR) と Gq 共役型代謝型グルタミン酸受容体 2 型 (mGlu2) の相互作用と精神疾患マウスモデルとの関連を示唆するという興味深い報告がなされ、5-HT2AR と mGlu2 の相互作用について、議論が分かれている現状である。そこで、我々は、5-HT2AR と mGlu2 の相互作用について、HEK293T 細胞発現系を用いて検討した。まず、Gq シグナル経路活性化は PIP2 結合ドメインを付加した蛻光タンパク質の細胞膜から細胞質への移動を可視化することにより調べた。その結果、mGlu2 単独発現では、mGlu2 刺激により Gq 経路は活性化されないが、mGlu2 と 5-HT2AR を共発現させた場合には、mGlu2 刺激により Gq 経路が活性化されることが明らかとなった。一方、Gi/o 経路活性化は G タンパク質依存性カリウム (GIRK) チャネルの活性化を指標に解析したところ、mGlu2 の GIRK チャネル活性化作用が 5-HT2AR の共発現により抑制を受けることが明らかとなった。以上の結果、5-HT2AR との相互作用により mGlu2 により活性化されるシグナル伝達経路が変化することを示唆している。現在、mGlu2 と他の Gq 共役型受容体との相互作用についても検討を進めている。

Two-pore Na+ channel 3（TPC3）のホスホイノシチド感受性についての解析

下村拓史, 久保義弘

Two-pore Na+ channel (TPC) は、膜電位依存性カチオンチャネルファミリーに共通する基本単位を同一分子中に 2 つ有するという、特徴的な分子構造を持っている。TPC には 3 つのサブタイプが存在し、TPC1 および TPC2 はホスホイノシチド (PI) 感受性を持つことが知られている。一方、TPC3 にはそのような感受性はないとされ
TPC3 は、ツメガエル卵母細胞を用いた測定系において、長時間の脱分極刺激に依存して電流量が緩慢に増大する induction という特性を持つ。我々は、この特性が TPC3 の電位依存性の変化に起因することを明らかにした。さらに、この induction の動態が、膜電位依存性ホスファターゼを共発現させた場合に大きく変化することを見出した。膜電位依存性ホスファターゼは、細胞膜上の PI 構成を変化させることから、TPC3 が PI 感受性を持ち、PI 結合により電位依存性が変化することが強く示唆された。この結果は、ツメガエル卵母細胞が内在的に持つ、長期脱分極刺激によって PI 構成を変化させる特性と合致する。さらに、変異体実験により PI 結合サイトの同定を試みた。その結果、2 つのドメインのうち、1 番目の S4 および S5 ヘリックスを連結する S4-S5 リンカー上に複数存在する正の荷電残基が、induction に必須であることを明らかにした。この正電荷クラスターは、TPC3 の活性化、PI 構成を変化させる。この結果は、ツメガエル卵母細胞の電流変化、PI 結合による PI 感受性の変化に大きな影響を及ぼすことが示された。さらに、変異体実験により、TPC3 の PI 結合サイトの同定を試みた。その結果、S4 の S4-S5 リンカーの一部に存在する PI の結合領域が、TPC3 の活性化に重要な役割を果たすことが示された。この結果、TPC3 の電位依存性が変化するメカニズムとして PI 構成の変化が考えられる。
境界面に位置するため、脱活性化を加速させる変異は、この相互作用に影響している可能性がある。さらに、この相互作用に対する Phc860 変異の影響について、FRET 解析を用いた測定を行い、脱活性化を顕著に加速させる変異では EAGD と CNBH の間の FRET 効率が有意に減少することを見出した。

これらの結果から、Phe860 の位置には疎水性側鎖を持つアミノ酸の存在が重要であり、Phe860 の変異による脱活性化の加速は、EAGD-CNBH 間相互作用の崩壊が原因であることが示唆される。

ATP 受容体チャネル P2X2 の膜電位と ATP に依存する構造変化の光学的手法による検出

Rizki Tsari Andriani, 久保義弘

ATP 受容体チャネル P2X2 は、膜電位依存性チャネルにみられるような典型的な膜電位センサードメインが存在しないにも関わらず、膜電位依存的ゲーティングを示すことをこれまでに観察した。次のステップとして、膜電位と ATP に依存する動的構造変化を蛻光強度の変化として捉えることを目指した。蛻光非天然蛻光アミノ酸（Anap）を P2X2 中に取り込ませる手法を用いることにより、特異的に、高効率に、かつ膜貫通部位や細胞内領域を含め P2X2 中の様々な部域に蛻光ラベルを導入した。

網羅的解析の結果、イオンチャネルポアに位置する Ala337 に Anap を導入することにより、明確な膜電位依存性の蛻光強度の変化が観察された。

今年度、蛻光強度変化を増強する試みを行った。まず、Ala337Anap の近傍に、クエンチャーとして作用する Trp 残基を Leu334Trp 等の変異により導入することにより蛻光変化の増強に成功した。次に、メラニン色素合成遺伝子の転写抑制に関わる small molecule kinase の inhibitor である、HG-9-91-01 の事前投与によりメラニン色素を増加させ、卵母細胞の背景蛻光の減弱させることを試みた。その結果、Anap の蛻光強度変化の増強に成功した。

細胞外領域に Arg313Trp 変異を導入すると膜電位依存性的活性化、すなわち電流の増加が観察される。この変異体にさらに Ala337Anap 変異を導入し Anap の蛻光強度を記録した。その結果、電流変化でなく、ほぼ膜電位変化そのものに従って蛻光強度変化を観察した。このことは、まず蛻光強度変化がイオンの流れに依存するものではないことを示唆する。また、P2X2 の活性化に伴う構造変化をレポートしているわけでは無いことを意味する。おそらく、Ala337 近傍に細胞内外から水層が入り込み、強い電場が局所に集中することにより、Ala337 の位置で、膜電位そのものに従う蛻光強度変化が観察されたものと推察された。

線虫の温度記憶と温度走性に関わる Ca²⁺ 依存性電位依存性 K⁺ チャネル（Slo-2）の機能解析

青木一郎、森 郁恵（名古屋大学大学院理学研究科生命理学専攻 分子神経生物学グループ）

立山充博、下村拓史、久保義弘

線虫は、餌を与えられていた飼育環境温度を記憶することができる。これは、餌を与えられていた飼育環境から温度変化のある環境へ移動させた場合、飼育環境と同じ温度へ移動するという温度走性として現れる。我々は、温度走性に異常を示す線虫のゲノム解析から、Ca²⁺ 依存性電位依存性 K⁺ チャネル（Slo-2）のコード領域にミスセンス変異を認めた。そこで、野生型および変異体 Slo-2 チャネルをそれぞれ HEK293T 細胞に発現させ、whole cell patch clamp 法により膜電流を記録し、機能解析を行った。野生型および変異体スローチャネルは、細胞内液カルシウム濃度 ([Ca²⁺]) が 0 μM の条件下では脱分極刺激を与えても外向きカリウム電流は増加せず、[Ca²⁺] が高濃度 (> 20 μM) の条件下では脱分極刺激により電流が増加するという [Ca²⁺] 依存性を示した。一方、同一
条件下では、変異体チャネルの方がより浅い脱分化刺激によりチャネルが活性化することが明らかとなった。これらの結果は、Slo-2チャネル変異体が細胞内のカルシウム濃度への感受性とチャネル機能を亢進させることにより、線虫の温度走性に異常をもたらすことを示唆するものである。

分子神経生理研究部門

【概要】
分子神経生理部門では以下に示す3つのテーマに関する研究を行ってきた。

1）グリア細胞の機能とその病態解明。
2）哺乳類框神経系の発生・分化。
3）神経機能発現における糖鎖の役割。

1）グリア細胞は神経回路同様にネットワークを作っているが、その情報伝達様式は神経伝達と全く異なっており、しかも神経回路とは独立している。このネットワークがどのように脳機能を制御しているのか、またその異常がどのように疾患の病態生理に関わるのか、明らかにするため、研究を進めている。

2）神経幹細胞からどのようにして全く機能の異なる細胞種（神経細胞、アストロサイト、オリゴデンドロサイトなど）が分化するのか、について研究を進めている。特に、プロテオグリカンがモルフォゲンの分布を制御することにより神経発生を調節している可能性について検討している。

3）糖蛋白質糖鎖解析法を開発し、極めて微量な試料からの糖鎖構造の解析が可能となった。脳神経系において、新しい糖鎖構造の発見、その生理学的意義について検討している。

本年度は特に1）において大きな進展が得られた。

オリゴデンドロサイトおよびミクログリアの機能と病態

オリゴデンドロサイト（以下OL）は、ミエリン形成後もニューロンの活動電位の伝導速度を調節していることが明らかとなり、また一つのOLは複数の軸索に対してミエリンを形成することから、OLがニューロン間の情報伝達を仲介し、ひいては脳高次機能の発現に寄与している可能性が考えられる。今年度は脱髓性疾患の病態解明のため、ババイン様リソソームシステムプロテイナーゼおよびミエリンのdebrisが、シスタチンFを過剰発現するPLP4e/マウス（CysF-STOP-tetO::Iba-tTA::PLP4e/-）では増加した。また、シスタチンFを過剰発現、PLP4e/マウス（CysF-STOP-tetO::Iba-tTA::PLP4e/-）では増加した。また、シスタチンFを過剰発現によって、ミクログリア内のリソゾームの体積が増加した。今後、培養したミクログリアの研究から、ミクログリアのdebrisはミクログリアによって貪食された。これらの結果は、ミクログリアが食作用におけるシスタチンFの重要な役割を示唆している。

さらに、Proteolipid protein過剰発現による慢性脱髓モデルを用いて、軸索の慢性脱髓に伴う軸索内のミトコンドリアとミクログリアが発生するミトコンドリアとミクログリアの接着部（Mitochondria associated membrane, MAM）について解析を進めた。その結果、慢性脱髓にともなって軸索内のミトコンドリアの体積が増加するが、それと伴って、接着部面積が大幅に増加することがわかった。また増加した接着部は軸索の変性に伴って、よく保存されることが明らかになった。

さらにこの慢性脱髓モデルを用いて、慢性脱髓に伴う軸索端末の変化を解析した。その結果、慢性脱髓状態では、小脳皮質の登録線維数が急激に増加するが、その増加は、軸索端末部のVaricosity（小脳皮質の登録線維数）が増加した。一方で免疫染色などによる検討から、ミトコンドリアの機能障害を伴う
可能性は低いと考えられ、脱髄に伴うシナプス終末のミトコンドリア機能の増強が示唆された。こうしたことから、脱髄に伴って、脱髄軸索のオルガネラ相互作用の変化に加え、シナプス終末においても明らかならモーデリンが起こることが明らかになった。

生体膜研究部門

【概要】
本研究部門では、脳高次機能の基本機能単位であるシナプス伝達を制御する分子機構、さらには脳病態におけるその破綻機構について研究を行っている。具体的には、脳の速い興奮性シナプス伝達の大部分を司る AMPA 型グルタミン酸受容体（AMPA 受容体）の制御機構に着目している。我々はこれまでに、特異性と定量性を重視した生化学的手法に基づいて、2 種類の AMPA 受容体制御分子（てんかん関連リガンド・受容体である LGI1・ADAM22 とパルミトイル化脂質修飾酵素 ZDHHC 蛋白質）を独自に見出してきた。さらに最近、脱パルミトイル化修飾酵素として ABHD17 を同定した。そして、パルミトイル化修飾ラブライリースクリーニング法やパルミトイル化修飾の定量的解析法などの新しい実験手法を開発し、超解像イメージング、マウス遺伝学、電気生理学などを組み合わせて、これら AMPA 受容体制御分子の生理機能と病態機構を先導的に明らかにしてきた。現在、これら AMPA 受容体制御分子がどのようにしてシナプス形成、成熟、可塑性を制御しているのか、さらにはマウス・ヒトの記憶、学習、認知機能を制御するのかを明らかにすることを目指し、研究を展開している。

LGI1–ADAM22 複合体の分子構造基盤の解明

宮崎裕理, 横井紀彦, 深田優子, 深田正紀
山形敦史, 深井周也（東京大学定量生命科学研究科）
後藤哲平, 三寶誠, 平林真澄（遺伝子改変動物作製室）

我々はこれまでに神経分泌蛋白質 LGI1 が膜蛋白質 ADAM22 を介して PSD-95 と結合し、AMPA 受容体機能を制御することを見出した。また、LGI1 変異による分泌不全や ADAM22 との結合不全が、てんかん発症の分子病態機構であることを報告してきた。しかし、LGI1–ADAM22 蛋白質複合体の構造基盤は明らかではなかった。2017 年度は、東京大学定量生命科学研究科の深井周也博士らのグループとの共同研究により、LGI1–ADAM22 複合体の立体構造を X 線結晶構造解析、低温電子顕微鏡、X 線小角散乱や多角度光散乱を組み合わせて明らかにした。その結果、LGI1–ADAM22 が LGII–LGI1 間の相互作用を介して、ヘテロ 4 量体として存在することを見出した。さらに、LGI1 と ADAM22 の相互作用部位を生化学的手法で解析し、複合体形成を担う LGI1 と ADAM22 の凝集性アミノ酸残基を同定した。今回三造等の研究から LGI1 がホモ 2 量体を形成することで、シナプス前部・後部にそれぞれ存在する ADAM22 ファミリー蛋白質を橋渡しする可能性が強く示唆された。さらに、後述する新規てんかんマウスモデルにおいて、LGI1–LGI1 間の結合が破綻すると、てんかんが発症することを明らかにした。（Yamagata A*, Miyazaki Y*, Yokoi N, et al, Nat. Commun. 2018）
LGI1-ADAM22 の分子病態機構の解明

横井紀彦, 宮崎裕理, 深田優子, 深田正紀
後藤哲平, 三寶 誠, 平林真澄（遺伝子改変動物作製室）

これまでに我々はLGI1を欠損させたノックアウトマウスが、生後2-3週間で致死性てんかんを必発することを見出してきた。また、家族性てんかん患者で見られるLGI1変異の網羅的解析により、LGI1の変異による分泌不全や、ADAM22との結合不全がてんかん発症の分子病態であることを報告した。一方、我々は新たにLGI1変異のうち、in vitroでADAM22と結合能を有する変異（LGI1 R474Q）が存在することを見出した。2017年度は、このLGI1変異マウスを作製し、解析を行った。まず、このLGI1変異マウスはLGI1ノックアウトマウスと同様にてんかん症状を示した。次に、このマウス脳でのLGI1結合蛋白質を調べた結果、LGI1とADAM22の結合に大きな差は認められなかった。興味深いことに、この変異はLGI1-ADAM22の立体構造において、LGI1-LGI1間の相互作用を担っているアミノ酸残基と一致していた。我々は、上述のように、このてんかんモデルマウスにおいて、LGI1-ADAM22間の結合が破綻し、ADAM23-LGI1-LGI1-ADAM22の4量体形成が損なわれていることを見出した。（Yamagata A*, Miyazaki Y*, Yokoi N, et al, Nat. Commun. 2018）

ADAM22の分子病態機構の解明

平野瑶子, 稲橋宏樹, 深田正紀, 深田優子
後藤哲平, 三寶 誠, 平林真澄（遺伝子改変動物作製室）

最近、我々は、ヘルシンキ大学のLehesjoki博士との共同研究により、けいれんと知的障害を呈する患者において、最初のADAM22変異を見出した。そして、このADAM22変異体はLGI1との結合能が欠損していることを報告した（Muona M, Fukata Y et al, Neurol Genet 2016）。また、カリフォルニア大学サンフランシスコ校のNicoll博士との共同研究にて、ADAM22ノックアウトマウスを用いた分子置換解析により、ADAM22と足場蛋白質PSD-95の結合がAMPA受容体の機能発現に必須であることを、電気生理学的手法により明らかにした（Lovero K, Fukata Y et al, PNAS 2015）。2017年度は、ADAM22とPSD-95の結合がマウスの脳機能の発現において、必須であることかどうかを検討した。現在、ADAM22とPSD-95の結合が阻害されるようなADAM22変異マウスを作製し、その表現型を生化学的手法や組織化学的手法を駆使して検討している。

PSD-95の脱パルミトイル化酵素ABHD17の性状解析

平田哲也, 稲橋宏樹, 横井紀彦, 深田優子, 深田正紀
後藤哲平, 三寶 誠, 平林真澄（遺伝子改変動物作製室）

足場蛋白質PSD-95は、興奮性シナプスのシナプス後肥厚部（post synaptic density, PSD）に濃縮し、AMPA受容体やNMDA受容体、Neuroliginなど、様々なシナプス膜タンパク質を裏打ちすることにより、シナプス伝達やシナプス形成の中核的な役割を果たす。PSD-95がPSDに局在、濃縮するためには、パルミトイル化脂質修飾が必要不可欠である。パルミトイル化修飾はリノ酸化修飾と同様に、可逆反応であり外界刺激に依存して制御される。これまでに我々はPSD-95パルミトイル化酵素としてZDHHC2を同定していたが、2016年度（昨年度）に我々はPSD-95脱パルミトイル化酵素としてABHD17を同定した。

パルミトイル化反応の光操作プローブの開発

本研究では, PSD-95 のパルミトイル化酵素や脱パルミトイル化酵素の活性を光遺伝学的に人工操作する手法を開発し, シナプス後肥厚部 (PSD) を時空間的に改変することを目指した。2017年度は, PSD-95 の脱パルミトイル化酵素 ABHD17 とパルミトイル化酵素 ZDHHC2 に対して光操作性分子プローブの作成を試みた。具体的には Light-Oxygen-Voltage sensing (LOV2) ドメインを融合させたコンストラクトや CRY2 と CIB1 コンストラクトを複数作成し, 光照射依存的に特定の細胞内領域に ABHD17 をリクルートすることに成功した。しかし, 効率良く酵素活性を再構築するには至らなかった。そこで, 新たに LOVTRAP システムや Zdk1-iLID システムを導入し, 各種コンストラクトを作成し, 其の状態解析を進め, ABHD17 の酵素活性を光操作するための手がかりを得た。

神経発達・再生機構研究部門

【概要】
近年の研究で, 生後の脳においても神経幹細胞が存在し, 恒常的に新生ニューロンやグリア細胞が産生されていていることが明らかになった。この神経新生機構は, 生理的条件下では, 脳の発達や恒常性の維持に関与する。一方, 脳外傷や脳梗塞などにより脳が損傷を受けると, このメカニズムが活性化し, 傷害で失われたニューロンの一部を再生させる。本研究部門では, 生後脳における新生ニューロンやグリア細胞の産生・移動・成熟メカニズムについて研究を進めている 1,2。また, 得られた知見を応用することで, 傷害後のニューロン・グリア細胞の再生および賦活化の再現技術の開発 3,4 は進んでいる。これらの研究において, 生理学研究所の他の研究部門の協力を得て, 生後脳の新生ニューロンの微細形態解析 (鍋倉教授) および新生ニューロンの電気生理学的特性の解析 (川口教授) や新生ニューロンの活発化 (坂倉教授) を実施している。さらに, ゼブラフィッシュやナマズなどのモデル動物におけるニューロン新生を比較し, その制御機序の共通性, 多様性を解析している。本研究部門では, 上記の研究を通じて, 生後脳におけるニューロンやグリア細胞の新生メカニズムとその意義を解明し, 個々の中枢神経疾患に対する新たな治療法の開発に貢献することを目指している。

2. Sawada et al., EMBO J (2018) 37: e97404
成体脳内における新生ニューロンの高速移動を制御する超微細構造の解析

松本真実, 澤田雅人, 金子奈穂子, 澤本和延

成体脳の脳室下帯で産生された新生ニューロンは, お互いに接着して鎖状の細胞塊を形成し, 目的地に向かって高速で移動する。この移動形態は, 傷害脳における新生ニューロンの傷害部位への移動過程でも観察されることから, 新生ニューロンの鎖状移動は, 成体脳内を移動するための重要な移動様式であると考えられる。さらに, 新生ニューロンは目的地に到着すると適切な場所で移動を停止して分化を開始する。しかし, 新生ニューロンの接着様式や移動停止を制御するメカニズムは不明である。

本研究では, 細胞構造研究部門との計画共同研究により, 連続ブロック表面走査型電子顕微鏡を用いて, 新生ニューロンの接着および移動停止過程で形成される突起構造を3次元的に解析した。また, 高圧凍結装置および凍結置換固定装置を用いて, 新生ニューロン間の接着構造の特性を解析した。得られた結果から, 新生ニューロンの接着や移動の制御が, 成体脳における効率の良いニューロン移動において重要であることが示唆された。

多光子顕微鏡を用いた嗅球ニューロンのターンオーバーを制御する微小環境の可視化解析

荻野 崇, 澤田雅人, 澤本和延

成体嗅球では, 脳室下帯で産生された新生ニューロンが付加される一方, 古い嗅球ニューロンは細胞死により除去されており, ニューロンがターンオーバーによって常に入れ替わることで神経回路を維持している。我々はこれまでに, 生体恒常性発達研究部門との計画共同研究により, 多光子顕微鏡を用いた嗅球ニューロンの長期生体イメージング法を確立し, 嗅覚入力によるニューロン再生の時空間的制御機構の存在を見出した。しかし, その詳細な制御メカニズムは不明である。本研究では血管に着目し, 多光子顕微鏡を用いて, 血流, ニューロンのターンオーバー, 及び嗅覚入力の関係を解析した。さらに, 生体で血流を調節する実験系の構築にも取り組んでいる。得られた知見は, 嗅球ニューロンのターンオーバーが血流によって調節される可能性を示唆している。
生体機能調節研究領域

細胞構造研究部門

【概要】
上皮を横切る物質輸送は、細胞膜上の輸送タンパク質および細胞質を介する経細胞輸送と、細胞間隙を介する受動輸送である傍細胞輸送に分けられる。傍細胞輸送の特性は各器官の生理機能に応じて多様であり、経細胞輸送と共役して上皮輸送全体を構成することから、その調節機構を解明することは上皮輸送研究における重要な課題の一つである。当研究部門では、傍細胞輸送を規定する「閉塞結合」と総称される細胞間接着装置に着目し、その構成分子・制御分子の同定と機能解析を通じて、上皮のバリア機能および透過性を制御する分子メカニズムの解明を目指している。主な研究対象としている閉塞結合は、タイトジャンクションと、その特殊な形態として3つの上皮細胞の角が接する部分に形成されるトリセプトタイトジャンクションで、これらの構成分子の機能を培養上皮細胞、遺伝子変異マウスを用いて解析している。また、腸管バリア機能を担う細胞間接着装置のモデルとして、ショウジョウバエ腸管上皮のセプトタイトジャンクションの分子構築の解明と機能解析も進めていている。2017年は前年からの課題を継続してそれぞれに研究が進展しており、閉塞結合の役割が傍細胞輸送の制御にとどまらず、細胞極性形成、組織構築の恒常性にも関与するという新しい知見が得られつつある。

上皮極性形成におけるタイトジャンクションの役割の解析

大谷哲久、古瀬幹夫

タイトジャンクション（TJ）は上皮細胞のバリア機能と極性の形成に重要だと考えられてきた。TJの主要な膜タンパク質としてClaudinファミリー分子群が知られているが、ClaudinがTJの構造と機能においてどこまで重要なのかは十分に理解されていない。我々は、培養上皮細胞として広く用いられているMDCK細胞においてTJのない打ち替え用のTJ欠損MDCK細胞においてClaudinの特異的な機能を欠損した細胞株を樹立し、その解析を行った。その結果、ZO-1/ZO-2欠損細胞とClaudinファミリー分子群欠損細胞では共にTJのストランド構造が破壊し、電解質に対するバリア機能が破綻することが確認された。また、ZO-1/ZO-2欠損細胞では上皮極性の異常が観察されたが、Claudinファミリー分子群欠損細胞では上皮極性異常は認められなかった。これらの結果から、ZO-1/ZO-2はClaudin依存的なTJのストランド構造の形成と独立に上皮極性を制御することが明らかとなった。

上皮バリアのホメオスタシスにおける細胞競合の役割の解析

大谷哲久、古瀬幹夫

上皮組織は体表に存在し、様々な化学ストレスや物理ストレスに常に晒される。これらのストレスはしばしば上皮バリアの破綻をもたらすことが知られているが、上皮バリアのホメオスタシスを保証する仕組みはほとんど明らかとされていない。我々は、モデル上皮細胞であるMDCK細胞において、上皮バリアが破綻した細胞株を樹立した。局所的な上皮バリアの破壊に対する上皮組織の応答を検討するために、この細胞と正常細胞を共培養
したところ、バリア破綻細胞に選択的に細胞死が誘導されることによって上皮バリアが修復された。このことは、細胞競合によって上皮バリアの恒常性が保たれていることを示している。さらに、上皮バリアが破綻した細胞の除去過程をライブ・イメージングで観察した結果、異常細胞の認識あるいは排除にアドヘレンスジャンクションを介した張力伝達が重要な役割を果たすことが示唆され、その分子メカニズムの解明を進めた。

トリセルラータイトジャンクション形成における膜タンパク質アンギュリンの機能の解析
菅原太一, 古瀬幹夫

トリセルラータイトジャンクション（tTJ）は3つの上皮細胞が接着する領域に形成される細胞間結合で、上皮の十分なバリア機能に必要であると考えられている。tTJの形成は、これまで凍結断層レプリカ電子顕微鏡法によってのみ可視化されてきたが、観察される頻度がきわめて低いため、その形成機構に関する研究はほとんど進んでいなかった。前年度、我々はTJマーカーの免疫染色により、tTJの発達速度を光学顕微鏡レベルで識別する系を確立し、tTJに局在する膜タンパク質アンギュリン-1をゲノム編集技術でノックアウトした培養上皮細胞においてtTJの発達が異常であることを示した。2017年は、この細胞で実際にtTJ形成が不完全であることを凍結断層レプリカ法により確認した。さらに、この細胞を用いてアンギュリン-1のドメイン解析を行い、アンギュリン-1細胞質領域末端のPDZドメイン結合モチーフがtTJの発達に必要であることを先述の光学顕微鏡観察により明らかにした。

タイトジャンクション欠損培養上皮細胞の樹立
古瀬幹夫, 大谷哲久, 菅原太一

タイトジャンクション（TJ）の構造形成と傍細胞輸送特性を規定する膜タンパク質クローディンファミリーの各サブタイプの詳細な機能を調べるためには、クローディンを発現させた上皮細胞にその遺伝子を導入し、そのサブタイプだけでなるTJを形成させ解析することができれば理想的である。しかし、上皮細胞は通常多くのクローディンサブタイプを共発現している。そこで、TJを欠失した上皮細胞を作成するためには、典型的な培養上皮細胞株であるMDCK細胞からゲノム編集技術を用いて内在性クローディン5つの遺伝子を欠失させた。2017年の解析により、この細胞が電子顕微鏡レベルで実際にTJを失っていることが明らかになった。さらに、この細胞に特定のクローディンのサブタイプを導入したところ、TJが再形成され、上皮バリア機能が回復することを確認した。本細胞株は今後のTJ研究にきわめて有用なツールとなることが期待される。

ショウジョウバエ腸管の恒常性における上皮バリア機能の役割
泉 裕士, 古瀬幹夫

腸管上皮のバリア機能が個体の生存に必須であることに疑いはないが、その機能の低下が腸管の恒常性にどのような影響を及ぼすかの詳細については依然として不明な点が多い。我々はこれまでに、ショウジョウバエ腸管上皮の細胞間隙における漏れを制限する細胞間結合スムースセプテートジャンクション（sSJ）の構成分子
群を同定し、これらの欠損が幼虫において腸管バリア機能の破綻と致死を引き起こすことを明らかにしてきた。2017年は、成虫において腸管上皮特異的にsSJ構成分子の欠損を誘導してその表現型を解析した。興味深いことに、腸管上皮でsSJ構成分子を欠く成虫個体では、著しい寿命の低下と腸管バリア機能の破綻に加え、腸管上皮細胞の異常な重層化と蓄積による管腔の閉塞が観察された。この結果は、ショウジョウバエ成虫の腸管において、上皮バリア機能が上皮細胞自身の挙動を制御し、腸管の構築と機能の恒常性に重要であることを示唆する。

細胞生理研究部門

【概要】

細胞は、それを取り巻く環境の大きな変化の中で、その環境情報を他のシグナルに変換し、細胞質・核や周囲の細胞に伝えることによって環境変化にダイナミクスに対応しながら生存応答を行っている。細胞が存在する臓器・組織によって細胞が受け取る環境情報は異なり、従って細胞が受け取っている環境情報は受信する機能も異なる。それらセンサー蛋白質は環境の変化に対応してダイナミクスに感受性や発現等を変化させてセンシング機構の変化からよりよい生存応答を導く機能を有している。これらのセンサー蛋白質は環境の変化に応じてダイナミクスに感受性や発現等を変化させてセンスシング機構の変化からよりよい生存応答を導く機能を有している。これらのセンサー蛋白質は種々の化学的・物理的情報を受容し、センサー間の相互作用を行い、多くは最終的に核への情報統合を行う。そして、それらは細胞の、組織の、さらには個体の環境適応をもたらす。したがって、これらの細胞環境情報センサーの分子システム連関を解明していくことは、個体適応の理解のための基本単位である「細胞の生存応答」を解明するうえで極めて重要である。この細胞外環境情報を感知するイオンチャネル型のセンサー蛋白質の構造機能解析、活性化制御機構の解析を通じて細胞感覚の分子メカニズムの解明を目指している。特に、侵害刺激、温度刺激、機械刺激の受容機構についてTRPチャネルに焦点をあてて解析を進めている。また、センサーは進化の過程で環境変化に応じてその機能や発現を変化させて適応してきたと考えられ、センサー蛋白質の進化解析によっていかに生物が環境変化に適応してきたかを解析している。個体レベルでの研究対象として、主にマウス・ラット・カエル・ショウジョウバエを用いている。

カルシウム活性化クロライドチャネル阻害剤の発見

高山靖規, 富永真琴

カルシウム透過性の高いTRPチャネルとカルシウム活性化クロライドチャネルの機能連関を報告してきた。ANO1の阻害剤をスクリーニングする過程で、TRPM8活性化薬用メントールがANO1活性を強く抑制することを見出した。メントールに構造が類似した化合物をスクリーニングし、4-isopropylcyclohexanol (4-iPr-CyH-OH)が強くANO1活性を阻害することが分かった。4-iPr-CyH-OHは、ANO1に加えて、カプサイシン受容体TRPV1、ワサビ受容体TRPA1、メントール受容体TRPM8、TRPV4の活性も阻害した。4-iPr-CyH-OHは、マウス後根神経節細胞におけるカプサイシンによる活動電位発生を完全に阻害した。また、マウス後肢足底にカプサイシンと同時投与することによってカプサイシンによる痛み関連運動を有意には抑制した。4-iPr-CyH-OHは、鎮痛薬開発のシーズ化合物になるものと考えられた。1)

1) Takayama Y, Furue H, Tominaga M. 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities. Sci. Rep. 7: 43132, 2017.
グリーンアノールトカゲ TRPA1 の熱による活性化への細胞外カルシウムの必要性

Erkin Kurganov, 斉藤 茂, 富永真琴

グリーンアノールトカゲ TRPA1 (gaTRPA1) は、細胞外カルシウムが存在しない時には熱によって活性化されないが、化学物質によっては活性化される。熱による活性温度閾値は細胞外カルシウム濃度の影響を受けない。ニワトリ TRPA1 (chTRPA1)、ヘビ TRPA1 (rsTRPA1) は、細胞外にカルシウムが存在しない時でも小さいながら熱活性化電流が観察された。gaTRPA1、chTRPA1、rsTRPA1 のアミノ酸比較によってイオンチャネルポア近傍の酸性アミノ酸が関与することが分かった。さらに、3つの種の TRPA1 のさらなるアミノ酸比較によってもう2つの細胞外ドメインの酸性アミノ酸が同定された。gaTRPA1 で3つのアミノ酸、chTRPA1 と rsTRPA1 の2つの酸性アミノ酸を中性化することによって、いずれも細胞外にカルシウムが存在しない時でも、細胞外カルシウムが存在する時に野生型 TRPA1 で観察されるのと同じ程度の熱活性化電流が観察された。

リソフォスファチジン酸による痒み発生の分子メカニズム

橘髙裕貴、富永真琴

ヒトでは胆汁鬱滞において痒みが起こることが多い。胆汁鬱滞時に血中で増加するリソフォスファチジン酸（lysophosphatidic acid, LPA）と痒み発生の関連が推測されている。マウスの頬に LPA を注射して行う行動解析によって、LPA が痛覚ではなく痒み関連行動を引き起こすことが分かった。マウス単離後根神経節細胞を用いた細胞内カルシウム濃度測定で、LPA による細胞内カルシウム濃度は細胞外カルシウム依存的であることが分かり、細胞外からの流入によって起こり、TRPA1、TRPV1 がある部分関わることが明らかとなった。また同時に、代謝型 LPA5 受容体も関与することが判明した。種々の薬理学的解析により、LPA5 受容体活性化の下流で LPA が再合成されて細胞内から TRPA1 を活性化するであろうことが分かった。それと合致して、全細胞記録法では LPA の細胞外からの投与で TRPA1 は活性化せず、inside/out 単一チャネル記録法で細胞内側からの LPA 投与で TRPA1 が活性化された。点変異体解析によって、LPA が作用する塩基性アミノ酸を同定した。細胞内での LPA 合成に関わる酵素 PLD の阻害剤によって LPA による痒み行動が有意に抑制された。PLD 阻害薬、LPA5 阻害薬、TRPA1 阻害薬は鎮痒薬として機能するものと考えられた。

鎮痒薬クロタミトンの作用メカニズムの解明

山野井 遊、橘髙裕貴、富永真琴

鎮痒剤に広く含まれるクロタミトンの鎮痒メカニズムを解明する目的で、種々の TRP チャネル活性に対する
効果を検討したところ、TRPV4 活性を強く抑制することが分かった。また、マウスに TRPV4 活性化薬 GSK1016790A を投与して惹起した引っ掻き行動がクロタミトンによって著しく減弱した。単一チャネルレベルでも TRPV4 電流のクロタミトンによる抑制が観察され、クロタミトンは TRPV4 に直接作用していると結論されたが、興味深いことに、クロタミトンの washout で TRPV4 電流は著しく増大した。詳細な電気生理学的解析によって、クロタミトンは TRPV4 チャネルポアの拡大を介してチャネル電流を増大させることが明らかになった。

イトマキヒトデ幼生 TRPA1 の温度感受性

齋藤 茂, 富永真琴

鳥類までの TRPA1 は、熟活性化チャネルとして機能する。イトマキヒトデ幼生は 20 度から 25 度の温度差の中で 25 度の温かい温度域へ集まった。イトマキヒトデ幼生の TRPA1 (PpTRPA1) を遺伝子クローニングして機能解析を行うと、PpTRPA1 は AITC, cinnamaldehyde と言った侵害性化学物質のみならず温かい温度でも活性化することが分かった。活性化温度閾値は約 34 度であった。PpTRPA1 をノックダウンすると、イトマキヒトデ幼生の温かい温度への嗜好性はなくなった。

PpTRPA1 は他種の TRPA1 と同じように化学物質および熱によって活性化することが明らかになった。しかし、他の動物種と異なり、侵害刺激感知にだけ関与しているのではないものと考えられた。

心循環シグナル研究部門

【概要】

全身の血液循環恒常性は、心筋・平滑筋・骨格筋などの筋肉細胞によって支えられている。当部門では、筋肉の柔軟性や老化を制御する分子機構を解明し、健康長寿につながる創薬戦略の構築を目指した研究を行っている。今年度は、薬物誘発性筋萎縮における TRPC3 チャネルタンパク質の新たな役割を見出した。また、心血管病リスクの規定因子となるミトコンドリアの品質管理に着目し、トコトリエン分裂を促進する Drp1 チャネルの活性化を活性化イオウが重要な役割を果たすことを見明らかにした。以下に各課題の概要を示す。

高血糖時における心筋 TRPC6 タンパク発現増加の生理的意義の解明

小田紗矢香, 富田拓郎, 北島直幸, 外山善士, 西田基宏

TRPC タンパク質は受容体作動性チャネルの分子実体であり、様々な疾患・病態において TRPC タンパク質の発現増加が報告されている。特に心血管系では、心肥大に相関して脂質活性化型の TRPC チャネルタンパク質 (TRPC3 と TRPC6) が発現増加する。我々は昨年、TRPC3 の発現増加がチャネル活性非依存的に NADPH oxidase 2 (Nox2) のプロテアソーム分解を抑制することで活性酸素生成を増強し、結果的に心臓の線維化（硬化）や心筋萎
ドキソルビシン（DOX）は様々な悪性腫瘍に有効な抗癌薬である一方で、重篤な心毒性（心筋萎縮）を誘発する。昨年、DOX誘発性の心不全がTRPC3-Nox2機能連関により仲介されることを報告した。今年はDOX心臓におけるTRPC3-Nox2タンパク複合体数増加が適度な運動によって抑制されることを見出した。自発運動させたマウスの心臓は非運動マウス心臓と比べて高い柔軟性を持ち、容量負荷に伴う血液駆出力の上昇も亢進していた。TRPC3欠損マウスの心臓は、自発運動マウスの心臓と同様に、高い柔軟性を持ち、伸展性を持つことを明らかにした。以上の結果は、TRPC3-Nox2の機能連関が、筋原性に心臓の柔軟性を負に制御することを強く示唆している。

シルニジピンによるミトコンドリア分裂制御と難治性疾患への適応拡大

西村明幸, 島内 司, 田中智弘, 下田 翔, 西田基宏

分裂と融合を繰り返すミトコンドリアの動的形態変化はその品質管理に重要である。既承認薬ライブラリーから低酸素依存性ミトコンドリア分裂を抑制する化合物を探索し、ジヒドロピリジン系Ca2+拮抗薬の一つであるシルニジピンを同定した。心筋梗塞処置マウスの梗塞周辺領域において、ミトコンドリアの過剰分裂が起こており、このミトコンドリア過剰分裂が心筋老化および心機能低下の引き金となること、シルニジピンはミトコンドリア分裂促進Gタンパク質Drp1とアクチン結合タンパク質filaminとの相互作用を抑制することで、この心臓リモデリングを顕著に抑制することを明らかにした。シルニジピンは、高血糖負荷によるミトコンドリア分裂抑制し、糖尿病モデルマウスの血糖値上昇を改善させることも見出した。

活性イオウによるミトコンドリア品質管理の分子制御機構

西村明幸, 田中智弘, 西田基宏

Drp1の活性はGTPとGDPの交換反応によって制御されている。ラットDrp1のC末端に存在するCys624のSH基がポリイオウ化されることで高い求核性を獲得すること、細胞内の親電子物質によりイオウが引き抜かれることにより、求核置換反応（求核置換反応）がGTP結合活性が增加することを初めて見出した。本研究成果は、これまでGEFとGAPでのみ制御されると信じられてきたGタンパク質サイクルが、タンパク質CysSH基のイオウ量で制御されるという全く新しい概念を提唱する知見である。
生殖・内分泌系発達機構研究部門

【概要】

本研究部門は、視床下部による摂食行動の調節と末梢組織における代謝調節機構の解明を目指して研究を行っている。視床下部は、摂食行動（エネルギー摂取）とエネルギー消費機構（栄養代謝）を巧みに調節することで生体エネルギーを一定に保つ重要な働きを担う。しかし、近年、この調節機構の異常が肥満、糖尿病、高血圧など、生活習慣病の発症と密接に関連することが明らかとなってきた。当部門では、視床下部における生体エネルギー代謝の調節機構を分子レベルで解明し、その分子機構を通して生活習慣病など様々な疾患の原因・治療法を明らかにしたいと考えている。本年度実施した主たる研究課題は次の通りである。

1）DREADD法を用いた視床下部腹内側核SF1/Ad4BPニューロンによる摂食、代謝調節機構の解析
2）レプチン-交感神経系による骨格筋での糖取込促進作用
3）新規神経ペプチドNeurosteretatory protein GLによる摂食・代謝調節作用
4）ラット輪転行動に及ぼすグレリンの効果

DREADD法を用いた視床下部腹内側核SF1/Ad4BPニューロンによる摂食、代謝調節機構の解析

Eulalia A. Coutinho, 岡本士毅, 筑越靖彦
石川理子, 吉村由美子（生理学研究所 視覚情報処理）
小林憲太（生理学研究所 ウイルスベクター開発室）
塩田清二（星薬科大学）
小川佳宏（九州大学大学院）

骨格筋など末梢組織での糖の利用は、脳から分泌されるホルモン・インスリンによって促進される。しかし、脳、特に視床下部が、単独あるいはインスリンと協同して、末梢組織の糖の利用を促進することが、近年の研究により明らかとなった。しかし、どの神経細胞が末梢組織の糖利用を促進するかは不明であった。

我々は、これまで、脂肪細胞産生ホルモンであるレプチンが視床下部腹内側核に作用を及ぼし、その結果、骨格筋、心臓、褐色脂肪組織において糖の利用を促進することを報告してきた。しかし、視床下部腹内側核のどのニューロンが糖利用を促進するかは明らかであった。本実験では、視床下部腹内側核ニューロンの中で、SF1/Ad4BPニューロン（以下、SF1ニューロン）に着目し研究を行った。

DREADD法（Designer Receptors Exclusively Activated by Designer Drug）によってマウスのSF1ニューロンを選択的に活性化すると、摂食量が低下して、熱産生が高まり、全身の糖利用が亢進した。そこで、どの組織において糖の取込が高まるか否かを調べたところ、レプチンの作用と同様に、骨格筋、心臓、褐色脂肪組織において選択的に糖の取込が高まることが分かった。白色脂肪組織では、糖の取込は全く変化しなかった。また、インスリンを投与すると、SF1ニューロンを活性化したマウスは、糖の取込が骨格筋、心臓、褐色脂肪組織においてより増加し、全身でみても糖利用が顕著に亢進した。さらに、SF1ニューロンを活性化すると、骨格筋においてインスリン受容体とAktが共に活性化することを見出した。この実験結果から、SF1ニューロンを活性化すると、骨格筋などの組織においてインスリン作用が増強し、その結果、糖利用が亢進することが明らかとなった。
レプチンは、主に視床下部の神経細胞（ニューロン）に作用を及ぼして、食欲を抑えるとともに、末梢組織において脂肪酸酸化や糖の利用を高めることで、熱産生を促進する。

我々は、これまで、レプチンが視床下部腹内側核の神経細胞に直接働き、骨格筋（特に赤筋）、心臓、そして熱産生組織として知られる褐色脂肪組織においてインスリンの働きを高め、糖の取込みを促進すること、加えて骨格筋ではAMP-kinase（AMPK）を活性化することによって脂肪酸酸化を促進することを報告してきた。しかし、レプチンが視床下部腹内側核に作用した後、どのようにして上記の組織において糖の取込みを促進するかは、不明であった。

今回、我々は、骨格筋（赤筋）など末梢組織におけるレプチンによる糖取込促進作用及びインスリンシグナルの働きが、βアドレナリン受容体欠損マウスにおいて消失すること、骨格筋の主要なβ受容体であるβ2受容体を一部の骨格筋に選択的に回復させると、その骨格筋においてのみ、レプチンによるインスリンシグナル分子の活性化、糖の取込みが回復することを明らかにした。レプチンを視床下部腹内側核に作用させると、赤筋において交感神経活動が亢進することも見出した。交感神経は、血圧や心拍数を調節することが知られているが、本研究は、これらの作用に加えて、骨格筋のインスリン作用を増強し、糖の取込みを増加させることが明らかとなった。

新規神経ペプチド Neurosecretory protein GLによる摂食・代謝調節作用

岩越栄子、鹿野健史朗、近藤邦裕、谷内秀輔、越智祐太、浮穴和義、佐々木 努（広島大学大学院）、岡本士毅、箕越靖彦

Neurosecretory protein GL（略名 NPGL）は、広島大学大学院総合科学研究科の浮穴和義教授の研究グループが最近発見した新規脳内因子である。今回、同研究グループとの共同研究により、ラットを用いて機能解析を行った。その結果、以下のような結果を明らかにした。

1. NPGLは、高カロリー食摂取下において過食を引き起こし、摂取量がそれほど増えない場合においても、白色脂肪組織での脂肪合成を高める。

2. NPGLは、炭水化物の摂取量を増加させ、この炭水化物は脂肪合成の原料となる。

3. NPGLを産生する細胞は、インスリンに応答し、血中インスリン量が低い状態（空腹や糖尿病状態下）でNPGLの発現が上昇し、脂肪蓄積を促進する。

以上の結果から、NPGLはグルコースを原料として脂肪合成を高め、脂肪蓄積を促すと考えられる。一方、空腹時にNPGLの産生が高まり、NPGLが摂食行動を亢進し、脂肪蓄積を促すことが示唆される。また、高カロリー食摂取下においては、過食が顕著に促され、肥満を早期に惹起することも判った。
基盤神経科学研究領域

神経シグナル研究部門

【概要】

私たちは、脳スライス標本やin vivo動物に電気生理学的手法（パッチクランプ法）を適用するとともに、組織染色や生化学的解析、行動観察を併用することにより、
①記憶・学習の分子細胞基盤、②痛みの情動的側面に関わる神経回路ならびに③脳・神経疾患の病態・発症機序を解き明かすことを目指している。

今年度は、Ca²⁺/カルモジュリン依存性プロテインキナーゼII (CaMKII) とナトリウムポンプ (Na,K-ATPase)に着目し、遺伝子改変動物をシナプスから細胞機能、神経回路、個体の行動まで幅広く解析することにより、これら分子の生理的役割を追究した。その他にも、痛みに伴う不快な情動の形成に関わる神経回路を検討し、青斑核と帯状回の関与を示唆する結果を得た。また、ニューロン-グルリア機能連関を分子・細胞レベルで理解するため、光解離性化合物を組み込んだ実験や計算論的なアプローチの導入を進めた。

エタノールのグルタミン酸輸送体機能亢進作用：メカニズムの検討

佐竹伸一郎、井本敬二

興奮性アミノ酸輸送体 (excitatory amino acid transporter, EAAT) は、シナプスに放出された興奮性神経伝達物質グルタミン酸 (Glu) の回収を担い、神経伝達を終結させるとともに、過剰Gluの興奮毒性から神経細胞を保護する役割を持つ。これまでに、小脳プルキンエ細胞特異的に発現する輸送体サブタイプEAAT4 は、エタノール (EtOH; 25−50 mM) によりその機能が亢進し、登上線維伝達物質Gluのシナプス外拡散を阻害することを報告している。光解離性Gluの光刺激に伴い惹起される電流 (photo-uncaging evoked transporter current, PTC) から、その細胞のEAAT機能を評価することができる。この評価系を用いて、EtOHがプルキンエ細胞のGlu回収能 (PTC) におよぼす影響を観察した。EtOH (50 Mm) は、PTCの振幅値には無効であったが、その減衰時間 (τdecay) を可逆的に増大させた。PTCに二重指数関数を適用して、減衰相を急速成分 (τfast) と緩徐成分 (τslow) に分けて検討し、減衰時間の増大はτslow構成比率 (%slow) の上昇により引き起こされたことを見出した。この結果は、EtOHにはEAAT4のGlu輸送速度 (ターンオーバー) を亢進させる作用があることを示唆している。

海馬依存性記憶とカルモジュリンキナーゼII活性の関係

山脇葉子、柳川千夫 (群馬大学) 、井本敬二

Ca²⁺/カルモジュリン依存性プロテインキナーゼII (CaMKII) は、脳に多く存在する蛋白質リン酸化酵素で、学習・記憶の分子メカニズムに関わることが知られている。中でも神経細胞に特異的に発現するアイソフォーム、CaMKIIaは、その中心的な役割を果たす。しかしながら、そのリン酸化活性と学習・記憶機能が直線的な関係にあるのか、あるいは一定の閾値が存在するのかについては、全くわかっていない。そこで我々の作製した不活性型のCaMKIIaノックインマウスを用いて、CaMKIIaの活性量と学習・記憶機能との関係について解析を行った。その結果、若年のホモ変異型と週齢の進んだヘテロ変異型マウスでは、海馬依存性の空間認識記憶が強く障害されて
いたが、若年のヘテロ変異型マウスでは全く障害が認められなかった。これらの結果は、加齢とCaMKII活性、海馬依存性記憶との関係が一定の相関関係があることを示唆している。

痛みの情動における前帯状回－青斑核連関機構の解明

古江秀昌, 山田彬博, 中川達貴, 井本敬二

痛みには組織傷害を感知する生体警告系としての感覚と、快・不快に加え感情や共感を含めた痛みの情動的側面がある。感情や共感を含む痛みの情動的側面には前帯状回が関与すると考えられているが、その詳細は不明なことが多い。そこで前帯状回と脳の賦活化系の関係を調べ、前帯状回－青斑核間の連関機構の解析に着手した。

In vivo標本の前帯状回ニューロンと青斑核ノルアドレナリンニューロンから記録を行い、皮膚への機械的刺激に対する応答を同期記録・解析した。皮膚への機械的刺激により前帯状回、青斑核共に発火頻度を増加したが、青斑核ニューロンの発火頻度の上昇と連動して帯状回の活動が上昇するなど、青斑核ニューロンが帯状回における痛み応答の増減を調節していることが明確になった。今後、覚醒に関与する脳幹部の神経核が痛みの情動的側面を如何に調節するか引き続き検討を行う予定である。

大脳神経回路論研究部門

【概要】

大脳皮質の機能制御に関する基本には、他の皮質領域と視床からの入力相互作用と、出力的には多様な脳部位への並列性がある。私たちは前頭皮質が感覚系皮質と異なり、情報処理の時定数が長いこと、大脳基底核と視床を介した閉ループ結合法を用いた基底核視床ループを作ることから、固有の局所回路を持つと考え、その実体回路の結合ルールとニューロン機能分化の解明を目指している。これまでに、GABA作動性細胞と皮質下構造へ投射する錐体細胞のニューロン構成を明らかにした。その過程で、基底核投射細胞のサブタイプによって結合伝達特性・選択性が異なり、直接路・間接路からなる基底核の上流にも多様な機能経路があることから、基底核投射錐体細胞は皮質間投射にも関わり、サブタイプごとに皮質間投射の領域・層選択性が異なることを認めた。これらは皮質深層部と基底核視床ループが体質的に連携して機能することを示している。これらを基に、前頭皮質機能に対し、視床から皮質へ投射する軸索は起始核ごとに異なる層分布であると考えられる。これを検証するには、単一視床核からの軸索のナトリウムサブニューロン構造を明らかにすることを目的とした。

視床－皮質神経細胞体の基底核皮質でのシナプス結合特性の解析

窪田芳之, 坂田小百合, 江川尚美, 北啓子, 孫在隣, 川口泰雄
倉本恵梨子（鹿児島大学大学院 医学部総合研究科）

視床から皮質へ投射する軸索は起始核ごとに異なる層分布する。皮質ニューロンへのシナプス結合様式も起始核ごとに異なると考えられる。これを検証するには、単一視床核からの軸索のシナプス構造を明らかにするため、視床からの軸索のシナプス解析を実施した。
前頭皮質 5 層からの出力情報形成を理解するために、錐体細胞の投射サブタイプを用いて解析した。前頭皮質と GABA 作動性細胞の相関を明らかにするためには、GABA 作動性細胞のサブタイプ依存的相互結合様式を考慮する必要がある。このために、我々はラットの前頭皮質を用いた実験を行った。まず、前頭皮質の 5 層から出力情報を探索するために、錐体細胞の投射サブタイプを用いて解析した。前頭皮質の 5 層から出力情報を探索するために、錐体細胞の投射サブタイプを用いて解析した。前頭皮質の 5 層から出力情報を探索するために、錐体細胞の投射サブタイプを用いて解析した。前頭皮質の 5 層から出力情報を探索するために、錐体細胞の投射サブタイプを用いて解析した。"
興奮性シナプス入力部位（棘突起）が新規に出現する。このことは、運動学習時にはM1の神経回路が可塑的に再編されていることを示唆する。この学習後で新たに出現した棘突起を同定するため、基盤神経科学研究領域第5層椎体細胞が蛍光標識された遺伝子改変マウスを用い、2光子励起顕微鏡下で新生棘突起を同定した後に固定脳標本を作成した。この脳標本に対し、さらに免疫組織化学を施し、共焦点顕微鏡により詳細な観察を行うと、運動学習前より存在した棘突起と、運動学習の初期において新生した棘突起に対する興奮性入力成分の由来が異なることが判明した。この学習時特異的な興奮性シナプス形成はマウスの運動学習成績とよく相関していることから、運動学習時には新たな神経回路再編が必要であることが示唆された。

生体恒常性発達研究部門

【概要】
当部門は、発達および障害回復の過程で一旦形成された機能的神経回路に起こる再編成のメカニズムを回路レベルで解明することを主な目標に研究をしている。そのため、3つのサブテーマについて研究を進めている。
1) フェムト秒パスルレーザーを使った多光子励起法を利用して、マウス脳内微細構造と細胞活動の可視化技術の確立および協力向上をおこなった。これらの技術を利用して、発達期や障害における大脳皮質神経回路の変化を検討するために、シナプスの長期変化の観察およびその制御機構の解明、特に各種グリア細胞の関与について検討を行っている。
2) 発達期や障害後にダイナミックに変化するGABA作動性回路の変化について、2つの観点から検討を加えている。一つは細胞内イオン環境の変化によるGABAの興奮性から抑制性へのスイッチとその制御機構について細胞内Clイオンとし出し分子KCC2の機能制御を中心に、神経栄養因子、環境/回路活動による制御を検討している。加えて、発達期における再編のメカニズムとして、シナプスレベルにおいて、GABAとグリシン間の伝達物質のシップスングのメカニズムを観察している。
3) 新規イメージングおよび操作技術の構築をJST・クリスト研究（2課題）の分担研究を遂行している。一つはイオンイメージングセンサーのマウス生体脳内埋め込み技術の構築と脳活動の記録技術の構築を前年度に引き続き行っている。2つ目は脳内の神経細胞・グリア細胞の光による高精度の4次元時空間制御の技術の構築を今年度から開始した。

新学術領域・研究支援基盤形成事業・先端バイオイメージングに分担（2光子顕微鏡を用いた生体イメージング支援）として本年度から参画している。

人事として、東京女子医科大学から鈴木円氏が准教授として、大阪大学から鈴木正和氏が特任准教授として、総合大学院大学5年一贯制に植木彰彦氏が2017年4月から参画した。また、オーストラリア・ニューサウスウェールズ大学医学研究科、ロシア（サンクトペテルブルク）実験医学研究所、台湾大学医学研究科から大学院生を受け入れた（一部は2018度も引き続き在籍）。一方、稲田浩之特任助教が大塚製薬へ、総合大学院大学戸田拓弥氏が薬剤データ解析企業へ移動した。

一方、稲田浩之特任助教が大塚製薬へ、総合大学院大学戸田拓弥氏が薬剤データ解析企業へ移動した。

In Vivo 多光子顕微鏡を用いグリアによる大脳皮質神経回路再編機構の解析

堀内 浩, 春若航一路, 江藤 圭, 揚妻正和, 鍋倉淳一

大脳皮質神経回路の長期再編の可視化とシナプス再編に対するグリア細胞の関与を検討するために、2光子励起顕微鏡を用いてグリア細胞と神経細胞を生体脳内で監察を行った。前年度までに報告した、ミクログリアにシナプス監視や未熟期におけるミクログリアによるシナプス形成の結果を示す、ミクログリアによるシナプス形成がシナプス発達に及ぼす影響について、覚醒下マウスの大脳皮質神経運動野を観察した。正常マウスの大脳
皮質運動野では、ミクログリアがシナプスに接触すると、シナプス後部のカルシウム上昇頻度の増加が観察され、接触中はシナプス伝達が亢進していることが判明した。一方で、リポサッカライド（LPS）を全身投与してミクログリアを活性化させると、ミクログリアの接触時におけるシナプス伝達の亢進は消失した。さらに、正常では近接する神経細胞の同期活動が観察されたが、LPS投与および遺伝子発現操作によりミクログリアを除去するとこの同期活動の消失が観察された。この結果から、ミクログリアはシナプスに接触し、シナプス伝達の促進により神経活動の亢進を引き起こし、隣接する局所神経回路活動の同期性を高めていることが判明した。

慢性疼痛の脳内機序の解明

慢性疼痛時における大脳皮質神経回路の再編機構を2光子顕微鏡や電気生理学的アプローチを駆使して行った。

末梢感覚神経の部分傷害後に末梢感覚神経の過剰活動と痛覚過敏が持続する。痛覚過敏形成時に限定して、大脳皮質錐体細胞のシナプスの新生・消失が更新し、その後ターンオーバーは傷害前の値に戻るが活性過敏は長期にわたり持続する。慢性疹発時には、大脳皮質感覚野細胞の活動が増強される。これらから、慢性疹発時における大脳皮質感覚野における回路再編による過剰応答回路の形成が持続する慢性痛発症の原因である可能性が示唆される。さらに、大脳皮質神経回路再編時には、アストロサイトにおける5型代謝型グルタミン酸受容体の再発現に伴いその活動が亢進していることが判明した。

これらの結果・報告、昨年度までに報告した、慢性痛モデルマウスにおいて、損傷した末梢神経と反対側大脳皮質感覚野での神経回路長期再編とアストロサイト活性化に続き、損傷した末梢神経と同側感覚野においてもアストロサイトが活性化していること、しかし同部位においては神経回路再編はみられないことに基づき、その原因について検討を行った。結果として、同側体感覚野においては、活性が亢進している対側感覚野からの脳梁を介する投射が抑制性神経細胞に入力し、同部位の活動を抑制しているため、アストロサイトの活動が亢進しても、神経回路の再編が起こらない可能性が示唆された。実際に同側体感覚野にGABA受容体阻害薬を投与し同部位の活動を高めると、同部位におけて神経回路再編が起こり、傷害・非傷害両側の痛覚に対する閾値が低下した。このことは、ミラーイメージ痛の発症メカニズムの一つと考えられる。

細胞内Cl⁻制御分子KCC2の発現制御と生体機能

未熟期および虚血や脳塞時にGABAは興奮性伝達物質としての作用を獲得する。GABA受容体の細胞応答は内蔵するチャネルを流れるCl⁻イオンの向きによって決定されるため、細胞内Cl⁻イオン濃度によってGABAは興奮性／抑制性が決定される。この細胞内Cl⁻イオン濃度は神経細胞特異的に発現するK⁺-Cl⁻トランスポーターであるKCC2によって制御されている。ドキシサイクリンによりKCC2発現をコントロール可能なtetOマウスを作成し、CAMK2-TTAマウスと交配し、大脳皮質および海馬錐体細胞、脊髄前核細胞におけるKCC2の発現をコントロール可能なマウスを作成した。

1）運動神経細胞の軸索損傷後に同細胞におけるKCC2発現が低下する機能的な意義について、同細胞にKCC2を強制発現させたマウスの運動機能回復について、
軸索再生や脊髄前角内の回路機能回復について検討した結果，KCC2 過剰発現マウスでは，長期の運動回復が抑制されていることが判明し，その原因の一つとして，損傷運動神経細胞への興奮性一抑制性入力バランスが正常と比して保持されていないことが判明した。詳細には，軸索損傷を受けた運動神経細胞に対する興奮性入力は長期的に低下することが知られているが，抑制性入力である GABA 作動性入力も軸索損傷後には長期的に低下していた。一方で，KCC2 過剰発現マウスでは，GABA 作動性入力の低下はみられなかった。この結果から，KCC2 過剰発現マウスでは，興奮性一抑制性入力バランスは失調が運動回復を阻害している可能性が示唆された。

オーストラリア国連邦 New South Wales 大学との共同研究において，KCC2 過剰発現マウスの痙攣抵抗の低下について電気的脳活動の計測のため同大学大学院生が4か月間滞在し，慢性的な痙攣発症における GABA 機能の低下との関連について共同研究を行っている。

感覚情報処理回路の発達およびその制御機構の解明

鳴島 円，植木彰彦，鍋倉淳一

発達期における神経回路の再編とそのメカニズムについて検討を再開するために，マウス上丘における両側眼からの入力プロファイルの検討とともに，視覚中継路発動性入力の低下はみられなかった。この結果から，KCC2 過剰発現マウスでは，興奮性一抑制性入力バランスは失調が運動回復を阻害している可能性が示唆された。

イオンイメージングセンサーの脳内埋め込み技術の構築

堀内 浩，石田順子，鍋倉淳一

JST・戦略的創造研究推進事業（代表：豊橋技術科学大学：澤田和明教授，非標識神経伝達物質イメージングセンサーによる細胞活動可視化システム構築と脳機能の時空間解析）の分担研究として，豊橋技術大学で開発したイオンイメージングセンサーの脳内埋め込み技術の構築を行っており，大脳皮質内における pH の不均一性などの予備結果が得られてつつある。

視覚情報処理研究部門

【概要】

大脳皮質の情報処理はその神経回路を基盤として成立している。機能的な神経回路の形成には，遺伝的プログラムにより進む過程と，その神経回路の動作を体験・学習を通してより効率化する可塑的調整の2つの段階があり，前者は脳の安定した機能発現につながり，後者は個々の生存環境に適した脳機能の獲得に重要と考えられる。本研究部門では，大脳皮質で行われている情報処理の基盤となる神経回路の動作特性やその形成のメカニズムを明らかにすることを目指して研究を行っている。具体的には，ラットやマウスの大脳皮質を対象として，1）大脳皮質一次視覚野を中心とした神経回路特性と視覚反応の対応関係，2）発生期の細胞系譜に依存した神経結合特異性，3）発達期視覚野のシナプス可塑性と視覚反応可塑性メカニズム，4）視覚誘発性の行動課題を担う神経活動の解析を行っている。人事としては4月から林健二助教が加わった。以下に本年度行った研究内容の要約を記載する。
研究活動報告／基盤神経科学研究領域

視覚・運動連関に関する一次視覚野の神経活動

木村梨絵, 吉村由美子

動物は, 外部の刺激を知覚・認知して, 特定の運動出力をする。刺激が多少あやふやでも, 同一の出力が可能である。本研究では, ラットに, 線縞/横縞で, それぞれレバーを押す/引くという課題を学習させた後, 視覚刺激のコントラストを下げ, 弁別を難しくした。この課題遂行中に一次視覚野深層の発火活動をマルチユニット記録した。その結果, 課題遂行中では, 高コントラストよりも低コントラストで強く応答する細胞が新規に観察された。この低コントラスト優位な細胞は, 麻酔や受動的な状態では, ほとんど観察されなかった。また, この細胞は, 低コントラストの課題の正解時に強く応答した。さらに, 細胞群の神経活動から, 提示刺激が縦縞か横縞かをコーディングした結果, 低コントラスト優位な細胞を含めた場合に, その精度が高かった。以上から, 新規に観察された低コントラスト優位な細胞は, 隠蔽的な刺激を弁別するのに貢献すると考えられる。

視覚野の領域間結合の生後発達

石川理子, 吉村由美子

我々はこれまでに, 一次視覚野(V1) 2-4 層の神経回路網と神経活動のパターンが生後視覚経験に強く依存して発達することを報告した。本年度は, V1 とそのターゲット領域である二次視覚野(V2)の機能的結合の生後発達過程を明らかにすることを目的とし, 麻酔したラット V1 と V2 の一つである LM 領域を対象に神経活動の相関を調べた。V1/LM 領域に多点シリコンプローブ電極を刺入し, 二つの領域の神経活動を同時に記録した。空間的に局所した視覚刺激を提示し, 記録部位の受容野位置を同定し, V1-LM の境界において受容野位置が鏡像関係になることを確認した。局所電場電位の解析により, 生後 4 週齢のラットでは, 記録した V1 と LM の受容野位置が近い場合に限り, V1-LM 間の神経活動の相関が高くなる傾向が示された。この傾向は, 開眼直後のラットでは観察されなかった。これらの結果は, V1-LM 間の神経活動関係は生後発達過程に形成されることを示す。

マウス一次視覚野 2/3 層における Fast spiking 抑制性細胞－錐体細胞間結合の発達

山本真理子, 吉村由美子

大脳皮質には複数の細胞種が存在し, それらが特異的な神経結合を形成することにより情報処理を成立させていると考えられる。本研究では, 大脳皮質一次視覚野の 2/3 層において, Fast-spiking (FS)の発火様式をもつ抑制性神経細胞と錐体細胞間の神経結合の発達過程を調べた。開眼直後および生後 3 週齢のマウスの一次視覚野から切片標本を作製し, 2/3 層の FS 細胞と錐体細胞のペアから同時ホールセル記録を行い, 神経結合を解析した。その結果, 生後 3 週齢のマウスでは開眼直後に比べ, FS 細胞－錐体細胞間の双方向性結合の割合が増加し, 抑制性シナプス後電流の振幅が若干増大する傾向にあった。興奮性シナプス後電流の振幅は発達に伴う変化はみられなかった。これらの結果は, 生後発達過程で FS 細胞－錐体細胞間のシナプス結合が双方向性になり, 抑制性シナプス結合が強化されることを示す。
ラット一次視覚野の5層錐体細胞における神経結合特性

唐木智充, 吉村由美子
尾藤晴彦（東京大学医学部神経生化学教室）

大脳皮質一次視覚野における神経結合の層特異的な特性を明らかにする目的で, ラット一次視覚野の錐体細胞間の神経結合を視覚反応と対応付けて調べた。神経活動依存的な人工プロモーター(E-SARE)の制御下で蛍光蛋白質Venusを発現する遺伝子をアデノ随伴ウイルスベクターにより一次視覚野に導入後, 覚醒状態で縦縦の視覚刺激を提示し, それに応答した細胞にVenusを発現させた。この視覚野より切片標本を作製し, 2/3層あるいは5層内のVenus陽性ペアおよびVenus陽性・陰性ペアから同時ホールセル記録を行った。その結果, 視覚野2/3層内および5層内において最適方位が類似すると考えられる細胞は選択的に神経結合しており, 5層内の結合は視覚反応選択性と細胞タイプの両方に依存することが示唆された。現在は2光子カルシウムイメージングと免疫染色法を用い, この実験系の妥当性を検証している。

マウス一次視覚野における高空間周波数選択的な神経細胞タイプの同定

林 健二, 吉村由美子

これまでに我々は, マウス一次視覚野において特に高い空間周波数の視覚刺激(0.16-0.32 cycles/degree)に選択性を示す神経細胞を見出している。視覚野の多くの神経細胞において発達期に視覚経験を遮断すると最適な空間周波数が低い方にシフトするが, 上記した神経細胞はこのようなシフトを示さなかったことから特定の神経細胞サブタイプである可能性が考えられる。そこでこの細胞がどのサブタイプに分類されるのかを遺伝子発現の網羅的解析により特徴づけることを試みている。本年度はin vivoマウスの視覚野において, 短時間で特定の空間周波数選択的な細胞を同定できるように2光子励起カルシウムイメージングシステムを最適化し, あらかじめ反射選択性を同定した単一細胞から2光子励起顕微鏡観察下でガラスピペットを用いて細胞内のmRNAを採取する技術を確立した。今後は, RNAシーケンスを細胞ごとに行い, 高空間周波数選択的な神経細胞の分子発現パターンを明らかにする予定である。
感覚認知情報研究部門

【概要】
感覚認知情報研究部門は視知覚および視覚認知の神経機構を研究対象としている。我々の視覚神経系は階層的に構築された複雑な並列分散システムである。そこで低次領域で検出された比較的単純な特徴が高次領域で統合されて、生体にとって意味のある情報が取り出されて行動に利用される精巧な仕組みがあると考えられる。また視覚系で取り出された情報は、体性感覚や聴覚など他の感覚情報と統合されて外界の事物についての多感覚間で整合性のある理解が生み出される仕組みがあると考えられる。

視知覚に関するこれらの問題を解明するために、大脳皮質を中心とするニューロンの刺激選択性と特定の視覚情報の脳内分布様式および行動との関係を調べている。具体的な課題として質感知覚・素材知覚の問題に取り組んでいる。具体的な課題として質感知覚・素材知覚の問題に取り組んでいる。

サル下側頭皮質細胞の不活性化による光沢識別行動への影響

馬場美香, 西尾亜希子, 小松英彦

サル下側頭皮質上側頭溝下壁には特定の光沢に選択性を持つニューロンが局所化して存在する領域（光沢選択性的領域）があることがこれまでの我々の研究から明らかになっている。そこで、これらのニューロンの活動と光沢知覚との因果関係を直接的に明らかにするために、サルに光沢識別課題を訓練し、光沢選択性の領域にムシモルを注入して不活性化した際、光沢識別課題の成績にどのような影響が出るかを調べた。その結果、ムシモル注入後、光沢識別課題のパフォーマンスが低下する領域が存在した。これは下側頭皮質の光沢選択性領域が、光沢知覚に影響を与えている可能性が高いことを示唆している。しかしながら、光沢選択性領域であってもムシモルの影響がみられない領域も存在しており、その原因については今後検討が必要である。

実物素材の視触覚経験がサルの行動反応に与える影響

横井 功, 郷田直一, 小松英彦

ヒトの素材知覚の神経メカニズムを明らかにする上でサルは有用なモデル動物である。サルがどのように素材を知覚しているかの手掛かりを得るために、様々な素材で作られた円柱形の実物体（金属、ガラスなど9種類の素材カテゴリー）を実物体把持課題遂行中の二ホンザルに提示した。サルは目的の実物体を見ながら把持することで報酬を得る。把持課題を長期間（約2か月間）行わせ、経験による行動の変化について解析を行った。実験開始直後の行動反応は素材カテゴリーに依存し、簡単に触る素材と触ることを避ける素材が存在した。把持課題を長期間練習することによって、把持課題の成功率は上昇し、実物体を把持する力は素材カテゴリー内で収束する傾向がみられた。これらの結果は実物素材を見ながら握る経験が素材の認識に影響を与えることを示唆し、素材知覚の神経メカニズムの解明において有用な手掛かりになると考えられる。
物体の材質を表現する視覚特徴

郷田直一, 小松英彦

我々は様々な物体を見て, 金属・木材などその材質の種類（カテゴリ）を認識し, その手触り, 硬さ, 重さなどの非視覚的な特性をも理解する。このような材質の視覚認識は, どのような画像特徴を手掛かりとして, どのように神経機構により実現されているのかは明らかではない。本研究では, 視覚野と類似した階層構造を有する深層畳み込みニューラルネットワーク（CNN）に着目し, CNN 特徴と材質感（材質特性の視覚印象）や脳活動との関係について調べている。本年度においては, CNN 各層の個々の特徴と材質感の関係について詳細な解析を進め, 光沢などの視覚的特性や, 硬さ, 重さなどの非視覚的な材質特性と相関した反応を示す CNN 特徴がそれぞれ存在することを見出した。これら CNN 特徴は脳において種々の材質特徴を表現するニューロンモデルの候補とみなせる。今後, これら特徴と脳の低次・高次視覚野の活動との関連をさらに調べる予定である。

認知行動発達機構研究部門

【概要】

当部門のメインテーマは, 社会的認知機能のシステム生理学的理解である。マカクザルをモデル動物として新規の社会的認知行動タスクを考案するとともに, 複数の脳領域を対象とした神経活動の多点同時計測をこなす。特に, 自己および他者の行動情報処理の脳内機構を神経細胞レベルから大域のネットワークレベルまでを射程に入れて解析している。特に, 自己と他者の動作情報処理や報酬情報処理の神経基盤解明に重点を置いている。また, 知覚的意識の神経基盤解明を目指し, マカクザルやマーモセットを対象とした心理物理実験や脳機能イメージングもおこなっている。

人事面では, 2017 年 4 月 1 日に則武厚が助教として, 同年 7 月 1 日には植松明子が NIPS リサーチフェローとして着任した。また, 新居桂陽が総研大 5 年一貫制大学院生として加入した。

各研究テーマにおける本年度の具体的な成果は以下のとおりであり, それぞれ計画どおりの進捗が認められた。

ヒト精神疾患・高次認知機能解明のための霊長類モデル動物の開発

郷 康広

ヒト精神・神経疾患の霊長類モデル動物の開発のために, マカクザルとマーモセットを対象とした実験的認知ゲノミクス研究を行った。国内において飼育・繁殖されている 1000 頭規模のマカクザルとマーモセットの網羅的遺伝的解析を行い, 自然発症的な遺伝子機能喪失変異を有する個体・家系を同定し, 主に, ヒト精神・神経疾患をターゲットとした霊長類モデル動物の開発を研究の目的とした。

ヒト精神・神経疾患関連遺伝子（约 500 遺伝子）を解析対象とし, マカクザル 831 個体, マーモセット 966 個体を対象とした遺伝子機能喪失変異保有個体の同定を行った結果, マカクザルでは 53 遺伝子, マーモセットでは 71 遺伝子において, 精神・神経疾患との関連性が高い遺伝子において稀な（集団アリル頻度 5% 以下）遺伝子機能喪失変異を持つ可能性のある個体を同定することができた。その中には, 自閉症スペクトラム症関連の深層アミノ酸代謝, ハンチントン病関連遺伝子, などが含まれていた。その多くはヘテロ接合体（正常型と変異型のヘテロ）での遺伝子変異であるため, 今後, 交配によるホモ化を積極的に推進する。
マカクザルを用いた半側空間無視動物モデルの確立

吉田正俊, 辻本憲吾,
福永雅喜（生理研 心理生理学）

【目的】半側空間無視とは主に右大脳半球の損傷によって引き起こされる、損傷と反対側の空間の感覚刺激に対する反応が欠如・低下する現象のことを指す。本研究はマカクザルによる半側空間無視の動物モデルの確立を最大の目的とした。【方法】これまでに4頭のニホンザルで側頭連合野と前頭連合野とを離断するために右上側頭回を損傷させた。手術はイソフロラレンによる全身麻酔下で行い、あらかじめ撮影した核磁気共鳴画像に基づいて、脳溝などの位置を指標として損傷目標部位を決定した。【結果・考察】回復後に行動評価を行った。無視症状の定量的評価のため、ヒト半側空間無視患者でのテストに用いられる線分抹消課題を参考にして「標的選択課題」を作成した。損傷後にこの課題の成績の低下、応答遅延の延長が見られたことから、無視症状が起きていていることが確認できた。また、3頭の損傷動物ではresting-state fMRI法を用いることで頭頂連合野と前頭連合野の関の機能的結合が急性期には半球内で、慢性期には半球間で低下していることを示唆する結果を得た。以上の結果から、右上側頭回の損傷によって、マカクザルにおける半側空間無視の動物モデルを確立することに成功したと結論づける。

統合失調症患者の静止画自由視時の視線計測データのサリエンシー計算論モデルによる解析

吉田正俊,
三浦健一郎（京都大学大学院医学系研究科認知行動脳科学）,
橋本亮太（大阪大学大学院医学系研究科精神医学）

統合失調症の中間表現型を探索するために本研究グループは以前、静止画像を自由視しているときの視線計測を行い、統合失調症患者では年齢などをマッチさせた統制群と比べて視線の移動距離が短くなっているなどの幾つかの点で眼球運動に違いが見られることが明らかになった（Miura et.al. 2014）。ではこのような眼球運動の違いはなぜに生じるのか、統制群が統合失調症患者に置く影響を受けているのか？本研究では、自由視時に画像のどこに注意を向けるかが患者群と統制群とで異なる可能性について検証した。著者が以前開発したサリエンシー計算論モデル（Yoshida et.al. 2012）によって、自由視時の視線位置を解析した。視線位置のサリエンシーの大きさが各画像を8秒間見ていない間にどのように時間変動するか計算し、統制群と統合失調症群で比較した。統制群では画像ごとに最初に視線を向けた位置のサリエンシーが最も高く、時間が経過するごとに視線位置のサリエンシーは低下していた。患者群においても同様な時間パターンは見られたが、全時間を通じてサリエンシーは統制群よりも低かった。さらに視覚特徴ごとのサリエンシーを計算して同じ解析を行うと、輝度や色のサリエンシーではなく傾きのサリエンシーが統合失調症患者に置く影響を受けていることが明らかになった。以上のこととは統合失調症では自由視時に画像のどこに注意を向けるかに影響を受けていないことを示唆している。以上のこととは「精神症状の異常サリエンス仮説」とも整合的である。
マーモセットの静止画自由視時の視線データの計測

吉田正俊,
デニス・マトロフ, 伊佐正, 三浦健一郎（京都大学大学院医学系研究科）,
南本敬史, 須原哲也（放射線医学総合研究所）

マーモセットは小型霊長類の一種であり、ヒトと同様な視覚眼球運動システムを保持しているため、視覚的注意の動物モデルに適している。遺伝子操作動物などのモデル動物での視覚眼球運動系のスクリーニングを行うためには、頭部への固定具の埋め込みなどの非侵襲的な方法を必要とする実験方法と行動課題の確立が必要となる。そこでわれわれは熱可塑性樹脂を用いて頭部を柔らかく挟み込むことによって固定を行い、自由視課題によって自然画像を提示しているときの視線計測を行う方法を開発した。これまでに生理研、放射線医学総合研究所の3機関において10頭の健常マーモセットから同じ方法、同じ自然画像を用いて視線計測をすることに成功していた。視線計測データの解析からは、サッカードの頻度、サッカードの振幅などにおいてヒトと同様な値が得られることを見出した。また、サッカードの振幅と最大速度の関係（主系列）もヒトと同様に見られることを見出した。さらに頭部固定した条件において自由視課題中の視線計測を両眼で行い、より正確で安定したデータの取得に成功した。また、サッカードの振幅が低下することを2頭の動物で見出した。以上のこととはマーモセットを統合失調症の動物モデルとして用いる際の行動評価系として、本実験方法が有用であることを示唆している。

社会的コンテキストにおける報酬情報処理の神経機構

則武厚, 二宮太平, 磯田昌岐

昨年度に続き、自己と他者の報酬情報が脳内のどの領域でどのように処理されるのか、そして、他者の報酬情報は自己の報酬情報の処理に対してどのような影響を及ぼすのかを明らかにするため、ダブル2頭を対面させ、他の報酬確率を操作した社会的古典的条件づけ下における電気生理学的解析をさらに進めた。

昨年度行った自他の報酬情報処理における中脳ドーパミン神経細胞と内側頭前頭野神経細胞の単一神経細胞活動記録に加え、これら二領域間の報酬情報の流れを明らかにするため、単一神経細胞活動記録および局所電場電位（local field potential, LFP）の多点同時に記録を行い、LFPに対しGrange causality解析や領域間同期解析を行った。その結果、中脳ドーパミン神経細胞→内側頭前頭野という情報の流れよりも内側頭前頭野→中脳ドーパミン神経細胞への情報の流れが多いことが明らかとなっ

社会的コンテキストにおける動作情報処理の神経機構

二宮太平, 則武厚, 磯田昌岐

我々は様々な場面で他者の行動を観察し、自らの行動に役立てている。他者の観察中、我々は動作そのものに加え、相手の意図や心情などについても理解しようとす

研究活動報告／システム脳科学研究領域

生理学研究所年報 第39巻 (Dec, 2018)
は明らかになっていない。
本研究では、自他の動作情報処理の広域神経ネットワーク機構を明らかにするため、実物または眼前的ディスプレイ内にビデオ再生した他個体と、交互に行動選択タスクを遂行するサルから神経活動を記録している。上述の3つの脳領域の自他の動作情報処理に対する機能的役割、さらには脳領域間の機能連関を明らかにするため、単一神経細胞活動および局所電場電位の同時記録データの解析をおこなっている。

自発的行動による学習促進の神経基盤

植松明子、磯田昌岐

近年、教育現場では能動的学習が注目されている。自ら行動して学んだ場合には、受け身で学んだ場合に比べて学習効率が良いことは多くの人が実感しているだろう。しかし、このような学習促進効果の神経基盤は、まだ明らかではない。本研究では、様々な学習課題遂行が可能であるサルを対象として、自発的学習条件と非自発的学習条件における学習効率の比較を行う。さらに、学習中のサルモノの神経機構と神経活動記録や神経活動操作を基に解析する。自発的行動による学習促進機構の神経基盤を明らかにすることが、より効果的な学習方法の構築や、学習困難が生じる原因の解明に寄与することができると考えられる。

生体システム研究部門

【概要】
私達を含め動物は、日常生活において周りの状況に応じて最適な行動を選択し、あるいは自らの意志によって四肢を自由に動かすことにより様々な目的を達成している。このような随意運動を制御している脳の領域は、大脳皮質運動野と、その活動を支えている大脳基底核と小脳である。逆にこれらの領域に異常があると、パーキンソン病やジストニアに見られるように、随意運動が著しく障害される。本研究部門においては、げっ歯類、霊長類（マーモセット、マカクサル）を用いて、大脳基底核を中心に、このような随意運動の脳内メカニズムおよびそれが障害された際の病態、さらには病態を基礎とした治療法を探ることを目的としている。

そのために、①大脳基底核を巡る線維連絡やその様式を調べる、②運動課題遂行中の動物から神経活動の記録を行う。薬物注入による経路の一時的ブロックや光遺伝学、化学遺伝学などの手法も併用する、③大脳基底核疾患を中心とした疾患モデル動物からの記録を行う、④このような疾患モデル動物に様々な治療法を加え、症状と神経活動の相関を調べる。⑤様々な遺伝子変異動物の神経活動を記録することにより、遺伝子・神経活動・行動との関係を調べることを行っている。

パーキンソン病モデルマーモセットにおける視床の神経活動

畑中伸彦、若林正浩、南部 篤

Methyl-phenyl-tetrahydropyridine（MPTP）を動物に投与すると、中枢神経系ドーパミンニューロンの特異的な脱落を引き起こし、パーキンソン病様の症状を引き起こすことが知られている。これまでわれわれは、マカクサルを用いてパーキンソン病モデル動物とし、病態生理学的な研究に用いてきた。しかし筋固縮や寡動などは非常によ
く再現できるが、振戦はほとんど観察されなかった。ところが、小型の新世界サルであるマーモセットをMPTPで処理し、パーキンソン病モデルにすると、マバラよりも振戦が多く観察されることがわたった。2017年度はMPTPを用いたパーキンソン病モデルマーモセットを用いて、大脳基底核の出力核である淡蒼球内節と、小脳の出力核である齒状核に慢性刺激電極を埋め込み、両者からの入力を確認しながら、運動性視床のニューロン活動と、腕に取り付けた加速度センサーのデータとの間に関係があるか調べた。またマーモセットの慢性実験の記録システムを論文として報告した。

大脳基底核における上肢運動ストップ課題遂行中の活動調節

畑中伸彦, Zlata Polyakova, 南部 篤

視床下核は大脳皮質から入力を受ける大脳基底核の入力核の一つであり、同時に淡蒼球外節から入力を受ける中継核でもあるという、非常に複雑な回路になっている。そのため視床下核の活動は大脳基底核の活動に大きな影響を与えると考えられている。これまでわれわれは、淡蒼球の内節と外節における、視床下核からの興奮性入力がどのような情報を運んでいるのかを調べてきた。その際に、事前に運動を行わないサルを知らせNo-go課題と運動開始直前に運動を停止させるStop課題では視床下核の活動が異なる可能性が示唆された。2017年度は3種類の課題（Go課題、No-goおよびStop課題）を遂行中のニホンザル視床下核から記録を開始した。一次運動野および補足運動野の上肢領域、また淡蒼球外節の上肢領域に刺激電極を埋め込み、視床下核ニューロンの応答を確認することで、記録中の視床下核ニューロンの入力源を特定しながら課題遂行中の神経活動を記録している。次年度は2頭目のサルの訓練と記録を行う予定である。

小脳による視床－大脳皮質投射の活動制御機構

知見聡美, 佐野裕美, 小林憲太（ウイルスベクター開発室）、南部 篤

小脳は随意運動の制御において重要な役割を果たし、その障害によって運動失調を生じる。小脳は視床を介して大脳皮質との間でループ回路を形成しており、小脳の出力部である小脳核はグルタミン酸作動性ニューロンで構成されている。小脳が視床－大脳皮質投射の活動を制御するメカニズムを明らかにする目的で、ウイルスベクターを用い、ニホンザルの小脳核ニューロンにチャネルロドプシンまたはハロロドプシンを発現させた。運動課題遂行中のサルにおいて視床－大脳皮質投射のニューロンの活動を記録し、小脳から視床への入力を選択的に賦活またはブロックした。その結果、小脳から視床への入力は、1. 視床ニューロンの活動維持において重要な役割を果たすこと、2. 視床ニューロンを時間分解能良く活動させ、適切なタイミングで運動を行うために寄与すること、3. 輝度性と抑制性の入力のバランスによって視床ニューロンの活動様式を決定していることが示唆された。
パーキンソン病モデルサルにおける淡蒼球ニューロンの相互相関

Woranan Wongmassang, 長谷川 拓, 知見聡美, 南部 篤

大脳基底核は随意運動の発現と制御において重要な役割を果たす。重篤な運動障害が生じるパーキンソン病では、大脳基底核ニューロンが同期活動や周期的活動を示すことが報告されている。本研究では、ドーパミン選択的神経毒 MPTP を用いて作製したパーキンソン病モデルサルにおいて、淡蒼球外節および内節の上肢支配領域の複数のニューロンから同時記録を行い相互相関を調べた。正常サルにおいては、ほとんどの淡蒼球ニューロンが相互相関を示さず独立に発火していたが、パーキンソン病モデルでは、多くの淡蒼球ニューロンが相互相関を示すこと、また、β 帯域の共振が生じていることがわたった。記録を行いながら L-dopa を投与し、症状が改善された時に記録を行ってみると、淡蒼球ニューロンで観察された相互相関と β 帯域の共振が減少していた。これからのことから、淡蒼球における同期活動や β 帯域の共振が、パーキンソン病の症状発現に寄与していることが示唆された。

大脳皮質-線条体路が制御する神経生理機能の解明

佐野裕美, 小林憲太, 加藤成樹（福島県立医科大学）, 小林和人（福島県立医科大学）, 南部 篤

アデノ隨伴ウイルス（AAV）ベクターと逆行性に遺伝子導入が可能なレンチウイルスベクター（FuGC）を利用して Cre-loxP システムにより、光駆動性イオンチャネルであるチャネルロドプシン2をマウスの大脳皮質-線条体路に発現させた。このマウスの大脳皮質に光刺激用の光ファイバー、大脳基底核を構成する淡蒼球外節あるいは黒質網様部に記録電極を刺入し、大脳皮質-線条体路の興奮誘導に対する応答を記録した。これまでに、大脳皮質を電気刺激すると淡蒼球外節や黒質網様部においで、興奮-抑制-興奮という三相性の応答が認められることは知られており、大脳皮質-線条体路の興奮誘導により、抑制-興奮という二相性の応答が主に得られた。ところが、抑制-興奮という三相性の応答も観察された。抑制-興奮という二相性の応答が得られたものの、主に興奮-抑制-興奮という三相性の応答も観察された。これに対して、抑制-興奮という三相性の応答が得られたもの、主に興奮-抑制-興奮という三相性の応答も観察された。これに対
ジストニア様症状を示す変異マウスの病態生理学的解析

佐野裕美, 堀江正男（鹿児島大学）, 吉岡望（新潟大学）, 吉見聡美, 竹林浩秀（新潟大学）, 南部篤

Dystonin-a アイソフォームを末梢神経のみで欠損するマウス（P0-Cre::Dst マウス）では, 歩行時の体幹捻転などの典型的なジストニアの表現型は認められなかったものの,下肢の伸展という軽度なジストニア様の表現型が認められる。このマウスの筋電図を上肢から記録したところ,持続的な筋収縮や伸筋と屈筋が同時に収縮するいったジストニアの筋収縮の特徴は認められなかった。今後,表現が認められている後肢から筋電図を記録するとともに, 後肢の運動異常の原因を解明するため, 大脳基底核や小脳から神経活動を記録する。

ゾニサミドがL-DOPA誘発性ジスキネジアに与える影響の解析

佐野裕美, 南部篤

ゾニサミドは元々てんかんの薬として開発された薬剤であるが, パーキンソン病の運動障害も改善することから, 現在では抗パーキンソン病薬としても使用されている。パーキンソン病の治療には, 一般的にL-DOPAが使われるが, 長期間の使用はジスキネジア呼ばれる不随意運動を誘発する。L-DOPA誘発性ジスキネジアに対するゾニサミドの効果を解析するため, 薬剤で作製したパーキンソン病モデルマウスにL-DOPAあるいはL-DOPAとゾニサミドを連日投与してジスキネジアに与える影響を解析した。その結果, ゾニサミドはジスキネジアを増悪させなかったがジスキネジアの出現時間を延長させた。また, 大脳基底核の出力核である黒質網様部から神経活動を記録したところ, ゾニサミドは自発発火頻度を低下させ, さらに, 大脳皮質運動野を電気刺激したときに認められる応答を正常に近づけていた。これらの効果から, ゾニサミドはL-DOPAの作用時間を延長し, さらにはL-DOPA誘発性ジスキネジアを軽減するように作用している可能性が考えられた。

L-DOPA誘発性ジスキネジアの病態生理学的解析

Dwi Wahyu Indriani, 佐野裕美, 知見聡美, 南部篤

パーキンソン病は黒質緻密部のドパミンニューロンが選択的に脱落する神経変性疾患で, 無動や寡動などの運動障害を主症状とする。ドパミンの前駆体であるL-DOPAの投与により運動障害が改善する。しかし, 長期間のL-DOPAの投与によりジスキネジアと呼ばれる不随意運動が出現する。このL-DOPA誘発性ジスキネジアの病態生理学的解析を行うため, 6-hydroxydopamineをマウスに投与してパーキンソン病モデルマウスを作製し, このマウスにL-DOPAを連日投与してジスキネジアを誘発した。L-DOPA投与後のジスキネジアが顕著に出現しているとき（on）とL-DOPA投与後から数時間以上経過してジスキネジアがほとんど認められないとき（off）において, 大脳基底核の出力核である黒質網様部から神経活動を記録した。その結果, onではoffより自発発火頻度が低下しており, 大脳皮質運動野を電気刺激したときに認められる興奮－抑制－興奮という三相性の応答も変化していた。これらの変化が不随意運動の出現に関与していると考えられた。
マーモセット前頭皮質の神経生理学的マッピング

綿縄大輔，南部 篤

小型の霊長類動物であるマーモセットを用い、皮質内微小電気刺激（ICMS）と皮膚刺激に対する細胞応答を記録することで、大脳皮質の運動－体性感覚関連領域の神経生理学的皮質マッピングを行った。これまでの研究で、一次運動野（MI）、運動前野、一次感覚野（S1）の詳細な体部位再現マップを作製した。更に赤外線カメラを用いてマーモセットの眼球運動を測定することで、ICMSによって急速眼球運動を誘発する領域である前頭眼野（FEF）のマッピングを行った。また、皮質マッピング後にMI、S1、およびFEFに神経トレーサーを注入し、それぞれの皮質領域の神経連絡を調べた。MIは皮質の運動関連領域や視床の運動関連核に強く投射しており、S1は体性感覚関連の皮質や視床核に強く投射していた。またFEFは視覚関連皮質や視床に強い投射を伸ばしていた。今後は、前頭皮質の更に吻側にある前頭連合野の機能マッピングを目指し、記憶課題遂行中のマーモセットの前頭皮質からの細胞活動記録を行う。

マカクザル視床下核の化学遺伝学的抑制による不随意運動の誘発

長谷川拓，知見聡美，小林憲太（ウイルスベクター開発室），南部 篤

視床下核は大脳基底核の間接路とハイパー直接路を担い、その損傷によって不随意運動（パラサイト）が生じる。本研究では視床下核の運動制御に関わる神経機構をDREADDによる可逆的な抑制によって明らかにすることを目的とする。

ニホンザル（Macaca fuscata）の視床下核に抑制型DREADD受容体（hM4Di）を導入し、clozapine N-oxideを静脈投与したところ、反対側の上肢に不随意運動が見られ、上肢による到達課題では異常運動が観察された。到達課題中に淡蒼球内箭から単一神経細胞活動を記録した。視床下核の抑制は平均発火頻度に影響を与えたが、神経発火の休止（pause）が長くなり、運動中の神経活動の変化が増大した。以上の結果から、視床下核が運動中に淡蒼球内箭のpauseを抑制することで、安定した運動制御を実現すると予想される。

統合生理研究部門

【概要】

初めて2017年の人事異動を列挙します。国内では、4月に岡本秀彦准教授が国際医療福祉大学医学部生理学教授に、10月には小林恵博士が愛知県心身障害者コロニー発達障害研究所の研究室員に栄転されました。新しい研究室での活躍を祈っています。

2017年も他施設との共同研究が順調に進めています。国内では中央大学文学部（山口教授）、三重大学精神科（元村先生）、神戸大学文学部（野口先生）、愛知医科大学（田村教授、佐藤教授）、奈良女子大学（中田先生）、また外国では、ドイツMunster大学（Prof. Pantev），米国Temple大学（Prof. Yosipovitch）との共同研究を行っています。

脳波と脳磁図を用いた研究が本研究室のメインテーマですが、最近はそれに加えて機能的磁気共鳴画像（fMRI）、近赤外線分光法（NIRS）、経頭蓋磁気刺激（TMS）を用いた研究も行っている。1つのテーマに固執せず、各研究者の自主性に任せて研究を行っていることが本研究室の最大の特徴です。研究テーマの幅が非常に広いことは、以下の研究報告を読んだ時ただければ自明の事だと思われます。
触覚性注意効果の空間的勾配

木田哲夫，田中絵実（名古屋大学），柿木隆介

本研究では，触覚性注意における指選択性を明らかにすることを目的とした。被験者は22名の健常成人であった。リング電極を用いて被験者の右手の5本の指に電気刺激をランダム順に提示した。刺激波形は矩形波，持続時間は0.2ms，强度は感覚閾値の約2倍で痛みの無い程度，間隔は750～1250msのランダム（平均1s），提示順序もランダムとした。稀に（10%の確率で）2連発刺激を提示し，標的刺激とした。被験者は第2指（D2）もしくは第4指（D4）またはその両方に注意を向け，注意を向けた指への標的刺激を数えるように指示された。刺激後70ms以内に出現する1次体性感覚野（SI）の反応は注意による影響を受けるものと受けないものがあった。80ms以降に出現する2次体性感覚野（SII）の反応は，刺激した指に注意を向けたときに最も増大した。また，注意を受けた刺激に隣接する指への刺激に対するSII反応もわずかに増大した。さらに，D2とD4に同時に注意したとき，中指（D3）刺激に対するSII反応は低下した。以上より，触覚性注意には選択性があるが，空間的な勾配を持つこと，また，非隣接2指に同時に注意を向けたときには，中間の指からの非関連入力に対する反応は抑制されることが示唆された。

（Neuroimage, in press）

手指の巧緻的な運動時における一次体性感覚野の働きの解明

和坂俊昭（名古屋工業大学），木田哲夫，柿木隆介

本研究では，手指の器用な運動の制御に関わる感覚運動統合過程を解明することを目的として，単純な運動や巧緻的な運動時における一次体性感覚野の活動を比較した。被験者に右手の手掌上で2個のボールを回転させるボール回し課題，ボールを持続的に把持するボール握り課題，五指の屈曲伸展を繰り返す課題，ボールのない状態でボールを回しながら指を動かす課題を行わせ，体性感覚誘発脳磁場を記録した。体性感覚誘発脳磁場のM30成分は運動中に有意な振幅の減少を示すが，M38成分はボール回し課題において有意な振幅の増大を示した。運動遂行中の一次体性感覚野の活動は，安静条件と比較して減少するが（gating），巧緻的に指を動かしながら物体を操作するボール回し課題では，その活動が増大した。以上の結果から，運動時の感覚運動統合過程は，運動の種類によって促進的に働くことが明らかとなり，運動の複雑さによって一次体性感覚野の処理を変化させる神経機構が，巧緻的な運動の制御に対して重要であることが示唆された。

（Scientific Reports 7(1), 15507, 2017）

自然シーンにおける人物認知の初期発達と神経基盤の検討

小林 恵，Alice J. O'Toole（テキサス大学ダラス校），山口真美（中央大学），柿木隆介

我々ヒトは日常生活の中で，様々な場面で出会った人物が既知であるかを素早く判断し，その人物を認識しなければならない。そのために成人は，顔と身体の両方から得られる情報を手がかりとしており，この2つの情報のそれぞれを処理する脳領域が後側頭部位に存在することが報告されている。我々は，自然シーンにおける人物認知（行動実験）および顔・身体情報の脳内処理（脳機能計測実験）の初期発達を検討した。

行動実験では，乳児が遠方から接近する人物の顔を再認できるか，注視時間を指標に検討した。その結果，学
習した人物が遠方から接近した際に再認できるのは生後7ヶ月頃からであり、顔記憶の汎化能力は生後5ヶ月から7ヶ月にかけて徐々に発達することで可能になることが示された。

脳機能計測実験では、遠方から接近する女性の動画の身体または顔部分にぼかしを付加し、「顔のみを観察する動画」と「身体のみを観察する動画」を乳児に提示し、左右の後側頭領域の脳活動を計測した。現在もデータ収集中であるが、これまでのところ両半球の後側頭領域で顔と身体の両方に脳活動が上昇することが示されており、さらに、低月齢（5-6ヶ月児）では顔よりも身体に対してより広い領域の脳活動が上昇する傾向が見られた。高齢乳児（7-8ヶ月児）では、身体に対する反応は低齢乳児ほど変わらない一方で、顔に対する反応はより広い領域で示されている。

体性感覚系と運動系の干渉作用における選択性

木田哲夫、田中絵実（名古屋大学）、柿木隆介

本研究では、運動系と体性感覚系の干渉作用（gating）の選択性を解明することを目的とした。健康成人を対象とした。被験者の右手の正中神経と尺骨神経をランダム順に刺激することにより脳機能イメージング（Somatosensory evoked magnetic fields: SEFs）を記録した。脳磁場は全頭型脳磁計で計測した。右手の様々な指動作課題および安静条件を設定した。

正中神経・尺骨神経N20m振幅ともに個々の指の動作では変化しなかったが、正中神経N20m振幅は親指と人差し指のタッピング動作でのみ低下した。正中神経P35m振幅は親指、人差し指、中指の各々の動作で低下し、また親指と人差し指のタッピング動作でも低下したが、ピンチング動作では変化しなかった。尺骨神経P35m振幅は中指、薬指、小指の各々の動作およびタッピング動作で低下したが、ピンチング動作では変化しなかった。

以上より、gatingの選択性パターンは動作課題と処理段階に依存して変化することが明らかとなった。

心理生理学研究部門

【概要】

認知、記憶、思考、行動、情動などに関連する脳活動を中心に、ヒトを対象とした実験的研究をすすめている。脳神経活動に伴う局所的循環やエネルギー代謝の変化をとらえる脳機能イメージング（機能的MRI）と、時間分解能にすぐれた電気生理学的手法、更には眼球カメラやmotion captureによる定量的行動計測手法を統合的にもちいることにより、高次脳機能を動的かつ大観的に理解することを目指す。言語・非言語性のコミュニケーションを含む人間の社会行動の神経基盤を明らかにするため、3テスラMRI2台を用いて、社会的相互作用時の2個体同時脳機能計測を行い、共同注意を始めとする共同作業の神経基盤を解明している。さらにヒト用超高磁場（7テスラ）MRIを用いて社会脳機能に関連する脳微細構造・機能連関研究を展開するとともに、マカクサルが可能となるシステムを構築し、種間比較を推進する。
7 テスラ MR による高度脳計測基盤技術の開発

福永雅喜, 菅原 翔, 山本哲也, Denis Le Bihan, 定藤規弘
梅田雅宏（明治国際医療大学）, 栗林秀人（シーメンスヘルスケア）

MRI による生体観察において, 静磁場強度の上昇は信号雑音比（SNR）をもたらし, 感度改善による空間分解能の向上や組織コントラストの増強に作用する。本研究ではこれらをふまえ, 超高磁場7テスラ MR 装置による脳拡散強調画像計測および脳代謝物質計測技術の初期検討を実施した。幾何学的歪み対策としてマルチショット技術を応用することにより, 従来のシングルショット計測で問題となった前頭極や脳底部, 小脳を含む全脳対象に2 mm等方ボクセルの拡散強調画像の収集が可能となった。また, 1H MR スペクトロスコピー計測では, シングルボクセル計測からケミカルシフトイメージングへの拡張を実施し, NAA, choline, creatine, myo inositoなどの脳代謝物質の画像化が可能となった。引き続き, 計測系の最適化を進めると共に, 脳微細構造・機能連関研究への応用を推進する予定である。

統合失調症の多施設横断的脳 MRI 研究

福永雅喜, 橋本直樹（北海道大学・医学研究科）, 岡田直大（東京大学大学院・医学系研究科）
越山太輔（東京大学大学院・医学系研究科）, 橋本亮太（大阪大学大学院・連合小児発達学研究科）

統合失調症の神経基盤は, 未だ不明な部分が多い。これまで大脳皮質下構造に注目し, 11施設の健常者, 統合失調症患者のべ約2500名のT1強調MRI画像を用いて, その体積変化の片側性, 記憶機能および認知社会機能との関連性について報告した。今年度は, デモグラフィックデータとの関連性について解析を実施した。服薬期間と皮質下体積の間に, 論理球では正の, 海馬では負の相関がみられたが, 服薬の種類に特異な変化はみられなかった。また, 国際的な画像遺伝学研究コンソーシアム（ENIGMA: Enhancing Neuro Imaging Genetics Through Meta Analysis）に参加し, 52グループ15,847例のMRI画像から論理球・被殻体積の非対称性に性差がみられ, 海馬と視床では遺伝的要因が関与することを明らかにした。

Does joint attention help adults learn new words?

Masako Hirotani1,2, Koji Shimada2,3,4, Shuntaro Okazaki2,7, Hiroki C. Tanabe2,3,6 and Norihiro Sadato2,3

1School of Linguistics and Language Studies, and Institute of Cognitive Science, Carleton University, Ottawa, Canada
2Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
3Department of Physiological Sciences, The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
4Research Center for Child Mental Development, University of Fukui, Fukui, Japan
5Biomedical Imaging Research Center (BIRC), University of Fukui, Fukui, Japan
6Division of Psychology, Department of Social and Human Environment, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
7Department of Health Science and Social Welfare, Tokyo, Waseda University, Tokyo, Japan

While the significance of social context in child word learning is well documented, data concerning adults are
scarce. We investigated whether joint attention aids adult word learning and if so, how. A live interaction paradigm placed adult pairs learning new words in different social learning contexts. Eye-tracking ensured the intended contexts. After each word learning session, learners’ mastery of new words was tested. Throughout the sessions, adults learned words best when they shared both the direction and timing of their gaze towards the target objects. In later sessions, learners’ new word mastery equaled that of when they learned the words by following, but not leading, their partner’s gaze onto the objects. These results are explained by positing different attention resource management strategies applied to the social contexts, which, in turn, result in different word learning processes. This study shows a critical role of joint attention in adult word learning.

リアルタイムでのアイコンタクトの神経基盤: Dual fMRI および Dual 脳波-fMRI を用いた研究

小池耕彦, 中川恵理, 角谷基文, 定藤規弘

アイコンタクトとは単に他者の目の映像をみるという行動ではなく、実時間での情報交換により自他の行動が影響を与え合い二者が繋がる、意図や注意の共有へと繋がる共同作業である。Dual fMRI を用いた研究により、アイコンタクト条件では、対照条件と比較して、参加者の瞬目のタイミングは他者のそれに強く影響を受けていていることがわかった。また、脳活動上では、小脳半球、前部帯状回が賦活化され、また前部帯状回-島皮質の機能的結合が増強した。この結果を基に、より高い時間解像度および簡便な手法でアイコンタクトの神経基盤を描出することを目指して、Dual 脳波-fMRI 計測を開始した。MRI 撮像と干渉せずに脳波撮像ができる設定を検討した。現在、データの取得をすすめるとともに、MRI と脳波データの双方の利点を引き出した解析方法を検討している。

共同注意から共感へ: Dual MRI を用いた研究

小池耕彦, 田辺宏樹（名古屋大学大学院・情報学研究科）、中川恵理, 角谷基文, 定藤規弘

我々は共同注意の実験を発展させ、二者間での好みの共有が、どのような脳活動を引き起こすかを検討した。実験において、参加者 2 名は、キュー刺激により好みの共有をおこなう物体の情報を共有する（例：「桃！」「ほかい！」）。これは一般的な共同注意の中では、注意共有がおこなわれる物体に視線を動かす行為に対応する。次いで参加者は、その物体についての好みを共有する（例：「好き！」「私も好き！」）。これは共同注意では、互いに同じものを見ていることを確認する過程に対応すると考えられる。このような課題をおこなっている最中の脳活動を Dual MRI 装置を用いて記録した。その結果、先行して好みを言う条件、すなわち自分の好みに対する意見が相手によって肯定もしくは否定されるときに、偏側性や線条体など、情動に関連するとされる脳領域の活動が惹起されることが明らかとなった。現在、さらなる詳細な解析を続けているところである。
運動記憶痕跡と関連する安静時ネットワーク変化

菅原 翔, 福永雅喜, 濱野友希, 吉本隆明, 定藤規弘

系列運動学習は神経科学における主要なトピックであるが、系列運動についての記憶痕跡の所在は未だにはっきりしていない。早期の系列運動学習実行中に計測したfMRI信号から課題関連活動を取り除いた残差時系列を用いて、脳内ネットワークにおける重要性を示す中心性指数を評価することで、背側運動前野と左頭頂間溝に運動記憶痕跡が形成されるという知見を得た（Hamano et al. submitted）。この所見を補強するため、本研究では学習前後での安静時ネットワーク変化を、独立成分分析とdual-regression法を用いて検証した。その結果、学習後には左頭頂間溝と実行機能を担うと想定される前頭葉ネットワークの同期的活動が増大することが示され、同定された左頭頂間溝領域は、習い中の中心性指数増大が示された領域と重なる。以上の結果から、左頭頂間溝を中心とするネットワークが、系列運動学習の早期段階において運動記憶痕跡の形成に関与することが示唆される。

体性感覚野における手指表象とミエリン密度分布の関係

菅原 翔, 福永雅喜, Matthew F. Glasser (Washington University Medical School・St. Luke’s Hospital), 山本哲也, 濱野友希, 定藤規弘

繊維構築は大脳皮質の機能区分を反映する。一次体性感覚野（S1）には手指のような詳細な身体部位マップが表象されているが、ミエリン密度分布が詳細な機能区分とも対応するかは不明確である。本研究では、7T functional MRI と3T structural MRIを併用することで、S1における手指機能区とミエリン密度分布の関係を検証した。手指機能マッピングにより、S1のArea 3bで第2-第4指に対応する機能領域を同定した。Area 3bにおけるミエリン密度値の空間的パターンと手指運動時の活動パターンを比較したところ、Area 3bでは各指領域の境界がミエリン密度の低下点と対応する傾向が示され、特に第2指と第3指の境界はミエリンの変化点と一致していた。これらの結果は、一次体性感覚野のミエリン密度は身体部位内の詳細な機能区分をも反映することを示唆している。

第二言語文産出時の意味的および文法的符号化の神経基盤

統語的プライミングを用いたfMRI実験による検討

中川恵理, 小池耕彦, 角谷基文, 島田浩二(福井大学), 牧田 快(福井大学), 吉田晴世(大阪教育大学), 横川博一(神戸大学), 定藤規弘

発話時の意味処理と文法処理が第一言語(L1)同様第二言語（L2）でも分離しているかは自明でない。二者間の物の受け渡し場面は、英語で二重目的語構文(D)か前置詞を用いる構文（P）で表現できる。P と D は意味が同じにも関わらず、日本人は英語母語者とは異なり P を選好する傾向がある。我々は意味処理は P と D で共通だが文法処理は異なっているかを検証するため、統語的プライミング効果を利用したfMRI実験を行った。その結果、P または D を非構文の後に産出するよりも P または D の後に産出する方が誤答が減るというプライミング効果がみられ、P・D で共通の処理が示唆された。反応時間におけるプライミング効果は P でのみみられ、D は P か
生理学研究所年報 第39巻 (Dec,2018) 研究活動報告/システム脳科学研究領域

らの変換により産出される可能性が示された。P・D 共通である意味処理には後頭から頂頂領域、前補足運動野および中心前回が、非共通である文法処理には言語性

ワーキングメモリに関わるとされる左下前頭回と小脳の賦活がみられた。

自身の行動に伴う社会的な承認反応の神経基盤

中川恵理, 佐野基文, 小池耕彦, 定藤規弘

他者のポジティブな音声反応は、他人に対してよりも自己に向けられたときのほうが嬉しいと感じられることが分かっているが、視覚的で、ネガティブな反応でも同様の結果になるかは不明ではない。外国語教育の場面では教師が学習者の発話に対してポジティブ・ネガティブ両方のフィードバックを行う。本研究ではこれを利用し、自他の行動に伴う視覚反応を処理する神経基盤を明らかにするため、MRI 実験を実施した。被験者は文字提示される疑似的英単語を音読後、英語教員からのフィードバックを観察し、気分を評定した。フィードバックは二つのモダリティに分け、三種類（ポジティブ/ネガティブ/無反応）があり、統制条件として他者と自己の関与があるときにこの効果は増強し、内側前頭前野が賦活することが示された。現在、詳細な解析を進めている。

7T 機能的核磁気共鳴撮影を用いた脊髄損傷後の回復過程における大脳機能連関の解析

當山隆道, 福永雅喜, 山本哲也, 伊佐 正（京都大学大学院医学研究科神経生物学）
山口玲於奈（京都大学大学院医学研究科神経生物学）
中川 広（京都大学霊長類研究所統合脳システム分野）

マカクザルの皮質脊髄路損傷後にみられる手指機能の回復過程において、脳の大規模回路にどのような変化が起きているかは不明であった。そこで本研究では、皮質脊髄路を損傷させたマカクザルの麻酔下静止時 MRI データを取得し、機能回復に伴う大規模回路の再編がどのように起こるか解析することを計画した。昨年度までに確立したマカクザル麻酔静止時脳機能 fMRI に着目した検査条件を用い

て、計6頭の脊髄損傷後サルの計測を実施した。損傷後4ヶ月間で、静止にてデータ收集を行い解析した結果、脊髄損傷後の両側前頭葉において、脳ネットワークのハブ機能の指標である中心性（Eigenvector centrality）が上昇する可能性が示唆された。今後、これらの 3T MRI のデータを参照し、7T MRI のおけるサル計測の最適化をすすめる予定である。

7 セルラ高分解能 fMRI における空間的歪みの定量評価とその対策

山本哲也, 福永雅喜, 菅原 翔, 濱野友希, 定藤規弘

7 セルラ MRI の導入により、以前より高い分解能・感度の fMRI 撮像が可能になった。一方、磁場不均一による歪みは、静磁場の上昇に伴って顕著となる。本研究では、1.2 mm の高解像度 fMRI 画像に Washington University in St. Louis が提供する HCP Pipelines を適用し、歪みの影響を定量評価すると共に、その補正を実施した。
歪みが大きな前頭眼窩部や側頭葉下部に加え、比較的軽度な体性感覚皮質や視覚皮質でも構造画像との位置ずれが見られた。皮質表面解析では、全脳平均で約1mmのずれが見られ、歪みの大きな部位では、異なる皮質部位や脳溝を挟んで隣接する脳回、皮質外へのミスレジストレーションも確認されたが、Pipelinesの適用により、適切な補正が可能であった。超高磁場fMRIの優れた空間分解能を活用するには、これら適切な補正処理が肝要であることが示唆された。

表情の被模倣に関わる神経基盤の解明
宮田紘平、小池耕彦、中川恵理、原田宗子（広島大学）、角谷基文、定藤規弘

模倣は円滑なコミュニケーションを行う上で重要である。模倣されたことは、相手への親近感を高め、社会的行動を誘発する。これらの背景には、被模倣による自己の快感情の誘発が予想される。本研究では、被模倣が自己の感情に及ぼす影響とその神経基盤を機能的磁気共鳴画像法を用いて調べた。2人1組の参加者は2台の磁気共鳴画像装置にそれぞれ入り、映像システムを通して、笑顔、かなしい顔の表情模倣課題を行った。各課題後には、ポジティブとネガティブを両端とした七件法で内省報告を行ってもらった。その結果、被模倣は表情の種類に関わらず快感情を誘発し、強い快感情を報告した人ほど前帯状皮質吻側部の活動が高かった。これらのことから、被模倣はヒトを快感情にさせ、前帯状皮質吻側部は被模倣の認知的処理と快感情を結びつける重要な役割を果たすことが示唆された。

自己の幸せ感情を表象する神経基盤の解明
宮田紘平、大星有美（浜松医科大学）、小池耕彦、定藤規弘

幸福感は心身の健康に重要である。先行研究により、幸せ感情は内側前頭前野（mPFC）で表象されることが報告されている。しかし、この先行研究では、快い出来事を想起させることで、幸せ感情を惹起させていたため、mPFCの活動は自己の幸せ感情の処理に関与するのか、快い出来事の想起そのものの処理に関わるのかは不明であった。そこで、mPFCの活動が自己の幸せ感情処理に関わるという仮説を検証するために、自分又は他人の視点という条件を加え、機能的磁気共鳴画像法を用いて調べた。その結果、mPFCの活動は快だけでなく、不快な出来事の想起でも活動したが、その活動は自分に関わる感情的出来事の想起の時にだけ観察された。このことから、mPFCの活動は自分の感情処理に関わることが示唆された。

自閉スペクトラム症における視床―皮質間および皮質―皮質間における脳機能結合：

安静状態におけるfMRI研究
飯高哲也（名古屋大学医学系研究科）、間野陽子、小方智広（名古屋大学医学系研究科）、米田英嗣（青山学院大学教育人間科学部）

自閉スペクトラム症は、社会性および対人コミュニケーションの困難さ、過度に強いこだわりによって診断される神経発達障害である。安静状態におけるfMRI研究では、自閉スペクトラム症者の脳機能結合は、定型発
研究活動報告／システム脳科学研究領域

達者の脳機能結合よりも低いと言う報告や、定型発達者の脳機能結合よりも高いという報告もあり、結果が一貫していない。その理由の一つとしてサンプル数の少なさがあげられる。そこで本研究では、Autism Brain Image Data Exchange (ABIDE) II データベースを用いて大規模サンプルに基づいて検討を行った。5歳から29歳までの男性で、自閉スペクトラム症者が311名、統制群が315名であった。安静状態における機能結合解析の結果、視床と前頭-側頭-頭頂との間、左半球のTPJと両側のPCCとの間において過剰結合が見られた。さらに、自閉スペクトラム症群は、PCCをハブとした皮質-皮質間結合が、統制群よりも高くなっていたことが明らかになった。これらの結果から、視床、TPJ、PCCにおける過剰結合が、自閉スペクトラム症の神経発達基盤であることが示唆された。

助詞処理の神経基盤：日本語母語者および非母語者の比較

第二言語として日本語の文法を学習する際に、最も難しいのが助詞の使い方であることが知られている。日本語を複数年使用している学習者でも不適切な助詞を使用していることが報告されている。しかし、非母語者が助詞を使用する際にどのような処理をしているのかについては不明な点が多い。本研究では、日本語母語者と複数年日本語を使用している非母語者を対象に、正しい助詞を考え発話するfMRI課題を行った。その結果、母語者と比べて非母語者は、助詞の発話の反応時間が遅く、発話した助詞の正答率が低かった。また、脳画像データ解析の結果、母語者と比べて非母語者の助詞の発話に伴い左下前頭溝が強い活動を示した。これらの結果は、非母語者にとって助詞の使用は言語的負荷が高く、左下前頭溝の活動が困難な助詞発話過程を制御している可能性を示唆している。現在は、助詞の種類による負荷の違いに伴う脳活動を検討している。

Decoding of Global Activation Patterns from Local Activation Patterns

Balbir Singh1, Tetsuya Yamamoto1, Koji Jimura2, Junichi Chikazoe1 and Norihiro Sadato1

(1) Division of Cerebral Integration, National Institute for Physiological Sciences, Japan
2 Department of Biosciences and Informatics, Keio University, Japan

Recently, the fMRI studies have shown that rich information can be extracted from the brain activity in the absence of explicit behavior. The spatial patterns of whole brain activation are reproducible across the time and the participants. Liu et al., demonstrated that these co-activation patterns (CAPs) can infer functional connectivity between/within functional networks (e.g. default network, sensorimotor network and visual network) with higher temporal resolution, in comparison to traditional resting state correlation analysis. Based on the spatiotemporal structure in the functional networks, we propose a method for decoding of global (whole brain) and local (specific region) activation patterns from local activation patterns. To examine this, we extracted the 150 Group-CAPs, based on k-means clustering from resting fMRI data taken from 100 participants in Human Connectome Project (HCP) database. We found 93 CAPs are shared across the participants. We used the three classifiers, that is, elasticnet-based combination, correlation-based combination and single CAP (maximum correlation) classifiers. We found that the elasticnet-based combination outperformed the other two classifiers both for local-to-local and local-to-global decoding. Furthermore, we revealed that decoding performance of local-to-local was asymmetrical. Activation patterns from one region could be used to decode activation patterns of another region but the
vice-versa was not always true, suggesting information directionality among the brain regions.

手指系列運動の初期学習による記憶痕跡の神経基盤

濱野友希, 菅原 翔, 吉本隆明, 定藤規弘

系列運動技能の習得には、顕在的フィードバックに依存する学習と、依存しない学習の両者が関与すると考えられる。異なる学習形態で生成される運動記憶痕跡を検討するため、2つの速度条件で同一運動技能を学習する際の機能的磁気共鳴画像データを計測した。具体的には、顕在的フィードバックを与える最大速度条件と、顕在的フィードバックのない定速条件を設定した。記憶痕跡と運動制御に関連する活動を区別するため、学習中に設けた休憩期間での中心性増加により記憶痕跡を評価した。最大速度条件による運動学習では左前頭頂間溝で、定速条件による運動学習では両側背側運動前野と右一次運動野において中心性が学習に伴い増強した。以上の結果から、顕在的フィードバックに基づく系列運動学習により生成される記憶は左頭頂葉に、顕在的フィードバックを介さない運動学習の記憶は中心付近神経回路で表象されることが明らかになった。

多ボクセルパターン解析で明らかになった前頭眼窩皮質(OFC)における対象の同一性の表象

吉本隆明, 近添淳一, 岡崎俊太郎（早稲田大学），角谷基文，高橋晴香，中川恵理，小池耕彦，
北田 亮（Nanyang Technological University），岡本士毅（琉球大学），小阪正雄（福井大学），
中田正範（自治医科大学），矢田俊彦（自治医科大学），定藤規弘

前頭眼窩皮質（Orbitofrontal cortex: OFC）において、対象の同一性 object identity や主観的価値 subjective value といった次元を有する情報が統合されており、これらの情報が内臓情報 visceral information に影響されていることが主に動物を対象とした研究を通じて示唆されている。しかしながら、今までのところ、OFC におけるこれらの多重表象がどのように相互に作用しているかを統合的に調べた研究はなされていない。私たちは空腹時・満腹時に、128 種類の食品画像の価値を評価しているときの脳活動を測定する fMRI 実験を行った。多ボクセルパターン解析の結果、OFC では、食品の視覚刺激の object identity を表象しているが、その表象は栄養状態の変化の影響を受けることが分かった。さらに、その神経表象の変化は栄養状態の変化による主観的価値の変化だけでは説明できないことがわかった。以上のことば、OFC が主観的価値だけではない複雑な対象を表象していることを示唆している。
個別研究

個別研究（大橋研究室）

【概要】
当研究室では細胞内膜系の生理機能とそれを担うメカニズムをテーマに研究を行なっている。細胞内膜系では、生体膜の分裂・融合によってオルガネラを行き来するメンブレントラフィックにより、物質の輸送、分配が行われている。分子は、その機能を発揮すべき細胞内外の正しい場所に送り届けられる。この「古典的な」物流機能に加え、メンブレントラフィックが、一見無関係な細胞間、細胞内のシグナル伝達において、これまで考えられてきた以上に様々な役割を担っていることが注目されている。細胞内分子の輸送選別が、シグナル伝達の分岐選別に直結していることを背景に、細胞内膜系が位置情報を介してシグナル伝達の動的な制御の場をいかに提供しているか、その原理とメカニズムの研究が精力的に進められている。

我々は、発生過程のシグナル制御、特に平面細胞極性（PCP）形成に注目し、そこで細胞内膜系が担う役割と、そのメカニズムの研究を進めている。PCPシグナルは、内耳の有毛細胞が一貫した方向性を示すように、組織全体のグローバルな極性を感知して個々の細胞の極性を生み出す役割を果たしている。その空間情報制御をなす特徴から、位置情報とシグナル制御の重層的関係が興味深い系である。組織レベルと細胞内レベルの時空間情報をつなぐインターフェイスとしての細胞内膜系の役割を解明することが、現在の主要テーマである。

細胞内膜系の選別輸送のメカニズムと発生シグナル制御

大橋正人、木下典行（基礎生物学研究所）

哺乳動物モデル細胞系とアフリカツメガエルの発生実験系を相補的に利用し、PCPシグナルを制御する細胞内膜系タンパク質の候補を見出してきた。これまでに、これらの制御機能分子のいくつかについて細胞内局在を規定する配列構造を同定し、その作用が、PCPシグナル下流の細胞骨架制御と関連していることを示唆するデータを得ている。また、タンパク質機能阻害実験系の工夫と、それを元にした機能障害スクリーニングによって、関連する新たな制御因子の探索を可能とするため実験系の確立を進めた。本年度はこれまでに開発を進めてきた細胞のポピュレーションの変化をとらえたシグナル応答の定性検出法の信頼性をさらに確保するための改良を行った。蓄積したデータの解析により、定量化の障害になっていると考えられる問題点を把握できた。これを回避する新たなアイディアにより、実験の設計を見直し改善を進めている。

個別研究（毛利研究室）

【概要】
有性生殖をする多くの生物は雌雄配偶子（精子）と雌性配偶子（卵）の融合に伴う劇的で普遍的な活性化現象、受精を行う。それは個体発生という重要な現象へのひきがねである。しかし、受精機構の詳細はまだに謎に満ちている。どのように精子が卵に近づいてどのように卵を活性化させるのか、その刺激のシグナルは何でどのように卵に伝えられるのか、その後、卵内でどのような反応が引き起こされて発生のプログラムがどのように実行されるのか不明な部分が多い。また、卵が活性化されるためにはどのように雌雄両配偶子が成熟するか、いまだ不明である。受精時の中内のCa2+増加は普遍的な現象として知られている。哺乳類、鳥類、一部の爬虫類で
卵内 Ca²⁺ 变化は精子が持ち込む因子、タンパク質によって引き起こされることがわかってきた。しかし、もっと単純な海産無脊椎動物ウニやヒトデではまだ不明である。昨年に引き続き、数種のウニ卵の受精時に、イトマキヒトデ卵母細胞の未成熟、成熟途中、成熟完了時について電気生理学とイメージングにより、膜電流と卵内 Ca²⁺ 変化の関係について研究を行った。

精子付着点近傍のカルシウムと電位依存性精子侵入阻止機構の研究

毛利達磨、Ivonnet, PI（マイアミ大学医学部胸部ケア部門）、McCulloh DH（ニューヨーク大学ラゴーン医療センター）

以前から、北アメリカ大西洋産のウニ、L. variegatus について電位固定下では負電位依存的に精子の進入が阻害されることが報告されていた。電位固定に加えてイメージングによる同時 Cai 測定を行ったところ、静止電位近傍の-80 mV では Ion とほぼ同時に Ca²⁺ 増加が見られた。これら単極電位固定下媒精時の精子進入阻害現象の結果を、負電位依存性と細胞内外の Ca²⁺ の関与について論文にまとめて発表した。日本産のウニでも同様なことが起こるのか今後の課題である。

ウニ卵受精時カルシウム遊離機構と電気的変化の研究

毛利達磨

日本産 3 種のウニ、（バフンウニ、アカウニ、タコノマクラ）の受精時の卵内 Ca²⁺ (Caₐ) 変化と電位固定下の膜電流（活性電流）および膜電位変化について実験をした。-20 mV や-30 mV での活性電流は L. variegatus (Lv) と同様に Caₐ 依存性を示した。小さいが鋭い初期電流 (Iₐ) はバフウンニ>アカウニ>タコノマクラの順であった。最大電流値 (Ip) はアカウニ>タコノマクラ>バフウンニの順であった。アカウニでは Lv で特徴的な肩の部分 (Iₘₐₖ) が認められたが、バフウンニとタコノマクラでは不明瞭だった。精子が侵入しやすい-20 mV では Lv と異なり Ip の後に 3 種とも非常に強い外向き電流を示した。特にバフウンニで顕著であった。このことは早い再分極を意味し K⁺イオン流出、K⁺チャンネルの活性化であると今後の検討をする。-70 mV や-80 mV では Lv 同様、負電位依存的精子進入阻害を示したが、その傾向は Lv に比べて弱く細胞内外 Ca²⁺ に対する今後の更なる検討を要とする。

イトマキヒトデ卵母細胞の成熟過程におけるカルシウム遊離機構と膜電流変化の研究

毛利達磨、経塚敬一郎（東北大学大学院生命科学研究科）

イトマキヒトデ卵母細胞の成熟過程において、未成熟、成熟途中、成熟の 3 種の成熟段階の卵母細胞で媒精によって引き起こされる細胞内 Ca²⁺ (Caₐ) 変化と膜電流変化（受精前活性電流を含む）を測定した。成熟と成熟途中の卵母細胞の媒精時の膜電流には Iₐ が存在せず内向電流で最大値 Ip があり、その後不活性化して外向き電流に変化した。その後、電流は 10 分以上経過しても媒精前の電流値には戻らなかった。Caₐ との同時測定の結果、膜電流の一部は Caₐ 依存性であった。卵成熟ホルモン 1-Methyladenine (1-MA) 用量以下濃度 (0.02-0.04
μM）処理や閾値濃度（1 μM）処理15分で未成熟卵母細胞は成熟途上卵母細胞になる。多くの成熟途上卵母細胞、および一部の未成熟卵母細胞で媒精後Cai変化とそれに対応する膜電流変化が増減するパターンが観察された。さらにCai遊離機構を阻害するBAPTA、heparinや2-APBの顕微注入はこの増減パターンを抑制した。このことは卵母細胞の成熟時のCai遊離機構を考える上でIP3の重要性を示唆した。
研究連携センター

【概要】

研究連携センターは2016年4月に設立され活動を開始した。本センターは、共同利用研究推進室、学術研究支援室、NBR（National Bio-Resource）事業推進室、流動連携研究室、国際連携研究室の5室により構成される。

(1)共同利用研究推進室は、大学共同利用機関として生理学研究所の担う重要な役割である共同利用研究の推進を担う。具体的には、共同利用研究の実施希望者に対し対応できる研究手法や研究部門を紹介する等のいわば相談窓口としての役割を果たし、また機器設備や研究手法に関する要望の汲み上げも行う。(2)生理学研究所は基礎生物学研究所と共に、2016年度より新学術領域研究「学術研究支援基盤形成」のひとつである「先端バイオイメージング支援プラットフォーム」事業を担当している。学術研究支援室は、このプラットフォームにおける光学顕微鏡、電子顕微鏡、機能的磁気共鳴装置等を用いた先端的技術支援の遂行をサポートする。また、学術研究支援室は「次世代脳」プロジェクトの支援を行う。これには、多数の脳科学関連の新学術領域等の日本全国の脳科学研究者を横断的に束ねて毎年全体会合を行う、これまで「包括脳」が担ってきた役割を継続するものである。

(3)生理学研究所はこれまで実験用サルの供給事業を行ってきた。NBR事業推進室は、この事業の担当部署を明確化し、これまでの脳機能計測・支援センターの腫瘍マウスモデル動物室を改変して設けられた。(4)流動連携研究室は、2015年度末で閉鎖となった多次元共同脳科学推進センターから本センターに移設されたもので、国内の研究者のサパティカル滞在による研究の推進を目的として、随時募集を行っている。(5)国際連携研究室は、外国人客員教授が長期滞在して運営する3年の限定期間研究で、国際連携研究の推進を目的としている。2017年度から、新たに、NeuroSpin（フランス原子力・代替エネルギー庁）の元DirectorであるDenis Le Bihan博士が外国人客員教授として研究室のP.I.を務めることとなった。7テスラ-MRIを用いたヒト脳イメージングの研究、特に拡散強調画像の新規撮像法および解析法の開発に取り組んでいる。

共同利用研究推進室

【概要】

共同利用研究推進室は、全国の他大学や研究機関に所属する研究者が生理学研究所においてスムーズに共同研究を円滑に遂行することができるようサポートするための総合案内窓口として、2016年度に発足した。生理学研究所では、他大学や研究機関では購入、維持、管理、運営が困難な連続ブロック表面走査型電子顕微鏡（3D-SEM）、新生光子顕微鏡、電顕、機能的磁気共鳴装置等を用いた先端的技術支援の遂行をサポートする。また、学術研究支援室は「次世代脳プロジェクト」の支援を行う。これには、多数の脳科学関連の新学術領域等の日本全国の脳科学研究者を横断的に束ねて毎年全体会合を行う、これまで「包括脳」が担ってきた役割を継続するものである。

(1)学術研究支援室は、大学共同利用機関として生理学研究所の担う重要な役割である共同利用研究の推進を担う。具体的には、共同利用研究の実施希望者に対し対応できる研究手法や研究部門を紹介する等のいわば相談窓口としての役割を果たし、また機器設備や研究手法に関する要望の汲み上げも行う。
学術研究支援室

【概要】

学術研究支援室では、研究所のミッションの一環として、以下の2つの事業の運営を進めている。

・先端バイオイメージング支援プラットフォーム（ABiS）

2016年度より開始された新学術領域研究（学術研究支援基盤形成）の1つである、ABiSの運営事務局を担当している。狩野客員教授が代表を務めるABiSは、生理学研究所と基礎生物学研究所が中核機関を担う、各種顕微鏡やMRIによる先端的イメージング観察及び画像解析技術支援プラットフォームであり、共同利用研究と相補的な取組として、全国の連携機関とネットワークを構成し、オーダーメイド型の支援を行う事業である。今年度は、応募・審査・成果報告を一貫して行えるオンライン申請システムを構築した。また、オフィシャルウェブサイトにおいて、ABiSの支援内容、公募情報、会議や研究集会の案内、トレーニング開催情報、支援による成果発表等を随時発信するとともに、種々の学会でのブース出展やシンポジウム共催による周知活動を行った。また、2017年5月19日には、東京大学小柴ホールにてABiSの事業内容、応募方法に関する説明会を行い、同時に支援者による個別相談会も実施した。2017年9月26日には、ABiS International Symposium “MRI and Cohort Studies: Development of Imaging Science in Human Biology”を開催し、超高磁場MRI、脳機能画像データベース化、コホート研究に関する最新成果を共有し、今後のヒューマンバイオロジーとイメージングサイエンスの展開を議論した。

・「次世代脳」プロジェクト

2016年度に、10を超える脳科学分野の新学術領域研究が協力し、全体会合を行うための枠組み「次世代脳」プロジェクトが立ち上がり、本室はその事務局を務めている。本プロジェクトは、全国の脳科学研究者を横断的に行い、若手育成を主眼においたシンポジウムの企画、ウェブサイト運営やウェブリングリストによる関連情報発信を行い、脳科学コミュニティを支える取組を進めていいる。今年度は、2017年12月20日～22日に第2回冬のシンポジウムを実施した。

NBR事業推進室

【概要】

文部科学省補助事業ナショナルバイオリソースプロジェクト（NBRP）「ニホンザル」は2002年に発足し、自然科学研究機構生理学研究所が代表機関となって京都大学霊長類研究所（分担機関）と共同推進してきた。2017年度からの第4期NBRP「ニホンザル」は京都大学霊長類研究所を代表機関、自然科学研究機構生理学研究所を分担機関とする新体制で本事業を推進している。ニホンザルは優れた認知能力を持ち、我が国の高次脳機能研究に不可欠なモデル動物である。NBRP「ニホンザル」は病原微生物学的にも安全かつ付加価値の高い実験用動物として繁殖育成し、国内の研究者を対象に安定して供給することを目的としている。事業推進の柱として2017年度は以下4つの業務を行った。

（1）研究用ニホンザルの繁殖・育成体制の整備

ニホンザル繁殖事業の集約のために、年間10頭を生産して年間70頭を出荷する体制へ移行し、自然科学研究機構生理学研究所を福山航機関として、関係者を対象にした新体制の確認を推進している。ニホンザルは優れた認知能力を持ち、我が国の高次脳機能研究に不可欠なモデル動物である。NBRP「ニホンザル」は病原微生物学的にも安全かつ付加価値の高い実験用動物として繁殖育成し、国内の研究者を対象に安定して供給することを目的としている。事業推進の柱として2017年度は以下4つの業務を行った。

（2）研究用ニホンザルの提供事業の実施

提供数については9件、9頭の応募があり、25件71頭が採択された。2017年度の提供は年度審査分および昨年度審査分を合わせて27件76頭が提供された。
された。提供先機関は理化学研究所、東北大学、大阪大学、自然科学研究機構、筑波大学、京都大学、産業技術総合研究所、東京医科歯科大学、北海道大学、国立精神神経医療研究センター、玉川大学、福岡大学、新潟大学である。

（3）研究用ニホンザルの組織試料提供の実施

NBRP「ニホンザル」事業がより広く周知されるに伴い、血液等の組織試料を要望する研究者からの問い合わせが増えたため、提供組織試料の確保や輸送方法など解決すべき課題は多くあるが、2014年度から組織試料の提供を試験的に開始し、引き続き2017年度も組織試料の提供を行った。今年度応募数は18件（個体の静止画、動画、大脳、脳幹、脳の前部、口腔内組織（上唇・下唇等）、肺、腎臓、副腎、生殖器、甲状腺、皮膚、肛門周囲粘膜等組織、全血、血漿、血清、唾液、糞）であった。

（4）プロジェクトの総合的推進

1）委員会等の実施

運営委員会の開催は、サル提供に伴う提供検討委員会での審議の採否について2回、実験内容変更に伴うサル提供数の増加についてメール会議1回、および年度の総括のための1回の計4回であった。提供検討委員会はリソース提供応募書類を審議するために2回開催した。疾病検討委員会については、メール会議1回を含めて計2回、生理研外部委託施設における出荷検疫の可能性について審議するために開催した。

2）ユーザーコミュニティとの連携

研究者コミュニティとの連携協力、情報の共有を図るために使用者会議を開催すると共に、情報伝達のためにホームページを活用した。また、実験動物使用者会議を開催し、ユーザーとの意見交換を行った。

3）事前講習会の開催

事前講習会を開催して、ニホンザル提供を希望する研究者に対して教育と指導を行った。今年度は第25回愛知県犬山市、第26回東京都中央区、第27回愛知県犬山市の計3回開催した。

4）母群検討委員会

前年度までのニホンザル終生飼養保管施設ワーキンググループを引き継ぎ、生理学研究所外部委託施設の繁殖母群について話し合うために生理学研究所所長の諮問機関として設置された。第1回母群検討委員会は生理学研究所にて11月に開催された。
脳機能計測・支援センター

形態情報解析室

【概要】
形態情報解析室では、医学生物学専用超高圧電子顕微鏡（Biomedical-HVEM）、低温位相差電子顕微鏡（Cryo-PCTEM）、連続ブロック表面走査型電子顕微鏡（SBF-SEM）などを駆使して、バクテリアや生体組織などの細胞性試料の立体形態観察から、ウイルス粒子、タンパク質などの無染色氷包埋試料による高分解能三次元構造解析などを行っている。

Biomedical-HVEMは、生理研を代表する共同利用実験機器の一つであり、毎年これを利用した研究課題も全国から募集している。2017年度は、巨大ウイルス粒子の複製過程の観察から神経回路網の観察にいたるさまざまな細胞性試料の三次元形態研究について、合計10課題が採択され実施された。また、Cryo-PCTEMでは、可溶性タンパク質からウイルス粒子の高分解能単粒子構造解析、SBF-SEMでは、神経細胞の立体形態解析などの共同研究が行われた。本研究室では、これらの共同研究を遂行すると伴に、それぞれの課題を達成するための手法および付属装置の開発、電顕画像からの最適な立体再構成法の研究も合わせて行っている。

世界最大のウイルス「ピソウイルス」の詳細な構造を低温電子顕微鏡で解明

宋致宖、村田和義
岡本健太（ウプサラ大学）

ピソウイルスは2014年にシベリアにある3万年前の氷床コアから発見された世界で最も大きなウイルスである。全長が大腸菌とほぼ同じ2μm程度あり形も同じ紡錘形をしている。しかし、自己複製能力がなくアメーバの細胞の中でのみ増殖する。

本共同研究では、ピソウイルスの形態解析に低温超高圧電子顕微鏡と分光型位相差低温電子顕微鏡の2台の特殊な顕微鏡を用いることで、自然に近い状態の詳細なウイルスの全体構造を解析することに世界で初めて成功した。結果、ピソウイルスは、0.8-2.5μmの多様な大きさを持ち、ウイルス粒子内部には膜で仕切られたような空間があったことがわかった。また、粒子の表面は粘液のような物質で覆われていて、粒子内部は比較的均一でミミウイルスの8割弱の密度であることがわかった。これらのことから、ピソウイルスはこれまで知られているウイルスとは異なり、むしろ生物である細菌に近いような構造形態をしていると考えられた。

今回の成果は、「ウイルスは自己複製を捨ててしまうほど究極に小さくて単純な存在である」というこれまでの常識を打ち崩すだけでなく、生命の進化において、ウイルスがどのように進化し、生物がどのように生まれてきたかについても大きな示唆を与えることが期待された。

統合失調症および知的障害のモデル“Schnurri-2 ノックアウトマウス”が示す脳の海馬左下回における未成熟な形態学的特徴の解析

宮崎直幸，山田幸子，村田和義
中尾章人，大平耕司，宮川 剛（藤田保健衛生大学）

統合失調症および知的障害の病因として，脳の樹状突起棘（スパイン）およびミトコンドリアの構造変化が指摘される。また，本研究グループでは，Schnurri-2（Shn2）というタンパク質を欠損したマウスが，統合失調症および知的障害の症状を示すことを提案している。しかし，Shn2 ノックアウト（KO）マウスにおける樹状突起棘のような細胞内構造の変化は未だわかっていない。

本研究では，Shn2 KO マウスの脳海馬左下回顆粒細胞における細胞内構造の3次元形態解析を，連続ブロック表面走査型電子顕微鏡（SBF-SEM）を使って行った。Shn2 KO マウスでは，スパインの長さの増加および直径の減少からなる未成熟樹状突起の形態が見られた。また，核の体積およびミトコンドリアの数の有意な減少も見られた。さらに，細胞体の密度は Shn2 KO マウスにおい

凝集したタンパク質を再生するタンパク質 ClpB の動的な構造変化の可視化

宋 東宏，村田和義
飯野亮太（分子科学研究所），内橋貴之，渡辺大輝（名古屋大学），渡辺洋平，中崎洋介，山崎 孝（甲南大学），内山 進，丸野孝浩（大阪大学），石井健太郎（自然科学研究機構生命創成探究センター），安藤敏夫（金沢大学）

タンパク質は多数のアミノ酸がつながってできた分子で，それが複雑な立体構造を形成することで酵素として働く。タンパク質の立体構造は熱などのストレスに弱く，構造が壊れたタンパク質はお互いに絡まって凝集してしまう。凝集したタンパク質は機能を失うだけでなく，生体にも悪影響を及ぼす。ClpB は，この凝集してしまったタンパク質を脱凝集して再生する特殊な機能を持つタンパク質である。

ClpB はリング状の6量体を形成して働く。これまでの研究から，ClpB は ATP の化学エネルギーを利用して，リング中央の孔に凝集したタンパク質をほぐしながら通すことで脱凝集することを考えていた。しかし，ATP の結合と分解によって，ClpB の構造がどのように変化し，それがどのように変性したタンパク質を脱凝集させるのかなど，分子レベルの仕組みは分かっていなかった。

本研究では高速原子間力顕微鏡（AFM）という装置を用いて ClpB の構造変化を100ミリ秒の時間分解能で観察することに成功した。ATP 存在下で観察したところ，6量体の「閉じたリング」と，リングの一部切れた「開いたリング」が観察された。そして，本共同研究では，電子顕微鏡で個々の ClpB の粒子像を分類して平均化することにより，確かに閉じたリングと開いたリングの両方のリングが存在することを確認した。高速 AFM の観察では，この閉じたリングと開いたリングは観察中で何度も行き来しており，ATP の濃度が高いほど閉じたリングの割合が増加した。これららの結果から，ClpB は ATP の結合によってその中心の孔に凝集したタンパク質を取り込んで閉じたリングを形成し，ATP を分解すること
により脱凝集することが明らかになった。タンパク質の凝集は、ヒトではアルツハイマー症をはじめとする様々な疾患と深く関連する。また酵素タンパク質の産業応用においても、タンパク質の凝集は大きな問題になる。本研究の成果は、こうした疾患の治療や酵素タンパク質の品質維持に貢献する可能性を秘めている。

多光子顕微鏡室

【概要】
　　多光子顕微鏡室では、主に2光子蛍光寿命イメージング顕微鏡を用いて研究を推進している。2光子蛍光寿命イメージング顕微鏡を用いることで脳組織等の組織深部において、細胞やシナプス内で起こるシグナル伝達や分子間相互作用などの生化学反応を高空間分解能でイメージングすることができる。この方法を用いて、シナプス内の生化学反応を可視化することにより、シナプス可塑性機構を調べている。また、顕微鏡を軸とした最先端の光学技術に加え、新規蛍光タンパク質や光制御可能なタンパク質分子などのプローブの開発も行っており、これらの技術を顕微鏡や電気生理学的手法と組合せることで、神経細胞およびグリア細胞の機能に関する研究を推進している。

光応答性CaMKII分子の開発とシナプス可塑性研究への応用

柴田明裕、村越秀治

本研究では、単一シナプスレベルで光によって長期増強が惹起可能な新規光応答性分子の開発を行っている。シナプスの可塑性にとって重要な分子であるCaMKIIを青色光照射によって活性化することが可能な光応答性分子の開発を進めている。現在までに、CaMKIIのヒンジ領域に植物の光受容タンパク質キナーゼであるPhototropin1のLOV2ドメインを挿入することによって、光制御可能なCaMKII分子を作製することに成功した。この分子は青色光照射によって、分子構造が大きく変化し、キナーゼ活性が上昇する。また、単一スパイク内でCaMKIIを活性化させることによって、スパイク形態の変化や、AMPA受容体のリクルートを惹起出来ることを確認した。すなわち、スパイク形態の変化だけでなく、シナプス長期増強を惹起することができるものを強く示唆する結果を得ることができた。昨年度までに、光応答性CaMKIIの光活性化によるRhoGTPase活性化を蛍光寿命イメージング法によって可視化したところ、CaMKIIの活性化によってCdc42は活性化することがRhoAは活性化しないことを見出した。今年度は、Cdc42の活性因子の探索を行い、いくつかの分子に候補を絞り込んだ。今後は、候補分子をノックダウンして機能を調べると共に、光応答性CaMKIIの活性化によりシナプス長期増強が惹起できるかどうかを電気生理学的手法で調べていく予定である。

分子間相互作用検出のための色素蛍光タンパク質の開発

村越秀治、堀内浩、鍋倉淳一

細胞内のタンパク質分子の活性化や相互作用を検出する方法として蛍光共鳴エネルギー移動法（FRET）がよく用いられる。特に、蛍光寿命イメージング顕微鏡によりFRETを可視化する方法は、計測のアーチファクトが
出にくく、しかも定量的である。最近、このような計測に利用可能な新規蛍光タンパク質（dark mCherry）の開発に成功した（Nakahata et al. 2016）。本研究では、さらに高感度でアーチファクトの少ない蛍光プローブの開発を行っている。具体的には、色素タンパク質であるUltramarineを鋳型にして、ランダム変異導入法を行うことにより、細胞内発現量を改善した色素タンパク質を開発している。現在までのところ、全長230アミノ酸の内、23ヶ所に変異を導入することにより、HeLa細胞内での発現量を2から3倍に増加させることに成功し、ShadowRと名付けた。また、ShadowRをmRuby2またはmScarletと組み合わせることにより、FRETセンサーとして使用できることを確認した。今後は、各種FRETプローブにmRuby2-ShadowR、mScarlet-ShadowRのペアを適用し、詳細な解析を行う予定である。

分子間相互作用検出のための“無蛍光”黄色蛍光タンパク質の開発

村越秀治,柴田明裕

本研究では、2光子蛍光寿命イメージングによる蛍光共鳴エネルギー移動（FLIM-FRET）の観察を高感度で行うことができる蛍光タンパク質の開発を行っている。エラーエラーパルスPRC、或いはランダムプライマーを用いた変異導入を行うことでEYFPに変異を導入し、大腸菌に形質転換しライブラリーを作製した後、大腸菌コロニーの蛍光を観察することによりスクリーニングを行った。これによって、従来FRETのアクセプターとしてよく用いられていたsREACHと比べてフォールディング効率が優れると共に、アーチファクトを抑えることができるプローブを得ることに成功し、ShadowYと名付けた。この分子の吸光計数、量子収率、スペクトル測定を行い、さらにいくつかの既存のFRETプローブに応用することにより、この蛍光タンパク質の特性を詳細に調べた（Murakoshi et al. 2017）。今後は、このプローブを用いて、神経細胞やアストロサイトでの分子活性化イメージングを行う予定である。

生体機能情報解析室

【概要】
高感度MRI（3テスラおよび7テスラ）の共同利用によるヒトおよびサルを対象とする脳機能計測を支援するとともに、脳の構造機能連関研究を進めることを目的としている。MRI装置の基礎研究・機器開発から臨床画像研究に至る共同研究を推進しつつ、測定方法、解析手法、応用の範囲、安全性の検証などの面で基盤技術を整備する。脳の構造機能連関を研究するにあたり、生成される大量の画像データを統計数理学的に取り扱う手法を開発している。

人工知能と神経基盤の相互参照アプローチによる視覚－価値変換機構の解明

吉本隆明,丹羽開紀,高橋陽香,内山隆太郎,定藤規弘,近藤淳一

生物の行動は主観的価値によって規定されている。外界の情報は感覚器を介して捉えられ、脳内で抽象的価値情報に変換された後に、価値に基づく意思決定を経て適切な行動が選択される。ヒトを対象とした機能的MRI研究により、前頭葉前野や側坐核、線条体が価値処理に関わることが明らかにされているが、感覚情報からどのように
な過程を経て価値の情報が生じるかは明らかにされていない。本研究においては、価値処理領域として既に同定されている領域間で価値の情報表現構造を比較するのみでなく、未知の価値処理領域をモデルの情報構造との対応から明らかにする。具体的には、深層学習により多層ニューラルネットワークに画像情報と価値の対応を学習させ、構築された階層構造から脳内の価値情報の階層構造を推測し、逆に、脳内の階層構造から多層ニューラルネットのパラメータを決定する。

局所脳活動からの全脳活動の解読

Balbir Singh, 平山淳一郎、山本哲也、定藤規弘、近添淳一

近年の脳機能画像研究の進歩により、同一の脳領域が複数の脳機能に関与することが示されており、このことから単一脳領域の活動の有無に基づいて、被験者の認知状態を推測する逆推論は困難であることが指摘されている（Poldrack 2006）。一方で、全脳のネットワーク・レベルの活動を用いた場合には、高精度の逆推論が可能であることが示されており（Yarkoni et al., 2011）、これらの結果から、脳活動と脳機能の関係は多対多の対応であることが示唆されている。本研究においては「同一の脳領域であっても異なるネットワークに関与するときは、結合の違いを反映して、局所の脳活動パターンが変化するのではないか」という仮説をおき、これを検証した。具体的には、安静時の脳活動データにおいて、局所の脳活動と全脳の脳活動のパターンの対応を機械学習的手法で学習することにより、局所の脳活動から全脳の情報を解読に成功した。

味覚の神経基盤

近添淳一,
Daniel Lee（コロラド大学、認知科学研究所），
Nikolaus Kriegeskorte（認知脳科学ユニット、医学研究部門），
Adam K. Anderson（コーネル大学、人間発達学部）

哺乳類の舌には味覚の種類の知覚に最適化された科学受容体が並んでおり、これは何を摂取し、何を吐き出すべきかを判断する基準として、進化的に非常に古い時代から保たれてきた構造である。ネズミやサルを対象とした研究からは中枢神経系、その中でも特に島皮質において基本味覚が表現されていることが明らかにされているが、人間の中枢神経系における基本味覚の表現がどのようにされているかは、いまだ明らかにされていない。
行動・代謝分子解析センター

ウイルスベクター開発室

【概要】
ウイルスベクターは、げっ歯類から霊長類に至る広範な哺乳類モデル動物に適用可能な非常に優れた遺伝子導入ツールである。ウイルスベクター開発室では、アデノ随伴ウイルス（AAV）ベクターとレンチウイルスペクターの大量精製システムが確立しており、これらのウイルスベクターの効率的な提供体制も整備されている。本研究室は、ベクターコアとしての役割を担っており、国内外の研究機関からの要望に応じてウイルスベクターの提供を行い、共同研究を推進している。また、独自に開発したウイルスベクター遺伝子導入システムを駆使して、脳における特定神経路の機能解析に取り組んでいる。

脳機能解析に有用なウイルスベクターの開発・提供と共同研究の推進

小林憲太

今年度は、国内外の研究室からの要望に応じて、延べ255件のウイルスベクターの提供を行い、共同研究を推進した。これらの共同研究の中には、すでに今年度に論文として発表されたものや投稿中のものがあり、引き続き活発な共同研究が進められている。

線条体-黒質投射ニューロンによって制御される運動機能のメカニズム解析

小林憲太、佐野裕美、黒田啓介（名古屋大学）、貝淵弘三（名古屋大学）、南部篤

AAVベクターによる二重遺伝子導入システムを利用して、線条体-黒質投射ニューロンで特異的にProtein kinase A（PKA）のドミナントアクティブ変異体を誘導する遺伝子変異マウスの作製に成功した（D1R-MSN PKAマウス）。興味深いことに、D1R-MSN PKAマウスでは、特徴的な随意運動の変化が観察された。現在、行動生理学的・電気生理学的な実験を進めており、随意運動変化との相関を解析している。このような研究を通じて、線条体-黒質投射ニューロンによる運動機能の制御機構を分子レベルで解明することを目指している。

遺伝子変動物作製室

【概要】
様々な生理機能を個体レベルで研究する際、分子生物学的・発生工学的技術を駆使して作製した遺伝子変動物が重宝する。小実験動物の主流であるマウスでは遺伝子変動物の作製技術が確立されているが、体が小さいためサンプル採取や生理学実験、さらに臓器移植などの外科的手技には向いていない。一方、生物・医学分野の生理学的研究において豊富な実験データの蓄積があるラットは、近年ES細胞株が樹立できたこともあって逆遺伝学的研究に利用される機会が増えている。最近、人工ヌクレアーゼやRNA誘導型スクリアーゼを利用してゲノム配列の任意の場所を削除、
置換、挿入する新・ゲノム編集技術が開発され、比較的容易にかつ短時間でノックアウト（KO）／ノックイン（KI）ラットを作製できるようになった。このとき、複数の遺伝子変異を両アレルに導入した変異細胞株を作製するのは困難だが、ゲノムを1セットしか持たない半数体ES細胞を用いれば効果的にゲノム編集できるようになる。ここでは、ゲノムを1セットしか持たない半数体ラットES細胞株を樹立することに成功したので紹介する。

雄性発生胚ならびに雌性発生胚からの半数体ES細胞株の樹立

平林真澄

前核期受精卵から雌性前核を除去した後に胚盤胞へと発生させた26個のラット雄性発生胚から、半数体細胞（In=20＋X）を含むES細胞7ラインを得た。FACS選抜により、このうち1ラインを半数体細胞を含んだ状態のままで維代・維持することができた。この一倍体ES細胞を胚盤胞に顕微注入することで胎仔10匹を作製したが、これの1例は雄のキメララットであった。次に、未受精卵に人為的活性化処理を施することで胚盤胞へと単元発生させた2匹のラット雌性発生胚から、半数体細胞を含むES細胞2ラインを得た。このうち1ラインは、FACS選抜を繰り返すことで維代・維持できた。この一倍体細胞を胚盤胞に顕微注入して産仔47匹を作製し、これのうち1匹が異のキメララットであることがわかった。以上、雄性発生・雌性発生に由来するいずれのラット胚盤胞からも半数体ES細胞株を樹立することができた。しかし、FACSによる半数体細胞の反復選抜操作が、半数体ラットES細胞株の維持のために必須であった。

代謝生理解析室

【概要】
研究所内外が作成、保有する遺伝子変異マウス及びラットの代謝、生理機能を詳しく解析し、標的遺伝子の機能と行動変異のメカニズムを明らかにすることを目的に開設された。計測する代謝・生理機能と担当者は以下の通りである。（1）運動系を中心とした、覚醒下での単一ニューロン活動など神経活動の計測（担当：生体システム研究部門、南部教授）、（2）自由行動下における脳内特定部位での神経伝達物質の分泌計測（担当：生産・内分泌系発達機構研究部門、箕越教授）、（3）フタピオンおよびヘモグロビン由来の内因性シグナルを利用した脳領域活動と膜電位感受性色素を用いた回路活動のイメージング（担当：生体恒常機能発達機構研究部門、鎌倉教授）、（4）自由行動下における摂食行動、エネルギー消費の計測（担当：生殖・内分泌系発達機構研究部門、箕越教授）、（5）自由行動下における体温、脈拍数、血圧の計測（担当：細胞生理研究部門、鈴木喜郎助教）、（6）摘出灌流心臓または麻酔マウスを用いた心機能、循環血流量の測定（担当：心循環シグナル研究部門、西田教授）。

表皮ケラチノサイトにおける温度感受性TRPチャネルの役割

松井毅（理化学研究所生命医科学研究センター）
鈴木喜郎、富永真琴（生理学研究所細胞生理研究部門）

温度感受性TRPチャネルは環境温や体温などで活性化し様々な生理機能を発揮すると考えられているが、表
皮ケラチノサイトにおける温度感受性 TRP チャネルの分子実体およびその生理機能については不明な点が多い。本研究では表皮の顆粒細胞のうち最表層をラベルしたマウスを用いることによって、表皮における温度感受性 TRP チャネルの存在とその生理的意義について解析した。その結果、表皮最表層の細胞において環境温度の変化によって活性化する膜電流を記録することができ、その薬理学的特性から TRP チャネルが担っていることが強く示唆された。今後、TRP チャネル欠損マウスと掛け合わせることによって温度感受性電流が TRP チャネル由来のものかどうか確認するとともに、in vivo で

脳損傷時の冷却における TRP チャネル

藤山雄一、鈴木倫保（山口大学医学研究科）
長原真琴（生理学研究所細胞生理研究部門）

脳神経外科分野において中枢神経損傷、特に重症の頭部外傷に対する治療として、脳低温療法が確立されている。本研究では TRP チャネルに着目し、脳損傷時の冷却効果における TRP チャネルの関与を TRP チャネル欠損マウスを用いて検討した。一部の TRP チャネルにおいてその効果の有意な違いを見出していたが、脳見る冷却についての基礎データが乏しいため、現在は冷却温度など適切な実験条件の検討を行っている。

活性イオウによる心循環機能制御

赤池孝章（東北大学大学院医学研究科）
熊谷嘉人（筑波大学医学医療系）
西村明幸、田中智弘、西田基宏（岡崎統合バイオサイエンスセンター心循環シグナル研究部門）

生体内で酵素的あるいは非酵素的に形成されるシステインパーキャルフィドやポリスルフィドは極めて求核性が高く、細胞内外の様々な親電子性物質（活性酸素や重金属など）と反応し、抗酸化に貢献している。低濃度の有機水銀曝露マウスにおいて、dynamin-related protein 1 (Drp1)の活性化を伴うミトコンドリア過剰分裂が観察された。このメカニズムとして、Drp1 タンパク質の C 末端側のシステイン（Cys）ポリイオウ鎖がメチル水銀（MeHg）曝露により脱イオウ化されることで Drp1 の Cys ポリイオウ鎖（活性イオウ）はフィラミンとの親和性を低下させることで Drp1 活性を抑制する。以上の結果から、Drp1 の Cys ポリイオウ鎖（活性イオウ）はフィラミンとの親和性を抑制する。以上の結果から、Drp1 の Cys ポリイオウ鎖（活性イオウ）はフィラミンとの親和性を低下させることで Drp1 活性を負に制御している可能性が示された。
心筋細胞のNO生成におけるTRPC5チャネルの役割解析

Caroline Sunggip（マレーシア Sabah 大学医学部）、Supachoke Mangmool（タイ Mahidol 大学薬学部）
下田 翔，小田紗矢香，西田基宏（岡崎統合バイオサイエンスセンター心循環シグナル研究部門）

Ca²⁺依存性転写因子 nuclear factor of activated T cells (NFAT)は心肥大を誘導する転写因子として知られている。細胞外ATPは心筋細胞のNFATを最も強く活性化するリガンドであるものの、ATP刺激は心筋細胞肥大を全く誘導しない。我々は、ATP刺激によるNFAT活性化のパターンが他のリガンド刺激と比べて一過的であることに着目した。その結果、ATPは心筋細胞内の一酸化窒素(NO)合成を増加させることで、NFAT転写活性を負に制御し、結果的に心肥大シグナルを抑制することを新たに見出した。ATPはプリン作動性P2Y2受容体を介してTRPC5チャネルを活性化し、TRPC5を介するCa²⁺流入が内皮型NO合成酵素(eNOS)を活性化することでNO生成を増加させることで、TRPC5のノックダウンやeNOS阻害によってATP刺激によるNFAT活性化が長く持続することも明らかになった。以上より、心筋細胞におけるTRPC5-eNOS共役系がATP/P2Y2受容体刺激によって活性化され、心肥大を負に制御するシグナルとして働く可能性が初めて示された。

ラット輪回し行動に及ぼすグレリンの効果

宮武由実子、志内哲也、阪上 浩（徳島大学大学院）
北村忠弘（群馬大学生体調節研究所）、後藤孔郎（大分大学）
箕越靖彦

SPORTSラットは、徳島大学において樹立した自発運動量が著しく多いラットである。今回、同研究グループとの共同研究により、SPORTSラットを用いて、以下の点を見出した。
1. SPORTSラットは、血中グレリン濃度が低値で、脳室内にグレリンを投与すると、輪回し行動が低下する。
2. グレリン阻害剤JMV3002を脳室内に投与すると、輪回し行動が低下する。
3. オベスタチンは、グレリンによる摂食促進作用を抑制するが、輪回し行動への低下作用は抑制されない。4. グルタミン酸ナトリウムをラットに投与しても、弓状核を選択的に破壊すると、グレリンによる摂食促進作用は抑制されるが、輪回し行動への低下作用は抑制されない。
以上の結果から、グレリンは、摂食促進作用とは別の脳部位、すなわち弓状核とは別の脳部位に作用を及ぼすことによって、輪回し行動を抑制すると考えられる。
岡崎統合バイオサイエンスセンター

オリオンプロジェクト
生体制御シグナル研究部門

【概要】

外界には何十万とも言われる多種多様な化学物質が存在し、動物はそれらを嗅覚または味覚の化学感覚系を用いて認識している。嗅覚は、動物の持つ最も優れた化学センサーであり、例えば、人間の鼻は1兆種以上の匂いを嗅ぎ分けることができ、イヌの鼻の感度は、ヒトのおよそ100万倍であると言われている。匂いの識別過程ではまず、匂い物質が嗅神経細胞表面に分布する嗅覚受容体と結合する。しかし培養細胞で再構成した嗅覚受容体は匂い物質に対して、鼻のような高感受性やリガンド選択性を備えておらず、嗅覚の優れた特性に関わる分子基盤は不明である。

当研究室は、末梢における匂い認識の分子基盤の全容解明を目的とし、2014年3月に発足した。近年、受容体表面を覆う嗅粘液やリンパ液が、匂いの認識に関わることが注目されつつある。このような分泌成分には数多くの機能性分子が含まれていることがわかっているが、現在の微小加工技術を用いても嗅覚器表面で構成される気液界面を再現することができないため、匂い認識における嗅粘液の機能はほとんどわかっていない。現在、細胞外構成成分の匂い認識における役割を明らかにするために、嗅覚器表面を模した遺伝子再構成系の開発を進めている。

匂い認識における嗅粘液の役割の解明

佐藤幸治

哺乳類培養細胞を用いた嗅覚受容体の再構成系では、匂い刺激は匂い物質の水溶液を用いて行われる。しかしこの手法では、生体の嗅覚器が感知する気体状匂い分子に対する特性が解析できないことが指摘されていた。また、この方法で測定される強度閾値はおよそnMレベルであり、嗅覚の高感受性を説明するには不十分であることから、生体の特性を再現できる遺伝子再構成系が求められていた。本研究では微小電気機械システム技術を用いて、嗅覚受容体を発現した培養細胞に気体状匂い刺激を加える装置を開発した。この技術を用いて受容体と匂い物質の対応関係を調べたところ、嗅粘液構成成分が匂い物質の選択性に影響を与えることが明らかになった。現在、装置を改良し、スループット性を高める検討を進めている。今後、開発した装置を用いて、匂い認識における嗅粘液の役割を明らかにするとともに、バイオセンサー開発へ向けた応用展開を試みる。

幹細胞から誘導される腸管オルガノイドのイメージング法の確立

佐藤幸治

腸管幹細胞の三次元培養で得られる腸管オルガノイドは、生体と同様の機能を持つ腸管上皮細胞のモデル器官として注目されている。しかし物質透過性の低い細胞外マトリクスゲルの内部で培養するため、オルガノイドに対する薬物刺激は限定的であり、その利用は分子生物学的な手法に留まられる。薬物刺激に対する動的な反応測定で求めている。そこで、オルガノイド培養の細胞外基質に用いるマトリクスを取り除いた状態で細胞
の生存を検討したところ、ポリマーを含んだ液体培地で生存率の改善が認められた。この培養条件下では蛍光色素による染色が可能であり、Fura-2 を用いたカルシウムイメージングが可能となった。これまでにこの方法により、アリゲノイド外側に分布する受容体の反応を可視化できた。現在、DNA マイクロアレイによる遺伝子発現解析を実施し、アリゲノイドの物理化学的なシグナル受容に関わる遺伝子群の解析を進めている。
動物実験センター

【概要】

動物実験センター（以下「センター」と略す）は、適正な実験動物を用いて再現性の高い正確な動物実験成績を得ることをめざして、実験動物と動物実験に関する四つの柱である管理運営、研究、教育及び社会貢献を適切に行うべくその責務を果たした。

第一の管理運営は、特に微生物学的品質管理の面について、微生物モニタリング、コントロール、クリーニングを行ったところ、その結果、明大寺地区生理研究部門飼養保管室ではラットからClostridium piliforme（Tuizer菌）を検出した。そこで、隔離飼育、緊急検査、清掃消毒等の感染対策を実施した結果、除去に成功した。空調機等の補修管理について、特に明大寺地区の動物棟Ⅰ（本館）の空調機が不動態で安定運転不能に陥っていることは重大な問題で、可及的速やかな解決が必要である。さらに動物棟Ⅰの改修・増築計画を概算要求に向けて立案した。その結果、「総合研究棟改修（動物実験センター）」の設備整備事業が採択された。その他に、サル類微生物検査に向けての整備、サル類の定期的健康診断、サル類の授受に関する書類の整備、齧歯類微生物自家検査一本化の実施に向けての移行などを進めた。

第二の研究は、高脂肪食誘発性肥満マーモセットを用いた脳内炎症機構の解明に関する研究を行った。飼育管理方法に関する研究は、実験動物飼育区域における継続的な衛生状態の保全と害虫発生防止、ラットTuizer菌感染事故の対策、実験動物施設における胚操作補助者育成教育プログラムの検討等を行った。

第三の教育は、センター山手地区の利用者を対象に、前年度までと同様に利用者講習会及び実務講習を開催した。明大寺地区は2016年度ICカードによる入退館システムが導入されたが、初めてセンターを利用する実験者を対象にして、利用者講習会を毎月開催した。2015年度より新たに、齧歯類の取り扱い初心者を対象に、実験動物の基本的技術の実技講習会を行った。

第四の社会貢献は、研究者向けの各種学協会等での理事長、理事、委員等の役割を担っての活動、実験動物飼養保管基準の解説書の改正、「動物愛護管理法」の過去・現在・未来に関するシンポジウム、動物実験の外部検証の実施準備に向けた事前説明会、さらに文部科学省等の行政との間の情報交換等の活動を行った。

【管理運営】

1. 動物飼育数および入館者数

明大寺地区動物飼育数は、マウス2,626匹、ラット29匹、魚類17,843匹、両生類113匹、サル類29匹であった。入館者数107名であった。

山手地区動物飼育数は、マウス3,825匹、ラット352匹、魚類3,580匹、両生類429匹であった。年間入館者数は10,248人（延べ）、登録者数153名であった。

2. 飼養室の使用状況

明大寺地区飼養保管室利用部門数は、13部門（生理研12部門、共通研究施設1部門）であった。山手地区動物飼養保管室利用部門数は、13部門（生理研7部門、統合バイオサイエンスセンター3部門、基生研2部門、共通研究施設1部門）であった。明大寺及び山手地区水生動物の利用状況は、明大寺地区の利用部門数は、6部門（生理研1部門、基生研5部門）であった。山手地区の利用部門数は、4部門（生理研1部門、統合バイオサイエンスセンター3部門）が水槽を利用している。

3. 微生物学的品質管理

(1) 微生物モニタリングの項目

センター内及びセンター外（センターの外部にある部門に設置されている飼育室）で飼育しているマウス、ラットを対象に、微生物モニタリングを年に4回の割合で定期的に行った。検査項目はウイルス感染症：MHV、Sendai virus、Ectromelia virus、Lymphobyc chorioneningitis virus、SDAV、Hantavirus、細菌性感染症：Mycoplasma pulmonis、Salmonella spp．、Clostridium piliformis、Pasteurella pneumotropica、Bordetella bronchiseptica、Streptococcus pneumoniae、内部寄生虫：Giardia muris、Spironucleus muris、Trichomonads等、Pinwormsと外部寄生虫を対象に検査した。

(2) 微生物モニタリングの件数

明大寺地区の外注委託検査件数はマウス63件とラット4件であった。山手地区の外注委託検査件数はマウス
95件とラット16件であった。明大寺地区の自家検査件数はマウス68件とラット6件であった。山手地区の自家検査件数はマウス91件とラット23件であった。

(3) 微生物モニタリングの結果とコントロールの成績

1) 明大寺地区生理研棟部門飼養保管室ラットでのClosstridium piliforme(Tyzzer菌)汚染事故

A. 経緯

2017年1月16日に行った定期微生物モニタリングにおいて、センター外（センターの外部にある部門に設置されている飼育室）で飼育しているラットからClosstridium piliforme陽性が検出されたと報告したが、2017年5月16日に終息した。2018年1月の定期検査において、生理研棟部門飼養保管室311室のラットでTyzzer菌検出されたため、隔離飼育等の微生物コントロールを行った。

B. 防除対策

a. 清掃消毒

部門内の311ラット飼育室は薬者による清掃消毒を実施し、陰圧飼育ラックを廃棄。付随する318飼育室および実験室はエクスポアによる消毒を行った。311飼育室には新たに購入した陽圧飼育ラックを設置した。

b. 囲動物設置

該当部門の311飼育室には陽圧飼育ラックを設置後、囲動物を設置し、全ケージから糞便を採取した後に囲動物に暴露される汚れ床敷きによる飼育を行った。一ヶ月と二ヶ月後に、囲動物のClosstridium piliformeの微生物モニタリングを行うこととし経過観察を行った。

4. マウス受精卵凍結胚操作・融解・クリーンアップ実績

受精卵凍結胚保存は28件、クリーンアップ兼受精卵凍結保存は7件、融解・移植は14件、それぞれ実施した。げっ歯類の授受について、動物輸送件数は年間でのべ42件の導入と89件の供与があった。

5. 空調機等の補修管理

(1) 明大寺地区主な工事修理

1) 動物棟I（本館）の空調機湿暖水循環。循環修理が困難であること、排水路確保工事を行った。
2) 動物棟I（本館）の污染調整が自動運転で行わなかったため、改修・増築と併せて、整備していくことが必要である。
3) 動物棟III（分館）の汚染は故障で作動しなくなった。ポンプと配線のジョイントボックスに水が入ったため漏電。ジョイントボックスのシールを行った。
4) 動物棟I（本館）の中央監視盤のUPSバッテリーの更新により、交換を行った。
5) 動物棟II（新館）のオートクレーブの真冬の時期に、水漏れ。真冬ポンプ修理を行った。
6) 動物棟III（新館）の汚染調整のエアーコンプレッサの故障で、ケージの破損がなくなった。給水配管は修理を行ったが、ケージ破損修理は、薬者に修理を依頼する方針。
7) 動物棟III（新館）の432室天井および330室の床付近の雨漏り、台風や風雨により度々雨漏り。432室は排気ダクトからの雨水侵入のため排気ダクト修理を行った。
8) 動物棟II（新館）の屋上冷温水発生機ポンプのボルト置換不具合のため交換修理を行った。

(2) 山手地区主な工事修理

1) 1号館A-4階機械室、RI棟・AN棟空調用空冷ヒートポンププレインチラー水蓄熱ユニットの熱源ユニットNo.3系統送風機絶縁抵抗不良のため設備停止。応急処置を行った。
2) オートクレーブ3台の蒸気漏れ修理および部品交換、オートクレーブの温度センサー交換、開閉器交換、乾燥不良およびEOG自動運転不調のため、修理を行った。
3) 1号館A-4階機械室、RI棟・AN棟空調用空冷ヒートポンププレインチラー水蓄熱ユニットの熱源ユニットNo.4ポンプのファンモーター交換である。
4) 1号館A-4階機械室、水蓄熱ユニットのケアーポンプが不良。B棟のものを転用して、応急処置を行った。

山手の施設は16年を超えており、空調機器類の経年劣化による不具合が増え、今後の対策が必要である。

6. サル類の定期的健康診断

マカクサルの導入時にE型肝炎ウイルス（HEV）、サ
ル免疫不全ウイルス（SIV）、サル T 細胞白血病ウイルス 1 型（STLV-1）の検査結果を確認した上で導入することとなった。サルの定期的健康診断について、全頭（41 頭）を対象として、血液学的検査、血清生化学的検査、養便検査（寄生虫、細菌性脳炎、サルモネラ菌）、ツベルクリン反応による結核症の感染検査、B ウイルス抗体検査、SRV 抗体検査・核酸検出、E 型肝炎ウイルス（HEV）抗体検査・核酸検出、麻疹ワクチン予防接種およびイベネクチン予防投与を実施した。

7. 齧歯類微生物自家検査業務の整備
2016 年度に齧歯類微生物自家検査の実施に向けての整備は動物棟 II の 432 室にクリーンベンチ、安全キャビネット、オートクレーブ、ゲル泳動装置、光学顕微鏡等を購入し整備を行った。2016 年 10 月より、実験動物中央研究所 ICALAS モニタリングセンターへの外部委託検査と一部自家検査の同時並行検査を行った。これまで ICALAS モニタリングセンターの委託検査を行っていたものを 2017 年 12 月より自家検査一本化に移行した。

8. 明大寺地区のセンターの改修・増築計画
明大寺地区のセンターは建設されてから 38 年あまりを経過しており、動物棟 I が老朽化して空調設備等に多くのトラブルが発生し、飼育環境を適正に維持することが困難となったことから、本格的な改修・改築工事をすべく、様々な角度から検討を加えた。その結果、動物棟 I (マウス、ラット等) と動物棟 II (マウス、ニホンザル、マーモセット等) を含む施設の機能改善および機能高度化を目的に、改修することで検討した。その結果、「総合研究棟改修（動物実験センター）」の設備整備事業が採択された。設備整備の期間は 2018 年度から 2019 年度の中間で、次年度 4 月から改修・増築工事の本格的な準備を進めている。

【研究】
1. 高脂肪食誘発性肥満マーモセットを用いた脳内炎症機構の解明
本研究では「小型家畜類マーモセットに高脂肪食を与えた後、それが起こる脳内炎症の発症機序を調べることと、肥満と代謝異常に及ぼす影響に関する研究」として、生殖・内分泌発達機構研究部門との共同研究を実施している。これまでの実験によれば、(1)マーモセットに高脂肪食を長期間にわたり摂取させ、飼育することに成功、2 ケ月後に体重の増加と摂食量の増加が認められた。(2)高脂肪食によって視床下部に炎症を引き起こすことを免疫組織学でミクログリアマーカーである Iba1 の発現を調べ、その結果、高脂肪食を摂取させたマーモセットの視床下部の感染検査、B ウイルス抗体検査、SRV 抗体検査・核酸検出、E 型肝炎ウイルス（HEV）抗体検査・核酸検出、麻疹ワクチン予防接種およびイベネクチン予防投与を実施した。

2. 飼育管理方法に関する研究
(1) 実験動物飼育管理に関する化検査の保全と害虫発生防止について、第 51 回日本実験動物技術者協会総会に発表した。センターの飼育室で発生したオオチョウバエを対象に、粘着トラップを用いた昆虫治療と総合型管理対策を行った。1 年が経過した現在のオオチョウバエ発生状況から、総合型管理対策の効果を検証した。また、昨年の発生調査では、サル飼育室でクロコバエ、ノミバエ、クロコバエの生息が確認された。そのため、オオチョウバエ対策を含む、衛生状態の保全とこれら害虫対策を実施した。検証して行っている昆虫治療調査の結果、総合防除対策は、オオチョウバエ以外の害虫にも効果があることが示唆された。

(2) ラット Tyzzer 菌感染事故の対策を検討した。明大寺動物実験センターの飼育研究センターにあっての研究部門の飼養保育室は、コンベンション飼育環境で運用しているが、飼育環境は SPF 清浄度を求める難しい運用を行っている。各飼育室にモニタリング動物を設置し、ケージ交換時に養顔および污染床敷きを入れた 2-3 ケ月曝露させ、3 ケ月に 1 回、定期的に微生物モニタリングを行っている。そのうち 2017 年 1 月にラット Tyzzer 菌が検出され、隔離隔離管理の微生物コンドロールを行った。この感染症で行った対策について、第 51 回日本実験動物技術者協会総会に発表した。

(3) 実験動物施設における胚操作補助者の育成教育プログラムについて、第 51 回日本実験動物技術者協会総会に発表した。今まで胚操作技術補助者の育成・指導は、胚操作担当者が経験に基づいた OJT (on the job training) スタイルで指導を行った。この指導方法は、目標がないためどの程度訓練した後に次の段階に進む
か、またどの程度の段階で実務を行わせるかなどが決まっておらず、指導者の経験にたよるのみであった。
今回、OJTスタイル指導から、項目ごとに教育および訓練データを記録し、データを基にした指導を行う育成教育プログラムへの変更を検討した。

【教育】

1. 教育訓練

2016年度明大寺地区ではICカードによる入退館システムの導入整備を行い、これまで行っていなかった明大寺地区利用者講習会を始め、明大寺地区と山手地区において初めてセンターを利用する実験者を対象にして、利用者講習会を毎月開催した。明大寺利用者講習受講者数は12名、山手利用者講習受講者数は17名、山手実務講習受講者数は18名であった。
昨年度より新たに、齧歯類の取り扱い初心者を対象に、実験動物の基本的手技の実技講習を開始した。受講者数は合計5名であった。
その他、生理研トレーニングコース「遺伝子変異マウスの基本的手技と学習・記憶行動解析入門」のプログラムについて、神経シグナル研究部門と合同で共催した。参加者は合計4名であった。動物実験委員会実験用霊長類専門委員会の「サル講習会」について、受講者は合計46名であった。

【社会貢献】

1. 研究所外での役員等

日本実験動物学会、ICLASモニタリングセンター運営検討委員会、NPO法人動物実験関係者連絡協議会、日本実験動物協会、国立大学法人動物実験施設協議会、全国医学部長病院長会議、日本実験動物技術者協会、日本大学動物実験委員会等の実験動物と動物実験に関係した種々の組織において、理事長、理事、委員等の役割を担って活動した。また、熊本大学、首都大学東京、中国・広東省医学実験動物中心、中国・中国医科大学において、名誉教授、客員教授として活動した。

2. 行政

文部科学省、農林水産省、環境省、内閣府等との間で情報交換を行った。
生理学研究所年報 第39巻（Dec,2018）
研究活動報告／技術課

技術課

大河原 浩

【概要】

今年度、伊藤昭光係長が定年退職を迎えたため、当該職員の業務の整理と引き継ぎ作業を進めた。また、動物実験センターの技術職員体制を強化するため、動物取扱等スキルを持った技術職員の採用に向けた活動を行った。

技術課組織の強化と指導体制の見直し、研究支援体制の充実を図るため、戸川森雄班長を課長補佐に、吉村伸明係長を班長に、村田安永係員、窪田美津子係員、髙橋直樹係員、石原博美係員の4名を技術主任に昇任させた。

課の研究活動への寄与と貢献を一層進めるため下記の事業を実施した。

① 生理科学実験技術トレーニングコースでの技術指導

生理学研究所が毎年主催し、実施している生理科学実験技術トレーニングコースで、『生体アンプ回路工作と機械工作入門』と『PICマイコンの回路工作とプログラミング』の2コースを企画し、各コースに3名づつの受講者を受け入れ、指導した。

② 生理学技術研究会の開催

全国の大学等技術職員の技術連携と交流を目的に第40回を、生物学技術研究会（基礎生物学研究所技術課主催）と合同で2018年2月15日-16日の2日間にわたり開催した。会では、口演発表が20題（含む奨励研究採択課題技術シンポジウム口演）で、ポスター発表が45題あり、研修講演として「マウス精子幹細胞の組織内挙動の解明」（吉田松生、基礎生物学研究所生殖細胞研究部門教授）を行った。これらの報告を『生理学技術研究会報告（第40号）』にまとめた。

③ 奨励研究採択課題技術シンポジウムの開催

時代要請に対応した技術認識と向上に立った技術職員の業務の社会的開示を推進するために奨励研究採択者による第14回の報告会（2018年2月16日）を行った。この報告を『生理学技術研究会報告（40号）』にまとめた。

④ 自然科学研究機構技術研究会の参加

自然科学研究機構技術職員の技術紹介と技術連携を目的に、第12回を分子科学研究所で開催した（2017年7月13-14日）。会では特別講演1演題、最新動向と技術トピックス5演題、ポスター発表20演題、パネルディスカッション「連携」があり、詳細を『第12回自然科学研究機構技術研究会集録（電子ファイル）』としてまとめた。

⑤ 東海・北陸地区国立大学法人等技術職員研修等の受講

東海・北陸地区大学等の技術職員の技術交流と技術向上を目的に、毎年当番校により東海・北陸地区国立大学法人等技術職員研修が行われており、本年度は物理・化学コースと複合領域コースが実施されたが受講者はなかった。また、東海・北陸地区技術職員同研修に係わる技術職員代表者会議（岡崎、2名）に参加し、今後の研修会開催について議論を進めた。

⑥ 放送大学利用による専門技術研修の受講

研究の高度化と多様化に対応するため、放送大学を利用した技術職員の研修を推進している。今年度は、健康長寿のためのスポーツロジーサンプル、感染症と生体防御、生命分子と細胞の科学、日本大脳基底核研究会、日本糖尿病・肥満動物学会年次学術集会、平成29年度東海地区国立大学法人等基礎研修、高エネルギー加速器研高エネルギー加速器研

⑦ 科学研究費補助金（奨励研究）等の採択

業務を展開、推進していくための問題意識の養成、その解決のための計画および方法の企画能力の養成、さらにはその表現力と説明力の養成を通じて、業務上の技術力の総合的な向上を図ることを目的に標記の申請を行い、下記の1課題の採択を得た。

(1) 斉藤 久美子：非放射性SGLT活性測定法を用いたin vivoにおけるSGLT2阻害剤の作用解析

(2) 業務報告会とデータベース化事業の促進、および表彰制度の整備
課員の配属先研究部門での業務成果は、技術課業務報告会で報告され、情報の共有化が図られている。また、その成果は技術課主催の生理学技術研究会、配属先部門での学会発表により所外に発信されているが、より広く活用され、即時に発信するために、優れた成果をデータベース化する事業を技術課が研究部門と進め、その一部を技術課ホームページで公開している。今年度も、その編集を技術係員が行い、その更新を進めている。こうした事業の推進のなかで、優れたデータベースにデータベース賞として表彰授与を所長より行っている。こうした事業の推進により、研究者との連携を深め、業務の活性化を進めた。

⑨ 安全衛生技能講習等の受講と参加
研究所の安全衛生を課業務として充実するために、第13回労働安全衛生に関する情報交換会（核融合研、1名）、平成29年度東海・北陸地区国立大学・研究所環境安全衛生協議会（浜松医科大学、1名）、衛生工学衛生管理者講習会（岡崎、1名）、衛生管理者講習会（名古屋、1名）、衛生工学衛生管理者講習会（名古屋、1名）を持った。

⑩ 岡崎3機関技術課長会と機構技術代表者会議の開催
岡崎3機関の三技術課長と事務センターの各課課長補佐を交え、毎月1回、岡崎3研究所の動向や今後の計画、問題点などの意見交換を行った。また核融合科学研究所、国立天文台も交え毎月1回、相互訪問またはテレビ会議による情報交換を行った。

⑪ 職場体験の受入れ等
広報展開推進室が推進する地域貢献活動を支援するため、岡崎市近郊の中学校生徒（3中学校、7名）の職場体験を受入れ、遺伝子制御物作製室、電子顕微鏡室、機器研究試作室の技術職員が指導した。また、せいりけん市民講座、岡崎市理科作品展、大学共同利用機関シンポジウム、自然科学研究機構シンポジウムなどのアウトリーチ活動の支援を行った。

施設の運営状況

① システム脳科学研究領域

(1) 生体磁気計測装置（統合生理研究部門）

【概要】
生体磁気計測装置における研究成果については、システム脳科学研究領域統合生理研究部門の研究活動報告と生体磁気計測装置共同利用実験報告に記載している。下表に生体磁気計測装置の稼働率を示す。本装置は計測システムと解析システムから成るが、使用日数に解析システムの使用分は含んでいない。システム全体の保守は業者による三ヶ月毎の定期点検を基本としており、計測装置を良好な状態に保っている。

7月～11月に数回発生したデータ収集プロセッサの不具合により一時的に計測不能の状態が発生したが、部品の交換からセンサの調整までを数時間で終えため、実験計画に支障を来すことは無かった。

所外利用者用にデータサーバの保存容量と解析システムの Linux PC および Windows PC を増設した。なお、HP-UX は旧計測システムのデータを保存した媒体を利用できるように、一部の運用を続けている。

竹島康行
2017年度 生体磁気計測装置稼働率

<table>
<thead>
<tr>
<th>年 月</th>
<th>日数</th>
<th>休日</th>
<th>点検 調整 日数</th>
<th>使用 日数</th>
<th>稼働率 (%)</th>
<th>使用者数（人）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017年 4月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>67</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>12</td>
<td>60</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>2</td>
<td>12</td>
<td>60</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>58</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>1</td>
<td>16</td>
<td>76</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>15</td>
<td>83</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>3</td>
<td>14</td>
<td>78</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>94</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>2</td>
<td>15</td>
<td>83</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>2018年 1月</td>
<td>31</td>
<td>12</td>
<td>0</td>
<td>13</td>
<td>68</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>0</td>
<td>13</td>
<td>68</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>2</td>
<td>15</td>
<td>79</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>365</td>
<td>121</td>
<td>19</td>
<td>163</td>
<td>72</td>
<td>168</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

*利用日数は装置を実験計測に使用した日数であり、保守作業などの使用は含んでいない。
稼働率 = （日数 – （休日数 + 点検日数）） × 100
延べ総使用者数は所内使用者と所外使用者（共同研究、研究協力など）を合算したものである。

(2) 磁気共鳴装置（心理生理学研究部門）

伊藤嘉邦

【概要】

今年度の磁気共鳴画像装置における研究成果については、システム脳科学研究領域心理生理学部研究部門および脳機能計測・支援センター生体機能情報解析室の研究活動報告と生体機能イメージング共同利用実験報告に記載されている。

磁気共鳴装置は、独シーメンス社の3T-MRI装置3台と7T-MRI装置1台の計4台が共同利用のための実験装置として設置されている。その内訳は、2000年度に導入された3T-MRIのAllegraと2010年度に導入された2台の3T-MRI Verioで構成された世界初のDual fMRI実験装置、2015年度に導入された7T-MRIである。7T-MRI装置は、3T-MRIに比べてより高解像度で脳の断層画像を撮影可能で、脳機能画像計測においても新たな研究への貢献が期待されている。7T-MRI装置は、周辺の実験機器の整備を行いつつ、2016年度より共同利用実験装置として運用を開始している。

各MRI装置の保守に関しては、三ヶ月毎にメーカーによる定期保守が行われている。MRI装置以外の実験用PC等を含む実験装置の保守や更新に関しては、実験計画の空き時間を利用して技術職員が行っている。

今年度は、前年度に引き続き7T-MRIで得られる大容量の画像データに対応するために導入したファイル・サーバーおよびデータ解析用PCクラスタ・マシンの環境整備を行った。そして、磁気共鳴装置に10Gbネットワークハブの設置を行うとともに、研究室全体の高速ネットワーク網の整備を行った。また、PCクラスタ・システムの解析機能を補うために最新のマルチコアCPUを搭載したPCを多数導入してデータ解析機能を強化した。その他に、Dual fMRI実験装置のデジタル録画システムと視覚刺激表示用に使用している実験用PCのアップデートを行った。

それぞれのMRI装置ごとの稼働率を下表に示す。なお2014年4月よりAllegraは動物実験を主に行うようになった。また、2台のVerioに関しては単体でも実験に使用できるため、便宜上Verio-A、Verio-Bとして個々の稼働率を算出している。
2017年度 磁気共鳴装置稼働率

Allegra

<table>
<thead>
<tr>
<th>年 月</th>
<th>日数</th>
<th>休日</th>
<th>保守</th>
<th>使用可能日数</th>
<th>稼働率（%）</th>
<th>使用日</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017年4月</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>45</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>45</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>0</td>
<td>22</td>
<td>55</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>55</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>0</td>
<td>22</td>
<td>27</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2018年1月</td>
<td>31</td>
<td>12</td>
<td>0</td>
<td>19</td>
<td>16</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>0</td>
<td>21</td>
<td>7</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>3</td>
<td>242</td>
<td>29</td>
<td>1.5</td>
<td>68</td>
</tr>
</tbody>
</table>

Verio-A

<table>
<thead>
<tr>
<th>年 月</th>
<th>日数</th>
<th>休日</th>
<th>保守</th>
<th>使用可能日数</th>
<th>稼働率（%）</th>
<th>使用日</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017年4月</td>
<td>30</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>31</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>80</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>0</td>
<td>22</td>
<td>39</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>6</td>
<td>14</td>
<td>64</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>0</td>
<td>22</td>
<td>91</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>45</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>0</td>
<td>21</td>
<td>43</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>33</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>70</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2018年1月</td>
<td>31</td>
<td>12</td>
<td>1</td>
<td>18</td>
<td>39</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>1</td>
<td>19</td>
<td>68</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>4</td>
<td>17</td>
<td>59</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>21</td>
<td>224</td>
<td>56</td>
<td>4</td>
<td>121.5</td>
</tr>
<tr>
<td>年 月</td>
<td>日数</td>
<td>休日</td>
<td>保守</td>
<td>使用可能日数</td>
<td>稼働率(%)</td>
<td>使用日</td>
<td>備考</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>所内</td>
<td>所外</td>
</tr>
<tr>
<td>2017年 4月</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>17</td>
<td>71</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>1</td>
<td>19</td>
<td>89</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>0</td>
<td>22</td>
<td>27</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>5</td>
<td>15</td>
<td>73</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>0</td>
<td>22</td>
<td>84</td>
<td>0.5</td>
<td>18</td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>19</td>
<td>37</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>35</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>28</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>70</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2018年 1月</td>
<td>31</td>
<td>12</td>
<td>0</td>
<td>19</td>
<td>47</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>1</td>
<td>19</td>
<td>58</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>4</td>
<td>17</td>
<td>76</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>18</td>
<td>227</td>
<td>57</td>
<td>3.5</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年 月</th>
<th>日数</th>
<th>休日</th>
<th>保守</th>
<th>使用可能日数</th>
<th>稼働率(%)</th>
<th>使用日</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>所内</td>
<td>所外</td>
</tr>
<tr>
<td>2017年 4月</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>3</td>
<td>17</td>
<td>41</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>0</td>
<td>22</td>
<td>18</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>2</td>
<td>20</td>
<td>35</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>42</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>3</td>
<td>18</td>
<td>11</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>39</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>1</td>
<td>19</td>
<td>42</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2018年 1月</td>
<td>31</td>
<td>12</td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>1</td>
<td>19</td>
<td>63</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>1</td>
<td>20</td>
<td>50</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>18</td>
<td>227</td>
<td>33</td>
<td>14</td>
<td>61.5</td>
</tr>
</tbody>
</table>

Verio-B

7T-MRI
②脳機能計測・支援センター

(1) 形態情報解析室

【超高圧電子顕微鏡利用状況】

今年度における超高圧電子顕微鏡共同利用実験は、合計10課題が採択され、全課題が実施された。これらの共同実験の成果は、超高圧電子顕微鏡共同利用実験報告の章に記述されている。超高圧電子顕微鏡の年間の利用状況を表にまとめたので下記に示す。稼働率は、利用日数と使用可能日数より求めている。なお、調整日は、定期調整（含清掃）日と修理・改良と停電後のイオンポンプベーク等に要した日数を合わせた数である。超高圧棟には長年使用してい　

<table>
<thead>
<tr>
<th>年月</th>
<th>総日数</th>
<th>休日</th>
<th>調整日</th>
<th>使用可能日数</th>
<th>所内利用</th>
<th>所外利用</th>
<th>計</th>
<th>稼働率(%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017年4月</td>
<td>30</td>
<td>10</td>
<td>6</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>31</td>
<td>11</td>
<td>6</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>5</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2018年1月</td>
<td>31</td>
<td>12</td>
<td>6</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>5</td>
<td>14</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>83</td>
<td>161</td>
<td>42</td>
<td>10</td>
<td>52</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

フィラメント点灯時間 100.1時間

【クライオ位相差電子顕微鏡利用状況】

今年度におけるクライオ位相差電子顕微鏡の共同研究はABiS課題を含めて合計20課題が採択され、全課題が実施された。

クライオ位相差電子顕微鏡の年間利用状況と利用者の所属、部署、共同研究者、観察方法、研究テーマの一覧を下記の表にまとめた。なお、稼働率は利用日数と使用可能日数より求めている。昨年度に続き位相差像観察用位相差ホルダーの微小リークの改善を行ったが、位相差の急速な劣化が治らず、旧位相差ホルダーに交換することにした。さらに電子顕微鏡の鏡筒内のクリーニングも実施した。しかし現在のところまだ位相差板の急速な劣化問題は完全には解決していない。一般的なクライオ電子顕微鏡としては、問題なく稼働している。
2017年度 クライオ位相差電子顕微鏡年間利用状況

<table>
<thead>
<tr>
<th>年 月</th>
<th>総日数</th>
<th>休 日</th>
<th>調整日</th>
<th>使用可能日数</th>
<th>所内利用</th>
<th>所外利用</th>
<th>計</th>
<th>稼働率 (%)</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017年4月</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>19</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>4月</td>
<td>31</td>
<td>11</td>
<td>2</td>
<td>18</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>30</td>
<td>8</td>
<td>2</td>
<td>20</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>31</td>
<td>11</td>
<td>2</td>
<td>18</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>31</td>
<td>9</td>
<td>0</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>19</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>10</td>
<td>0</td>
<td>21</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>10</td>
<td>1</td>
<td>19</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>31</td>
<td>11</td>
<td>6</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>93%</td>
<td></td>
</tr>
<tr>
<td>2018年1月</td>
<td>31</td>
<td>12</td>
<td>0</td>
<td>19</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>2月</td>
<td>28</td>
<td>9</td>
<td>0</td>
<td>19</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>3月</td>
<td>31</td>
<td>10</td>
<td>2</td>
<td>19</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>365</td>
<td>121</td>
<td>17</td>
<td>227</td>
<td>162</td>
<td>0</td>
<td>162</td>
<td>71%</td>
<td></td>
</tr>
</tbody>
</table>

年間使用時間 1188 時間

(2) 電子顕微鏡室（生理研・基生研共通施設）

山田 元，小原正裕

【概要】

今年度の電子顕微鏡室の活動の概要は以下の通りである。

山手地区においては、昨年度移設された透過型電子顕微鏡 JEM-1010、同時に設置されたデータ解析室が順調に稼働している。

昨年度報告した三次元再構築型走査型電子顕微鏡 (SBF-SEM) の大容量データ転送の不具合に関しては、解析用 PC に専用の LAN ボードを増設し、データサーバーと直接 LAN 接続するように変更することで、転送速度の向上と大量データの安定した転送が確保されるようになり、データ解析の能率が大幅に改善できた。

走査型電子顕微鏡 SIGMA は、これまでの通常の利用法に加え、自動測定機能を利用した連続切片の観察が可能に行われることとなり、これにより、SBF-SEM と同様に機器の長期間の占有率が高まったことから、機器調査の必要性が高まった。これに対応するため、電子顕微鏡室の機器ごとメーリングリストを作成し、利用者間での使用時間の調整が円滑に行われるよう対応した。

また、これまで電子顕微鏡室の一室に設置されてきた透過型電子顕微鏡 H7000 が廃棄され、代わりに新しい走査型電子顕微鏡 Regulus8240 が設置された。電子顕微鏡室の所属機器では無いか、共通利用にも供される機器なので、他の機器同様電子顕微鏡室の予約管理システムへの登録等を行い、他の機器同様、利用者のサポートを計画している。

その他の機器に関しては、真空蒸着装置のポンプ部分に異常が発生し、稼働できなくなったため、その修理を行った。以後は順調に稼働している。

昨年度故障したウルトラミクロトームも故障部品の修理が完了し、現在は問題なく稼働している。

明大寺地区においては、設置している透過型電子顕微鏡 JEM-1010 が保守契約に入っておらず、通常のメンテナンス作業は技術職員により行われている。しかし、数年に一度メーカーのメンテナンスが必要となり、本年度そのメンテナンスを行った。一般的な消耗品交換、機器調整とともに、動作に不具合が見られた部品その交換を行い以後は順調に稼働している。
その他，ウルトラミクロトームの送り機構の異常や真空蒸着装置の異常，技術職員によるメンテナンスによって現在はそれら全てが解消されている。

両地区にまたがる事項としては，機器の緊急停止トラブルに対応するため，所属するすべての電子顕微鏡に温度センサーと異常時のメール送付システムを設置した。

これにより，トラブル発生時にこれ以上に素早く対応することが可能となり，利用停止期間の短縮等によく貢献することができる。しかし，緊急停止が夜間や休日に起こることが多く，職員の緊急対応方法には今後検討が必要と考えている。

最後に，2台の SBF-SEM (SIGMA/VP, 高解像型MERLIN) は，懸案であった保守契約への加入が実現し，これにより修理やメンテナンス対応に要する時間を大幅に短縮することができた。

【活動】
電子顕微鏡試料作製のための環境整備は本年度も引き続き行い，周辺機器の充実，更新，消耗品の充実などを行った。その他，電子顕微鏡試料作製作業講習会，電顕ならびにその周辺機器利用講習会，近隣中学校の学生を対象とした講座体験は連年通り，明大寺，山手の両地区で複数回実施した。

また，本年度はしばらく利用の無かったフィルムでの電子顕微鏡写真の撮影，近隣利用者の利用があり，撮影やフィルムの準備に関する支援や暗室の準備等の対応を行った。今後，フィルムの販売が再開される中，希望者の対応には検討が必要である。

最後に，本年度は電子顕微鏡室利用者の一般公開が開催され，電子顕微鏡室でも機器の展示や，電子顕微鏡の説明に関する展示を行い，多くの観客を迎えることができた。

【研究内容一覧表】

<table>
<thead>
<tr>
<th>研究機関・大学</th>
<th>研究部門</th>
<th>研究内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>生理学研究所</td>
<td>脳神経回路</td>
<td>ラット脳皮質の神経回路の研究</td>
</tr>
<tr>
<td>心循環シグナル</td>
<td>マウス心筋および下肢骨格筋の病態形成時におけるオルガネラ形態の経時変化観察のため</td>
<td></td>
</tr>
<tr>
<td>筋萎縮性側索硬化症モデルマウスの運動ニューロン軸索におけるミトコンドリア動態制御機構の検討</td>
<td></td>
<td></td>
</tr>
<tr>
<td>細胞構造</td>
<td>上皮バリア機能を担う細胞間接着装置の微細形態の観察</td>
<td></td>
</tr>
<tr>
<td>電子顕微鏡室</td>
<td>光学顕微鏡機を用いた観察</td>
<td></td>
</tr>
<tr>
<td>基礎生物学研究所</td>
<td>進化発生</td>
<td>ヒメツリガネゴケにおける MADS-box 遺伝子の機能解析に伴う葉のクチクラ層と精子鞭毛の観察</td>
</tr>
<tr>
<td>細胞動態研究</td>
<td>ゼニゴケ葉状体および精子の微細構造の観察</td>
<td></td>
</tr>
<tr>
<td>環境光生物学</td>
<td>ネガティブ染色法を用いた光化学系タンパク質の解析</td>
<td></td>
</tr>
<tr>
<td>光学系タンパク質複合体の構造解析</td>
<td></td>
<td></td>
</tr>
<tr>
<td>藻類光合成機構の解明</td>
<td></td>
<td></td>
</tr>
<tr>
<td>構造多様学</td>
<td>動物目昆虫の形態観察</td>
<td></td>
</tr>
<tr>
<td>多細胞系の形態形成機構―チョウ目昆虫の翅の形態形成―</td>
<td></td>
<td></td>
</tr>
<tr>
<td>光学解析室</td>
<td>植物等の微細構造の解析および遺伝子産物の細胞内局在の解明</td>
<td></td>
</tr>
<tr>
<td>環境保全研究センター</td>
<td>光照射が及ぼす微細構造へのウイルス感染の影響評価</td>
<td></td>
</tr>
</tbody>
</table>

2017年度 電子顕微鏡室利用者の代表的な研究課題一覧
(3) 機器研究試作室（生理研・基生研共通施設）

佐治俊幸

【概要】
機器研究試作室は多種多様な医学・生物学用実験機器の開発と改良、それに関わる技術指導、技術相談を室の役割とし、生理研・基生研の共通施設として運営されている。

新しい研究には新しい研究機器を作るという『ものづくり』が希薄になっている状況下、一方では、研究の多様化は常に新たな役割の模索が迫られている。そうした認識のもと、『ものづくり』能力の重要性の理解と機械工作ニーズの新たな発掘と展開を目指すために、2000年度から、医学・生物学の実験研究に使用される実験装置や器具を題材にして、機能作業の基礎的知識を実習主体で行う機械工作基礎講座を開講してきた。本年も汎用工作機械の使用方法を主体に実習するフライス盤コース（リキャップ台）と旋盤コース（小物入れ）、CADコースの3コースを開講した。参加希望者は、3コース合わせ生理研14名、基生研11名で、各コース共に半日の講習を行った。

石膏ベースのフルカラー3Dプリンターは、分子研からの依頼による分子モデルを多く製作した。また、小型レーザー加工機が導入され、樹脂加工への自由度が広がると同時に、加工時間の短縮が可能となった。

なお、機器研究試作室の今年度の利用状況は、以下の通りである。

2017年度 機器研究試作室 利用報告

<table>
<thead>
<tr>
<th>生理研</th>
<th>基生研</th>
<th>部門別の利用状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>認知行動発達機構</td>
<td>97</td>
<td>感覚認知情報</td>
</tr>
<tr>
<td>形態情報解析室</td>
<td>12</td>
<td>生体恒常機能発達機構</td>
</tr>
<tr>
<td>生体システム</td>
<td>4</td>
<td>技術課</td>
</tr>
<tr>
<td>電子顕微鏡室</td>
<td>1</td>
<td>大脳神経回路論</td>
</tr>
<tr>
<td>形態形成</td>
<td>7</td>
<td>定量生物</td>
</tr>
<tr>
<td>人工気象室</td>
<td>3</td>
<td>生物機能情報分析室(重信)</td>
</tr>
<tr>
<td>多様性生物</td>
<td>1</td>
<td>生物進化</td>
</tr>
<tr>
<td>環境気候生物</td>
<td>1</td>
<td>安全衛生</td>
</tr>
<tr>
<td>進化発生</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| 2017年度(参考) | 147 | 387 | 53 | 180 | 200 | 567 |

<table>
<thead>
<tr>
<th>月</th>
<th>生理研</th>
<th>基生研</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>利用人数</td>
<td>利用時間(h)</td>
<td>利用人数</td>
<td>利用時間(h)</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>46</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>165</td>
<td>369</td>
<td>30</td>
</tr>
</tbody>
</table>

昨年度(参考) | 147 | 387 | 53 | 180 | 200 | 567 |
生理学研究所年報 第39巻（Dec,2018）

研究活動報告／技術課

生理学研究所年報 第39巻（Dec,2018）

研究活動報告/技術課

機器研究試作室 利用機器表（件数）

<table>
<thead>
<tr>
<th>月</th>
<th>フライス</th>
<th>ボール盤</th>
<th>横切盤</th>
<th>コンタマシン</th>
<th>旋盤</th>
<th>ベルトグラインダ</th>
<th>切断機</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>14</td>
<td>7</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>117</td>
<td>74</td>
<td>56</td>
<td>65</td>
<td>44</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

機器研究試作室 依頼製作品例

<table>
<thead>
<tr>
<th>機械工作</th>
<th>温度勾配用アルミブロック</th>
<th>マウス頭部固定装置</th>
<th>メダカ撮影用チェンバー</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気工作</td>
<td>インターバルタイマー</td>
<td>LED照明（RGB）</td>
<td>モーター回転装置</td>
</tr>
<tr>
<td>3D工作</td>
<td>分子模型</td>
<td>脳模型</td>
<td>マウス固定器</td>
</tr>
</tbody>
</table>

③情報処理・発信センター

(1) ネットワーク管理室

吉村伸明，村田安永

【概要】

生理学研究所における当施設の利用形態は、生体情報解析システム（後述）、情報サービス（e-mail，WWW等）、プログラム開発などに分類することができる。また、これらを円滑に運用していくためには、所内LANの管理、整備や情報セキュリティの確保も重要である。このような現状をふまえたうえで、岡崎情報ネットワーク管理室とも連携しながら、施設整備を進めている。

生体情報解析システムは、数値計算、データ解析、可視化、数式処理、統計解析、電子回路設計などの多くのネットワークライセンス用アプリケーションを備えている。これらのアプリケーションは、ネットワーク認証により各部門施設のPC上で利用可能である。登録者は91名で、研究推進のために活用されている。

岡崎情報ネットワークは、MACアドレスベース、もしくはWeb認証ベースの動的VLAN機能を有する1000BASE-Tネットワークの提供を基とし、利便性の向上と情報セキュリティの確保を両立している。また、同様の認証機能を持つ無線LANは、構内全域で利用可能である。

セキュリティインシデントは、今年度も自然科学機構内外で発生している。これを対応を強化するため、国立天文台、核融合科学研究所、岡崎3機関等、事務局等の4機関からなる機関CSIRTが新たに組織された。岡崎3機関では、メンバーとして当室の技術職員1名を含む6名がこれに任命された。機関CSIRTは、各機関のインシデント発生予防、対策、監視、インシデント発生時及び発生後の対応を行う事となった。

生理学研究所のネットワーク利用状況は、メール登録者が383名、WWW登録者が95名、LANの端末数が1,803台。所外からのメール受信数は2,700通／日、所外へのメール発信数は2,200通／日であった。WWWは3,900IP／日の端末から19,000ページ／日の閲覧があった。
④ 岡崎共通研究施設
(1) 動物実験センター

【概要】
齧歯類の授受件数は昨年度と比べ、導入および搬出とも減少した。マウス受精卵凍結・クリーンアップ事業では、昨年と比べ、クリーンアップ件数と融解件数は増加したが、凍結件数は減少した。
齧歯類の微生物統御では、明大寺地区生理研棟部門飼養保管室において Clostridium piliforme（Tyzzer 菌）を検出し、感染症対策を実施した。
動物の延べ飼育数は、マウスは核内ゲノム動態および細胞構造がセンターでの飼育を終了したこと、また分子神経生理部門の先生の定年退職に伴い匹数を減らしたため減少した。ラットは Tyzzer 菌の汚染事故により、動物を淘汰しており、減少した。
施設整備面において、齧歯類微生物モニタリングの自家検査準備のため、ICLAS モニタリングセンターと自家検査の平行検査を行ってきたが、2017年12月より自家検査のみに移行した。齧歯類の取り扱い初心者を対象に、実験動物の基本の手技の実技講習を引き続き実施し、生理研トレーニングコースの一部でマウスの基本的手技を担当し、マウスの取り扱い講習を行った。より体系的な実技指導を行うために、窪田技術職員が公益社団法人日本実験動物協会実験動物技術指導員の資格を取得した。また、マカクサルでは導入時に検疫を行い、1回/年の全個体の定期検診を行った。マーモセットでは、血液や糞便の検査・治療を実施した。
明大寺の動物棟Ⅰは、建設されてから38年あまりを経過しており、設備の老朽化が著しく、また、研究現場の現状にそぐわくなってきている。動物棟Ⅰの機能改善および機能高度化を目的に、増築・改修に向けて話し合われ、さらに概算要求に向けての準備が行われ、情報収集のため、岐阜大学および名古屋大学動物実験支援センター東山動物実験施設の施設見学を行った。
山手の施設は16年を越えており、空調機器類の経年劣化による不具合が増え、今後の対策が必要である。
センター職員教育の一環として、熊本大学生命資源研究・支援センター病態遺伝子分野、技術専門職員の中村直子氏による動物実験センター公開セミナーを開催した。

【明大寺/山手共通業務】
① 齧歯類の授受について
年間でのべ42件の導入と89件の供与があった。全体として昨年より減少した。3機関内の供給、供与が大きく減ったが、海外からの供給、海外への供与は増加した。
② 受精卵凍結・クリーンアップ事業
受精卵凍結保存は28件、クリーンアップ兼受精卵凍結保存は7件、融解・移植は14件それぞれ実施した。昨年度と比較して凍結件数は減少したが、クリーンアップ、融解・移植件数は増加した。外部からのマウス導入の際、マウス個体で導入するより、輸送費用が安くなることや、微生物学的な問題が解決するため、マウス個体でなく、マウス凍結精子による系統の導入を4件行った。
③ 齧歯類微生物検査実施に向けての整備
昨年度に引き続き、神谷技術職員による自家検査と実験動物中央研究所ICLASモニタリングセンターへの検体送付の平行検査を行い、2017年12月より自家検査のみに移行した。
④ マウス・ラットの取り扱い実技講習会の実施
王助教と窪田技術職員が、マウス・ラットを中心として、尾静脈採血および投与法、灌流固定法、一般的飼育作業等を含め、動物実験センター利用者への実技講習を年2回行った。
⑤ 動物実験センター公開セミナーの開催
「熊本大学生命資源研究・支援センターのマウス・ラットの微生物検査」と題し、熊本大学生命資源研究・支援センター病態遺伝子分野、技術専門職員の中村直子氏による公開セミナー開催
⑥「実験動物の飼育及び保管並びに苦痛の軽減に関する基準の解説」セミナー参加
2017/12/13 廣江技術職員が参加
①改修工事に伴う施設・設備見学及び情報収集
2018/1/9 に浦野特任教授、王助教、廣江技術職員、施設課職員が岐阜大学において、施設・設備見学及び情報収集を行った。
2018/2/8 に篠越センター長、浦野特任教授、施設課職員が名古屋大学動物実験支援センター東山動物実験施設において施設・設備見学及び情報収集を行った。

【明大寺地区 陸生動物室】
①施設の利用状況について
陸生動物の飼養保管室利用部門数は、13部門（生理研12部門、共通研究施設1部門）であった。
動物のべ飼育数は、昨年度と比べ、マウスは減少した。
ラットは Tyzzer 菌感染症による処分により減少した。サルは昨年と比べやや減少した。マーモセットは、昨年と比べ増加した。
②齧歯類微生物モニタリングについて
マウス、ラット飼養保管室で、3ヶ月に1度の微生物モニタリング検査を実施した。
(1) Tyzzer 菌感染事故：2017/1 の定期検査において、2017/5/16 に終息した。
(2) マウス地下 SPF 室は、1部門1飼養保管室の利用があり、3ヶ月に1度の定期微生物モニタリングを行っ
③施設整備について
(1) AHU-3 空調機温水漏水。動物棟の改修を見据え、漏水修理が困難なことから、排水箇所の検査を
④主な工事及び修理について
(1) 室間冷温水発生機の球形タンクのポールタップ不具合のため交換修理を行った。
(2) 4F 機械室冷却水温度指示調節計不良のため交換修理を行った。
(3) 屋上排気ファン異音発生。軸受交換修理を行った。
(4) 空調機ドレーン配管の経年老化的ため交換を行った。
(5) 室屋冷温水発生機膨張タンクのボールタップ不具合のため交換修理を行った。
(6) 中央監視盤の UPS バッテリーの経年老化的ため交換を行った。
(7) 2F 機械室冷却水温度指示調節計不良のため交換修理を行った。
(8) 地下天井の温水配管から漏水し、漏水部の温水配管を切り離す工事を行った。
(9) 汚水槽ポンプが故障で作動しなくなった。ポンプと配管のジョイントボックスに水が入ったため漏電。ジョイントボックスのシールを行った。
(10) 大学棟の UPS バッテリーの経年老化的ため交換を行った。
⑤度々修理を行っていた蒸潮蒸気ボイラーの劣化部品交換及び軟水器更新修理を行った。
⑥経年老化的ため吸収式冷温水発生機の 2 台中 1 台の交換を行った。もう 1 台は次年度行う方針。
⑦施設課職員が岐阜大学において、施設・設備見学及び情報収集を行った。
⑧改修工事に伴う施設・設備見学及び情報収集
⑨台風や風雨により 432 室天井、330 室の床付近極端に劣化、床面に雨漏り。432 室は排気ダクトからの雨水浸入
⑩洗濯機受けカバー破損のため修理を行った。
11. サルケージ給水配管破損、ケージの破損などが
あった。給水配管は修理を行ったが、ケージ破損修
理は、業者に修理を依頼する方針。
12. オートクレープの真空ポンプから水漏れ。真空ポ
ンプ交換修理。

【山手地区 陸生動物室】
①施設の利用状況について
(1) 飼育保管室利用部門数は、13 部門（生理研 7 部門、基生研 2 部門、統合バイオサイエンスセンターソ3 部門、共通研究施設 1 部門）であった。
(2) 利用者講習会を毎月開催するとともに、実際の利
用方法について別途実務講習会を実施している。利
用者講習受講者は 17 名、実務講習会受講者は 18 名
であった。
②齧歯類微生物モニタリングについて
全 SPF 飼育室およびマウス・ラット一時保管室 1〜3
の病原微生物モニタリングを、3 ヶ月に 1 回のペースで実
施した。
③施設整備について
施設運用面では、齧歯類の取り扱い初心者を対象に、
動物福祉に配慮をした実験動物の基本的手技の実技講
習を年 2 回実施した。生理研トレーニングコースでも「遺
伝子変換マウスの基本的実験手技と学習・記憶行動解析
入門」コースで講習を実施し、あわせて合計 9 名が受講
した。
④主な工事及び修理について
(1) 1 号館 A-4 階機械室、RI 棟・AN 棟空調用空冷ヒー
トポンプラインチラー水蓄熱ユニットの熱源ユ
ニット No.3 空調設備機器部に破損のため地絡で
設備停止。応急処置。
(2) 1 号館 A-4 階機械室、RI 棟・AN 棟空調用水蓄熱ユ
ニット No.4 ポンプのファントローロックで設備
停止。
(3) 1 号館 A-4 階機械室、水蓄熱ユニットのエアーポン
プが不良。B 棟のものを転用して応急処置。
(4) 1 号館 A（動物）5 階設備室の給水ユニット（HEA-
4A、5A 共用）のポンプから大きな音と水漏れ。機
械を停止させ後日修理。
(5) 熱源機械室のドレン配管より水漏れ。
(6) パスボックスのパッキン劣化のため交換。
(7) 2F 実験室の製氷機配管より水漏れのため、配管交
換修理。
(8) 中央監視装置 UPS バッテリー交換。
(9) リボイラー蒸気漏れ修理。
(10) オートクレープ 1 修理。
・リミットスイッチおよびシーケンサー不良による部
品交換
・温度センサー交換
(11) オートクレープ 2 修理。
・乾燥不良、EOG 自動運転不調について修理
・蒸気漏れ修理
(12) オートクレープ 3 修理。
・開閉器交換

【明大寺及び山手地区 水生動物室】
①施設の利用状況について
(1) 明大寺地区では、生理研 1 部門、基生研 5 部門
が利用している。
(2) 山手地区では、生理研 1 部門、統合バイオサイ
エンスセンター 3 部門が水槽を利用している。
②主な工事及び修理について
特になし。
陸生動物 部門別・動物種別搬入数（2017 年度）

<table>
<thead>
<tr>
<th>動物種</th>
<th>部門</th>
<th>明大寺地区</th>
<th>山手地区</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>マウス</td>
<td>ラット</td>
</tr>
<tr>
<td>神経機能素子</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体膜</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>分子神経生理</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>神経シグナル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体システム</td>
<td>203</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>認知行動発達</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>大脳神経回路論</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生殖内分泌系</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生体恒常性発達</td>
<td>131</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>多光子顕微鏡室</td>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>動物実験センター</td>
<td>122</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>心理生理学</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>核内ゲノム動態</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>視覚情報処理</td>
<td>171</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>細胞生理</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>遺伝子改変動物作製室</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>心循環シグナル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電子顕微鏡室</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>統合神経生物学</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBBP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>931</td>
<td>224</td>
<td>15</td>
</tr>
</tbody>
</table>
【研究発表】

a. 発表論文
b. 学会発表
a. 発表論文

[目 次]

神経機能素子研究部門 ... 92
分子神経生理研究部門 ... 92
生体膜研究部門 ... 93
神経発達・再生機構研究部門 ... 93
細胞構造研究部門 ... 94
細胞生理研究部門 ... 94
心循環シグナル研究部門 ... 96
生殖・内分泌系発達機構研究部門 ... 97
神経シグナル研究部門 ... 98
大脳神経回路論研究部門 ... 99
生体恒常性発達研究部門 ... 99
視覚情報処理研究部門 ... 100
感覚認知情報研究部門 ... 100
認知行動発達機構研究部門 .. 100
生体システム研究部門 ... 101
統合生理研究部門 ... 101
心理生理学研究部門 ... 103
形態情報解析室 ... 104
多光子顕微鏡室 ... 105
電子顕微鏡室 ... 106
生体機能情報解析室 ... 106
ウィルスベクター開発室 ... 106
遺伝子改変動物作製室 ... 107
国際連携研究室 ... 107
個別研究（毛利研究室） .. 108
旧生理研所属者 ... 108
発表論文

《神経機能素子研究部門》

1) 英文原著論文

2) 英文総説（査読あり）

《分子神経生理研究部門》

1) 英文原著論文

英文総説(査読あり)

英文原著論文

英文総説

《生体膜研究部門》

1) 英文原著論文

総説

著書

《細胞構造研究部門》

1) 英文原著論文

2) 英文総説

《細胞生理研究部門》

1) 英文原著論文

3. Takayama Y, Furue H, Tominaga M (2017) 4-isopropylcyclohexanol has potential analgesic effects
through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities. Sci Rep 7: 43132. doi: 10.1038/srep43132.

1) 英文原著論文

The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergology International Jan Vol 66, Issue 1, 22-30

2) 英文総説（査読あり）

3) 研究関係著作

《生殖・内分泌系発達機構研究部門》

1) 英文原著論文

3. Iwakoshi-Ukena E, Shikano K, Kondo K, Taniuchi S,

英文総説（査読あり）

英文原著論文

和文原著論文

英文総説（査読あり）

Research Papers

Research Papers (Review)

Research Papers (In Japanese)

マウスにおける大脳皮質体性感覚野神経回路再編とグリア機能. 臨床雑誌 整形外科 68(12):1284.

《視覚情報処理研究部門》

1) 英文原著論文

2) 研究関係著作

《感覚認知情報研究部門》

1) 英文原著論文
2) 研究関係著作
1. 小松英彦, 郷田直一 (2017) "触り心地の制御, 評価技術と新材料・新製品開発への応用" (第1章 第1節), 技術情報協会. pp. 3-9.

《認知行動発達機構研究部門》

1) 英文原著論文
 doi: 10.1038/s41598-017-13919-7.
2) 研究関係著作

《生体システム研究部門》

1) 英文原著論文

2) 研究関係著作

《統合生理研究部門》

1) 英文原著論文

3) 研究関係著作

4) その他

2. 柿木隆介 (2017) “世界にかゆいがなくなる日", 柿
ルメ社，東京。

《心理生理学研究部門》

1) 英文原著論文

2) 英文総説(査読あり)

3) 研究関係著作

1) 英文原著論文

2) 研究関係著作
1. 村越秀治 (2017) 少数で伝える~神経シナプスのシグナル伝達~ “少数性生物学” (永井健治, 富樫祐一 編), 第 2 章, 日本評論社, pp. 9-16.
3. 村越秀治 (2017) (クローズアップ実験法) 光応答性
阻害ペプチドの生化学的機能アッセイ. 実験医学 35: 2765-2770.

《電子顕微鏡室》
1) 英文原著論文
doi: 10.1038/cddis.2017.249

《生体機能情報解析室》
1) 英文原著論文
doi:10.1017/S0140525X15002708.

《ウィルスベクター開発室》
1) 英文原著論文
doi: 10.1038/s41598-017-12070-7.

2) 英文総説

《遺伝子改変動物作製室》

1) 英文原著論文

《国際連携研究室》

1) 英文原著論文

2) 和文教科書
1. 岡田泰伸（監修）, 佐久間康夫・岡村康司（監訳）（2017）“ギャノング 生理学”（原書 25 版）丸善, 東京
《個別研究（毛利研究室）》

1) 英文原著論文

《旧生理研所属者》

1) 英文原著論文

旧行動様式解析室（宮川研）

旧神経細胞構築研究部門（瀬藤研）

旧認知行動発達機構研究部門（伊佐研）

旧動物実験コーディネータ室（佐藤研）
b. 学会発表

[目 次]

神経機能素子研究部門 ... 112
分子神経生理研究部門 ... 113
生体膜研究部門 .. 113
神経発達・再生機構研究部門 .. 114
細胞構造研究部門 ... 116
細胞生理研究部門 ... 116
心循環シグナル研究部門 .. 118
生殖・内分泌系発達機構研究部門 ... 119
神経シグナル研究部門 ... 121
大脳神経回路論研究部門 ... 121
生体恒常性発達研究部門 ... 122
視覚情報処理研究部門 .. 125
感覚認知情報研究部門 .. 126
認知行動発達機構研究部門 ... 126
生体システム研究部門 .. 128
統合生理研究部門 ... 131
心理生理学研究部門 ... 132
個別研究（毛利研究室） .. 135
形態情報解析室 ... 135
多光子顕微鏡室 ... 136
生体機能情報解析室 ... 137
ウイルスペクター開発室 .. 137
遺伝子改変動物作製室 .. 137
生体制御シグナル研究部門 ... 138
動物実験センター ... 138
学会発表

《神経機能素子研究部門》

1. 下村拓史, 久保義弘 (2017.3.28) Characterization of the unique function and structure of voltage sensor domain-II of Two-pore Na+ channel 3 (TPC3) 第94回日本生理学会大会（浜松）

2. 杉村一郎, 久保義弘 (2017.3.29) Analyses of the interaction between C-linker and cyclic nucleotide binding homology domain of hERG channel using cysteine bridge experiment. 第94回日本生理学会大会（浜松）

3. 陳以珊, 久保義弘 (2017.3.29) Effects and activation mechanisms of antiparasitic agents on GIRK channels. 第94回日本生理学会大会（浜松）

4. 立山充博, 久保義弘 (2017.3.30) FRET analyses of voltage dependence of P2Y1R. 第94回日本生理学会大会（浜松）

5. Rizki Tsari Andriani, Yoshihiro Kubo (2017.3.30) Voltage-clamp fluorometry analyses of the secondary structural rearrangements of ATP-gated P2X2 receptor. 第94回日本生理学会大会（浜松）

8. I-Shan Chen, Tomomi Yamamoto, Li Zhou, Rie Natsume, Kohtar0 Konno, Motonari Uesugi, Masahiko Watanabe, Keizo Takao, Tsuyoshi Miyakawa, Kenji Sakimura, and Yoshihiro Kubo (2017.7.21) Behavioral analyses of forebrain specific knock-out mice of an orphan metabotropic receptor Prrt3 and screening of small molecule library toward identification of its ligand. 第40回日本神経科学学会大会（幕張）

9. Yoshihiro Kubo (2017.8.2) Activation mechanisms and binding sites of ivermectin in G-protein-gated inwardly rectifying potassium channels. In Symposium “Shared and unique aspects of the gating mechanism of ligand- and voltage-gated ion channels” The 38th Congress of International Union of Physiological Sciences (Rio de Janeiro, Brazil)

11. 塚本寿夫, 陳以珊, 久保義弘, 古谷祐詞 (2017.9.23) 動物プランクトンの脳ではたらく繊毛型オプシンの分子特性 第88回日本動物学会（富山）

13. I-Shan Chen, Michihiro Tateyama, Yuko Fukata, Motonari Uesugi, Yoshihiro Kubo (2017.10.6) Activation mechanisms of G-protein-gated inwardly rectifying K+ channel by ivermectin. 第64回中部日本生理学会（甲府）

14. 淺野駿弥子, 安田隆ノ介, 条慎一郎, 久保義弘, 齊藤修 (2017.12.7) メダカの侵害刺激センサーTRPV1の刺激応答性についての研究 第90回日本生化学会（神戸）
《分子神経生理研究部門》

3. 大野伸彦 (2017/6/15) SBF-SEM による 3 次元微細構造観察が明らかにする新しい中枢神経系のグリア細胞像. 第 69 回日本細胞生物学会. (宮城県仙台市)

《生体膜研究部門》

2. Fukata M (2017.6.14) Pathophysiological role of epilepsy-related LGI1 and ADAM22 in hippocampal synaptic development. Spring Hippocampal Research Conference (Taormina, Sicily, Italy) 招待講演
5. Fukata M (2017.8.9) Local palmitoylation machinery in the postsynaptic nanodomain organization. 5th Annual iGluR Retreat (New Haven, Connecticut, U.S.A.)招待講演
6. Fukata M, Yokoi N, Fukata Y (2017. 8. 29) Role of local palmitoylation machinery in the postsynaptic nanodomain organization. 13th International congress of the Polish

《神経発達・再生機構研究部門》

1. 澤本和延（2018.3.28-30）脳の発達・再生過程における新生ニューロンの移動の足場.第123回日本解剖学会総会・全国学術集会（日本医科大学，東京都武蔵野市）
2. 山本誠也, 金子奈穂子, 橋本真耶佳, 宮本拓哉, 竹林浩秀, 池中一裕, 澤本和延（2018.3.21-23）脳質下帯由来オリゴデンドロサイト前駆細胞の傷害部への移動・分化過程の解析.第17回日本再生医療学会総会（パシフィコ横浜，神奈川県横浜市）
8. Sawamoto K（2018.3.6-7）Scaffolds for neuronal migration and brain repair. Joint-Symposium between NYU and NCU（漢陽大学,ソウル特別市 韓国）
10. 藤岡哲平, 金子奈穂子, 味岡逸樹, 中口加奈子, 小俣太一, 大場帆乃佳, 関口清俊, 松川則之, 澤本和延（2017.12.3）脳梗塞後の再生過程における血管を足場とした新生ニューロンの移動制御機構. 第68回名古屋市立大学医学部総会（名古屋市立大学,愛知県名古屋市）
12. 澤本和延（2017.11.11）脳に内在する再生機構.第3回川島カンファレンス（内藤記念くすり博物館大ホール, 岐阜県各務原市）
13. 青柳佑佳, 木森義隆, 澤田雅人, 日比輝正, 川上良介, 澤本和延, 根本知己（2017.10.27.-28）生後マウス脳における新生ニューロンの3次元可視化解析. 第6回ニューロフォトニクス研究会（北海道大学,

20. 澤本和延（2017.9.2）脳細胞の再生. 名古屋市立大学X 名古屋市立大学サイエンスパートナーシップイベント（名古屋市科学館，愛知県名古屋市）

21. 澤本和延（2017.8.27）脳に内在する再生メカニズムとその操作技術. 第4回包括的緩和医療科学学術研究会/第5回 Tokyo 東京福祉大学平成研究会 合同研究会（KOKUYO HALL, 東京都港区）
《細胞構造研究部門》

4. 菅原太一, 古瀬幹夫 (2017.6.13)タイトジャンクション形成におけるangulin-1/LSRとトリセルリンの機能的な相違. 第69回日本細胞生物学会大会(仙台)
5. 大谷哲久, 古瀬幹夫 (2017.5.10–11)上皮バリアの恒常性の維持における細胞競合の役割. 第50回日本発生物学会大会（東京）

《細胞生理研究部門》

1. 富永真琴（2017.2.3）温度感受性 TRP チャネルと温度生物学. 第4回お茶の水サイエンス倶楽部（東京）
2. 高山靖規 (2017.2.10) Interaction between TRP channels and ANO1. 第9回名古屋グローバルリトリート（大府）
4. Derouiche Sandra (2017.3.9) Involvement of thermosensitive TRP channels in temperature-dependent microglia. 第6回生理研－脳研－新潟脳研合同シンポジウム（新潟）
5. 裏藤茂（2017.3.28）種間比較と祖先配列再構築によるツメガエル高温センサーTRPV1の機能進化過程の推定. 第94回日本生理学会大会（浜松）

6. Kurganov Erkin (2017.3.28) Requirement of extracellular Ca2+ binding to specific amino acids for heat-evoked activation of TRPA1. 第94回日本生理学会大会（浜松）
7. 富永真琴（2017.3.29）TRP チャネルを介した温度感受, 侵害刺激感受. 第94回日本生理学会大会 (浜松)
8. Derouiche Sandra (2017.3.29) Functional interaction between thermosensitive TRPV4 and TMEM16A/anoctamin 1 contributes to stimulated saliva and tear secretion. 第94回日本生理学会大会（浜松）
9. Li Tianbang (2017.3.30) マラリア蚊 TRPA1 の機能解析. 第94回日本生理学会大会（浜松）
10. 山野井遊 (2017.3.30) ケラチノサイトにおけるTRPV3-ANO1相互作用の機能解析. 第94回日本生理学会大会（浜松）
11. Tominaga Makoto (2017.4.1) Structure-function
117

relationship of TRPA1 and a novel anti-nociceptive agent targeting ANO1 and TRPA1. The 4th Annual Meeting for Translational Research of Pain (Shenzhen, China)

13. Tominaga Makoto (2017.4.22) Functional interaction between TRPV1 and ANO1 in mouse sensory neurons. 2017 Yonsei-Korea-NIPS Symposium (Seoul, Korea)

14. 富永真琴 (2017.5.13) 温度感受性 TRP チャネルと侵害刺激感受. 第 27 回中国四国ペインクリニック学会 (松山)

15. 富永真琴 (2017.6.10) 温度センサーとしての TRP チャネルの基礎と臨床. 第 66 回日本鍼灸学術大会 (東京)

16. 富永真琴 (2017.6.12) TRP チャネルを介した侵害刺激受容. 第 10 回相模原・北里神経科学フォーラム (相模原)

17. 高山靖規 (2017.6.17) 4-イソプロピルシクロヘキサノールのイオンチャネル阻害作用. 第 39 回日本疼痛学会 (神戸)

18. 山野井遊 (2017.6.17) クロタミトンの TRPV4 チャネルに対する 2 つの作用. 第 39 回日本疼痛学会 (神戸)

19. 富永真琴 (2017.6.25) 温度感受性 TRP チャネルと侵害刺激受容の分子機構. 平成 29 年度糖尿病性神経障害を考える会学術講演会 (東京)

20. 富永真琴 (2017.7.28) 体温調節機構と発汗: 末梢から中枢神経の総合的解明のために. 第 25 回日本発汗学会総会 (中央)

21. 齋藤茂 (2017.8.24) 生息環境に応じた温度感覚の進化: 分子から生態までの統合的解明を目指して. 日本進化学会第 19 回大会 (京都)

22. Tominaga Makoto (2017.8.31) Molecular mechanisms of nociception and thermosensation through TRP channels. 国際自律神経学会 2017 (名古屋)

23. 齋藤茂 (2017.9.21) 高温耐性を持つリュウキュウカジカガエルにおける温度センサーの機能解析. 日本動物学会第 88 回富山大会 (富山)

24. 齋藤茂 (2017.9.21) 温度感覚の種間多様性とその分子基盤の解明. 日本動物学会第 88 回富山大会 (富山)

25. 富永真琴 (2017.9.30) 温度感受性 TRP チャネルを介した侵害刺激感受・侵害刺激感受の分子機構. 平成 29 年度糖尿病性神経障害を考える会学術講演会 (東京)

26. Li Tianbang (2017.10.7) Characterization of TRPA1 from disease vector mosquitoes. The 7th Asian Pain Symposium (Taipei, Taiwan)

27. Tominaga Makoto (2017.10.27) Anoctamin 1 as a target of anti-nociceptive agents. The 7th Asian Pain Symposium (Taipei, Taiwan)

28. Takayama Yasunori (2017.10.28) Comprehensive regulation of in dynamics through TRP-ANO1 interaction in primary neurons. The 7th Asian Pain Symposium (Taipei, Taiwan)

29. Tominaga Makoto (2017.11.3) TRPV4 heats up ANO-dependent exocrine gland fluid secretion. 16th International Symposium on Molecular and Neural Mechanisms of Taste and Olfactory Perception (福岡)

30. Tominaga Makoto (2017.11.11) Involvement of TRP channels in itch. 27th International Symposium of Itch (東京)

31. 齋藤茂 (2017.11.17) 温度センサーから読み解く痛み受容の種間多様性と環境適応のつながり. バイオコンファレンス 2017 (八王子)

32. Takayama Yasunori (2017.11.12) Pharmacological effects of 4-isopropylcyclohexanol on TRP channel and ANO1/TMEM 16A. Neuroscience2017 (Washington D.C. USA)

33. 富永真琴 (2017.11.25) 末梢神経での痛み刺激感受メカニズムの最前線. 第 65 回日本職業・災害医学会学術大会 (北九州)

34. 富永真琴 (2017.12.20) 温度感受性 TRP チャネルと痒み. 次世代脳プロジェクト冬のシンポジウム 2017 (東京)

35. 富永真琴 (2017.12.25) 温度感受性 TRP チャネルの構造と機能. 第 2 回バイオサーモロジーワークショップ (東京)
1. 西田基宏（2017.2.10）TRPC3-Nox2 複合体形成による心臓リモデリング制御. 第 46 回日本心臓血管学会 (静岡県, 琵琶湖大学)
2. Motohiro Nishida, Akiyuki Nishimura, Tsukasa Shimauchi, Takuro Numaga-Tomita (2017.3.15) Eco-Phama of cilnidipine, a dihydropyridine-derivative Ca²⁺ channel blocker. 第 90 回日本薬理学会年会 (長崎県, 長崎ブリックホール)
3. 西田基宏, 富田（沼賀）拓郎, 西村明幸 (2017.3.17) 運動療法の新たな分子標的としての TRPC6 チャネル. 第 90 回日本薬理学会年会 (長崎県, 長崎ブリックホール)
4. Motohiro Nishida (2017.3.21) Regulation of environmental electrophile -mediated signaling by reactive persulfides in heart. 第 90 回日本細胞学会総会国際シンポジウム (宮城県, 仙台国際センター)
5. 西田基宏 (2017.3.27) 運動模倣薬の新たな戦略. 日本薬学会第 137 年会 (宮城県, 仙台国際センター・東北大学)
6. Motohiro Nishida (2017.3.28) Mechanism underlying redox regulation of cardiac mitochondria dynamics. 第 94 回日本生理学会大会 (静岡県, アクトシティ浜松)
7. 西田基宏 (2017.5.19) ミトコンドリアダイナミクスのレドックス制御. 第 17 回日本 NO 学会学術集会 (徳島県, 阿波観光ホテル)
9. 西田基宏 (2017.5.19) ミトコンドリアダイナミクスのレドックス制御. 第 17 回日本 NO 学会学術集会 (徳島県, 阿波観光ホテル)
10. 西田基宏 (2017.8.5) TRPC チャネル複合体を標的とした心不全治療戦略. 第 4 回 iHF フォーラム (東京都, 都ホテルオクラ東京)
11. 西田基宏 (2017.8.24) GTP 結合タンパク質Drp1のシスティン修飾を介した心筋早期老化の分子制御機構と創薬への適用. 京都薬科大学 (京都府, 京都薬科大学)
12. 西田基宏 (2017.9.2) 心不全リスクを制御するレドックスシグナル. Molecular Cardiovascular Metabolic Conference (MCMC) 2017 (兵庫県, 神戸ベイシェラトンホテル)
13. 西田基宏 (2017.10.20) 心血管病の新たな標的としての TRPC3-Nox2 複合体. 第 40 回日本高血圧学会総会 (愛媛県, 松山市ひめぎんホール)
14. 西田基宏 (2017.11.4) シルニジピンによるミトコンドリア品質維持と適応拡大. 第 27 回日本医療薬学会年会 (千葉県, 幕張メッセ)
15. 西田基宏 (2017.12.1) ミトコンドリア品質管理に着目した新しい疾患治療戦略. 第 27 回日本循環薬理学会 (愛知県, ウインクあいち)
17. Takuro Numaga-Tomita, Tsukasa Shimauchi, Akiyuki Nishimura, and Motohiro Nishida (2017.3.15-17) Improvement of peripheral circulation after hindlimb ischemia by TRPC channel inhibition. 第 90 回日本薬理学会年会 (長崎県, 長崎ブリックホール)
18. Takuro Numaga-Tomita, Naoyuki Kitajima, Akiyuki Nishimura, and Motohiro Nishida (2017.3.28-30) Functional and physical coupling between TRPC3 and Nox2 underlies maladaptive cardiac fibrosis. 第 94 回日本生理学会大会 (静岡県, アクトシティ浜松)
19. 富田拓郎, 北島直幸, 西村明幸, 西田基宏 (2017.5.19) TRPC3-Nox2 機能連関による ROS 産生と心臓リモデリング. 第 17 回日本 NO 学会学術集会 (徳島県, 阿波観光ホテル)
20. 富田拓郎, 島村理香, 小田紗矢香, 西村明幸, 西田基宏 (2017.6.22) 環境ストレスに対する心臓リモデリングにおける TRPC3/6 チャネルの役割. TRP 研究会 (愛知県, 岡崎カンファレンスセンター)
21. 富田拓郎, 島村理香, 小田紗矢香, 西田基宏 (2017.10.12-13) TRPC チャネル複合体の機能活性非依存的な役割とその病態生理学的意義. 血管機能に関する研究会 (愛知県, 生理学研究所大会議室)
22. Akiyuki Nishimura, Caroline Sunggip, Takuro Numaga-Tomita and Motohiro Nishida (2017.1.6) Developmentally upregulated P2Y6 receptor promotes angiotensin II-induced hypertensive signaling. 3rd
CU-NIPS symposium （タイ，チュラロンコン大学）
23. Akiyuki Nishimura (2017.2.10) Developmentally upregulated P2Y6 receptor promotes angiotensin II-induced hypertensive signaling. 第9回NAGOYA グローバルリトリート（愛知，あいち健康プラザ）
24. 西村明幸，島内司，冨田拓郎，西田基宏（2017.6.1）Dpr1-細胞骨格の相互作用による心筋ミトコンドリアの品質管理. オルガネラ研究会（愛知県，岡崎コンファレンスセンター）
25. 西村明幸，Caroline Sunggip，冨田拓郎，西田基宏（2017.12.9）加齢に伴うAT1R-P2Y6R複合体によるアンジオテンシンII誘発性高血圧の制御. 生命科学系学会合同年次大会（兵庫県，神戸ポートアイランド）
26. 西村明幸，冨田拓郎，西田基宏（2017.12.26）メチル水銀による心筋ミトコンドリア品質管理の分子機構. (東京都, LMJ東京研修センター)
27. 田中智弘，Lisa Nadeau，Sudheer Tungtur，Barbara Fegley，Clark Bloomer，Jeffrey Miner and Hiroshi Nishimune（2017.10.12）細胞外マトリクスリモデリングによる運動ニューロン変性の抑制機構. 心血管研究会（愛知県, 生理学研究所大会議室）
28. 田中智弘，Lisa Nadeau，Sudheer Tungtur，Barbara Fegley，Clark Bloomer，Jeffrey Miner and Hiroshi Nishimune（2017.9.9）細胞外マトリクス分子リモデリングによる運動ニューロン変性の抑制機構. 第131回日本薬理学会近畿部会（愛知県，ウインクあいち）
29. 小田紗矢香，西村明幸，西田基宏（2017.3.9）心臓の可塑性におけるTRPC6の役割. 第6回生 理研-霊長研-脳研合同シンポジウム（新潟県, 新潟大学）
30. 小田紗矢香，島内司，冨田拓郎，西村明幸，西田基宏（2017.9.10）高血糖誘発性心不全におけるTRPC6チャネルの役割. 第16 回 次世代を担う若手ファーマ・バイオフォーラム2017（北海道, 北海道大学）
31. Sayaka Oda, Motohiro Nishida (2017.4.21) TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. 2017 Yonsei -Korea -NIPS Symposium (Korea, Yonsei University)
32. 小田紗矢香，冨田拓郎，北島直幸，外山侶士，原田英里，島内司，西村明幸，西田基宏，Lutz Birnbaumer，西田基宏（2017.6.22）高血糖誘発性心不全の改善メカニズムにおけるTRPC6チャネルの役割. 第131回日本薬理学会近畿部会（愛知県，ウインクあいち）
33. 小田紗矢香，冨田拓郎，北島直幸，外山侶士，原田英里，島内司，西村明幸，石川達也，熊谷嘉人，Lutz Birnbaumer，西田基宏（2017.6.22）高血糖誘発性心不全の改善メカニズムにおけるTRPC6チャネルの役割. 第7回名古屋大学医学系研究科・生理学研究所合同シンポジウム（愛知県，岡崎カンファレンスセンター）
34. 小田紗矢香，冨田拓郎，北島直幸，外山侶士，原田英里，島内司，西村明幸，西田基宏，Lutz Birnbaumer，西田基宏（2017.6.22）高血糖誘発性心不全の改善メカニズムにおけるTRPC6チャネルの役割. 第16回日本薬学会近畿部会（愛知県，ウインクあいち）
35. 小田紗矢香，冨田拓郎，西村明幸，西田基宏（2017.9.10）高血糖誘発性心不全におけるTRPC6チャンネルの役割. 第7回名古屋大学医学系研究科・生理学研究所合同シンポジウム（愛知県，ウインクあいち）
36. 小田紗矢香，冨田拓郎，Caroline Sunggip，西村明幸，西田基宏（2017.3.9）心臓の可塑性におけるTRPC6の役割. 第31回日本糖尿病・肥満動物学会（横浜）

《生殖·内分泌系発達機構研究部門》

1. 岡本士毅，佐藤達也，巽越靖彦（2017.2.10-11）視床下部室傍核CRHニューロンはAMPKを介して社会的ストレスによる食餌選択行動の変化を制御する. 第31回日本糖尿病・肥満動物学会（横浜）

119

15. 箕越靖彦 (2017.9.27) AMPKによるエネルギー代謝調節機構. 第36回亥鼻カンファレンス(千葉).

16. 岡本士毅, 箕越靖彦, 益崎裕章 (2017.10.7-8) 視床下部AMPKは炭水化物嗜好性を制御する. 第38回日本肥満学会(大阪).

17. 中島健一朗, 傳欧, 岩井優, 三坂巧 (2017.10.7-8) 肥満による味覚感受性の変化を誘導する脳部位の探索. 第38回日本肥満学会(大阪).

18. 近藤邦生 (2017.10.7-8) ウイルストレーサーを用いたPVH CRHニューロンの上流の神経細胞の網羅的解析. 第38回日本肥満学会(大阪).

22. 箕越靖彦 (2017.11.10) 視床下部AMP kinaseによる食物嗜好性の制御機構. 東京大学医学部臨床研究者育成プログラム特別講義(東京).

《神経シグナル研究部門》

1. 古江秀昌 (2017.3.17) ノルアドレナリン神経による
上行性および下行性的痛覚調節機．第 90 回日本薬理
学会年会（長崎）
2. 山田彬博, 大澤匡弘, 杉 和彦, 井本敬二, 古江秀
昌 (2017.3.30) 覺醒下前帯状回皮質感応答の In vivo
解析．第 94 回日本生理学会大会（浜松）
3. 佐竹伸一郎, 川上 潔, 井本敬二, 池田啓子
(2017.7.22) Na
α3
ポンプ
サブユニット遺伝子ヘテロ
欠損マウスにおける小脳長期抑圧の消失．第 40 回日
本神経科学大会（千葉）
Calmodulin kinase IIα, aging and spatial memory
- Analysis using the kinase-dead knock-in mouse．第 40 回日
本神経科学大会（千葉）
5. 山肩葉子, 柳川右千夫, 井本敬二
(2017.9.9) カルモ
ジュリンキナーゼ
IIα 活性と加齢・海馬依存性記憶．第 7 回名古屋大学医学研究科・生理学研究所合同シンポジウム（岡崎）
(2017.10.14) In vivo analysis of sensory neuronal
activities in the anterior cingulate cortex．第 44 回日本脳
科学会（弘前）
Cingulate presynaptic long-term potentiation contributes
to chronic pain induced anxiety．第 44 回日本脳科学会
（弘前）
8. 中川達貴, 秋元 望, 箱崎敦志, 古江秀昌
(2017.11.18) 下部尿路からの脊髄への感覚伝達機構
の解析．第 110 回近畿生理学談話会プログラム（神戸）

《大脳神経回路論研究部門》

1. 孫在隣, 岡本慎一郎, 片岡直也, 金子武嗣, 中村和弘,日置寛之 （2017.3.9）マウス大脳新皮質 VIP陽性抑制
性細胞への細胞種・部位特異的入力．第 6 回生理研-
霊長研-新潟脳研合同シンポジウム（新潟）
2. 川口泰雄 （2017.3.25）前頭皮質における錐体細胞と
抑制スタイルの多様性．第 12 回日本統合失調症学会
（米子）
F, Tanaka Y, Kawaguchi Y (2017.3.28) Synapse density
and estimated number on various neurons of the rat
frontal cortex．第 94 回日本生理学会大会 （浜松）
ATUMtome tape -Carbon Nanotube．Max Planck/ HHMI
Connectomics Conference Berlin 2017 (Berlin,
Germany)
5. Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K,
Hiroki H (2017.4.10–11) Differential inputs to the
perisomatic and distal-dendritic compartments of
VIP-positive neurons in layer 2/3 of the mouse barrel
cortex．Max Planck/HHMI Connectomics Conference
Berlin 2017 (Berlin, Germany)
6. Morishima M, Kawaguchi Y (2017.4.21) Subtype-
dependent interaction between GABAergic and
pyramidal cells in layer 5 of the rat frontal cortex. 2017
Yonsei-Korea-NIPS Symposium (Seoul, Korea)
7. Otsuka T, Kawaguchi Y (2017.4.21) Optogenetically
induced oscillatory activities in the cortical networks.
2017 Yonsei-Korea-NIPS Symposium (Seoul, Korea)
8. 窪田芳之, 孫在隣, 井田小百合, 川口泰雄 （2017.6.1）
ATUMtome 用の開発テープと高解像画像用組織
処理法．日本顕微鏡学会第 73 回学術講演会（札幌）
Sakai Y, Kawaguchi Y, Nambu A, Yamanaka K,
Izomura Y (2017.7.20) Differential involvement of
direct- and indirect-pathway spiny projection neurons in
action valuation and update in the dorsomedial striatum.
第 40 回日本神経科学大会（千葉）
A novel tape for ATUMtome and high resolution
electron microscopy. 第 40 回日本神経科学大会（千葉）
11. Hatanaka Y, Hirata T, Kawaguchi Y (2017.7.21)
Labeling of neurons derived from intermediate neuronal
progenitors in the mouse cerebral cortex. 第 40 回日本神経科学大会 (千葉)

12. Otsuka T, Kawaguchi Y (2017.7.21) Cortical pyramidal cell-subtype dependent motor learning and oscillatory activities. 第 40 回日本神経科学大会 (千葉)

15. Morishima M, Kawaguchi Y (2017.7.22) Pyramidal cell subtype-dependent inhibitory innervations in layer 5 of the rat frontal cortex. 第 40 回日本神経科学大会 (千葉)

16. 川口泰雄 (2017.9.9) 前頭皮質のニューロン構成と標準回路. 新学術領域研究「脳情報動態を規定する多領野連関と並列処理（脳情報動態）」特別講演会「コネクトミクスから AI へ」 (東京)

17. Agahari FA, Stricker C (2017.9.9) Microcircuit specificity in serotonergic modulation of glutamate release in layer II/III of somatosensory cortex. 第 7 回生理学研究所・名古屋大学合同シンポジウム (岡崎)

18. 森島美絵子 (2017.10.13) Pyramidal subtype-dependent excitatory-inhibitory recurrent networks in layer 5 of the rat frontal cortex. 平成 29 年度第 2 回大脳基底核機能研究会 (福島)

21. Morishima M, Kawaguchi Y (2017.10.31~11.1) Pyramidal cell subtype-dependent inhibitory-excitatory circuits in layer 5 of the rat frontal cortex. 第 48 回生理研国際シンポジウム "Neural circuitry and plasticity underlying brain function" (岡崎)

24. Kawaguchi Y, Morishima M (2017.11.15) Innervation differences of layer 5a and 5b Martinotti cells in frontal cortex. 47th annual meeting of the Society for Neuroscience (Washington DC, USA)

25. Morishima M (2017.11.15) Interaction between GABAergic cells and projection specific pyramidal cells in the layer 5 of the rat frontal cortex. 47th annual meeting of the Society for Neuroscience (Washington DC, USA)

26. 川口泰雄 (2017.12.21) 前頭皮質ニューロンと再帰的結合の多様性. 次世代脳プロジェクト冬のシンポジウム 2017 (東京)

《生体恒常性発達研究部門》

1. 江藤 圭 (2017.01.18) 光子顕微鏡を用いた生体イメージング. 温度生物学・第 2 回若手の会(西浦町)

2. 江藤 圭, 鍋倉淳一 (2017.01.19) 一次体性感覚野における温度センシング機構とその経験依存的可塑的変化. 第 3 回温度生物学領域会議 (岡崎)

3. 鍋倉淳一 (2017.01.20) 生体内シナプス長期再編におけるグリアーシナプス機能連関. AMED-CREST 「脳神経回路」研究領域最終公開シンポジウム(東京)
4. 鍋倉淳一 (2017.01.22) 動物研究と生体イメージング. 日本学術会議公開シンポジウム(東京都港区)

5. 江藤 圭, 石田順也, 鍋倉淳一 (2017.01.31) 慢性疼痛における一次体性感覚野興奮・抑制バランスの役割. 痛み研究会 2016(岡崎)

6. 竹田育子, 江藤 圭 (2017.02.02) アストロサイト再活性化による慢性疼痛治療. AMED-Crest 合同ミーティング(甲府)

7. 戸田拓弥, 鍋倉淳一 (2017.02.07) KCC2 発現低下は末梢神経損傷後の運動機能回復を促進する. H28 年度 AMED・JST CREST 合同ミーティング(甲府)

8. 中村佳代, 鍋倉淳一 (2017.02.07) 共輸送体(KCC2)の過剰発現は運動学習効率とシナプスモデリングの増加を促進する. AMED・JST CREST 合同ミーティング(甲府)

9. 戸田拓弥, 鍋倉淳一 (2017.02.07) KCC2 発現低下は末梢神経損傷後の運動機能回復を促進する. H28 年度 AMED・JST CREST 合同ミーティング(甲府)

10. 江藤 圭, 鍋倉淳一 (2017.02.08) 一次体性感覚野における温度センシング機構. AMED-Crest 合同ミーティング(甲府)

11. 亀吉亮平, 和気弘明, 加藤大輔, 鍋倉淳一 (2017.02.10) Microglial contact with synapse enhances synaptic activity. 第9回-NAGOYA グローバルリトリート(知多)

14. 稲田浩之 (2017.03.09) ニューロンの興奮毒性に対するミクログリアの神経保護作用. 第6回 生理研究-薬理-脳研 合同シンポジウム(新潟)

15. 中村佳代, 鍋倉淳一 (2017.03.09) Enhancement of cortical synapse remodeling and improvement of motor performance in K⁺Cl⁻ cotransporter (KCC2)-overexpressed mice. 生理学研究所・京都大学薬学部 研究発表／学会発表

17. 稲田浩之 (2017.03.22) マイクロチッププレーザーとオプトジェネティクスによる生体脳活動の観察と制御. 分子観察による生命の階層横断的な理解(岡崎)

18. 戸田拓弥, 古江秀昌, 小林憲太, 和気弘明, 江藤 圭, 鍋倉淳一 (2017.03.28) Downregulation of KCC2 accelerates motor function recovery after axonal injury, KCC2 発現低下は末梢神経損傷後の運動機能回復を促進する. 第94回日本生理学会大会(静岡)

22. Nabekura Junichi (2017.06.20) REMODELING OF CORTICAL SYNAPSeS IN VIVO: NEURON-GLIA INTERACTION. the 6th Intl Symposium “Interaction of nervous and immune systems in health and disease” (St. Petersburg, Russia)

23. Takeda I, Nabekura J (2017.06.21) Astrocytes modulate neuronal circuits of neuropathic pain. the 6th International Symposium “Interaction of nervous and immune systems in health and disease” (St. Petersburg, Russia)

24. "江藤 圭, 鍋倉淳一 (2017.06.27) グリア細胞機能破綻による神経回路長期再編障害の解明. 研究会 グリア細胞による脳機能ホメオダイナミクスの制御と老化による破綻機序の解明を目指して(神戸)"
25. 鍋倉淳一 (2017.06.27) グリア細胞機能破綻による 神経回路長期再編障害の解明. 研究会「グリア細胞 による脳機能ホメオダイナミクスの制御と老化に よる破綻機構の解明をめざして」 (神戸)

28. 春若航一, 和気弘明, 鍋倉淳一 (2017.07.20) KCC2 発現低下は末梢神経損傷後の運動機能回復を促進する Downregulation of KCC2 accelerates motor function recovery after axonal injury. The 40th Annual Meeting of the Japan Neuroscience Society. (千葉)

29. Narushima M, Takeuchi Y, Miyata M (2017.07.22) The metabotropic glutamate receptor subtype 1 contributes to developmental refinement of afferent lemniscal synapses in the somatosensory thalamus. 第 40 回日本神経科学大会(千葉)

32. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

33. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

34. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

35. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

36. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

37. 春若航一, 和気弘明, 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

38. 春若航一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

40. 鍋倉淳一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

41. 春若航一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

42. 春若航一 (2017.08.29) Synapse remodeling of cortical synapses by microglia. The 20th Annual Meeting of the Korean Society for Brain and Neural Science(岡崎)

43. Masakazu Agetsuma, Jordan P. Hamm, Kentaro Tao, Shigeyoshi Fujisawa, and Rafael Yuste (2017.11.01) Parvalbumin-Positive Interneurons Regulate Neuronal Ensembles in Visual Cortex. The 48th NIPS International Symposium (岡崎)

春若航一路,鍋倉淳一,和氣弘明 (2017.11.18) 自己免疫疾患におけるミクログリアの変化. 第 110 回近畿生理学談話会(神戸市)

揚妻 正和 (2017.11.21) 光学的アプローチによる大脳皮質情報処理機構の解明 ～視覚情報処理の研究から，情動記憶研究への応用まで～. シグナル伝達医学研究展開セミナー(神戸)

Masakazu Agetsuma (2017.11.29) All optical methods to uncover cortical computation. NIPS-CIN symposium (岡崎)

Nabekura Junichi (2017.12.03) In vivo imaging; from synapses to neuronal circuits. Australasian Neuroscience Society Annual Scientific Meeting 2017, Session#2-Imaging workshop II (Sydney, Australia)

50. Nabekura Junichi (2017.12.05) Long term plasticity of neuronal circuits in development and recovery. Australasian Neuroscience Society Annual Scientific Meeting 2017, Plenary (Sydney, Australia)

51. 搴妻 正和 (2017.12.15) 光学的アプローチによる大脳皮質情報処理機構の解明 ～視覚情報処理の研究から，情動記憶研究への応用まで～. 精神保健研究所・神経研究所セミナー(小平市)

52. 春若航一路,錦倉淳一, 和気弘明 (2017.12.22) Microglia sense systemic immune activation in autoimmune disease model. 次世代脳プロジェクト冬のシンポジウム(東京)

1. Ishikawa AW (2017.1.6) Developmentally upregulated P2Y6 receptor promotes angiotensin II-induced hypertensive signaling. 3rd CU-NIPS Symposium (Bangkok, Thailand)

5. Kimura R, Yoshimura Y (2017.7.22) Novel dependence of neural responses on the contrast of visual stimuli used for an orientation discrimination task in rat primary visual cortex. The 40th Annual Meeting of the Japan Neuroscience Society (Chiba)

6. 宮下俊雄, 三宝誠, 平林真澄, 八木健, 吉村由美子 (2017.9.9) Dnmt3b によるゲノムメチル化を介した一次視覚野神経細胞の機能発達. 第 7 回生理学研究所・名古屋大学医学系研究科合同シンポジウム (岡崎)

7. 石川理子, 吉村由美子 (2017.9.26) ラット一次視覚野-二次視覚野間結合の視覚経験依存的な発達. 視覚科学フォーラム 2017 豊橋 第 21 回研究会 (豊橋)

9. 木村梨絵, 吉村由美子 (2017.12.22) 方位弁別学習後のラット一次視覚野細胞に見られる新規なコントラスト依存性. 次世代脳プロジェクト冬のシンポジウム 新学術領域 [スクラップビルド] [脳構築の時計と場] 合同若手シンポジウム (東京)
生理学研究所年報 第39巻（Dec.2018）
研究発表／学会発表

《感覚認知情報研究部門》

1. Goda N (2017.1.18) Representation of visual and nonvisual material properties of objects in the visual cortex. NICT-NSF Collaborative Workshop on Computational Neuroscience (吹田)

2. Komatsu H (2017.1.31) How are the rays coloured in the brain? The 50th Anniversary Symposium of Primate Research Institute of Kyoto University - Past, present and future of primatology (犬山)

3. 小松英彦 (2017.3.10) Neural mechanisms of material perception, 玉川大学脳科学研究所 10周年記念シンポジウム（町田）

4. Komatsu H (2017.5.15) Neural processing of Shitsukan-perception of materials and surface qualities of objects. Why we see things the way we do - Rudiger von der Heydt’s Retirement Symposium Celebrating Research into the Neural Basis of Visual Perception (Baltimore, MD, USA)

5. 郷田直一, 小松英彦 (2017.7.21) Visual features representing material properties of objects: analysis with convolutional neural networks. 第40回日本神経科学大会（千葉）

6. 横井劲, 岩井大輔, 小松英彦 (2017.7.21) Behavioral response of monkeys to the virtual material objects presented using the projection mapping technique. 第40回日本神経科学大会（千葉）

7. 郷田直一 (2017.7.26) 光沢や艶, 質感を感じる脳のメカニズムについて. 技術情報協会セミナーNo.707203（東京）

8. 小松英彦 (2017.8.31) 世界理解の新しい試み－質感の科学から－. 認知科学会サマースクール 2017（箱根）

《認知行動発達機構研究部門》

1. 吉田正俊 (2017.1.11) アクティブビジョンとフリストン自由エネルギー原理. 第168回 Phileth セミナー（北海道札幌市）

2. 磯田昌岐 (2017.1.11) 社会的認知機能の生理学的解明：サルを用いた研究から. 岡崎市医師会（愛知県岡崎市）

3. 二宮太平 (2017.2.10) Distinct cortical and subcortical neetworks drive myoclonic and vocal tics in Tourettism. 第9回 NAGOYA グローバルリトリート（愛知県東浦町）

4. 郷康広 (2017.2.24) ゲノムを通して我が身を知る～人とヒトとサルの間にあるもの～. 国立精神神経医療研究センター研究セミナー（東京都小平市）

5. 二宮太平 (2017.3.9) トゥレット障害の病態解明にむけた霊長類モデル研究. 新潟脳研-生理研合同シンポジウム（新潟県新潟市）

6. 郷康広 (2017.3.18) ゲノムを通して我が身を知る～人とヒトとサルの間にあるもの～. 国立精神神経医療研究センター研究セミナー（東京都小平市）

7. 郷康広 (2017.3.18) 霊長類における精神・神経疾患関連遺伝子解析と認知ゲノミクスの展望. 平成28年度京都大学霊長類研究所共同利用研究会（愛知県犬山市）

8. 吉田正俊 (2017.3.29) 盲視における視覚と眼球運動. 第94回日本生理学会大会（静岡県浜松市）

9. 郷康広 (2017.4.15) ゲノムを通して我が身を知る～人とヒトとサルの間にあるもの～. 愛知高等学校特別講演会（愛知県名古屋市）

10. 吉田正俊 (2017.4.16) フリービューイング検査を用いた眼球運動のサリエンシー解析. 第13回 IGC 第8回 COCORO合同会議（東京都文京区）

13. 郷康広, 辰本将司, 石川裕恵 (2017.5.22) Chromiumシステムを用いたニホンザル新規ゲノム配列決定.
15. Isoda M (2017.7.20) Towards a systems-level understanding of social brain function. 第40回日本神経科学大会（千葉県千葉市）
16. Noritake A (2017.7.20) Multiple social reward signals in the macaque brain. 第40回日本神経科学大会（千葉県千葉市）
18. Yoshida M (2017.7.21) Salience-guided eye movements in schizophrenic subjects: implications for aberrant salience hypothesis. 第40回日本神経科学大会（千葉県千葉市）
19. Kengo Tsujimoto, Masaki Fukunaga, Masahiro Sawada, Masatoshi Yoshida (2017.7.21) Monkey model of unilateral spatial neglect by the lesion of right superior temporal gyrus. 第40回日本神経科学大会（千葉県千葉市）
23. 吉田正俊 (2017.8.9) 統合失調症患者における予測誤差仮説. 平成29年度 COI 夏の研究会（愛知県岡崎市）
24. 吉田正俊 (2017.8.18) 盲視から探る意識の脳内メカニズム. 第17回 K フォーラム（岐阜県高山市）
25. 郷広宏, 辰本将司, 石川裕恵 (2017.8.24) ロングリード型 NGS を用いたニューホン新規ゲノム配列配列決定. 日本進化学会第19回国会（京都府京都市）
26. Yasuhiro Go (2017.9.8) Spatiotemporal brain transcriptome architecture and application for disease model in marmosets. 第60回日本神経化学学会大会（宮城県仙台市）
27. 二宮太平洋（2017.9.9）前頭葉と後頭葉の領域内局所回路の比較. 第7回名大・生理研合同シンポジウム（愛知県岡崎市）
28. 郷広宏（2017.9.21）Spatiotemporal brain transcriptome architecture and application for disease model in marmosets. 第27回日本神経回路学会全国大会（福岡県北九州市）
29. 吉田正俊 (2017.9.25) 回路操作によって意識研究は可能か 趣旨説明 + 動物実験の立場から. 生理研研究会「認知神経科学の先端 意識の脳内メカニズム」（愛知県岡崎市）
31. 吉田正俊 (2017.9.28) 自由エネルギー原理に基づいたアクティブビジョンと視覚的意識の理論. 視覚フォーラム2017（愛知県豊橋市）
32. Isoda M (2017.10.6) Probing the social mind with an electrode. 第44回内藤コンファレンス（北海道札幌市）
33. 吉田正俊 (2017.10.6) マーモセットにおける mismatch negativity (MMN) と視線の同時計測. 第64回国中部日本生理学会（山梨県甲府市）
34. 吉田正俊 (2017.10.10) 視覚サリエンスの計算論的モデルとその応用. 応用脳科学コンソーシアム 第1回国ニュースパネラルパネル演習研究会（東京都港区）
35. 郷広宏（2017.10.29）ゲノムを通じて我が身を知る～ヒト群集にみられる「個性」創発の起因に関する論考～. 日本社会心理学会第58回国会（広島県広島市）
36. Yoshida M (2017.11.3) Animal models of spatial neglect and schizophrenia. CoRN2017 (Taipei, Taiwan)
38. 磯田昌岐 (2017.11.24) サルを用いた社会的認知機能のシステム生理学的理解. 生理研研究会「脳の階層的理解を目指して」（宮城県仙台市）
39. Taihei Ninomiya, Ken-ichi Inoue, Eiji Hoshi, Masahiko Takada (2017.11.24) Laminar organization of inputs from the supplementary motor area and the dorsal premotor cortex to the primary motor cortex in macaques. 生理研研究会「脳の階層的理解を目指して」（宮城県仙台市）
40. 則武厚, 磯田昌岐 (2017.11.24) マカクサルにおける自己および他者の報酬情報を表現する神経回路網. 生理研研究会「脳の階層的理解を目指して」（宮城県仙台市）
41. Yoshida M (2017.11.28) Microsaccades in blindsight monkeys. The 7th NIPS/CIN Joint Symposium (愛知県岡崎市)
42. Noritake A (2017.11.29) Neural neworks for social reward valuation in the macaque brain. The 7th NIPS/CIN Joint Symposium (愛知県岡崎市)
43. 磯田昌岐 (2017.11.30) マカクサルを用いた2個体脳科学の創成に向けて. 生理研研究会 第7回社会神経科学研究会「サル脳に学ぶ社会神経科学の基盤」（愛知県岡崎市）
44. 磯田昌岐 (2017.12.5) 電長類動物をモデルとして社会的認知機能の神経基盤を探す. 生理研研究会「発達・脳科学と教育実践学の融合的連携を探す～対人相互関係の理解と育成をめざして～」（愛知県岡崎市）
45. 磯田昌岐 (2017.12.7) 社会的認知機能の生理学的理解: サルを用いた研究から. 昭和大学発達障害医療研究所セミナー（東京都世田谷区）
46. 賛康広, 辰本将司, Chuan Xu, Qian Li, Olga Efimova, Liu He, 大石高生, 鵜殿俊史, 山口勝司, 重信秀治, 梶田明美, 那波宏之, Philipp Khaitovich (2017.12.9) 灵長類脳における比較トランスクリプトーム・エピゲノム解析. 生命科学系合同年次学会（ConBio2017）（兵庫県神戸市）
47. 吉田正俊 (2017.12.10) フリービューイング検査を用いた眼球運動のサリエンシー解析. 第14回IGC第10回COCORO合同会議（東京都文京区）

《生体システム研究部門》

1. Woranan Wongmassang, Satomi Chiken, Atsushi Nambu (2017.2.10) Weak correlation in pallidal neurons during voluntary reaching movement in a macaque monkey. The 9th Nagoya global retreat （大府）
2. 南部 篤 (2017.3.6) 大脳皮質－大脳基底核ループと大脳基底核疾患. 第37回Neuroscience Seminar Tokushima（徳島）
3. 賛見聡美, 佐藤朝子, 笹岡俊邦, 高田昌彦, 南部 篤 (2017.3.9) 大脳基底核内情報伝達と運動制御におけるドーパミンの機能. 第6回生理研－霊長研－新潟脳研合同シンポジウム（新潟）
4. 佐野裕美 (2017.3.9) 遺伝子改変マウスを用いた大脳基底核の機能と運動異常症の病態に関する研究. 第6回生理研－霊長研－新潟脳研合同シンポジウム（新潟）
5. 南部 篤 (2017.3.18) 大脳基底核23の問題. 平成28年度京都大学霊長類研究所共同利用研究会「集団的フロネシスの発現と創発の解明を目指して」（犬山）
6. Atsushi Nambu, Mitsunori Ozaki, Hiromi Sano, Shigeki Sato, Mitsuhiro Ogura, Hajime Mushiake, Satomi Chiken, Naoyuki Nakao (2017.3.27-30) "Inhibitory center-excitatory surround" inputs from the motor cortex to the globus pallidus revealed by optogenetic stimulation. 12th International Basal Ganglia Society Meeting (Merida, Mexico)
7. Satomi Chiken, Atsushi Nambu (2017.3.27-30) Abnormal information flow through the cortico-basal ganglia...
pathways in MPTP-treated parkinsonian monkeys. 12th International Basal Ganglia Society Meeting (Merida, Mexico)

11. Hirokazu Iwamuro, Yoshihisa Tachibana, Yoshikazu Ugawa, Nobuhito Saito, Atsushi Nambu (2017. 3.27-30) Somatotopic organizations of motor cortical inputs to the subthalamic nucleus and globus pallidus of monkeys. 12th International Basal Ganglia Society Meeting (Merida, Mexico)

13. Atsushi Nambu (2017.4.21) "Inhibitory center-excitatory surround" inputs from the motor cortex to the globus pallidus revealed by optogenetic stimulation. 2017 Yonsei-Korean-NIPS Symposium (Seoul, Korea)

14. 南部 篤 (2017.5.24) 大脳皮質大脳基底核ループとパーキンソン病. 宮城パーキンソン病フォーラム (仙台)

20. 畑中伸彦 (2017.7.1) 運動課題遂行中のマカクサルにおける線条体投射ニューロン活動のGABA作動性調節. 第32回日本大脳基底核研究会（西尾）

21. 橘 吉寿, 南部 篤 (2017.7.1) 我慢をする脳内メカニズム－視床下格の新たな機能を探る－. 第32回日本大脳基底核研究会（西尾）

22. 小山内誠, 菊田里美, 谷平大樹, 本間聰康, 中尾聰宏, 小田佳奈子, 畑岡俊邦, 南部 篤 (2017.7.1) qAIM-MRIによるD1ドーパミン受容体コンディショナルダウンマウスの全脳神経活動解析. 第32回日本大脳基底核研究会（西尾）

23. 畑岡俊邦, 佐藤朝子, 知見聡美, 大久保直, 阿部学, 川村名子, 中尾聰宏, 小田佳奈子, 酒井清子, 前田宣俊, 神保孝弘, 佐藤俊哉, 藤澤信義, 島村健司, 南部 篤 (2017.7.2) D1/D2ドーパミン受容体コンディショナル発現マウスによる運動制御機構の解明. 第32回日本大脳基底核研究会（西尾）

24. Hiromi Sano, Kenta Kobayashi, Shigeki Kato, Satomi Chiken, Kazuto Kobayashi, Atsushi Nambu (2017.7.20) Responses in the basal ganglia induced by cortico-striatal neurons. The 40th Annual Meeting of the Japan

30. Satomi Chiken, Atsushi Nambu (2017.7.22) How do the basal ganglia and cerebellum control thalamocortical activity? The 40th Annual Meeting of the Japan Neuroscience Society (千葉)

33. Atsushi Nambu (2017.9.26) Cortico-basal ganglia loop and movement disorders. McGill-NISP symposium (Montreal, Canada)

34. 南部篤（2017.10.28）大脳基底核と小脳の生理と病態：基礎医学の視点から，第11回パーキンソン病・運動障害疾患コンgres（東京）

35. Atsushi Nambu (2017.11.6) Cortico-basal ganglia loop and pathophysiology of movement disorders. 15th Chinese Biophysics Congress (Shanghai, China)

38. 篠花大輔，南部篤（2017.11.24）マーモセット前頭皮質の神経生理学的マッピング．生理研研究会「脳の階層的理解を目指して」（仙台）

41. 知見聡美，南部篤（2017.11.25）大脳皮質－大脳基底核ループとパーキンソン病．生理研研究会「脳の階層的理解を目指して」（仙台）

42. 岡田由香，富永真琴，佐野裕美，小林憲太，南部篤，雑賀司珠也（2017.11.27）マウス神経麻痺性角膜症モデルに対する三叉神経節での TRPV4 強制発現によ
43. Hiromi Sano (2017.11.28) Cortico-striatal neurons induced responses in the basal ganglia. 7th NIPS-CIN Joint Symposium (岡崎)
44. Zlata Polyakova, Nobuhiko Hatanaka, Satomi Chiken, Atsushi Nambu (2017.11.28) Cortical control of monkey subthalamic nucleus. 7th NIPS-CIN Joint Symposium (岡崎)
45. Satomi Chiken, Atsushi Nambu (2017.11.29) Basal ganglia and cerebellar control of thalamocortical activity. 7th NIPS-CIN Joint Symposium (岡崎)
46. 南部篤 (2017.12.1) 大脳皮質-大脳基底核ループとパーキンソン病 第2回 Osaka Neurology Colloquium (大阪)
47. 南部篤 (2017.12.6) 大脳皮質-大脳基底核ループと運動異常症の病態生理 徳島大学研究クラスター重点クラスター・選定（脑科学）クラスター合同セミナー（徳島）
1. 福永雅喜（2017.1.20）超高磁場 MRI でみる脳の微細構造と機能. 第3回マウス精神疾患モデルMRI研究会（沖縄）.
2. 八幡憲明，福永雅喜（2017.1.21）Resting-state fMRI概論1. 第1回 AbiS脳画像解析チュートリアル（東京）.
3. 福永雅喜，八幡憲明（2017.1.21）Resting-state fMRI概論2. 第1回 AbiS脳画像解析チュートリアル（東京）.
4. 福永雅喜（2017.1.21）Task fMRI概論1. 第1回 AbiS脳画像解析チュートリアル（東京）.
5. 定藤規弘，福永雅喜，近添淳一，小池耕彦（2017.2.19）先端バイオイメージング支援プラットフォーム機能的MRI計測技術・解析支援. The 1st AbiS SymposiumTowards the Future of Advanced Bioimaging for Life Sciences（岡崎，愛知）.
6. 福永雅喜，當山峰道，定藤規弘（2017.3.6）安静時機能的MRI計測による大規模回路結合特性解析と機能回復バイオマーカーの確立. 第6回生理研-霊長研-脳研合同シンポジウム（新潟，新潟）.
7. 濱野友希，菅原翔，定藤規弘（2017.3.9）ヒト系列運動技能の定着に対する宣言的記憶システムの関与. 第19回日本ヒト脳機能マッピング学会（京都）.
8. 山本哲也，福永雅喜，菅野友希，菅原翔，定藤規弘（2017.3.9）新しいMRIデータ解析プラットフォーム“HCP Pipelines”の超高磁場MRIへの導入. 第4回生理研-脳研合同シンポジウム（新潟，新潟）.
9. 菅原翔，菅野友希，菅原翔（2017.3.10）系列運動技能の定着に対する宣言的記憶システムの関与. 第19回日本ヒト脳機能マッピング学会（京都）.
10. 米田英嗣，間野陽子，松田佳尚，小山内秀和，川崎真弘，楠見孝，麻生俊彦，船曳康子（2017.3.10）物語における時空間情報に基づく視点取得の神経基盤. 第19回日本ヒト脳機能マッピング学会大会（京都，京都）.
11. 吉本隆明，近添淳一，岡崎俊太郎，角谷基文，高橋晴香，中川恵理，小池耕彦，矢田俊彦，小阪浩隆，定藤規弘（2017.3.10）価値表象における対象の同一性の神経基盤の検討. 第19回日本ヒト脳機能マッピング学会（京都，京都）.
12. 山森英長，石間縄，工藤紀子，根本清貴，安田由華，藤本美智子，鈴木裕美，新津富央，沼田周冠，池田学，伊藤雅臣，大森哲郎，福永雅喜，渡邊嘉之，橋本謙二，橋本亮太（2017.3.24）統合失調症における血漿中 sTNFR2・MMP-9と臨床症状・認知機能との関わり. 第12回日本統合失調症学会（米子，鳥取）.
13. 根本清貴，橋本亮太，山下典生，福永雅喜，山森英長，安田由華，藤本美智子，工藤紀子，岡田直大，越山太輔，森田健太郎，佐藤仁哉，鬼塚俊明，高橋努，渡邊嘉之，山末英典，鈴木雄道，笙井清登，新井哲明（2017.3.24）3次元T1強調画像を用いた統合失調症補助診断プログラムの開発. 第12回日本統合失調症学会（米子，鳥取）.
15. 福永雅喜（2017.4.6）サイエンスデータの取り扱い-生理学データの観点から-MRI研究を中心に-. 自然科学研究機構新分野探査室勉強会2（岡崎，愛知）.
18. 福永雅喜，山本哲也，定藤規弘（2017.5.14）7TMRIを用いたヒト神経回路解明にむけた画像取得・解析技術の研究開発-ヒトTTdiffusion MRI-革新脳MRIWG会議（東京）.
20. 惠飛須俊彦，河崎敬，福永雅喜（2017.6.8）安静時fMRIを用いた脳卒中回復期のfunctional connectivityに関
生理学研究所年報 第39巻(Dec,2018) 研究発表／学会発表

する pilot 研究。第 54 回日本リハビリテーション医学会学術集会（岡山,岡山）。
21. 根本清貴,橋本亮太,山下典生,福永雅喜,山森英長,安田由華,藤本美智子,工藤紀子,岡田直大,越山太輔,森田健太郎,佐藤仁哉,鬼塚俊明,高橋努,渡邊嘉之,末谷英実,鈴木道雄,新井哲明(2017.6.22)強調画像を用いた統合失調症補助診断プログラムの開発。第113回日本精神神経学会学術総会(名古屋,愛知)。
22. 坂本英長,石間環,工藤紀子,根本清貴,安田由華,藤本美智子,羽地裕統,池田学,伊藤雅臣統,新津富央,沼田周助,池田学,伊藤雅臣,大森哲郎,福永雅喜,渡邉嘉之,橋本謙二,橋本亮太(2017.6.22)統合失調症における血漿中 sTNF R2・MMP9 と臨床症状・認知機能との関わり。第113回日本精神神経学会学術総会(名古屋,愛知)。
23. 安田由華,福永雅喜,岡田直大,山森英長,越山太輔,工藤紀子,楢地裕統,藤本美智子,池田学,伊藤雅臣,大森哲郎,安田由華,藤本美智子,橋本亮太(2017.6.22)統合失調症における記憶下記憶の腸脳構造基盤について。第113回日本精神神経学会学術総会(名古屋,愛知)。
24. 宮田紘平(2017.7.20)Neural substrate of social contingency detection during being imitated: a hyperscanning fMRI。第40回日本神経科学大会(千葉,千葉)。
25. 中村望,福永雅喜,岡田直大。越山太輔,工藤紀子,山森英長,安田由華,藤本美智子,橋本亮太(2017.6.22)統合失調症の運動機能の前頭葉被装した経時変動。第113回日本精神神経学会学術総会(名古屋,愛知)。
26. 宮原翔(2017.8.25)「褒め」による運動技能の定着促進。第11回Motor Control研究会(名古屋,愛知)。
27. 菅原弦,福永雅喜,岡田直大,森田健太郎,根本清貴,山下典生,安田由華,藤本美智子,橋本亮太(2017.9.2)拡散テンソル画像指標と社会機能との相関解析。第1回ヒト脳イメージング研究会(町田,東京)。
28. Sadato N (2017.7.24) Across-brain networks emerged from face-to-face social interactions probed by hyperscanning fMRI。RIKEN Symposium on Brain Health, Sociality and Evolution (Kobe, Japan)。
29. 安田由華,岡田直大,福永雅喜,山森英長,越山太輔,工藤紀子,森田健太郎,疎地裕統,藤本美智子,渡邊嘉之,笠井清登,橋本亮太(2017.7.29)統合失調症の異なる認知機能障害パターンにおける脳の構造と機能的結合の違い。第39回日本生物学的神経学学会(札幌,北海道)。
30. 菅原翔(2017.8.25)「褒め」による運動技能の定着促進。第11回Motor Control研究会(名古屋,愛知)。
32. 福永雅喜(2017.9.2)超高磁場 MRI による脳機能理解。第1回ヒト脳イメージング研究会(町田,東京)。
33. 福永雅喜,山森英長,安田由華,藤本美智子,橋本亮太,小林哲生(2017.9.2)拡散テンソル画像に基づく atlas-based 自動神経線維追跡手法を用いた統合失調症の白質病変解析。第1回ヒト脳イメージング研究会(町田,東京)。
34. 中村望,福永雅喜,岡田直大,森田健太郎,根本清貴,山下典生,山森英長,安田由華,藤本美智子,工藤紀子,楢地裕統,渡邉嘉之,Gary Donohoe, Paul Thompson,笠井清登,橋本亮太(2017.9.2)統合失調症における拡散テンソル画像指標と社会機能との相関解析。第1回ヒト脳イメージング研究会(町田,東京)。
37. 菅原弦,福永雅喜,山本哲也,濱野友希,西東倫太郎,定藤規弘(2017.9.14)個人の体性感覚皮質における指表象の描出: 7T-fMRI 研究。第45回日本磁気共鳴医学会(宇都宮,栃木)。
38. Yamamoto T, Sugawara SK, Hamano YH, Fukunaga

40. 当山峰道, 福永雅喜, 山本哲也, 伊佐正, 定藤規弘 (2017.9.15) 麻酔下サル安静時 fMRI の個体内再現性の検討. 第 45 回日本磁気共鳴医学会大会 (宇都宮, 栃木).

43. 福永雅喜 (2017.9.28) テスラ超高磁場MRIによるブレインイメージング、名古屋大学脳とこころの研究センター 第 2 回拡大ワークショップ (名古屋, 愛知).

44. 森田健太郎, 三浦健一郎, 藤本美智子, 岡田直大, 山森英長, 安田由華, 越山太輔, 工藤紀子, 嵐白訓周, 吉川茜, 西村文親, 石郷岡純, 壁内千尋, 佐々木司, 阿部修, 桥本亮太, 岩田仲生, 山末英典, 加藤忠史, 笠井清登, 橋本亮太, 岩田仲生, 山末英典, 加藤忠史, 笠井清登, 岩本和也 (2017.9.29) 双極性障害および統合失調症で認められる低活性 5-HTTLPR 依存の SL6A4 CpG island shore の高メチル化. 第 39 回日本生物学的神経科学学会."(札幌, 北海道).

46. Sadato N (2017.10.4) The role of the right inferior frontal gyrus in joint attention related identification with the partner probed by hyper-scanning fMRI. Yamada Symposium on “Neuroimaging of Natural Behaviors” (Tokyo, Japan).

50. 恵飛須俊彦, 福永雅喜 (2017.10.12) 安静時fMRIを用いた脳卒中回復期の機能連絡に関する評価. 日本脳神経外科学会第 76 回学術総会 (名古屋, 愛知).

54. Koike T, Tanabe CH, Adachi-Abe S, Nakagawa E, Okazaki S, Sasaki TA, Shimada K, Sugawara KS,

定藤規弘,福永雅喜,山本哲也,菅原翔(2017.11.30) 7T MRIを用いたヒト神経回路解明にむけた画像取得・解析技術の研究発展.革新脳第2回分科会(東京).

《個別研究（毛利研究室）》

1. 毛利達磨（2017・9月・22日）ウニ卵受精時の電気的変化と共に受精時のセカンドメッセンジャーを眺める. Looking at second messengers at fertilization along with the electrical changes in sea urchin eggs. 日本動物学会第 88 回大会 シンポジウム Oogamous reproduction: 卵生殖を担うシグナル伝達機構(富山)

3. 関口太一朗,河村裕樹,石井健太郎, Chihong Song, 村田和義,栗本英治4, 内山 進,矢木安和,佐藤匡史. 加藤晃一（2017.5.30）α7サブユニットを起点としたαリング形成中間体の同定と構造解析. 医学生化中部支部会（名古屋）

4. 野田信光,大野伸彦,森山陽介,村田和義,野田亨（2017.5.30）ZIO染色を施した Golgi 装置の超高圧電顕と連続断面 SEM を用いた観察. 日本顕微鏡学会第 73 回学術講演会（札幌）

5. 永谷幸則,富田雅人,新井善博,村田和義 (2017.5.30) コントラスト最大化 STEM. 日本顕微鏡学会第 73 回学術講演会（札幌）

6. 富田雅人,永谷幸則,新井善博,村田和義（2017.5.30）コントラスト最大化 STEM の試み: シミュレーションとデバイス作製. 日本顕微鏡学会第 73 回学術講演会（札幌）

7. Chihong Song, Naoyuki Miyazaki, Kenji Iwasaki, Motohiro Miki, Reiko Takai-Todaka, Kei Haga, Akira Fujimoto, Kazuhioko Katayama, Kazuyoshi Murata (2017.5.30) Capsid Structure of Murine Norovirus S7 revealed by cryo-electron microscopy. 日本顕微鏡学会第 73 回学術講演会（札幌）

8. 角田潤, ノンボリ,楽仏寺 Lica Fabiana, 村田武士,上野博史,宮崎直幸,岩崎憲治,高木淳一,飯野亮太,村田和義（2017.5.30）クライオ位相差電子顕微鏡による腸内連鎖球菌 V-ATPase 単粒子構造解析. 日本顕微鏡学会第 73 回学術講演会（札幌）

9. 宇畑雄哉,山崎順,村田和義,栗原隆宏,高橋和巳,稲元伸,保田英洋,森 博太,博（2017.5.30）電子線トモグラフィーにおける再構成密度のアーティファクト解消. 日本顕微鏡学会第 73 回学術講演会（札幌）

10. Jun Tsunoda, Chihong Song, Fabiana Lica Yakushiji, Takeshi Murata, Hiroshi Ueno, Junichi Takagi, Ryota 135
Iino, Kazuyoshi Murata（2017.6.11）Single Particle Analysis of EhV-ATPase by Phase-contrast Cryo-Electron Microscopy. Gordon Research Conference, 3DEM (Swiss)

11. Akito Nakao, Keizo Takao, Koji Ohira, Naoyuki Miyazaki, Kazuyoshi Murata, Tsuyoshi Miyakawa（2017.7.20）Three-dimensional analysis of dendritic spines and mitochondria in dentate gyrus granule cells in Schnurri-2 knockout mice, an animal model for schizophrenia. 第40回日本神経科学大会 (千葉)

12. 吉川元貴, Romain Blanc-Mathieu, 望月智弘, Chihong Song（2017.6.11）Single Particle Analysis of EhV-ATPase by Phase-contrast Cryo-Electron Microscopy. Gordon Research Conference, 3DEM (Swiss)

13. Akito Nakao, Keizo Takao, Koji Ohira, Naoyuki Miyazaki, Kazuyoshi Murata, Tsuyoshi Miyakawa（2017.7.20）Three-dimensional analysis of dendritic spines and mitochondria in dentate gyrus granule cells in Schnurri-2 knockout mice, an animal model for schizophrenia. 第40回日本神経科学大会 (千葉)

14. 渡邉拓巳, ソンチホン, 村田和義, 吉川元貴, Romain Blanc-Mathieu, 結方博之（2017.7.20）新規巨大ウイルス Acanthamoeba castellanii medusavirus の形態学的・ゲノム科学的研究. 第39回年度生命科学系学会合同年次大会 (神戸)

17. 末川直幸, ソンチホン, 桜崎敏治, 上野博史, 宮崎直幸, 岩崎恵治, 高木洋一, 飯野亮太, 村田和義（2017.9.19）クライオ位相差電子顕微鏡による腸内連鎖球菌 V-ATPase 単粒子構造解析. 日本生物物理学会第55回年会 (熊本)

18. 宮崎直幸, 内山淳平, 松崎茂展, 村田和義, 岩崎恵治（2017.9.19）The head structure of the Staphylococcus aureus phage S13 at near atomic resolution by cryo-electron microscopy single particle analysis. 日本生物物理学会第55回年会 (熊本)

19. Kazuyoshi Murata（2017.11.27）Structures of Pithovirus visualized by cryo-electron microscopy. 岡崎統合バイオサイエンス終了シンボジウム (岡崎)

20. 村田和義, 宮崎直幸, ソンチホン, 岡本健太（2017.12.6）ピソウイルスのクライオ電子顕微鏡による構造解析. 2017年度生命科学系学会合同年次大会 (神戸)

21. 村田和義, 宮崎直幸, ソンチホン, 望月智弘, Romain Blanc-Mathieu, 結方博之（2017.12.6）新規微粒子の創製に向けたヒドロゲル微粒子内部に存在する油溶性モノマーの重合挙動理解. 第68回コロイドおよび界面化学討論会 (神戸)

22. Kazuyoshi Murata（2018.3.7）Structural analysis of Pithovirus sibericum by Cryo-EM. 第12回日本ゲノム微生物学会年会 (京都)

《多光子顕微鏡室》

1. 村越秀治（2017.2.19）Imaging protein activity by 2-photon fluorescence lifetime imaging microscopy. The 1st AiBSシンポジウム（愛知）

2. 戸田明裕（2017.2.23）光応答性CaMKIIの開発とシナプス可塑性研究への応用. 生理学研究所昼食セミナー（愛知）

3. 村越秀治（2017.3.13）神経細胞内でイヤナル伝達の光操作と分子活性イメージング.「細胞・システム作動機構の理解に向けた、生体タンパク質分子の構造と機能のダイナミクス研究の拠点形成」平成28年度シンポジウム（愛知）

4. 村越秀治（2017.3.21）光子歴観生命イメージングによる光操作分子の開発と今後の展開. 分子研究会「分子観察による生命の階層横断的な理解」（愛知）

5. 村越秀治（2017.6.27）光らない蛍光タンパク質で細胞内分子活性を見る. 第2回ルミノジェネティクス研究会（神奈川）

6. 村越秀治（2017.10.7）光子歴観生命イメージング
7. 柴田明裕，村越秀治（2017.12.9）Development of a genetically encoded photo-activatable CaMKII. 第 40 回日本分子生物学会，神戸ポートアイランド（兵庫）

《生体機能情報解析室》

1. 近添淳一（2017.3.10）主観的価値・味覚の神経基盤．第 6 回 生理研・薬長研・脳研合同シンポジウム（新潟，新潟）．
3. 近添淳一（2017.7.20）異なる課題間で共通する神経基盤の同定におけるパターン解析の重要性．第 40 回 日本神経科学大会シンポジウム「機能的 MRI における逆推論問題を再考する」（千葉，千葉）．

《ウイルスベクター開発室》

《遺伝子改変動物作製室》

1. 中西 杏菜，奥村 啓樹，山野上 舞，山田 果奈，宮本 智美，平林 真澄，田川 陽一，坂下 真大，岩尾 岳洋（2017年3月25日）異種間キメラマウス作出方法が異種動物由来細胞の作出臓器への寄与に与える影響．日本薬学会第137年会（仙台）
3. 美辺 詩織，出浦 慎哉，池上 花奈，後藤 哲平，三宝 誠，保地 眞一，中内 啓光，平林 二子，束村 博子，前多 敬一郎（2017.5.13）摂食と生殖を制御するエネルギーセンサーとしての後脳上衣細胞. 第 14 回 GPCR 研究会（東京）
4. 後藤 哲平，三寶 誠，保地 眞一，中内 啓光，平林 真澄（2017.5.26）異種間胚盤胞補完法を用いたマウス ES 細胞に由来する腎臓のラット体内での再生．第 64 回日本実験動物学会（那覇）
kappa-opioid receptor-expressing cells associated with gonadotropin-releasing hormone (GnRH) secretion using transgenic rats. The 4th Meeting of World Congress on Reproductive Biology (Okinawa, Japan)

13. 後藤 哲平, 余郷 享子, 保地 眞一, 平林 真澄. (2017.12.2) ラットのケノム編集効率に及ぼすCas9 nucleaseのデリバリー方法の影響. 第35回動物生殖工学研究会 (川崎)

《生体制御シグナル研究部門》

1. Koji Sato and Peter W. Sorensen (2017 年 10 月 31 日～11 月 2 日) Tuning properties of goldfish olfactory receptor neurons to food odors and sex pheromones. The 48th NIPS International Symposium - Neural circuitry and plasticity underlying brain function (Okazaki)

2. 佐藤 幸治, Peter W. Sorensen (2017 年 9 月 25 日～9月 27 日) キンギョにおける2種類のアミノ酸感受性嗅神経細胞. 日本味と匂学会第51回大会 (神戸)

《動物実験センター》

1. 浦野 徹 (2017.4) 機関管理体制の下で日本実験動物学会が推進する外部検証と人材育成事業. 日本実験動物技術者協会九州支部創立 40 周年記念講演会 (熊本)

2. 浦野 徹 (2017.6) 実験動物飼養保管等基準解説書の改訂をめぐる諸問題について考察する. 平成29年度日本実験動物技術者協会東海北陸・関西支部交流会基調講演 (滋賀)

3. 浦野 徹 (2017.6) 動物実験管理法と動物愛護管理法との周辺の規制について. NBRP「ニホンザル」サルの取扱いと関連法規についての事前講習会 (犬山)

4. 浦野 徹 (2017.7) 動物実験管理法の周辺の規制について. NBRP「ニホンザル」サルの取扱いと関連法規についての事前講習会 (東京)

Korean Association for Laboratory Animal Sciences International Symposium (Korea)

6. 浦野 徹（2017.9）動物実験を取り巻く最近の動向と外部評価。九州大学動物実験に係る教育講習会（福岡）

7. 浦野 徹（2017.10）動物実験に関連する各種規制や外部評価等についての経緯と最新情報。新潟大学特別講演（新潟）

8. 廣江 猛, 神谷絵美, 乾 守裕, 山中 緑, 窪田美津子, 伊藤昭光, 王 振吉, 浦野 徹（2017.10）ラットにおけるTyzzer菌の感染事故と対策について。第51回実験動物技術者協会総会（山形）

9. 太田里美, 乾 守裕, 王 振吉, 廣江 猛, 窪田美津子, 藤田涼太郎, 大村恵梨, 浦野 徹（2017.10）動物実験施設における胚操作補助者育成教育プログラムについて。第51回実験動物技術者協会総会（山形）

10. 乾 守裕, 王 振吉, 杉村俊英, 岩瀬悦子, 廣江 猛, 伊藤昭光, 浦野 徹（2017.10）大型実験動物飼育区域における健操作補助者育成教育プログラムについて。第51回実験動物技術者協会総会（山形）

11. 浦野 徹（2017.11）日本実験動物学会が取組む外部検証・人材育成事業をもぐって。日本実験動物学会維持会員懇談会（東京）

12. 浦野 徹（2017.11）動物実験を取り巻く各種規制等に関するこれまでの経緯と現在並びに実験動物学会が取組む外部検証・人材育成事業について。NPO法人動物実験関係者連絡協議会第6回シンポジウム（東京）

13. 浦野 徹（2017.11）動物愛護管理法関連の最新情報と今日どうなるかを考察する。第10回実験動物ジョイントセミナー・イン九州（鹿児島）

14. Wang C-C（2017.11）Present of laboratory animal medicine postgraduate education and specialist certification system in Japan. 15th The Chinese-Taipei Society of Laboratory Animal Sciences (CSLAS) Annual Meeting（Taipei）

16. 浦野 徹（2017.12）発行にあたって、実験動物飼育保管等基準解説書刊行記念セミナー（東京）

17. 浦野 徹（2017.12）動物愛護管理法に関連する各種規制が動物実験に及ぼす影響。自然科学研究機構動物実験教育委訓練講習会特別講義（愛知）

18. 王 振吉（2017.12）動物実験施設とバイオハザード対策。自然科学研究機構動物実験教育委訓練講習会特別講義（愛知）

19. 浦野 徹（2018.1）なぜ大学等で動物実験に関する外部検証を受けなければならないうのか？動物実験の外部検証・平成30年度の実施準備に向けた事前説明会。公益社団法人日本実験動物学会主催、文部科学省後援（東京）
【一般共同研究報告】
一般共同研究報告

[目 次]

1. 新規構造を有したイソギンチャク由来ペプチド性神経毒の作用機構に関する研究（本間智寛ほか） 144
2. 陸上進出に伴う環境変化と動物のもつ体性感覚受容の仕組み（齊藤 修ほか） 144
3. 新規レクチン複合体を用いたマウス脳における生理活性糖鎖の探索（西河 淳ほか） 145
4. 脳・神経系発生分化過程において時空間特異的な発現を見せる糖鎖の構造と機能の解析と医療への応用
 （等 誠司ほか） ... 146
5. グリア細胞の発生機構の解析とその代謝基盤を支える分子機関の変化の解析（後藤仁志ほか） 146
6. 軟骨魚類の温度受容体 TRP ファミリーの機能解析（勝 義直ほか） 147
7. 皮膚表面バリア形成におけるTRPV1 が脳の炎症・発熱経路に果たす役割（稲垣春那ほか） 147
8. 新規レクチンを用いた中枢神経損傷に対する脳保護作用の分子的解明（鈴木倫保ほか） 148
9. 組織損傷におけるイオウ呼吸の生理的意義の解明（赤池孝章ほか） ... 149
10. 脳・神経系発生分化過程において時空間特異的な発現を見せる糖鎖の構造と機能の解析と医療への応用
 （等 誠司ほか） ... 146
11. 皮膚表面バリア形成における TRP ファミリーの機能解析（勝 義直ほか） 147
12. 前頭皮質の領域間投射回路解析（植田禎史） ... 151
13. ドーパミンが規定する細胞膜興奮性制御の分子基盤解明（細田 直） .. 155
14. 真核生物における RNA 分解制御機構の解明（細田 直） ... 150
15. AMPA 型グルタミン酸受容体のシナプス内発現様式のシナプス可塑性における意義の解析（深澤有吾） ... 152
16. 高分子分解酵素を用いたシナプス内発現様式のシナプス可塑性における意義の解析（細田 直） ... 152
17. 視線制御に関与するニューロン・神経回路特性（齋藤康彦ほか） 154
18. 自由行動下動物の脳機能計測に向けた埋植型デバイスによるイメージングシステムの開発（須永圭紀ほか）.. 154
19. 抑制性神経細胞における CTCF および Peddy の機能解析（平山晃歩ほか） 155
20. 頭をかかげると新たに他者的情報理解における上丘の役割の解明（高橋真有ほか） 156
21. 自己と他者の報酬情報処理における脚橋被蓋核ニューロンの役割の解明（小林 康ほか） 156
22. グリア細胞（GＰＣ）の細胞内機能解析（赤木 謙一ほか） ... 157
23. 弁別学習の遂行における大脳基底核直接路・間接路のニューロン活動（小林和人ほか） 157
24. 農薬処理に対する大脳基底核ニューロンの機能解析（小林和人ほか） 158
25. ジストニア様症状を示す遺伝子改変マウスの病態解析（竹林浩秀ほか） 158
26. ウィルスベクターを用いた味細胞遺伝子導入法による味覚受容分子メカニズム解析（樽野陽幸ほか） 159
27. 機械解析の基盤ネットワーキングの構築方式の解明（高田昌彦ほか） 160
28. 視床ニューロンから皮質細胞へのシナプス結節特性の解析（倉田俊志ほか） 160
29. 脳干神経における神経細胞の役割：星状細胞超微細構造の可塑性の解析（寺田信彦ほか） 161
30. マウスレアルタイムの高分解能構造解析（片山和彦ほか） .. 161
31. 原核細胞内に存在するユニークなチューブ構造の解析（洲崎敏伸ほか） 162
32. 新規蚊媒介性ウイルスの三次元構造解析（岡本健太ほか） .. 162
33. Using Zernike phase plate cryo-EM (ZEM) to facilitate the study of structurally heterogeneous macromolecules
 (Yi-min Wu ほか) .. 163
34. 臓器欠損ラット肝臓に注入したウシ ICM 細胞の動態再評価（渡邊博志ほか） 164
35. ドキソルビシン心筋症に対するアルプミン・チオレドキシン融合体の有用性評価（渡邊博志ほか） ... 164
1. 新規構造を有したイソギンチャク由来ペプチド性神経毒の作用機構に関する研究

本間智寛（東海大学短期大学部）
陳以珊、下村拓史、久保義弘（生理学研究所）

イソギンチャクのペプチド性神経毒であるNaとKチャネル毒は、いずれも他の生物毒には見られない特異な作用機構を示すことから、貴重な研究用試薬として有効利用されている。またKチャネル毒の一部は、多発性硬化症の治療薬としての開発も進んでいる。代表者はこれまでに、上皮増殖因子（EGF）と配列相同性を有する新規ペプチド毒をはじめ、従来の分類には当てはまらない一次構造を有したペプチド性神経毒をサワガニに対する毒性を指標にして、数多く単離してきた。本研究は、これまでに単離した新規ペプチド毒の詳細な作用機構を電気生理学的手法により解明し、研究用試薬あるいは医薬品のリード化合物としての有効利用を図ることを目的として行った。

本年度は、深海産イソギンチャクCribrinopsis sp.由来の一次構造が新規で、サワガニに対する毒性が非常に強い新規ペプチド毒Jiibo IIIおよびJiibo V-1, V-2の3成分について解析を行った。毒成分の精製は、試料をホモジナイズし、その一部を5倍量の水で抽出して粗抽出液とした。粗抽出液をサワガニに対する致死や麻痺といった毒性を指標にして、サイズ排除クロマトグラフィー（Sephadex G-50）および逆相HPLC（TSKgel ODS-120T）に順次供して、目的物を精製した。

本刺し膜電位固定法での解析は、上記の3成分に対して、アフリカツメガエルの卵母細胞に発現させたKv1.2, hERG, Kv3.4, GIRK1/2, Kir2.1への阻害効果の有無を15通り（3成分×5チャンネル）調べた。その結果、いずれの組み合わせにおいても、明確な阻害効果は認められなかった。

今回解析した3成分の中でJiibo IIIは、サワガニに対しても極めて強い麻痺活性（ED50 2.8 μg/kg）を示し、これは過去に代表者が単離したイソギンチャクの麻痺毒の中で最も強い活性を示している。またその配列はデータベース上には有意な相同性は認められなかったが、興味深いことに、サソリのKチャネル毒とは若干の相同性が見られたので、今回はKチャネルにターゲットを絞って解析した。Jiibo IIIのような配列の新規性が非常に高く、また活性も極めて強い成分は、魅力的な研究用試薬や医薬品のリード化合物となる可能性を秘めているが、その配列の新規性から、どのチャネルに作用するかの予測は難しい。今後、作用するチャネルの予測をいかに行い、効率的に解析を進めていくかが課題である。

2. 陸上進出に伴う環境変化と動物のもつ体性感覚受容の仕組み

齊藤修、織田麻衣、浅野麻己子（長浜バイオ大学バイオサイエンス学部）
久保義弘（生理学研究所）

外界刺激の主要なセンサーであるTRPV1やTRPA1といったTRPチャネルは、脊椎動物の水中から陸上への進出に伴い、劇的な生存環境の変化に適応する為、大きく機能変化を獲得したと考えられる。しかし、その機能変化の詳細は明らかにされていない。本研究では、TRPV1及びTRPA1を中心に陸生化に伴う機能変化を明らかにする。これまでのメダカ及びアホロートルのTRPA1の解析により、水中生活する魚類のTRPA1は閾値が不明確で徐々に高温活性化される特性を持ち、高温閾値を持つ陸上動物型TRPA1とは異なることが示唆されている。また、有尾両生類アホロートルのTRPについても研究を進めている。

これまでのアホロートルTRPA1の研究で、41℃付近に明らかな閾値をもつ高温応答性が検出され、魚類TRPA1に特徴的な「閾値が不明瞭な緩徐な高温活性化」は、有尾両生類から変化したと考えられた。一方、環境センサーとしては、アホロートルは16℃-20℃に適応してい
る為, TRPA1 の 41℃の高温閾値は比較的高く, 環境温度の実質的な検知には TRPV1 が機能しているのかもしれませんと考えられた。今後の単離・機能解析が重要である。

各動物の TRPA1 研究でみつかってきた, 陸上動物型の高温閾値のある高温活性化, 魚類型の緩徐な高温活性化, マウス型の高温非応答性がどのような仕組みで決まっていくのか, メダカ, ヘビ, マウスの TRPA1 の間でキメラを作りカエル卵母細胞に発現させ, 二本刺し膜電位固定法で解析した。これまでの検討の結果, メダカ TRPA1 のN端にあるアンキリンリピート11-16に魚類型を決める重要な部位があり, この配列で相当部位を置換すると, ヘビとマウスのどちらの TRPA1 もメダカ型に変化することが示唆された。

3. 新規レクチン複合体を用いたマウス脳における生理活性糖鎖の探索

西河 淳（国立大学法人東京農工大学大学院農学研究科）
中澤千秋（国立大学法人東京農工大学大学院農学府）

研究目的

脳の発生, 発達過程において細胞表面糖鎖の構造や発現量が変化し, それが生理的に重要な役割を持つことが次第に明らかになりつつあるが, 未だ詳細は不明な点が多い。ボツリヌス菌の産生するレクチン複合体は, 一つの複合体に2種類のレクチン HA1, HA3を含む従来のレクチンと認識する糖鎖構造が異なることや, HA1を6分子 HA3を3分子含む多量体を形成しているため糖鎖結合力が強いことなどが既に明らかにされている。そこで本研究では, このレクチン複合体を用いて, 新たな細胞表面糖鎖構造変化を探索し, その生理的な役割を解明することを目的として共同研究を開始した。

研究方法と結果

過去の研究において我々はC型ボツリヌス毒素由来のレクチン複合体構成成分の立体構造や糖鎖結合能を明らかにしており, レクチンの糖鎖結合部位のアミノ酸置換により異なる糖鎖を認識する変異体の創出も行われている。それら変異体を組み合わせて新規レクチン複合体は, 1分子の複合体中に糖鎖構造認識・結合サイトを最大で15箇所持ち, しかも個々のレクチンに糖鎖認識の異なる変異レクチンを用いれば, 結合する糖鎖構造を様々なものにマッピングすることが可能である。本研究では, 4%パラホルムアルデヒドで灌流固定したマウス脳の凍結切片をスライドガラスに貼付した上で, カプセル固定した上記の種々の変異レクチン複合体を作用させ, 荧光顕微鏡で観察することにより, 糖鎖の発現部位や数値上に反応する変異レクチン複合体のスクリーニングを行った。その結果, 昨年度の本共同研究において小脳白質のランビエ絞輪に特異的に結合するレクチン複合体が見つかった。

そこで本年度は, マウス出生後早期の脳発達段階における各部位のレベルを検討した。結論, 延髄や中脳においてはランビエ絞輪の形成に伴いレクチン結合レベルの割合も増加していくのにに対し, 終脳や嗅球ではランビエ絞輪が形成された後でもレクチン反応性の低いランビエ絞輪が多く存在することが判明した。

今後も, このレクチン複合体の認識する糖鎖を持つ糖タンパク質等の同定を試み, そのような物質がランビエ絞輪で特異的に発現, 存在している生理的意義を検討していく予定である。
4. 脳・神経系発生分化過程において時空間特異的な発現をする糖鎖の構造と機能の解析と医療への応用

等 誠司（滋賀医科大学医学部）
山中龍也（京都府立医科大学医学部）
正木 勉, 森下朝洋（香川大学医学部）

糖タンパク質に結合するN結合型糖鎖は、細胞間相互作用やシグナル伝達などにおいて様々な役割を演じている。中枢神経の発生・分化の過程や、病変に伴って糖タンパク質糖鎖の組成は大きく変動するが、その詳細な動態や意義についてはまだ充分に解明されていない。本共同研究は糖鎖関連遺伝子群の発現解析と糖鎖分析を通じて中枢神経系の発生・分化の過程の糖鎖変化を網羅的に把握し、それを基に様々な神経疾患と糖鎖変化の関連を解析することを目的とする。

2016年度までに、時空間特異的な発現の見られる糖鎖関連遺伝子群を同定し、その中からα1,3フコース転移酵素遺伝子Fut10遺伝子が発生・発達期のマウス脳の未分化な神経幹/前駆細胞が集積している脳室周囲に強く発現すること、未分化な神経幹/前駆細胞が発現するLewisXは主にFut10が生合成することを報告した。さらに、神経幹細胞やES細胞でFut10をノックダウンすると、未分化性が維持できず、不適切な分化を誘導することから、Fut10/LewisXは幹細胞の未分化性に関わると考えられるが、その分子メカニズムは不明であった。

2017年度は、テトラサイクリンシステムを用いてFut10の過剰発現を、CRISPR/Cas9システムを用いてFut10のコンディショナルノックアウト（cKO）をすることができるES細胞の樹立を行った。Fut10過剰発現によってLewisXを含む糖タンパク質が増加することが確認されたので、池中研究室が所持する3次元HPLC分析システムを駆使してその糖鎖の分子実態を解析したが、Fut9が生合成するLewisXとの区別が困難であった。また、Fut8が生合成するα1,6コアフコースも、解析の妨げになることが判ったので、これら9遺伝子のノックアウトES細胞の樹立を行った。

Fut8::Fut9ダブルノックアウトマウス胚盤胞からFut8::Fut9ダブルKO ES細胞を樹立し、それからFut8::Fut9::Fut10トリプルKOや、Fut8::Fut9ダブルKOでFut10を過剰発現できるES細胞の樹立を行っている。平行して、Fut10コンディショナルノックアウトマウスの作製も進めていく。

5. グリア細胞の発生機構の解析とその代謝基盤を支える分子機構の変化の解析

後藤仁志, 小野勝彦（京都府立医科大学大学院 神経発生生物学）
竹林浩秀, 備前典久（新潟大学 医学部解剖学第二教室）
渡辺啓介（新潟大学 医学部解剖学第一教室）

グリア細胞は、ニューロンの補助的な役割のみならず、積極的に機能にしていることが分かっている。グリアーニューロンのネットワークは、発生・発達期に形成されるが、ニューロンの発生過程と比較して、グリア細胞の発生過程やその制御メカニズムについては解析が遅れている。本共同研究では、生理学研究所の池中一裕教授、大野伸彦特任准教授と共同で、アストロサイト系諸細胞とオリゴデンドロサイト系諸細胞の発生期における形態的変化およびそれぞれに特徴的な細胞内代謝経路の変化に着目して解析を行った。

前年度より、成熟アストロサイトで活発なグリコーゲン細胞内代謝に着目して、大脳皮質の発生過程における変化及び機能を調査している(Gotoh et al., J Cereb Blood Flow and Metab (2017))。本年度は、グリコーゲン顆粒の発生期
6. 軟骨魚類の温度受容体 TRP ファミリーの機能解析

勝 義直（北海道大学大学院理学研究院）
小竹純可（北海道大学大学院生命科学院）
齋藤 茂, 富永真琴（岡崎統合バイオサイエンスセンター）

温度受容体である TRP ファミリーは無脊椎動物から脊椎動物まで幅広く発現しており、生体内の恒常性維持に重要な機能を発揮すると同時に、ヒトでは疾患とも関連があることが分かっている。しかし、脊椎動物の進化に際して TRP ファミリー遺伝子がどのように出現したのか、どのように生理機能を獲得するようになったのか、種間による感受する温度の差異はどのようにになっているのか、などの分子進化メカニズムはいまだ不明である。私たちの研究グループは、動物の恒常性維持機構のメカニズムを解明するために、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。本研究では、生体内の恒常性維持機構に基づいて、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。本研究では、生体内の恒常性維持機構に基づいて、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。本研究では、生体内の恒常性維持機構に基づいて、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。本研究では、生体内の恒常性維持機構に基づいて、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。本研究では、生体内の恒常性維持機構に基づいて、生体内のホルモンとその受容体について研究を進め、脊椎動物におけるホルモン受容体の分子進化について成果を上げてきた。
陸上生物の皮膚の表面は、死細胞からなる角質層の存在によって気相-液相バリアが形成されることにより、個体の恒常性が保たれている。しかしながら角質層がどのようなメカニズムで形成されているかは不明の部分が多いため、その明らかにするため、本研究では独自に開発したマウス表皮顆粒層の分離法を用いて、単離した顆粒層初代培養細胞の生理学的な解析を行った。まずカルシウムイメージング法を用いて、培地の組成を変化させることによる細胞外環境変化が、細胞内カルシウム濃度の自発的な上昇を誘導し、細胞内顆粒の消失やDNAの分解等の角化に伴って観察される細胞内変化である、細胞の扁平化、ケラチンのアモルファスな凝集体であるケラトヒアリン顆粒の消失、核の凝集とそれに伴うDNAの分解が分離した顆粒層細胞でも実際に引き起こされることが明らかにした。これらの変化は、培地のpHやカルシウム濃度が重要な役割を果たすことが確認された。一般にTRPチャネルは、温度やpHなどの様々な細胞外環境の物理・化学的変化を感知することが知られている。マウス顆粒層におけるRNFseqデータから、主要なTRPチャネルファミリーが数種類発現していたことから、さらに詳細にその機能的役割を解析した。そのために顆粒層細胞の分離をさらに改良して、パッチクランプ法による膜電流測定系を新たに構築した。膜電流を測定した結果、一部の温度感受性TRPチャネルが顆粒層表層において機能的に発現していることが推定された。さらにどのTRPチャネルが機能的に発現しているのかを詳細に解析している。以上のことから、TRPチャネルを介した細胞内へのカルシウム流入が角化プロセスの制御に重要な役割を果たしていることが示唆された。

8. TRPV1が脳の炎症・発熱経路に果たす役割

カプサイシンは、TRPV1のagonistであり全世界で食品添加物として利用されている。しかし、カプサイシンを経口摂取した時の体温変化や脳への影響についての研究報告はほとんどない。そこで、我々はマウスにカプサイシンを経口投与し、体温と行動量の変化を調べるとともに、脳の活性部位について調べた。カプサイシンの経口投与は温度依存的に体温低下を生じた。また、摂水量と摂食量には影響を与えてなかったが、15 mg/kgのカプサイシン経口投与は行動量を増加させた。

次に、細胞活動マーカーであるFosタンパク質を用いた免疫組織化学により脳内の活性化部位を調べた。カプサイシンの経口投与は、脳室周辺器官である室効絡絡器、脳下垂体、下矢状核のアストロサイト並びに神経細胞に有意なFos発現を誘導した。さらに、体温中枢である視索前野、摂食制御中枢である弓状核のアストロサイト並びに神経細胞にも有意なFos発現を誘導した。しかし、迷走神経統合中枢である孤束核では神経細胞のみが活性化されていた。

以上の結果は、自由運動下でカプサイシンの経口摂取が体温低下と行動量増加を生じること、並びに脳室周辺器官、体温中枢、摂食中枢を活性化していることを明らかにした研究である。
9. 温度生物学を用いた中枢神経損傷に対する脳保護作用の分子的解明

鈴木倫保, 藤山雄一, 森 尚昌
（山口大学大学院医学系研究科 システム統御医学系学域脳・神経病態制御医学領域 脳神経外科学分野）
富永真琴（生理学研究所 細胞生理研究部門）

脳梗塞モデルにおける低体温療法の有効性について、1954年のRosomoffらの報告を初めとして、これまで多くの報告がされている。しかし、実臨床において、全身を冷却することによる合併症が多く、侵襲が高いという問題のためgold standardな治療として定着していない。

そのため、山口大学では局所冷却の中枢神経疾患への応用を目指して研究している。本研究では、体温や脳温等の生理学的パラメーターを同時にモニタリングしつつ、局所脳温度を自由に調節可能な実験系の構築を行い、中枢神経疾患の中でも脳梗塞に対する局所脳冷却の有効性を明らかにすることを目的としている。

今年度は、マウス深部体温を一定に保ちつつ、かつ梗塞部位の脳温をペルチェ素子によって自在に変化させる実験系の構築を行った。脳梗塞モデルに対して、この局所温度制御系を用いて脳温を15℃で維持し、24時間後の梗塞面積を検討した。コントロール群と比較して、局所脳冷却群の梗塞面積は少ない傾向にあり、これは脳梗塞における局所脳冷却の脳保護作用を示す可能性があるものである。

本年度の共同研究で、局所脳冷却を可能とする動物実験系の確立と脳梗塞に対する局所脳冷却効果の検討をすることができた。しかし、脳梗塞に対して温度生物学と局所脳冷却の分子メカニズムの関連性を明らかにした報告は未だにない。局所脳冷却は温度を介した現象であり、温度センサー分子である温度感受性TRPチャネルの関与は間違いないと考える。今後、温度感受性TRPチャネルに着目することで、チャネルを介した分子メカニズムを明らかにすることで、将来の臨床医学で「全身冷却から局所脳冷却療法へのシフト」を目指していく。

10. 筋組織におけるイオウ呼吸の生理的意義の解明

赤池孝章（東北大学大学院医学系研究科）
澤 智裕（熊本大学大学院生命科学研究部（医学系））
守田匡伸（東北大学大学院医学系研究科）
居原 秀（大阪府立大学理学部）

我々は、活性酸素や、活性酸素に由来する親電子性の高い物質（親電子物質）の代謝・消去に働く内因性求核物質として、活性イオウ（Cys パースルフィドやポリスルフィドなど）を同定した。本年度は、活性イオウの生成酵素の分子実体の解明とその生理的意義について検討を行った。生体内で生成されるパースルフィドやポリスルフィドなどの過イオウ化物質（活性イオウ）は極めて求核性が高く、細胞内で生成される、あるいは細胞外から曝露される活性酸素や活性酸素由来の親電子物質とよく化学反応し、その代謝・消去を調節することが明らかになってきた（3）。我々はこれまで癌細胞株を用いた研究からシスチンを基質とするcystathione β-synthase (CBS)
や cystathione γ-lyase (CSE)がシステインパースルフィドを生成する酵素実体であることを報告してきた（Ida et al., PNAS, 2014）。しかし、心臓や骨格筋にはCBSやCSEがほとんど発現していないにもかかわらず心臓中に数μMレベルのシステインパースルフィドが存在していたことから、新たな生成酵素が存在する可能性を考えた。そこで、イオウ代謝物の解析プラットホームであるイオウメタボロミクスを開発して、新規イオウ代謝経路を探索したところ、ミトコンドリアに局在するcysteinyl tRNA synthetase (CARS2)が、システインを基質にシステインパースルフィド合成する酵素として機能しており、生体内の主要な活性イオウ代謝物の産生源であることを見出した（1）。さらに、CARS2欠損細胞においてミトコンドリアが著しく分裂し機能低下していること、その原因がミトコンドリア分裂促進Gタンパク質dynamin related protein (Drp)1の制御異常によるものであることを明らかにした。また、そのメカニズムとして、内因性Drp1タンパク質のC末端に位置するシスチン（Cys624）が高度にポリイオウ化されており、CARS2欠損細胞ではDrp1ポリイオウ鎖の枯渇に伴ってDrp1活性が増加していることも明らかにした。以上の結果は、活性イオウ生成酵素によるDrp1タンパク質ポリイオウ化がミトコンドリア品質管理を制御することを強く示唆している。

11. 真核生物における RNA 分解制御機構の解明

細胞内mRNAは分解調節を受けその発現が制御される。mRNAの3'末端ポリA鎖短縮は分解調節において重要な役割を果たす。近年、ポリA鎖短縮だけでなく伸長も分解調節に関与することが明らかにされている。3'非翻訳領域のシス配列を形成する複合体（コンポーラー）はその存在が示唆される。不明な点が多く残されている。核と共役して起こるポリA鎖伸長において機能する正準ポリAリマーゼを加え、それ以外で機能する非正準ポリAリマーゼPAPD7種（PAPD1〜7）が知られている。昨年度までの解析により、これらの相互作用因子をショットガンシークエンスにより網羅的に同定している。そのひとつであるRNA結合蛋白質LARPファミリーについて詳細な解析を行った。

LARPファミリーとしてLARP1〜7が知られている。まず、3'非翻訳領域のシス配列上で結合することによりポリA鎖長調節に関わるかどうかを検証した。MS2融合LARP発現ベクターを作製し、mRNAの3'非翻訳領域MS2結合RNA配列にLARPを接続したときのポリA鎖長について解析した。LARP1,2,4,5において、その延長により顕著なポリA鎖長の伸長が観察された。さらにこれらLARPが翻訳へ与える影響について、MS2結合RNA配列を含むポルタルシフェラーゼ遺伝子を用い、その発光測定により解析したところ、LARP1,2,4,5において顕著な翻訳量の増加が観察された。次にLARPによるポリA鎖長に機能するPAPDの同定を試みた。各PAPDをsiRNAによりノックダウンしたときの、LARP接続時におけるポリA鎖長について検討した。いずれのPAPDノックダウンにおいてもポリA鎖長の抑制は観察されなかった。
以上の結果から、LARPは標的mRNA特異的にポリA鎖伸長し、遺伝子発現を正に制御するという分子機構が明らかとなった。しかしながら、いずれのPAPDノックダウンにおいてもポリA鎖伸長の抑制は観察されなかったことから、複数のPAPDが協調的に機能している可能性、もしくは新規PAPDがLARPによるポリA鎖長に機能する可能性が考えられる。

12. 前頭皮質の領野間投射回路解析

植田禎史（東京女子医科大学医学部）

大脳新皮質2/3層の錐体細胞は主に同側または対側の皮質へ投射する。ラット二次運動皮質において、2層の錐体細胞は主に側頭部の嗅周皮質、3層錐体細胞は主に一次運動皮質へ投射し、2層と3層の錐体細胞は共に対側の二次運動皮質へも投射する。一方、同側の嗅周皮質へ投射する2層錐体タイプは、大部分が対側の二次運動皮質へも投射する。一方、同側の嗅周皮質へ投射する2層錐体タイプは、大部分が対側の二次運動皮質へ投射する細胞タイプと似ていた。スライス標本を作製し、逆行性トレーサーによる標識から、同側の一次運動皮質へ投射する二次運動皮質3層の細胞タイプは、大部分が同側の二次運動皮質へも投射する。一方、同側の嗅周皮質へ投射する2層錐体タイプは、大部分が対側の二次運動皮質へ投射する細胞タイプとは別れていた。スライス標本を作製し、逆行性トレーサーで同定した細胞タイプからホールセル記録を行った結果、2層の嗅周皮質投射タイプと対側二次運動皮質へ投射する細胞タイプは異なる電気生理特性を持つことがわかった。また、バイオサイチンの注入によって記録後の錐体細胞を可視化した後、樹状突起や軸索の形態を三次元的に再構築し、形態特性を解析した。その結果、2層の嗅周皮質投射タイプと対側二次運動皮質へ投射する細胞タイプの樹状突起形態は、2層内の細胞体の深さに依存して、異なる性質を持つことがわかった。よって、二次運動皮質の2層では、同側の嗅周皮質へ投射する細胞と、対側の二次運動皮質へ投射する細胞は、大部分が異なる細胞タイプであることがわかった。

2種類の逆行性トレーサーによる同時標識と、2細胞からの同時ホールセル記録を行った結果、これらの皮質投射細胞タイプ間には、ペアとなる細胞タイプによって異なる局所結合性が見られた。以上の結果は、ラット二次運動皮質の2層で、錐体細胞が同側または対側皮質との皮質領域間投射パターンに応じた回路を形成することを示唆する。

13. ドーパミンが規定する細胞膜興奮性制御の分子基盤解明

貝淵弘三, 坪井大輔（名古屋大学大学院医学系研究科）

情動とは、喜び、怒り、悲しみ、恐怖、不安というような激しい感情の動きである。快情動行動が発現する際、ドーパミンによって側坐核のタイプ1型ドーパミン受容体(D1R)を発現する中型有棘神経細胞(D1R-MSN)の興奮性が高まる。近年、研究者たちのドーパミン行動学の研究により、D1R受容体を介してPKA/Rap1/MAPKシグナル伝達経路が活性化することを示唆する研究が報告されている。これらの結果は、マウスを用いたドーパミン行動学の研究で、D1R受容体を介してPKA/Rap1/MAPKシグナル伝達経路が活性化することを示唆する研究が報告されている。これらの結果は、マウスを用いたドーパミン行動学の研究で、D1R受容体を介してPKA/Rap1/MAPKシグナル伝達経路が活性化することを示唆する研究が報告されている。
14. 皮質興奮性神経細胞サブタイプと分化時期の関係解析

榊原 明，後藤裕子，畠中由美子（中部大学・生命健康科学部）

多様性に富む大脳皮質興奮性ニューロンは，いずれも皮質脳室帯の神経幹細胞から生じる。それぞれのサブタイプは異なる時期に生じるので，そのサブタイプ決定には分化時期が重要であると考えられている。一方，分化様式を見ると，幹細胞からニューロンが生まれる過程には2つの経路がある。すなわち，幹細胞から直接神経細胞に分化するものと，中間神経前駆細胞を介して間接的に分化するものである。これら2つの経路と分化時期，並びにニューロンのサブタイプ決定との関係は未解明である。本研究では，分化時期依存的に興奮性ニューロンを標識し，産生されるニューロンのサブタイプを解析することで，多様性を生み出す基本法則を明らかにする目的としている。本年度は，まず中間神経前駆細胞を介して分化するニューロン同士の関係を明らかにするため，その標識法と形態観察法を検討した。

15. AMPA型グルタミン酸受容体のシナプス内発現様式のシナプス可塑性における意義の解析

深澤有吾（福井大学学術研究院医学系部門）

AMPA型グルタミン酸受容体（AMPAR）は中枢神経系の興奮性シナプス伝達の主要なシナプス後膜電気応答成分を担う分子であり，そのシナプス発現の制御機構は，脳の情報処理とシナプス可塑性に密接に関与している。本研究者らはAMPARのシナプス内分布は，シナプス後細胞の組合せ依存的に，均一型とモザイク型の2種類の様式で発現することを見出した。特にモザイク型発現分布は，海馬や小脳皮質，大脳皮質などの学習・記憶との関連性が高い脳領域のシナプス結合で観察され，このシナプス可塑性と神経細胞の興奮性シナプス伝達が密接に関連していることが示唆される。
分布の機能的意義を明らかにすることを目的とした。生理学研究所・神経シグナル研究部門の山肩葉子博士が作出したCaMKIIα遺伝子変異マウスは、シナプス可塑性異常を示すことが報告されている。そこで本遺伝子変異マウスと野生型マウスの海馬CA1錐体細胞に形成される興奮性シナプス結合を対象として、超微細構造を収束イオンビーム搭載高解像度走査型電子顕微鏡（FIB-SEM・名古屋大学医学部）により、また、AMPAR発現分布をSDS処理凍結割断レプリカ免疫標識法により解析することで、遺伝子変異マウスの単一シナプスレベルの異常を検出し、シナプス内AMPAR発現様式の機能的意義を明らかにすることとした。

本年度は、FIB-SEMによるシナプス微細構造の3次元再構築解析を中心に進め、これまでに無い高い精度でシナプス結合の構造指標を定量評価する方法を確立し、CaMKIIα遺伝子変異マウスのシナプス結合に新奇の構造異常が起きていることを見出した。今後は、AMPAR発現を解析し、微細構造情報と受容体発現分布情報を統合することで、シナプス機能と可塑的調節におけるAMPAR発現様式の機能的意義を明らかにする。

16. 神経細胞の形態形成異常が与える神経回路形成異常

下郡智美（理化学研究所 脳科学総合研究センター）
吉村由美子（視覚情報処理研究部門）

我々はこれまでに大脳皮質の神経細胞の樹状突起の神経活動依存的な形態形成をコントロールする分子としてBtbd3を同定している。Btbd3の発現を抑制させることで、大脳皮質4層の有棘星状細胞（spiny stellate cell）は神経活動が低い樹状突起を選択的に除去することができなくなる。本来ならば除去されるべき樹状突起が残ったまま発達が進むと、過剰な樹状突起にもシナプスの形成が起きていることが考えられる。しかし、この新たな回路形成によって神経細胞がどのような機能を持ち、どのような新たな遺伝子発現が獲得しているかは明らかになっていない。樹状突起の形態に異常を持つ神経細胞で発現する遺伝子発現変化を明らかにするためには、形態の観察とISHを同時に行う必要がある。そこで、形態観察のための蛍光色素の導入とシングルセルin situ hybridization（ISH）法を同時に行う方法の開発を行った。ISHでは遺伝子の発現を細胞体で観察することができるが、細い樹状突起や軸索は観察することができない。また、形態を観察するために、子宮内遺伝子導入法で蛍光タンパクをコードするプラスミドをスパースに導入し、生後形態を観察することとはできるが、ISHの手技によってハイブリッドの間に蛍光は失われてしまう。そこで、単一の細胞にパッチクランプ法を用いてバイオサイチシンやAlexaなどの蛍光物質を注入し、同時に検出する目的のDIGラベルRNA probeを注入することによって、形態観察と遺伝子発現の同時確認を可能にした（図1）。あらかじめ子宮内遺伝子導入法によってRFPを導入した大脳皮質細胞でRFP陽性細胞（a）と陰性細胞（b）にRFPRNA probe、バイオサイチシンを注入し、（A）ISHシグナル、（B）バイオサイチシンによる細胞の位置、（C）共焦点顕微鏡による形態を観察した。RFP陽性細胞ではISHによるRFPのシグナルが強くでられる（A,a細胞）、陰性細胞ではISHシグナルは非常に弱いことから（A,b細胞）、正しいISHのシグナルが得られている。同時にバイオサイチシンのシグナル（B）からISHシグナルと重なっている細胞（a）と重なっていない細胞（b）を確認し、共焦点顕微鏡によってそれぞれの形態を観察することを可能にした。
17. 視線制御に関与するニューロン・神経回路特性

齋藤康彦（奈良県立医科大学）
吉村由美子（視覚情報処理研究部門）

脳幹の内側前庭神経核（MVN）や舌下神経前位核（PHN）は水平性の視線制御に関与することが知られている。MVNやPHNからの指令は外転神経核や動眼神経核を介して外眼筋へ伝えられる。MVNからの同側性投射は抑制性ニューロンが、対側性投射は興奮性ニューロンが担っている。一方、PHNでは同側性投射は興奮性ニューロンが、対側性投射は抑制性ニューロンが担っていると考えられている。しかし、これらの知見は断片的な実験結果を組み合わせたものにすぎず、MVNやPHNから外眼筋への投射経路を直接調べた研究はない。そこで、本研究ではシナプスを一つだけ乗り越えて逆行性に運ばれる改変型狂犬病ウイルス（Rabiesウィルス）を用いる。アデノ随伴ウィルス（AAV6）によって、鳥ウィルスのエンボロープEnvAの受容体であるTVA、および狂犬病ウイルスの糖タンパク質であるSADcvsGを外直筋から導入し、さらに、蛍光タンパクを発現するRabiesウィルスを外転神経核に注入する。これにより、外転神経核のニューロンを直接観察できる。したがって、この方法により、MVNやPHNから外眼筋への投射経路を明らかにすることができる。抑制性ニューロンの同定のために、VGAT-Venusラットを用いるため、赤色の蛍光タンパク（RFP）を発現するRabiesウィルスを作製し、Venusと赤色蛍光タンパクとの2重標識の有無を検討する計画である。

本年度は、昨年度の研究で浮き彫りになった問題点である外直筋へのガラス電極による投与方法の改良に取り組んだ。成体Wisterラットにイソフランの吸入麻酔を施し、ガラス管に充填させたデキストラン蛍光標識トレーサーを外直筋へ注入するために様々な方法を試した。注入から5日の生存期間の後、かん流固定し、脳組織標本を蛍光顕微鏡で観察し、逆走標識しているニューロンを調べた。その結果、外直筋に対してガラス管を平行に挿入する改良型の注入方法では、MVNやPHNの多くが標識されていることが分かった。これにより、外直筋への投与方法の問題はクリアした。AAV6（AAV6-EF1a-GFP-2A-TVA、AAV6-CAG-SADcvsG）およびRabiesウイルス（EnvA-RABVΔG-RFP）が準備できたので、上記の方法で生後6週齢のLong-Evansラットの外直筋にAAV6を注入した。3週間後に麻酔下において同じラットの外転神経核にRabiesウィルスを注入する計画であったが、飼育保管施設においてトラブルが発生したので、やむなく実験を中断した。

18. 自由行動下動物の脳機能計測に向けた埋植型デバイスによるイメージングシステムの開発

駒永圭紀, 笹川清隆, 太田淳（奈良先端科学技術大学院大学）

本研究では、視覚情報処理研究部門吉村グループと共通で、我々が開発したマウス脳内埋植型イメージングデバイスを用いて、自由行動下におけるマウスの脳機能計測を行い、従来技術では困難であった行動や成長に伴う脳機能計測及び解析を行うことを目的としている。また、オプジェネティクス用デバイスの開発もを行い、イメージングデバイス技術と組み合わせることで、より高度な脳機能計測の実現を目指している。本研究ではこれらの目標の実現に向け、主にデバイス開発と動物実験の2つの課題へと取り組んでいる。

本研究の最終目的は自由行動中マウスの脳機能活動計測を実現することである。我々はその前段階として、前年度までに麻酔下マウスに開発したデバイスを埋植し、視覚刺激に伴うフラビン蛋白やGCaMP蛍光反応が観察可能であることを実証している。この成果を元に、現在は視覚刺激に伴う神経活動計測を自由行動中マウスに適用することを目指している。

麻酔下実験においては、マウス前方に設置したモニター...
から視覚刺激を出力することで、一定の距離・光強度で視覚刺激を行うことが可能であり、条件の比較が容易であった。しかし、行動中マウスに対し同様の手法を用いることはできないため、行動中のマウスに対し一定の条件で視覚刺激を与える手法が求められる。これまでにトレッドミルと視覚刺激表示用のモニター組み合わせた実験系を構築し、マウスの行動を視覚刺激に伴うGCaMP蛍光の強度変化の計測実験を試みたが、マウスの行動をうまく制御することができず、一般的視覚刺激を与えることが困難であった。

今後、行動中マウスに対し一定の条件下で視覚刺激を与えることが可能な実験系の構築と、視覚野の脳表部だけでなく脳の断面方向のGCaMP蛍光イメージング実現を目指したデバイスの開発に取り組む予定である。

19. 抑制性神経細胞におけるCTCFおよびPcdhyの機能解析

平山晃充、足澤悦子、八木 健（大阪大学）
吉村由美子（生理学研究所）

本課題は、抑制性神経細胞におけるDNA結合因子CCCTC(CTCF)の機能的役割を解明することを目的とする。これまでに、抑制性神経細胞特異的にCTCFを欠損させたマウス(CTCF-cKO)を作製し、解析をおこなったところ、大脳皮質バレル野において、興奮性神経細胞への抑制性シナプス力が減少していることが電気生理学的手法により明らかになった。

中枢神経系では、クラスター型プロトカドヘリン(cPcdh)がCTCFにより発現制御されていることが明らかとなっている。cPcdhは58種類のアイソフォームから構成され、個々の神経細胞に異なる組み合わせで十数種類のアイソフォームが発現する。CTCFを欠損した神経細胞では発現するアイソフォームの種類が激減し、個々の神経細胞の分子的多様性が消失する。そこで、CTCF-cKOマウスで観察された抑制性シナプス入力の減少にcPcdhが関与するかどうかを検証するために、cPcdhを大脳皮質の抑制性神経細胞で欠損したマウス(cPcdh-yKO)を作製し、大脳皮質バレル野において、興奮性神経細胞への抑制性シナプス入力を検証した。その結果、CTCF-cKOマウスと同様に、抑制性シナプス入力が減少していることが明らかとなった。

さらに抑制性シナプス入力の減少に関与する抑制性神経細胞のサブタイプを特定するために、パルプアルブミン(PV)を発現する神経細胞に着目し、興奮性神経細胞およびPV陽性細胞からダブルホールセル記録を行った。その結果、コントロールマウスと比べて、cPcdh-yKOマウスでは抑制性シナプスの強度や結合確率に差は見られなかった。しかし、興奮性シナプス結合の増加が観察され、それに伴って、双方向性結合が増加していることが分かった。PV陽性神経細胞からの抑制性シナプス入力に差がないため、抑制性神経細胞の総数を計測したところ、バレル野における抑制性神経細胞の総数がコントロールマウスに比べて有意に減少していることが明らかとなった。

以上の結果より、cPcdh-yKOマウスで観察された抑制性シナプス入力の減少は、PV陽性神経細胞からの個々のシナプス入力強度の減少ではなく、抑制性神経細胞の減少が原因となっている可能性が示唆された。

今後は、ダブルホールセル記録で明らかとなった興奮性シナプス結合の増加について、分子メカニズムの解明を進めていく。
20. 顔を手がかりとした他者の情動理解における上丘の役割の解明

高橋真有（東京医科歯科大学システム神経生理学）
磯田昌岐（生理学研究所認知行動発達機構研究部門）

申請者らは、これまで上丘を中心とする、サッカード眼球運動生成・停止機構の詳細な神経回路を、ネコ・サルで、電気生理学的方法と解剖学的方法を用いて明らかにしてきた。中脳の上丘は、層構造をなし、視覚情報処理（浅層）と眼球運動制御（中間〜深層）の中枢として知られ、これまで多くの研究がなされてきた。視覚情報処理機能に関して、従来はスポット光など比較的単純な視覚刺激を用いて上丘ニューロンの応答特性を解析する方法が主流であったが、近年は、顔の低空間周波数成分を手がかりに、他者の情動理解に関与することが示唆されている。しかし、上丘による情動情報処理の神経機構は明らかではない。そこで、さまざまな情動値を持つ顔刺激をニホンザルに提示し、その間の上丘の神経活動を電気生理学的に解析して、他者の情動理解における上丘の役割を明らかにすることを目的とした。我々は、上丘の浅層ニューロンが受容した顔情報が、辺縁系（扁桃体や黒質致密部）に送られ、生態学的価値判別が行われたあと、対象となった顔をみるか、みないかの行動が、上丘の中間〜深層ニューロンとして実行されるという仮説をたて、これを検証することにした。

この実験を行うため、どのようなタスクの内容にするかについて多くの時間をかけて議論を行った。サルには、free viewingとして提示されたさまざまな顔刺激を自由に見て良い条件と、画面の一点を固視し続けなければならない条件を与えた。まず、サルにチェアトロークを行ったあと、頭部固定のためヘッドホルダー装着を行い、さらに12方向への視覚誘導性サッカードと固視の訓練を行った。現在、サルからのニューロン活動記録のための電気生理実験のシステムを立ち上げているところである。今後、上丘からのニューロン活動を記録し、次のステップとして他のどの脳領域から上丘が入力を得ているかを検索し、他者の情動理解における上丘を中心とした神経機構を明らかにしたいと考えている。

21. 自己と他者の報酬情報処理における脚橋被蓋核ニューロンの役割の解明

小林康、岡田研一（大阪大学大学院生命機能研究科）
磯田昌岐（生理学研究所・認知行動発達）

中脳のドーパミン神経細胞は、報酬情報処理のクリティカル・ノードであり、学習や意思決定において重要な役割を担うと考えられている。最近の研究により、ドーパミン神経細胞は自己の報酬情報と他者の報酬情報を統合して、自己報酬の「主観的価値」を表現することが示唆される。しかし、ドーパミン神経細胞の神経活動は、自発的神経活動が高くなるが、他者の報酬情報が低いと、神経活動は低下する。我々はこの候補として、ドーパミン神経細胞に対して豊富な出力を送る脚橋被蓋核が重要な役割を果たしていると考えている。この結果、ドーパミン神経細胞と全く逆の反応パターンを示す細胞群を報酬被蓋野の尾側部において同定した。これらの細胞は、報酬を予告する視覚刺激に対して一過性に応答し、その振幅は自己の報酬確率と正の相関を、他者の報酬確率とは負の相関を示すことから、自己報酬の主観的価値を表現していると考えられた。報酬の主観的価値が高いほど神経活動は低い。今後さらに神経活動記録実験を継続するとともに、詳細な組織学的検討をおこなって、記録部位（脚橋被蓋核又はその近傍の吻内側被蓋核の可能性がある）を検証していきたい。
22. グリピカン（GPC）5の細胞内機能解析

赤木謙一, 竹内昌男, 物部容子（医薬基盤・健康・栄養研究所）

ヒト間葉系幹細胞から作製したUE6E7T-3 細胞を維代培養することにより創出したU3A, U3B, U3C, 及びU3DT細胞の内, 維代最終ステージのU3DT細胞は, その表現型において幹細胞の性質を維持しながらザルコーマの性質を獲得しており, 次世代シーケンシングの結果から, 糖蛋白質の一つであるグリピカン（GPC）5遺伝子の発現量が培養初期のU3A細胞に対して10倍程度増加している事を見出している。GPC5は細胞表面に存在する約540アミノ酸から成るGPIアンカー型膜蛋白質であり, C末端に構成成分としてコンドロイチンを含む3本の糖鎖を有している。

生理学研究所・一般共同研究において, U3DT細胞のがん化とGPC5発現量増加の相関を解明するため, 本遺伝子の細胞内機能解析を実施した。（1）U3(A, B, C, DT)細胞におけるGPIアンカー型膜蛋白質のアミノ酸配列データを基に, U3(A, B, C, DT)細胞におけるGPC5遺伝子のコピー数解析を行った。（2）U3(A, B, C, DT)細胞におけるGPC5遺伝子のプロモーター領域のシーケンス解析を実施した。

23. 弁別学習の遂行における大脳基底核直接路・間接路のニューロン活動

小林和人（福島県立医科大学医学部附属生体情報伝達研究所生体機能研究部門）
佐野裕美, 南部篤（生体システム研究部門）

パーキンソン病における認知障害の一症状として観察される弁別学習の障害は, 大脳基底核回路の中心的な構造である線条体の関与が示唆されているが, 線条体における詳細な制御機構は明らかにされていない。これらの解明は, 認知障害の新しい治療法へとつながる基盤となることが期待される。本研究では, 背側線条体に由来する直接路を含むものと, 間接路を含むものの2種類の神経回路に注目し, 遺伝子組換えラットを用いて, ニューロン活動の生理学的解析により, 2種類の神経回路が持つ役割や機能分化について明らかにすることを目的とした。

2016年度より, 弁別学習の遂行におけるラット線条体中型有蕎細胞の活動を調べるため, イムノトキシン細胞標的法（Kobayashi et al., 2012）を用いて検討を進めてきた。イムノトキシン細胞標的法によって提案者らは, ラット間接路の選択的除去を誘導する条件を確立した。さらに, 直接路の選択的除去を誘導するための遺伝子組換えラットを作製した。このラットは, 線条体直接路を構成するGABA作動性神経細胞特異的にイムノトキシンの標的分子であるヒトインターロイキン-2受容体αサブユニット(IL-2Ra)が発現するラット（Tac1-IL2Rα）である。提案者はこれまでこのラットを数系統得ることができた。2017年度は, ラット線条体中型有蕎細胞の活動を調べるために有用であるTac1-IL2Rαラットの系統選定を実施した。
胞には発現しない。Tac1-IL-2Ra 2-6 ラインが一番有用であることを確認した。さらに神経活動を測定する脳領域決めの予備実験として、神経活動のマーカーである c-fos を発現した神経細胞を、ロングエバンスラット脳の学習初期・後期において免疫染色をし、活動領域を検討した。

現在、直接路の選択的除去を誘導するため、背外側線条体におけるイムノトキシン処置条件の検討を実施している。また、弁別学習遂行時における背外側線条体と背内側線条体の神経活動記録のセットアップを始めている。

24. 辺縁皮質刺激に対する大脳基底核ニューロンの病態生理

佐藤澄人（北里大学医学部 脳神経外科）
知見聡美、南部 篤（生理学研究所 生体システム）

パーキンソン病に対する視床下核深部刺激療法（STN-DBS）は運動症状の著明な改善が得られる一方、うつや不安、自殺などの情動面への影響が指摘されている。パーキンソン病自体の土線がみられることがあり、STN-DBSにより運動が改善したという報告も多々、STN-DBSの情動面に対する効果はまだよく分かっていない。本研究は大脳皮質－大脳基底核－視床－大脳皮質回路の視点から、STNの辺縁系ループにおける機能を明らかにすることを目的としている。

ニホンザルを用いて覚醒下にSTNニューロンの細胞外ユニット記録を行い、①一次運動野、②補足運動野、③前辺縁皮質それぞれの電気刺激に対する応答によりSTNニューロンを分類し、各群の自発発射、応答パターン、STN内の分布について検討した。

結果として、計190個のSTNニューロンと記録した。①一次運動野の刺激に応答するニューロンは47個、②補足運動野のそれは36個、③前辺縁皮質は50個、うち17個は一次運動野と補足運動野の両者に応答した。前辺縁皮質と運動系皮質との収束性入力は記録されなかった。残りの77個はいずれの皮質刺激にも応答しなかった。

それぞれの皮質刺激に対する応答は、いずれも早期興奮・後期興奮の二相性パターンを示し、潜時および持続時間、一次運動野、補足運動野、前辺縁皮質の刺激の順に長くなる傾向（潜時は有意差あり）がみられた。各皮質刺激に応答する3群といずれも応答しない群と合わせた4群間において、自発発射の平均発射頻度、変動係数、burst indexに有意差は認めなかった。

本研究の結果、STNにおいて辺縁系皮質からの入力を受けているニューロンが存在し、運動系皮質から入力を受けていないニューロンと同様の生理学的特性を有していることが明らかとなった。これらの事実から、STN-DBSは辺縁系ループに対して何らかの影響を与えることが考えられる。

25. ジストニア様症状を示す遺伝子変換マウスの病態解析

竹林浩秀、吉岡 望、降旗敏祥（新潟大学）
堀江正男（鹿児島大学）
佐野裕美、知見聡美、南部 篤（生体システム研究部門）

Dystonia musculorum (dt) マウスは、細胞骨格制御因子をコードする Dystonin (Dst) 遺伝子の変異により、感覚神経変性および四肢や体幹の捻転運動などのジストニア様症状を示す。dt マウスの神経症状の原因となる Dst アイソフォームは末梢神経系と中枢神経系に広く発現している。我々は dt 変異マウスにおけるジストニア様症状および不随意運動発現に関わる脳領域や神経回路を明らかにするため、解剖生理学的分類を行っている。
我々が作製した遺伝子トラップ Dst アリール (DstGt アリール) を用いて Cre 組換えによるコンディショナル実験を行い、神経堤細胞由来の末梢神経系を中心とした コンディショナルノックアウト (cKO) マウスを作製した。この cKO マウスでは、小脳失調症状が観察された。末梢神経系の変性により運動障害が生じることが明らかとなり、その詳細について、組織学的に検索した。さらに、小脳と末梢神経系において Cre 組換えを起こす Cre マウスを用いて、cKO 作製およびレスキューマウス作製を行った。これらのマウスについて、組織学的な解析を進めた。今後は、これらのマウスについて、主动筋と拮抗筋の同時収縮の有無などについて筋電図解析を行なっていく予定である。

DstGt ホモマウスでは、生後4週ほどで死んでしまうので、この早期死亡の原因についての検索を行った。咀嚼に関わる咬筋の組織異常や活動異常と、三叉神経運動核の変性および、その軸索を含む下頚神経へのマクロファージ浸潤が観察された。咬筋の異常により、餌をうまく食べられないために全身症状が悪化する可能性が示唆された (Neurochem Int. in press)。

理化学研究所バイオリソースセンターで樹立された自然発生変異マウスの Dstdt-23Rbrc ホモマウスを用いて皮膚の表現型についても観察した。本マウスでは、皮膚型 Dst アイソフォームに存在する plakin ドメインにナセヌス変異が入っているため、神経系のみならず皮膚にも表現型があることが予想されていた。この Dstdt-23Rbrc ホモマウスでは、表皮と真皮の間に水疱が観察され、電子顕微鏡観察でもヘミデスモソームの裏打ち構造に異常があることを見出し、その結果を報告した (新潟医学会雑誌 2017)。

26. ウイルスベクターを用いた味細胞遺伝子導入法による味覚受容分子メカニズム解析

樽野陽幸（京都府立医科大学・細胞生理学部門）
佐野裕美, 南部 篤（生体システム研究部門）

生物は味覚によって摂食をコントロールしているが、分子レベル・細胞レベルの味蕾の遺伝子導入法の詳細については未解明な点が多い。従来から細胞内味蕾細胞はウイルス感染効率が低いことが知られており、遺伝子・分子レベルの味覚研究の障壁となっていた。

背臓位に固定した麻酔下のマウスの茸状乳頭が存在する舌前部領域の上皮下に微小ガラスキャピラリーを用いてウイルスベクターを注入する方法を確立した。さらに、EGFP 遺伝子を持つ6つの血清型のアデノ随伴ウイルスベクターおよびレンチウイルスをスクリーニングし、生体内味細胞に高効率に感染する AAV-DJ 遺伝子を発見した。味細胞は幾つかの機能的に異なる細胞種に分かれるが、EGFP の発現は細胞種の選択性は見られなかった。さらなる解析の結果、AAV-DJ 血清型は成熟した味細胞に直接感染するのではなく、舌上皮基底部に存在する味細胞の幹細胞あるいは前駆細胞に感染し、この非感染細胞が EGFP を発現するすべての種類の味細胞を増殖・分化しながら供給していることを明らかとなった。このように、この方法は味細胞の機能解析のみならず、味蕾の発生研究への応用の可能性を持つことが示された。

さらに、この方法で味覚神経伝達を担う CALHM1 チャネル遺伝子を持つ AAV-DJ を感染させたが、CALHM1 を発現する味細胞は現れなかった。強制発現したことにより CALHM1 チャネルのもつ毒性によって感染細胞が死滅したと考えられた。導入する遺伝子によって、味細胞の生死・分化などが変化する可能性があり、注意が必要である。

本研究は、以下の通り出版している。

発表論文
27. 霊長類大脳ネットワークの構築様式の解明

高田昌彦, 井上謙一(京都大学霊長類研究所)
南部篤(生体システム研究部門)

パーキンソン病は、中脳の黒質にあるドーパミン作動性ニューロンが変性・脱落し、投射先である線条体のドーパミンが枯渇することによっておこる神経疾患である。ドーパミン作動性ニューロンは、カルシウム結合タンパクであるカルビンディンを発現しているものと、発現していないものに分かれる。このうち前者はパーキンソン病の際に、後者に比べて残存することが分かっている。そこで、正常ではカルビンディンを発現していないニューロンに人為的に発現させることにより、神経変性が抑制されるか否かを調べた。カルビンディン遺伝子を搭載したアデノ随伴ウイルスベクターあるいはレンチウイルスベクターをカニクイザルの片側の線条体もしくは黒質に注入したところ、正常ではカルビンディンを発現していないドーパミン作動性ニューロンの多くにカルビンディンが発現することがわかった。次にドーパミン神経毒であるMPTPを全身投与すると、ウイルスベクター非注入側に対応する側の上下肢に筋固縮や無動などのパーキンソン症状が出現した。組織学的に解析したところ、ウイルスベクター注入側では非注入側と比べて黒質線条体投射ニューロンが残存していることがわかった。これらのことから、カルビンディンを人為的に発現させることにより、ドーパミン作動性ニューロンの変性・脱落を抑制できることが明らかになり、パーキンソン病に対する新たな治療法の開発に繋がる可能性が示された。

28. 視床ニューロンから皮質錐体細胞へのシナプス結合特性の解析

倉本恵梨子(鹿児島大学大学院医歯学総合研究科)
深田芳之(生理学研究所大脳神経回路論研究部門)

大脳皮質運動野は、運動性視床核を介して、大脳基底核と小脳からの情報を受ける。統合することで適切な運動指令を脳幹へ出力する。大脳基底核の情報が伝える視床投射細胞の軸索は皮質1層に、一方、小脳の情報は中間層に主に分布することが明らかになっているが、そのシナプス結合の相手は不明である。本研究では、各視床核からの視床-皮質投射軸索終末が、大脳皮質でどの神経組織にシナプス結合するかを、レーザー共焦点顕微鏡(CLSM)と電子顕微鏡(EM)の相関解析法により検討した。

ペントバルビタール(30-50 mg/kg)の腹腔内投与により雄性ラット(Sprague-Dawley, 300-400g body weight)を麻酔し、模様性シグナル付きの緑色蛍光タンパク(palGFP)を発現するアデノ随伴ウイルスベクター(AAV)溶液を注入した。視床核に電気刺激を与え、組織学的に観察した。CLSMとEMの断層画像を組み合わせて、GFP陽性の視床-皮質投射軸索のターゲットが皮質錐体細胞のスパインヘッドであることが明らかになった。今後は効率よく解析できるようプロトコールを改良するとともに、運動性視床核全体のデータを取得してシナプス結合特性を明らかにする。
29. 睡眠調節におけるグリア細胞の役割：
星状膠細胞突起のシナプスでの構造的可塑性的分析

仙波和惠、Samuel Deurveilher、Chantalle Briggs
（Dalhousie大学、Department of Medical Neuroscience、カナダ）

窪田芳之（生理学研究所大脳神経回路論研究部門）

睡眠覚醒のサイクルの維持には、視床下部の神経細胞が重要な役割を演じている。我々は、睡眠状態が異なる時（断眠/安眠）に、星状膠細胞（astrocyte）が、glial glutamate transporter 1の発現をその突起上でダイナミックに変化させる事で、視床下部の覚醒促進細胞（オレキシン（OX）細胞）への興奮性入力の強度を逆転させている事を明らかにした（Briggs, Hirasawa & Semba, J Neurosci 2018）。

本研究は、この現象を更に理解するため、星状膠細胞突起とシナプス間隙の間の構造的な関係が、断眠/安眠時にどのように変化するか（接着と撤収）、電子顕微鏡で解析する。

6時間の断眠、もしくは通常飼育で安眠させたラット（各グループ3匹）を灌流固定した後、視床下部の切片を作成し、抗OX抗体免疫組織化学法でOX細胞を染色した。レーザー共焦点顕微鏡で観察した後、電顕観察用にエポン包埋した。

ATUM-SEM法を使い取得した連続電顕画像データセットから、そのOX細胞を3次元再構築し、断眠動物と安眠動物でのOX細胞上のシナプスと星状膠細胞突起との関係を解析した。

断眠動物と安眠動物各一匹につき一つのOX細胞、計二つのOX細胞について解析した結果、以下のことがわかった。1）シナプスは細胞体と樹状突起（約150ミクロンの長さ）に観察されたが、特に樹状突起の付け根の部に頻度が高い。2）星状膠細胞は細胞体あるいは樹状突起で、シナプス突起にかかわらず、大部分のシナプス間隙に近接しているが、特に樹状突起におけるシナプスを比べると、優位に細胞体に近く位置しているシナプス間隙に位置している。3）同じ星状細胞が、複数のシナプス間隙に近接している。4）OX細胞の樹状突起にあるシナプス間隙に近接している星状膠細胞は、その別の突起でOX陰性細胞の樹状突起のシナプス間隙にも近接している。また、さらに別の突起で、血管の周りを囲んでいるのも観察された。これらの観察は、星状膠細胞がOX細胞への入力の調節に重要な役割を演じていることを示唆する。

今後、さらに細胞の数を増やして、睡眠条件の違いもたらすOX細胞上のシナプスと星状膠細胞突起との関係を調べる予定である。

30. マウスノロウイルスの高分解能構造解析

片山和彦、戸高玲子（北里大学大学院感染制御科学府）
ソニチホン、村田和義（生理学研究所）

ノロウイルスに代表されるウイルス感染下痢症は、世界中で毎年数百万から数億の感染者を出し、大きな社会問題となっている。ウイルスの発見から40年以上が経過するが、病原性発現機構は不明な点が多く、効果的なワクチンなどの治療薬も存在しない。それは、ノロウイルスを研究するためのモデル動物や、効率良くウイルスを増殖させる培養細胞が限られているためである。本研究では、唯一培養細胞で十分に増殖可能なマウスノロウイルスを用いて、その高分解能三次元構造をクライオ電顕により解析する。そして、ノロウイルス感染の分子機構や中和抗体の結合部位を明らかにする。

本年度はマウスノロウイルスの1株（MNV-1）とS7株（MNV-S7）の高分解能低温電子顕微鏡像を収集し、その単粒子解析からキャプシドの詳細な構造を明らかにした。マウスノロウイルスのキャプシド（殻）は、粒子の内側を構成するシェル（S）ドメインと外側が構成する突起（P）ドメインからなることが知られている。本構造解析結果から、Sドメインはウイルスゲノムを保護するために強
靭な構造を形成し、一方 P ドメインは、わずかな遺伝子変異で多様な感染性を生むことのできる柔軟な構造を形成していることがわかった。また、S ドメインと P ドメインのそれぞれは、互いに隣接分子と相互作用することで安定なウイルス粒子構造を維持していた。さらに、その相互作用部位を変化させることによって、同種内でもわずかな突然変異によってその構造を大きく変えられるということが示唆された。

31. 原核細胞内に存在するユニークなチューブ構造の解析

中鉢 淳（豊橋技術科学大学エレクトロニクス先端融合研究所）
洲崎敏伸, 小林真弓（神戸大学大学院理学研究科）

中鉢らの発見したミカンキジラミの菌細胞の内部に存在する「オルガネラ様防衛共生細菌」 Candidatus Profftella armatura (Betaproteobacteria, 以下 Profftella) の細胞内には、直径約 200 nm のチューブ様構造が多数存在しているが、その構造の詳細や機能は不明であった。そこで本研究では、昨年度に引き続き (1) チューブ構造の細胞内の正確な立体配置と、(2) チューブ構造の分子構築、を明らかにすることを目的とした。生理研の SBF-SEM を用いて、一辺が 10 μm の立方体領域の菌細胞組織塊を観察した結果、この領域内には Profftella 細胞が、細胞断片を含めて 325 個含まれていることがわかった。その中で、細胞全体が観察できた Profftella 細胞は 9 個であった。これらの Profftella 細胞について詳細に解析したところ、すべての Profftella 細胞はチューブ構造を有していた。チューブ構造の数は 1〜44 本と様々であったが、Profftella 細胞が長いほど多くのチューブ構造が認められた。Profftella 細胞の体積に対するチューブ構造の体積の占める割合は、細胞が比較的小さい場合には正比例の関係にあったが、Profftella 細胞の体積が 100 μm^3 以上では約 7% と一定の値を示した。

32. 新規蚊媒介性ウイルスの三次元構造解析

岡本健太（ウプサラ大学 バイオメディカルセンター）
Chihong Song, 村田和義（自然科学研究機構 生理学研究所）
井上真吾, 坂口亜美子, 森田公一（長崎大学 熱帯医学研究所）

蚊は環境中の植物に深く関わりを持つ一方で、他の節足動物と同様に作物に対して影響を与えるウイルスを仲介するかは不明である。そのような中で、過去の疫学調査から、私たちは柑橘類に深刻な被害を与える植物ウイルスと系統学的に近縁である Tanay virus (TANAV) を蚊より新規に分離した。TANAV が蚊と植物のどちらにも適応した粒子構造を持つことの意味は不明であるが、蚊由来ウイルスの植物生態系への影響を考察する上で重要である。TANAV やその近縁の植物ウイルスは、一般的なウイルスとは異なり、非常に特徴的な粒子形状を有していた。そこで、その特徴的な粒子形状が、ウイルスの生活環にどのように関係しているかを明らかにするために、TANAV 粒子の詳細な構造解析を行った。

クライオ電子顕微鏡による観察により、TANAV は椭円形のコアと突起構造を持つことが明らかになった。単粒子解析の結果から、その椭円形のコアは先端に近づくにつれ旋回半径が小さくなる螺旋状の対称性を持つと考えられた。また、コア構造の頂点に見られる突起構造は酸性条件下では、分離することが明らかとなった。多くの蚊媒介性ウイルスは、エンドサイトーシスによる細胞内への侵入において、周辺環境の酸素濃度を利用し、ウイルス遺伝子を細胞質に放出する。TANAV の突起構造の分離は、エンドサイトーシスを介した感染の際に TANAV の遺伝子を放出するためではないかと推測している。また酸性条件下で、低濃度の界面活性剤を加えるとコアタンパク質の再構築がおこり、TANAV は長いチューブ状
の構造を形成した。これは TANAV のコア構造はタバコモザイクウイルスのような螺旋ウイルスと同様な構造を取りることができることを示唆している。現在、楕円状の TANAV 粒子は、細胞内で螺旋チューブ状の構造から大量に効率よく形成されているのではないかという仮説を立てている。

TANAV の特徴的な構造とその構造変化を解き明かす事で、これまで報告されてきたウイルスの生活環とは異なる感染・粒子形成機構が存在していることが明らかになりつつある。今後は、宿主細胞内の TANAV 粒子を観測するなど提唱した仮説の証明のために研究を展開する予定である。

33. Using Zernike phase plate cryo-EM (ZEM) to facilitate the study of structurally heterogeneous macromolecules

Yi-min Wu, Hsin-hung Lin, Chun-hsiung Wang, Wei-hau Chang
(Institute of Chemistry, Academia Sinica, Taipei, Taiwan)
Chihog Song, Kazuyoshi Murata (National Institute for Physiological Sciences)

It has been suggested by Chang et al. theoretic study in 2010 that ideal ZEM imaging offers superior capability over CEM in allowing the segregation of mixed structures co-existing in cryo-EM data. Thanks to that RELION, an efficient reference-free image processing software for disentangling the conformational or compositional heterogeneity, is available recently, we set out to realize the promise of ZEM using experimental polymerase II (pol II) data. In the report, we perform 2D classification of ZEM images of pol II and compare it with that of CEM images. Remarkably, we found the very strong signal provided by ZEM has hampered 2D classification but the situation can be remedied with a customer-designed high-pass filter.

RNA polymerase II is a 12-subunit enzyme complex and it was shown to bear structural polymorphism by X-ray crystallography and by negative-stained EM. Our early work that used principle component analysis to separate mixture of simulated pol II images in open and closed forms demonstrate that ZEM performs better than CEM, suggesting the information in low resolution regime is crucial for defining the conformation or shape of a macromolecule and thus ZEM is an important tool to provide insight into biological function that is associated with conformation states.

Toward validating this notion, we have used ZEM with a direct electron camera (DE-20, DDD) to obtain a large data set of 130,000 pol II images and applied motion correction to de-blur the images. As a control, CEM data was collected side by side also with DDD and 120,000 particles were processed (Fig. 1A) to assure that the quality of the pol II sample and the performance of our FS2200 cryo-EM were both excellent.

![Fig. 1. 2D classification CEM pol II images versus ZEM pol II images. (A) 120,000 CEM images (B) 130,000 ZEM images (C) 91000 filtered ZEM images.](image-url)
Initially, we found the processing of ZEM images was blurred (Fig. 1B) in contrast to the CEM results (Fig. 1A). We then designed a customer-made high-pass filter to suppress the very strong signal near the ZEM cut-on frequency in ZEM images to significantly improve the 2D classification results (Fig. 1C).

34. 腫器欠損ラット胚盤胞へ注入したウシ ICM 細胞の腫器再生能力

保地真一（信州大学繊維学部）
平林真澄（生理学研究所）

我々は、目的腫器の形成に不可欠な遺伝子をノックアウト（KO）した胚盤胞に胚性幹（ES）細胞を顕微注入すれば、出生後ラット生体内における目的腫器が ES 細胞由来となる「胚盤胞補完法」の有効性を報告してきた。

膵臓形成のマスター遺伝子である Pdx1 を KO することを通し、マウスとラット間の異種胚盤胞補完システムが機能することも実証されている。しかし、進化分類学的距離がさらに遠い動物種間で「胚盤胞補完法」が機能するか、まったくわかっていない。また、ヒト臓器再生のための異種ホスト動物としてはブタだけが脚光を浴びているが、様々な発生工学的技術の完成度がブタ以上に進捗しており、妊娠期間に限ってはヒトにかなり近いウシがいつブタの代替候補動物種になっても不思議なことではない。チャレンジの第一段階として、体外受精（IVF）によって作製したウシ胚盤胞から内部細胞塊（ICM）細胞を単離し、ES 細胞株を作製することを試みた。

IVF 由来ウシ胚盤胞の作製から免疫手術による ICM の単離とそれらのガラス化保存までは信州大学繊維学部（長野県上田市）で行った。延べ 9 回の実験で 783 個の体外成熟卵子を IVF に供し、発生培養の結果、373 個の胚盤胞（発生率 47.6%）を得た。新生胚盤胞にまで発生が進むよう、免疫手術による ICM 単離がうまく機能しなかったが、拡張胚盤胞であれば ICM を確実に単離できた。

ガラス化保存後の生存率検定のために用いた ICM を除いた残り全て（N=282）を生理学研究所（愛知県岡崎市）に輸送し、そのうち一部（N=10）を加温して他の動物種で報告のある ES 細胞株建立用の培養条件に乗せてみた。これまでのところ、1〜2 回の継代培養が可能だった ICM もあったが、それを超えて維持・未分化確認ができたコロニーの作製には至っていない。ES 細胞株建立条件の精査を経てこのステップを克服し、膵臓欠損 KO ラット（Pdx1/-）の胚盤胞における ES 細胞を顕微注入し、ラット個体内でウシ腎島が補完され得るか調べるというステップに進みたい。

35. ドキソルビシン心筋症に対するアルブミン・チオレドキシン融合体の有用性評価

渡邊博志, 西田健人
（熊本大学 薬学部 薬剤学分野）

ドキソルビシン（DOX）の心筋毒性は知られており、その発生機序については酸化ストレスの関与が示されてきた。そこで我々は、内因的な抗酸化・抗炎症タンパク質であるチオレドキシン（Trx）をアルブミン（HSA）と遺伝子工学的に融合し、Trx の血中滞留性を延長した HSA-Trx 融合体による治癒介入を試みた。

C57BL/6J マウスへの DOX（15 mg/kg, i.p.）単回投与により心筋症を誘発し、14 日後に心機能及び酸化ストレスの観点から評価した。その際、DOX 投与から 14 日後までに HSA-Trx（100 or 200 nmol/kg, i.v.）を隔日投与し、DOX 単独投与群と比較した。その結果、DOX 投与により体重及び心重量の減少と心機能の低下が観察された。しかしながら、HSA-Trx 投与群では障害抑制効果が観察されなかったことから、本投与量では DOX 誘発心筋症を抑制しないことが示唆された。

そこで、HSA-Trx の投与量をより高用量 (200 or 400
nmol/kg)に設定し、再検討を行った。その結果、HSA-Trx
投与群において、DOX 誘発の体重及び心重量減少の抑制
傾向が見られたものの、統計学的有意差を示すには至ら
なかった。心臓中 MDA（酸化ストレスマーカー）を定量し
た結果、DOX 投与による有意な酸化ストレスの上昇は観
察されなかった。

上記の結果について、本実験で用いた DOX 投与量で
は酸化ストレス非依存的な細胞障害を惹起した可能性が
考えられた。すなわち、これまでの検討では DOX 投与量
過多であったことが考えられた。そこで DOX 誘発心筋
症マウスの再評価を行うため、DOX 投与量を 10〜15
mg/kg に設定し、酸化ストレス亢進を示す DOX 投与量を
探索した。その結果、DOX 投与量依存した体重及び心
重量減少が認められたが、いずれの投与量においても心
臓中の有意な MDA 上昇は観察されなかった。

一方、ラット由来初代培養心筋細胞を用いた検討にお
いて、HSA-Trx 存在下では、DOX による ROS 産生と心
筋細胞の萎縮が抑制された。本結果からも、酸化ストレ
ス依存的な DOX 誘発心筋症モデルを確立できれば、HSA-
Trx の有効性を実証できると考えており、今後、まずは
DOX 誘発心筋症モデルの確立を行う予定である。
【計画共同研究報告】
計画共同研究報告

[目次]

1. 哺乳類カリウムチャネルのイオン選択性を制御する構造ダイナミクスの解析（古谷祐詞ほか） 171
2. 多様な生物種に基づいたイオンチャネルと受容体機能の解析（岡村康司ほか） 171
3. アクティブソーンタンパク質 CAST の標的蛋白質の同定（大塚稔久ほか） 172
4. 自己免疫性脳炎における自己抗体の標的蛋白質の同定（木村暁夫ほか） 173
5. 細胞分化・老化過程を 3 次元構造解析するための技術開発（岩根敦子ほか） 173
6. SBF-SEM を用いた髄鞘の軸索機能調節機序の解析（林 明子ほか） 174
7. 甲状腺乳頭癌細胞の核形態— SBF-SEM による 3 次元解析—（加藤良平ほか） 175
8. 高脂肪食摂取下における腸管粘膜防御機能と吸収機構に関するメカニズムの解明（志茂 聡ほか） 175
9. 昆虫視覚系におけるヒスタミン駆動性 C1-チャネルの機構解析（赤司寛志ほか） 176
10. 自己免疫性脳炎における自己抗体の標的蛋白質の同定（木村暁夫ほか） 176
11. 細胞分化・老化過程を 3 次元構造解析するための技術開発（岩根敦子ほか） 177
12. 脂肪細胞における UCP1 発現制御における TRP チャネルの機能解析（河田照雄ほか） 177
13. 温度感受性 TRP チャネルの細胞応答と調節メカニズムの解明（太田利男ほか） 177
14. 温度感受性 TRP チャネルを介した細胞間接着機構の解明（吉本怜子ほか） 178
15. 摂食調節ペプチドによるエネルギー代謝調節機構の解明（塩田清二ほか） 178
16. ドーパミン受容体遺伝子操作マウスを用いた運動制御機構の解析（筆岡俊邦ほか） 185
17. 大脳基底核アストロサイトによる運動制御機構の電気生理学的解析（和中明生ほか） 186
18. SBF-SEM を用いた 3 次元立体再構築法を用いた細胞接着関連分子による神経シナプス形成機構の形態構造レベルでの解析（溝口 明ほか） 186
19. ミクロトーム組込み型走査電子顕微鏡 (SBF-SEM) を用いた脳動脈瘤形成における超微細形態変化の解明（小関宏和ほか） 187
20. SBF-SEM を用いた薄型 mutilation ステレオフォトを用いたミクログリオの構造解析（渡邉敬文ほか） 187
21. 電気生理学的手法を用いたビオプテリオン部分欠乏マウスにおける運動障害発症機構の解析（一瀬 宏ほか） 187
22. 多光子顕微鏡を用いた嗅球ニューロンのターンオーバーを制御する微小環境の可視化解析（塩本和延ほか） 189
23. 細胞接着分子の遺伝子欠損による異常な精子完成における精子細胞とセルトリ細胞の相互作用に関連する膜性構造物の三次元的構造解析（若山友彦ほか） 189
24. SBF-SEM を用いた 3 次元立体再構築法を用いた細胞接着関連分子による神経シナプス形成機構の形態構造レベルでの解析（溝口 明ほか） 189
25. SBF-SEM を用いた薄型 mutilation ステレオフォトを用いたミクログリオの構造解析（渡邉敬文ほか） 189
26. 電気生理学的手法を用いたビオプテリオン部分欠乏マウスにおける運動障害発症機構の解析（一瀬 宏ほか） 189
27. 多光子顕微鏡を用いた嗅球ニューロンのターンオーバーを制御する微小環境の可視化解析（塩本和延ほか） 189
28. 細胞接着分子の遺伝子欠損による異常な精子完成における精子細胞とセルトリ細胞の相互作用に関連する膜性構造物の三次元的構造解析（若山友彦ほか） 189
29. バクテリア DNA 凝集構造の位相差電子顕微鏡による観察（金子康子ほか） 190
30. SBF-SEM を用いた 3 次元立体再構築法を用いた細胞接着関連分子による神経シナプス形成機構の形態構造レベルでの解析（溝口 明ほか） 191
31. SBF-SEM を用いた 3 次元立体再構築法を用いた細胞接着関連分子による神経シナプス形成機構の形態構造レベルでの解析（溝口 明ほか） 191
32. イヌ類動脈瘤の構造構築機構の解明（宮崎直幸ほか） 192
33. 連続ブロック表面 SEM による感覚ニューロン系の 3 次元構造解析（高瀬景子ほか） 193
34. *Xanthomonas citri* に感染する巨大バクテリオファージ XacN1 のクライオ電子顕微鏡単粒子構造解析（川崎 健ほか）……………………………………193
35. SBF-SEM を用いた小型甲殻類の比較形態学（A. Richard Palmer ほか）…………………………………………………………………………………194
36. 従来型解析にバイオインフォマティクスを取り入れた新規長鎖遺伝子の機能解明（増田知之ほか）…………………………………………………………195
37. ウイルス遺伝子工学による腹側海馬-腹側線条体回路の生理的役割の解明（田中謙二ほか）……………………………………………………………195
38. アデノ随伴ウィルス (AAV) を用いた神経系の発生および恒常性維持に関わる分子機構の解析（備前典久ほか）…………………………………………………………196
39. ウィルスベクターを用いた集中的リハビリテーションの作用機序の検討（飛田秀樹ほか）……………………………………………………………196
40. 逆行性ウィルスベクターを用いた体液恒常性維持神経回路の解析（野田昌晴ほか）……………………………………………………………197
41. ウイルスベクターを用いた経路選択的遺伝子操作による臓器類神経回路の機能解析（伊佐 正ほか）……………………………………………………………197
42. 皮質・基底核・視床回路を解析する研究（藤山文乃）……………………………………………………………………………………………………202
43. 外側脳室脚核－扁桃体中心核東側部投射路の情動における役割（重本隆一ほか）……………………………………………………………………201
44. 小脳をモデルとした抑制性ニューロンの数の制御メカニズム（金子凉輔ほか）……………………………………………………………………200
45. 生理学的アプローチによるクラスター型プロトカドヘリン（Pcdh）の視覚神経回路形成の機能解明（大木研一ほか）…………………………………………200
46. ヒト型 SIRPa を発現するヒト化モデルラットの作製（濱仲早苗ほか）…………………………………………………………………………201
47. 摂食と生殖を制御するエネルギー・センサー細胞とその神経経路の同定（前多敬一郎ほか）………………………………………………………………201
48. ラット遺伝子の BALC ローンへのレコンビナーゼ Cre-ER の組込みと作製したトランスジェニックラットの組織化学・細胞生物学的研究（加藤幸雄ほか）……
1. 哺乳類カリウムチャネルのイオン選択性を制御する構造ダイナミクスの解析

哺乳類の心房・心室の細胞などにおいて、ナトリウムイオンの「漏れ」電流が生じることで、静止膜電位が（微）調節されている。このナトリウム電流を生じさせる分子実体の一つとしてカリウムチャネルTWIK-1が同定されている。すなわち、TWIK-1はカリウムチャネルであるにも関わらず、外部環境に応じてナトリウムイオンも透過しうる。

私たちは、精製したTWIK-1タンパク質を脂質小胞に再構成した試料を用いて、TWIK-1チャネル自体が低いイオン選択性を持つことを確認した。そして、外部のイオン環境を変化させた時の赤外吸収スペクトル変化をATR-FTIR（全反射赤外分光法）を用いて解析し、TWIK-1におけるイオン選択性を生み出す選択フィルタ部位に由来する振動バンドを同定した。詳細な分光解析から、選択フィルタ部位の構造がフレキシブルなため、カリウムイオンとの親和性が低くなっていることを観察した。さらに、琉球大学の東博士と共同して、高速AFM（原子間力顕微鏡）を用いて、赤外分光解析と同一のTWIK-1試料について解析した。その結果、TWIK-1のキャップ構造を一分子レベルで観察することに成功した。一方で、外液のイオン条件を変えても、キャップ構造の大規模な変化は見られなかった。今後、部位特異的蛻光標識などを用いて、外部の環境変化に応じて細胞外領域にどのような（微細な）構造変化が生じるのかを解析することを予定している。

以上に述べたように、本年度の計画共同研究を遂行することにより、イオン選択性の緩いカリウムチャネルTWIK-1に対して、分光学・生化学・分子シミュレーション・顕微鏡観察を組み合わせて解析することで、このチャネルの機能が構造ダイナミクスによって制御される分子メカニズムを明らかにすることができた。

2. 多様な生物種に基づいたイオンチャネルと受容体機能の解析

岡村康司（大阪大学大学院医学系研究科）
岡戸晴生（東京都医学総合研究所）
小野富三人（大阪医科大学）
加藤総夫（東京慈恵会医科大学）

本研究はイオンチャネル・受容体機能を生物間で比較し、その動作原理の共通項や多様性を明らかにすることを目的とした。

岡村グループは、CRISPR/Cas9を用いてゲノミッショにおいて電位依存性H⁺チャネル(VSOP)をノックアウトした動物を作製することに成功し、好中球の電位依存性H⁺電流が完全に欠失することを確認し、更に活性酸素産生を好中球において増加させる機能があることを観察した（論文投稿準備中）。カタユウレイボヤ由来の精子特異的電位依存性Ca⁺⁺チャネルCatSper3が発現系
細胞において電位センサードメインのみでイオン透過機能を持つこと、とりわけ精子機能に重要なCa$^{2+}$透過機能特性を持つことを見出した（Arima et al, BBA, 2018）。

岡戸グループは尾索動物ホヤのAMPA型 Glu 受容体ciGluAが形態形成を司ることを見出し、論文発表し、それに関する仮説をいくつか立案し、共同研究者とレビュー論文の相談をした。

小野グループはゼブラフィッシュで筋肉型Ach受容体ε, γサブユニットのダブルノックアウト個体を作成し、発現型を解析した。現在論文作成中である。また腎臓のK^+チャネルROMK遺伝子が、ヒトでは1つなのに対しゼブラフィッシュには7つ存在し、そのうち3つが機能することをツメガエル卵母細胞での機能発現実験によって明らかにした。更にポア領域のアミノ酸の配列が異なることにより、3つが異なる細胞外バリウムイオン感受性を持つことも明らかにした。

加藤グループは、マウス扁桃体スライスを用い、シナプス後膜受容体チャネルに及ぼす神経ペプチドの影響を解析した。侵害受容情報を伝達する脳橋核－扁桃体中心核シナプスにおいて、外因性calcitonin gene-related peptide (CGRP)はNMDA受容体成分をPKA依存的に緩徐かつ持続的に増強したが、AMPA受容体成分には影響しなかった。一方、CGRP欠損マウスは痛み依存的シナプス増強を示さなかった。内因性神経ペプチドがシナプス後NMDA受容体を修飾することによってシナプス可塑性のプライミングに貢献する可能性が示された。

3. アクティブゾーンタンパク質CASTの標的蛋白質の同定

大塚稔久、萩原 明
（山梨大学、大学院総合研究部、医学域）
横井紀彦、深田優子、深田正紀

CASTは、脳神経系に強く発現する細胞骨格分子であるが、その活性化制御機構やシナプス前部への局在化機構に関してはほとんど明らかになっていない。実際に、ドメイン構造としてはコイルドコイル領域が分子全体を占め、酵素反応に関わるようなドメインを有していないため、構造からの機能の推測も困難である。そこで、本研究では、主として生化学的手法を用いて、CASTの上流または下流に位置する分子群の同定や、シナプス前部への局在化機構を明らかにし、シグナル伝達系の全容解明を目指した。申請者たちは、これまでに、CASTがシナプス前部のアクティブゾーンに高度に濃縮していることを見出していることから、アクティブゾーンを含むシナプス結合画分をラットもしくはマウス大脳から生化学的に精製し、マス・スペクトル法を用いて個々の分子を同定することを試みた。

今年度は、ラット大脳を出発材料とし、生化学的分画を行ことにより神経終末アクティブゾーンを高度に濃縮した画分を取得した。そして、様々な実験条件下で自己のCAST抗体を用いてCASTタンパク質の免疫沈降を試みた。しかし、CASTタンパク質の界面活性剤への強い依存性のため、CASTをタンパク質複合体として精製するには至らなかったため、パッファーの塩濃度や界面活性剤の組成のさらなる検討が必要と考えられた。また、CASTがアクティブゾーンに局在化する機構の1つとしてパルミトイル化脂質修飾の関与を検討した。手法としては、生理研生体膜研究部門で最近開発したAPEGS法（acyl-PEGyl exchange gel shift）を用いた。しかし、現在までのところ、CASTタンパク質がパルミトイル化脂質修飾を受けるという結果は得られていない。（CASTのアクティブゾーン局在化機構については引き続き機能と相互作用を中心に解析していく予定である。）
4. 自己免疫性脳炎における自己抗体制標的蛋白質の同定

木村暁夫, 吉倉延亮
(岐阜大学大学院医学系研究科)
横井紀彦, 深田優子, 深田正紀

近年, 自己免疫性脳炎患者より, NMDA 受容体や AMPA 受容体などの神経シナプス膜表面蛋白を標的抗原とする自己抗体の報告が相次いでなされており, この自己抗体の抽出ならびにその後の治療法の選択に極めて有用なバイオマーカーである。一方, 臨床においては, 既知の自己抗体を有さない自己免疫性脳炎患者を度々経験することがある。これら患者の血清・髄液を用い, ラット・マウスの培養神経細胞を抗原とする免疫沈降法により, 抗原抗体複合物を検出し, 質量分析装置を用い標的抗原蛋白質を同定することを目的とした。また, 同定した自己抗体を検出する cell based assay 系の確立を行う。対象患者は, 岐阜大学神経内科・老年内科に入院した自己免疫性脳炎患者とし, 実験に用いる検体は, 通常の診療行為で採取した血清・髄液を用いる。

2017 年度は, 前年度より継続して行っているラット海馬初代培養神経細胞を用いた免疫染色と, アフターザと反応した自己抗体制標の複合物を観察してみた。また, C2C12 として使用したマウスの筋芽細胞である C2C12 細胞の培養系, 分化誘導に関しては先端光学顕微鏡を用いてそして qPCR を用いた特異的分化マーカーを用いた生化学的な確認は取れているものの, 未分化 C2C12 細胞は単層細胞であり, 分化に従い核の多核化と細胞質の増大が見られる。培養皿から細胞を取りこぼしなく, 抽出し, 樹脂包埋へとつなげる過程においては超薄切片の TEM 観察を含め, SBF-SEM 観察を含めても未だ, 条件検討を重ねる必要性を感じる。分化誘導された細胞と培養皿の間には単層の未分化細胞が存在することもあり
6. SBF-SEM を用いた髓鞘の軸索機能調節機序の解析

有髄神経の軸索は髓鞘によって覆われている。髓鞘は、軸索の絶縁による跳躍伝導発生のみでなく、軸索上のチャネルなどの機能分子の局在化、軸索径や輸送の調節など様々な面から軸索の機能調節に関わっていると考えられる。本研究では、先端電子顕微鏡技術を用いて詳細な形態観察を行うことにより、髓鞘による軸索機能調節機序を明らかにすることを目的とする。

髓鞘関連遺伝子変異モデルとして硫酸化糖脂質スルファチド欠損（Cerebroside sulfotransferase: CST 欠損）マウスおよび硫酸化糖鎖転移酵素欠損（GlcNAc 6-O-Sulfotransferase: GlcNAc6ST-1 欠損）マウスの小脳および坐骨神経の髓鞘の形態を解析した。

CST 欠損マウスは、髓鞘のランピエ経過横隔接部分(paranode)の髓鞘・軸索間接着(paranolal-axo-gliaijunction: PNJ)の形成不全を有し、4 週令頃より震えや運動障害が見られ加齢とともに症状は進行する。解析の結果、10 週令小脳白質では PNJ 形成不全が明確に観察された。コンパクトテミニオンには明らかに異常はなかった。22 週令の小脳白質の SBF-SEM ではコンパクトミエリンの外周および内部の膨化が不定形で多数見られた。CST 欠損マウスでは PNJ の形成不全だけでなくコンパクトミエリンの異常な膨化が加齢により生じることが SBF-SEM により明らかになった。末梢神経については SBF-SEM の画像解析中である。一方、GlcNAc6ST-1 欠損マウスの髓鞘では硫酸化糖鎖付加 P0 タンパク質が欠損している。坐骨神経の免疫組織学的検討では paranode の伸長や変形があり、SBF-SEM で詳細に調べるとループの形態異常を伴う PNJ の異常が見られることから、paranode の伸長はループの異常な形態を反映していると考えられた。本研究により末梢神経における正常な髓鞘の形成や軸索の機能に対する P0 タンパク質の硫酸化糖鎖付加の重要性が明らかとなった。

髓鞘関連遺伝子変異モデルや脱髓モデル動物の神経系を SBF-SEM を用いて解析することにより、髓鞘の変化が軸索に与える影響を今後より詳しく明らかにすることができると考えている。
7. 甲状腺乳頭癌細胞の核形態 – SBF-SEM による 3 次元解析 –

加藤良平（山梨大学総合研究部医学域人体病理学講座）
大野伸彦（自然科学研究機構生理学研究所分子神経生理研究部門）
井上朋大（山梨大学総合研究部医学域人体病理学講座）

目的：乳頭癌は甲状腺から発生する悪性腫瘍の中では最も頻度が高く、女性に多い、リンパ節転移が多い、予後が良好などの臨床的特徴が知られている。現在、乳頭癌の組織細胞診断は、組織構造よりも腫瘍細胞の核所見によって規定されている。すなわち 1) 核の溝 nuclear groove (NG), 2) 核内細胞質封入体 intranuclear cytoplasmic inclusion (INCI), 3) スリガラス状核 ground glass nuclei (GGN) である。しかしながら、特徴とされるこれらの核所見は、主として切片上における 2 次元的局所観察での観察によるもので、実際の核形態の特徴を知るには 3 次元的観察が必須である。そこで、今回我々は、連続ブロック表面走査型電子顕微鏡 serial block-face scanning electron microscopy (SBF-SEM) を用いて乳頭癌細胞核の断面を連続的に撮影し、その画像をモニター上に再構築して 3 次元的に観察した。

材料・方法：山梨大学医学部附属病院で外科的切除された甲状腺乳頭組織を、4%Paraformaldehyde と 0.5%Glutaraldehyde の混合液で固定後、エポン包埋した。観察には SBF-SEM を用い、厚さ 80nm で、500 枚程度の連続切片画像を撮影した。撮影した画像の解析には画像解析ソフト (Fiji/Image J と Amira5.0) を用いた。

結果：SBF-SEM にて撮像した 3 次元イメージ画像では、甲状腺乳頭癌核は、正常甲状腺の濾胞上皮細胞と比較し、核表面の不整や陥入がより明瞭であり、核の長径・体積・表面積は有意に高く、真球度は有意に低い値を示した。INCI には核外細胞質との交通を伴うもの（Open INCI）と伴わないもの（Closed INCI）がみられた。封入体には、内部が細胞小器官に乏しいものや、dense core をもった顆粒をもつものが散見されたが、いずれも Closed INCI のみで観察された。また、Open INCI では球形に近い形態を示すものと不規則な形態を示すものの同程度の頻度で観察されたが、Closed INCI はすべて球形に近い形態であった。

まとめ：SBF-SEM を用いて、核の陥入像や核内封入体を観察し、それらの形成過程における変化を 3 次元的にとらえることに成功した。すなわち、核の陥入像から Open INCI となり、Closed INCI が形成されることが示唆された。今後は、核封入体と封入体内に存在する細胞小器官との関連についてさらに検討し、乳頭癌細胞の特徴とされる核形態の意義について考察を加えたいと考えている。

8. 高脂肪食摂取下における腸管粘膜防御機能と吸収機構に関するメカニズムの解明

志茂 聡（健康科学大学健康科学部作業療法学科）
齋藤 成（自然科学研究機構生理学研究所電子顕微鏡室）
村松 憲（杏林大学保健学部理学療法学科）
大野伸彦（自治医科大学医学部解剖学講座組織学部門）

糖尿病患者の臨床症状は多彩で、腸管機能では下痢や便秘など様々な症状を呈し、患者の QOL を低下させる。これらの発症機序として、近年では腸管細菌叢の異常増殖や腸上皮バリアの破綻など、様々な要因が考えられているが、その病態や成因については未だ不明な点が多い。本研究では、腸管粘膜防御機能および吸収機構において重要な役割を果たす、アウエルバッハ神経叢を連続ブロック表面走査型電子顕微鏡 SBF-SEM を用いて 3 次元的再構築をとおすことにより、高脂肪食摂取下における腸管吸収機構のメカニズムを解明することを目的とした。

4 週齢から高脂肪食の給餌を開始し、20 週齢まで飼育された 2 型糖尿病モデルマウス（高脂肪食群）を用いた。
一部は、糖吸収阻害薬であるフロリジンを組織採取の前日および当日に皮下投与した。対照群として、通常食で飼育された同週齢のマウス（通常食群）を使用した。麻酔下で腸管を採取し、浸漬固定した後にWhole MountによるSynaptophysin免疫染色をおこなった。一部は、OTO法によるブロック染色をおこない樹脂包埋した後、SBF-SEMを用いてZ軸方向に70nm間隔で連続断層像を取得した。Whole Mountによる免疫組織化学的解析では、通常食群のアウエルバッハ神経叢内および筋層間の軸索に沿って、顆粒状のSynaptophysin陽性像を豊富に認めた。一方、高脂肪食群ではアウエルバッハ神経叢内の陽性像は減弱していた。しかし、高脂肪食群フロリジン投与後は、顆粒状のSynaptophysin陽性像をアウエルバッハ神経叢内に多く認めた。SBF-SEMによる3次元超微形態解析では、通常食群は軸索のVaricosityに多数のシナプス集積を認め、軸索からは複数の側枝の形成を認めた。一方、高脂肪食群では軸索はらせん状となり、軸索のVaricosity内のシナプス集積はほとんどみられなかった。高脂肪食群フロリジン投与後は、Varicosity内のシナプス集積ともに軸索に多数の側枝の形成を認めた。これらの結果から、高血糖状態がアウエルバッハ神経叢におけるVaricosityのシナプス動態の異常を惹起するものと考えられ、糖吸収阻害薬フロリジンが軸索に保護的に作用する可能性が示唆された。

9. 昆虫視覚系におけるヒスタミン駆動性C1-チャネルの機構解析

赤司寛志、陳 嫱如、蟻川謙太郎（総合研究大学院大学）
高山靖規、富永真琴（岡崎統合バイオサイエンスセンター）

複眼で受容された視覚情報は、第一次視覚中枢（視葉板）で視細胞から二次ニューロン（LMC）へと伝達される。無脊椎動物では、視細胞が神経伝達物質のヒスタミンを放出し、LMCのヒスタミン作動性塩素イオンチャネル（以降HCL）を活性化することで高次の視覚情報処理が始まる。我々はアゲハをモデルとし、チョウ類視覚系における優れた波長情報処理のメカニズムを調べている。その一環としてLMCへの情報伝達に重要なHCLに着目し、今年度は①HCLを含む塩素イオンチャネルのアミノ酸配列比較と、②アゲハHCLの電気生理学的解析（ホールセル・パッチクラシップ法）を行なった。

配列比較から、アゴニストの決定に重要なアミノ酸を複数推定した。2種のアゲハHCL（PsHCLAとPsHCLB）はいずれもヒスタミンとGABAに応答する。ヒスタミン作動性のイオンチャネルがGABAによって活性化されるメカニズムは明らかでないが、アミノ酸配列の解析と、PsHCLの275番目の残基（グリシン）がGABA応答性を担っていることを示唆している。ハエHCLAの275番目の残基はバリリンであり、GABA応答性がない。一方、ハエHCLBの275番目の残基はグリシンであり、GABA応答性を示す。ハエのHCLA系で生じたG275V変異がGABA応答性の欠失を引き起こした可能性が考えられ、チョウとハエの視覚系における機能分化に寄与しているかもしれない。今後、in vitroでの変異解析を行うことで、これらのアミノ酸とアゴニストの関係を明らかにできるだろう。

さらに、PsHCLAとPsHCLBのヒスタミンとGABAに対する応答を詳細に調べた。ヒスタミンに対するEC₅₀はそれぞれ22µMと5.5µM、GABAに対するEC₅₀はそれぞれ9.4mMと2.7mMだった。意外なことに、ヒスタミンとGABAの同時投与はPsHCLAやPsHCLBを相乗的に活性化することが分かった。ハエHCLBはヒスタミンとGABAの両方に応答するものの、同時投与は相加的な効果しかもたらさない。PsHCLとハエHCLのアミノ酸配列は高い類似性を示すことから、わずかなアミノ酸変異がチョウとハエでチャネルの機能分化を生じさせた可能性が高い。アゲハのLMCにはメダラでGABAを放出するものがある。また一部の視細胞はラミナを通過し、メダラで終末、ヒスタミンを放出する。PsHCLは視細胞からLMCへの情報伝達のみならず、LMCや視細胞からメダラの三次ニューロンへの伝達にも重要な機能をもつ可能性がある。今後、PsHCLAとPsHCLBの局在を明らかにすることで、視覚系におけるそれぞれの働きを理解することができるだろう。
10. 脂肪細胞におけるUCP1発現制御におけるTRPチャネルの機能解析

河田照雄，後藤剛，Kim Minji（京都大学大学院農学研究科）
富永真琴（生理学研究所）

褐色脂肪細胞に特徴的な高い熱産生能は、ミトコンドリア内膜上に特異的に存在するプロトンチャネルである脱共役タンパク質1（UCP1）の機能に依存する。様々なTRPチャネルの活性化には、脂肪組織におけるUCP1発現を増加させるものが存在し、肥満症に対する新たな予防・治療の標的として、TRPチャネルを介した褐色脂肪組織機能調節が注目されている。本研究は、特に食品由来油脂によるTRPチャネル活性化と褐色脂肪細胞機能の関連性について明らかにすることを目的として行った。

昨年度までの共同研究において、食餌中に豊富に存在するリノール酸の腸内細菌代謝産物、Ket（10-keto-12c-18:1）摂取によって、脂肪組織のUCP1発現量が増加すること、この作用がTRPV1を介したものであることを見出してきた。今年度はKetoAのTRPV1活性化作用および代謝異常改善作用について検討を行った。

KetoAによる褐色脂肪組織機能の活性化が、肥満・糖尿病病に与える影響について、肥満・糖尿病モデルマウスであるKK-Ayマウスを用いて検討した。KetoA摂取KK-Ayマウスでは対照マウスに比し、体重増加・体脂肪蓄積の抑制、褐色脂肪組織機能の活性化が認められ、尿中カテコールアミン量の増加が認められたことから交感神経活動の亢進が示唆された。さらに、KetoA摂取により、肥満に伴う耐糖能異常、高血糖、高中性脂肪血症の改善効果が認められた。以上より、KetoA摂取は交感神経活動亢進を介した褐色脂肪組織機能の活性化を惹起し、非常に肥満に伴う代謝異常症の発症に対し、抑制的に機能しうることが示された。

11. 温度感受性TRPチャネルの細胞応答と調節メカニズムの解明

太田利男，西澤由紀，高橋賢次（鳥取大学・農学部）
齋藤茂，富永真琴（岡崎統合バイオサイエンスセンター）

非選択性イオンチャネルであるTRPA1と低閾値活性のT型Caチャネル（Cav3）は、共に疼痛伝達に関与している。加えて、両チャネルは炎症性疼痛や神経性疼痛などの病態痛との関係も示唆されているが、その機能的調節機構は明らかにされていない。そこで、本研究ではマウス知覚神経細胞におけるCav3とTRPA1の機能的相互作用について検討した。

野生型（WT）マウス及びTRPA1欠損マウスの知覚神経細胞、ラット脳神経細胞由来細胞のRIN-14B細胞を用いて蛍光指示薬Fura-2による細胞内Caイメージング解析を行った。WTマウス知覚神経細胞において高濃度KClは、濃度依存性に細胞内Ca濃度（[Ca2+]i）を増加させた。一部の神経細胞ではKCI 15 mMにより[Ca2+]i増加反応（15K反応）が生じた。15K反応はCav3阻害薬により抑制された。AITC（TRPA1アゴニスト）感受性神経細胞における15K反応の大きさは、AITC非感受性及びTRPA1欠損マウス由来知覚神経細胞に比べて有意に大きかった。マウス知覚神経細胞はCav3遺伝子の発現が認められた。Cav3.2欠損の細胞はCav3.2欠損の細胞が見出された。TRPA1阻害薬は、AITC感受性細胞における15K反応を選択性に抑制した。
これに対して、高閾値型Caチャネル活性によるCa²⁺増加反応は、AITC反応性の有無に拘らずTRPA1阻害薬では影響を受けなかった。更に、TRPV1阻害薬は、Capsaicin反応の有無に拘らず15K反応を抑制しなかった。15K反応に対するTRPA1阻害薬による抑制は、TRPV1及びCav3を内因性に発現するRIN-14B細胞でも見られた。WTマウス知覚神経細胞において、KCl15mM存在下ではTRPA1アゴニストによるCa²⁺増加反応が増強した。

以上の成績から、マウス知覚神経において軽度脱分極反応によるCa²⁺増加反応にはCav3が関与していることが分かった。また、TRPA1チャネルはCa²⁺により正の制御を受けていることが示されていたことから、Cav3より流入したCa²⁺がTRPA1活性を増強させると示唆された。それ故、T型CaチャネルはTRPA1を介した疼痛病態に対する新たな治療ターゲットの一つになる可能性が示唆された。

12. TRPチャネルの温度依存的活性化における細胞膜脂質の関与

内田邦敏, 山﨑 純 (福岡歯科大学細胞分子生物学講座 新機能制御学分野)
富永真琴 (生理学研究所 細胞生理部門)

いくつかのTRPチャネルは多刺激受容体として機能し、細胞内外環境をセンシングして情報を電気信号に変換している。TRPチャネルのうち11は温度センサーとして機能しているが、これら温度依存性を持ったチャネルが温度によって活性化されるメカニズムは明らかにされていない。本計画研究は、TRPチャネルと細胞膜脂質との相互作用に焦点を当て、TRPチャネルの温度依存的活性化メカニズムを明らかにすることを目的として行った。

まず、温度感受性TRPチャネルの細胞内局在を対象に温度変化に対する局在の変化について検討した。EGFPタグを付加したTRPV1、TRPM3、TRPM5及びTRPM8チャネルをHEK293T細胞に強制発現させ、共焦点レーザー走査顕微鏡（オリンパス製）を用いて観察した。細胞膜のドメイン構造である脂質ラフトを可視化するため、糖脂質GM-1を認識するCT-BAlexa588（Invitrogen）で染色した。その結果、室温（25℃）においてTRPV1、TRPM5及びTRPM8チャネル分子は細胞膜に局在し、特に脂質ラフトに集積していた。一方、TRPM3チャネルは細胞膜よりもむしろ細胞内に多く存在していた。温度を室温から40度以上まで上昇させた結果、これら温度感受性TRPチャネルの局在は大きく変化しなかった。温度感受性TRPチャネルの温度依存的活性化並びに不活性化に、局在の変化の関与は小さいことが示唆された。

Fluo-4などのカルシウム指示薬の蛍光強度は温度に強く依存することが知られている。そこで、温度変化に依存した温度感受性TRPチャネルの活性を計測するため、温度の影響が小さい細胞内カルシウム濃度計測系を探求した。その結果、GCaMP8を用いることで温度依存的TRPV1チャネル活性化に伴う細胞内濃度上昇を検出可能であることがわかった。また、細胞内局所温度を測定するために膜透過型の温度プローブ（フナコシ）について検討を行った。その結果、このプローブは5%グルコース存在溶液下でHEK293細胞内に導入されたが、細胞質よりもむしろ小胞体に局在しており、プローブ導入方法のさらなる検討が必要であることが示唆された。

13. 温度感受性TRPチャネルを介した細胞間接着機構の解明

吉本怜子, 合島怜央奈, 曹 愛琳, 本田裕子, 城戸瑞穂 (佐賀大学医学部)
高山靖規, 富永真琴（岡崎統合バイオサイエンスセンター）

上皮は生体と外界との境界を規定し、動的なバリアとして生体の恒常性を維持している。近年、粘膜バリアの破綻が腸管や皮膚の炎症性の疾患と関連することが明らかにされてきた。口腔粘膜は身体の他の部位に比べ幅広い温度
変化にさらされており、それら刺激に適応しながら、粘膜形態を整え、上皮細胞同士の結合を変化させていると考えられるがその機構は明らかでない。近年、温度感受性の陽イオン透過性イオンチャネル transient receptor potential チャネル群の皮膚バリアへの影響が報告されている。そこで我々は、口腔粘膜上皮バリアの維持機構に温度そして TRPV4 が関わるとの仮説を立て、研究を行った。

実験は、野生型として C57BL/6 マウスならびに TRPV4 遺伝子欠失マウスを用いた。TRPV4 はマウス口腔上皮組織に発現が認められ、特に基底細胞層では細胞表面膜に顕著に発現していた。次に、新生マウスより口腔上皮の初代培養を行い、上皮細胞間の接着形成へ温度が与える影響を免疫細胞生物学的に詳細に観察した。

TRPV4 はマウス培養口腔上皮細胞においても免疫細胞化学的に発現が確認され、Calcium imaging により薬理学的にも TRPV4 機能活性を示した。さらに、培養液のカルシウム濃度を低いものと高いもので比較すると、カルシウム濃度の上昇により上皮細胞間の結合を示す E-cadherin の免疫陽性反応が連続した細い明瞭な線状を示し、成熟した細胞間接着の形態が示唆された。体温近傍の温度においても、31℃と 37℃との温度刺激を比較すると、37℃では緊密な細胞間接着が形成される一方、31℃では不連続な E-cadherin 陽性が観察され、細胞間の間隔も観察された。また TRPV4 の薬理学的な刺激では成熟した細胞間接着を示唆する連続性の高い明瞭な線状 E-cadherin 陽性を示したが、TRPV4 欠失マウスから得られた細胞では不連続な波状を呈した。

細胞間接着の形成は、細胞同士の押し合う力のバランスが重要である。細胞間の力学的環境の形成にアクトミオシン介した制御機構を介する可能性が示唆された。

14. メカノ作動性分子を標的としたドラッグリポジショニング研究

津田 誠、西山和宏、赤司壯一郎
(九州大学大学院薬学研究院)

本年度は、筋細胞（心筋・平滑筋・骨格筋）の再生・修復を制御するメカノ作動性膜タンパク分子を着目し、これらを標的とするスクリーニング系の構築および阻害化合物の同定を試みた。また、西田研究室の保持する P2Y6 受容体欠損マウスを用いて、デキストラン硫酸ナトリウム（DSS）誘発性腸疾患の発症・進展におけるこれらのメカノ作動性分子の役割を検討した。西田研究室が昨年報告した高血圧リスクに関わるメカノ作動性分子 P2Y6 受容体の欠損マウスに大動脈狭窄（TAC）を施し、圧負荷誘発性の心臓リモデリングに対する効果を調べた結果、既存の P2Y6 受容体阻害剤 MRS2578 投与で得られた保護効果は、圧負荷誘発性の心臓リモデリングに対する効果を調べた結果、既存の P2Y6 受容体阻害剤 MRS2578 投与で得られた保護効果は、圧負荷による突然死とその後の心機能低下（心不全）が著しく増悪することが明らかになった。P2Y6 受容体の選択的阻害剤 MRS2578 は、腫瘍性の高いイソチオシアネート（ITC）を 2 つ有する。MRS2578 は腫瘍体修飾を介して P2Y6 受容体と共存結合し、P2Y6 受容体の多量体形成および内在化を促進することが示唆された。P2Y6 受容体を豊富に発現するマクロファージ細胞株 RAW264.7 を用いて、P2Y6 受容体刺激誘発性のケモカイン産生に対する ITC 含有食品成分の阻害効果を検討した結果、スルフォラファンやイベリン、アリルイソチオシアネートなどの有名な ITC 化合物がヒットしてきた。マウスに 3% DSS を飲ませてマクロファージ誘発性の炎症性腸疾患を誘導させたところ、P2Y6 受容体欠損マウスにおいて顕著な回復率増加が確認された。さらに、ITC 投与によっても DSS 誘発性腸疾患が抑制されることも明らかにした。以上の結果は、マクロファージの P2Y6 受容体がケモカイン産生を介して炎症性腸疾患を誘導し、ITC 型食品成分がマクロファージの P2Y6 受容体阻害剤を介して炎症性腸疾患の抑制に働くことを強く示唆している。
15. 摂食調節ペプチドによるエネルギー代謝調節機構の解明

塩田清二（星薬科大学・先端生命科学研究所）、竹ノ谷文子（星薬科大学薬学部運動生理学研究室）
平林敬浩（星薬科大学・先端生命科学研究所）、平子哲史（人間総合科学大学 人間科学部）
和田亘弘（東京大学大学院医学研究科）、箕越靖彦（自然科学研究機構生理学研究所生）

Galanin-like peptide(GALP) は、オーファン G 蛋白共役型受容体 (GPCR) のリガンドとして発見され、摂食調節に深く関与する生理活性ペプチドである。これまで、ラッとした GALP の機能形態学的解析や生理的実験により GALP は様々な摂食調節物質とニューロンネットワークをもち、摂食調節を行うことを明らかにした。さらに、GALP 投与による体温上昇が報告され、GALP のエネルギー代謝調節への関与が明らかにされている。これらの結果から、GALP 投与によってミトコンドリアでの β 酸化が亢進することが示唆された。以上の様に GALP は投与直後に脂質代謝を亢進することを明らかにした。一方で、投与 16 時間後では Saline 投与群と比較し GALP 群で呼吸商が上昇した。これは、エネルギーとして使われる栄養素が脂質から糖質へと変化していることを示唆する結果である。そこで、投与 16 時間後の糖代謝への影響をしらべた。その結果、血糖値に有意な差はみられなかったが、血中中性脂質値は GALP 群で減少した。肝臓の糖新生に関連する G6Pase 遺伝子発現は GALP 群で減少した。一方で解糖系の酵素である GK は GALP 群で増加する傾向がみられた。GALP 投与により肝臓での解糖系が亢進し、糖新生が抑制されることが示唆された。先行研究より GALP 投与直後で脂質代謝が亢進することが報告されているが、GALP 投与 16 時間後では脂質代謝ではなく糖代謝を亢進することが明らかとなった。

16. 多光子顕微鏡を用いた嗅球ニューロンのターンオーバーを制御する微小環境の可視化解析

澤本和延、澤田雅人、荻野 崇（名古屋市立大学大学院医学研究科再生医学分野）

哺乳類の脳室下帯では、成体でも神経幹細胞が存在し、生涯にわたり新生ニューロンを産生している。産生された新生ニューロンは、嗅覚の一次中枢である嗅球へと移動し、抑制性介在ニューロンとして成熟する。一方、古い抑制性
介在ニューロンは細胞死を起こしており、嗅球では抑制性ニューロンが常に入れ替わることで神経回路の構造や機能を維持している。過去の研究では、生きた動物で同一ニューロンを長期間追跡することが困難であったため、ニューロンのターンオーバーを制御するメカニズムは十分に研究されてこなかった。我々は、生理学研究所生体恒常性発達研究部門との計画共同研究により、多光子顕微鏡を用いた嗅球ニューロンの生体イメージング法を確立し、嗅覚入力による嗅球ニューロンのターンオーバーの時空間的制御を明らかにした。しかし、その詳細な制御メカニズムは不明である。そこで本研究では、ニューロンのターンオーバーが生じる周囲の血管およびグリア細胞との関係に着目し、確立した生体イメージング法を用いて、ニューロンのターンオーバーが生じる微小環境とその制御機構を生きた動物で解析することを目的とした。

ミクログリアは脳内の免疫細胞であり、死細胞を貪食することで周囲の微小環境の恒常性を維持する。嗅球ミクログリアは、嗅覚で死んだニューロンを貪食することが分かった。さらに、多光子顕微鏡を用いた生体イメージング法によって、嗅球ミクログリアの動態を解析した。これらの結果は、ニューロンのターンオーバー過程において、ミクログリアが死んだニューロンの除去に関与することを示唆している。新興ニューロンの定着については、ニューロンと血流の同時生体イメージング法を用いて、血流との関連を解析した。また、嗅細胞のカルシウムイメージングを組み合わせることで、嗅覚刺激と血流およびニューロンのターンオーバーの関係を解析した。以上の結果から、成体脳におけるニューロンのターンオーバーは、血管やグリア細胞で構成される微小環境によって調節されていることが示唆された。

17. 神経回路形成におけるクラスター型プロトカドヘリンの解析

八木 健（大阪大学大学院生命機能研究科）
錦倉淳一（生理学研究所）

クラスター型プロトカドヘリン(cPcdh)は、個々の神経細胞で差次的発現をするため、神経回路形成における特異的な細胞間認識や、シナプス形成における標的認識機構への関与が想定される。本研究では、cPcdh全欠損マウス由来の海馬神経細胞へ任意のcPcdhメンバーを遺伝子導入後、ライブイメージングを行う。個々のメンバーの分子的特異性がシナプス形成、機能的神経回路形成においていかなる分子的機能を有するのかについて明らかにする。

私たちは、シナプス形成におけるcPcdhの機能解析を目的として、海馬神経細胞の分散培養系を確立した。cPcdh全欠損マウスはP0で致死となるため、ヘテロマウスの交配させE16.5の胎児から海馬を分散し、培養を行った。解剖時に遺伝子型判定技術を確立することにより、野生型、ヘテロ、ホモ（全欠損）の胎児を別々に培養することを可能とした。さらに、培養条件の検討を経て、細胞調製時の浮遊状態で電的に遺伝子導入する実験系を確立し、すでに細胞接着実験で確立されている各cPcdh分子種の発現ベクターを、神経細胞に安定して遺伝子導入することを確立した。実際に、固定標本における解析では、cPcdh分子種の分子的特異性が神経細胞間相互作用に、積極的に寄与しているデータが得られている。この系を用いて、培養した神経細胞でのライブイメージングを生理学研究所で行い、cPcdhを発現させた神経細胞の突起が他神経細胞と交差する点の周囲にcPcdhを認めることに成功している。本年度は、ライブイメージングを継続し、同種または異種のcPcdhメンバー同士の分子間相互作用が神経細胞間の相互作用にどのような影響を及ぼすか、またシナプス形成過程における役割の解析を行った。
実績の概要

近年の光遺伝学の発達により、神経細胞やグリア細胞などの中枢神経系の細胞に光活性化蛋白質であるチャネルロドプシン (ChR2), アーキロドプシン (Arch)などを発現させてその細胞活動を操作することで動物の行動を制御する手法（オプトジェネティックス）が着目されている。これまでこのような手法を用いて睡眠・呼吸・食欲などの機能が詳細に解析され、一定の成果を収めてきた。申請者はこれまで2光子顕微鏡を用いて、生体マウスのイメージングによって、大脳皮質における感覚学習および運動学習にともなう神経細胞およびグリア細胞の活動を可視化する研究を行い、これらの可視化してきた神経細胞・グリア細胞の活動は時空間的に多様であることを明らかにしてきた。しかしながら現在のオプトジェネティックスでは遺伝的背景の同一細胞集団に対して、ある特定のタイミングで刺激することは可能であるが、このような時空間的に多彩な活動を創出することは困難である。そこで本研究では、高精度時空間分解能をもつ光刺激を可能にするシステムの構築を試みた。本申請においては、Liquid Crystal On Silicon (LCOS)ベースの投影素子およびホログラフィック技術による光刺激装置の作成を神戸大学的場修先生および分子科学研究所平等拓範先生と共同で行った。これはLCOSをもちいてレーザーを任意の形に50-60Hzで脳内に投影できるシステムである。本装置は当初蛍光観察のためのLED光源およびCCDカメラを内蔵し、撮像した画像に対して任意の形の光刺激を多点かつ高速で行うことが可能で、さらに刺激中画像を高時間分解能で撮像することが可能であった。その後継続してシステムの構築を行い、現在2色のレーザーのパターンを作成することが可能となり、これによってイメージング（計測）と刺激が同時に可能なシステムとなっている（図1, 2）。システムの検証を行うにあたり、神経細胞にGFP及びtdTomato（赤色蛍光蛋白質）の発現している遺伝子変異マウスの固定標本から脳切片を作成した。緑色のレーザーをシート状に作成し、そこに青色のレーザーの刺激を与えることで、CCDカメラで照射されることによって励起される蛍光の検出をおこなったところ、任意の関心領域からの蛍光の検出を行うことができた。さらに対物レンズの倍率を変更することによって励起サイズ（刺激解像度）を大きく変えることができ、スペインから神経細胞体におけ る蛍光の励起を行うことができた。また本光刺激の生体応用が可能かどうかを検証するため、大脳皮質神経細胞にYFPが発現しているマウスの頭蓋骨を2mm程カバー ガラスで置換するマウスを作成し、そのカバーガラスを通じて光刺激による蛍光励起を行ったところ任意の各点で蛍光励起を行うことに成功した。次に、光活性化物質の光刺激による神経活動応答を電気生理学的に検出するため、大脳皮質神経細胞にチャネルロドプシンを発現しているマウスの大脳皮質に記録電極を挿入し、神経活動を記録しながら光刺激をおこない、各種光刺激を行うことに成功した。このようなシステムにおいて、多点（100〜500個の点）の刺激を行うためには、ハイパワー バルスレーザーが必要となり、その改良も進めている。そこで、今後はこれらの技術を応用し、ホログラフィック顕微鏡の構築を行うとともに、疑似感覚の創出による光BMIの構築を目指していく。
19. 動物モデルへの双方向性計測操作による発振現象の理解

虫明 元, 渡辺秀典（東北大学大学院医学系研究科生体システム生理学分野）
知見聡美, 佐野裕美, 南部 篤（生体システム）

霊長類を動物モデルとして神経活動の発振現象の発生メカニズムとその機能的意義を理解することを目的とした。任意のタイミングにおける特定の神経活動の制御による効果的な脳波の修飾を可能にするために光遺伝学的手法を用いた。

ニホンザル1頭（メス）を用いて一次運動野に光感受性遺伝子（チャネルロドプシン）を搭載したアデノ関連ウィルスベクタ注入し, 光感受性タンパクを発現させた。麻酔下（キシラジン, ケタミン）における一次運動野への光刺激によって上肢の筋活動並びに運動を惹起することができた。光刺激によって明らかになった一次運動野における筋肉の神経支配領域は微小電流刺激によって明らかにした神經支配領域と一致していた。一方で光刺激強度を増大しても単収縮から強縮への変化は観察できなかった。また高周波数を持つ光刺激列（刺激間隔; 10ms, 50ms, 100ms, 125ms）を用いても運動閾値に差はなかった。本結果は(1)光刺激によって動員される運動単位の上限は電流刺激よりも小さいこと,(2)一次運動野において神経活動を誘導させる刺激の周波数選択性はないことを示唆している。

20. 光刺激法を用いた大脳基底核神経回路機能の解析

篠山俊彦, 鈴木江津子, 西條琢真（東京慈恵会医科大学・医学部）
知見聡美, 南部 篤（生体システム研究部門）

大脳基底核における局所神経回路機構解析として、線条体の中型有棘ニューロン（medium spiny neurons, MSNs）
からアセチルコリン性介在ニューロン（cholinergic interneurons, CINs）への GABA 性抑制性シナプス伝達機構およびムスカリン性アセチルコリン受容体を介する修飾機構の解析を、光遺伝学手法を用いて行なった。
MSNs のみにチャネルロドプシン 2 を発現した遺伝子変異マウスの脳スライス標本上の CINs からホールセル記録を行ない、MSNs に光刺激を与え GABA 性抑制性シナプス後電流（IPSCs）を誘発した。光刺激によって誘発された IPSCs の振幅は、細胞外電気刺激によって誘発された IPSCs の振幅と有意差が認められなかった。光刺激によって誘発された IPSCs はムスカリン性アセチルコリン受容体アゴニストによって濃度依存的に抑制され、この抑制は、ムスカリン受容体 M1 サブタイプアンタゴニストによって拮抗された。CINs 内の G タンパクカスケードを遮断しても IPSCs 抑制は影響を受けなかった。その一方で、ムスカリン性アセチルコリン受容体アゴニストによって paired-pulse ratio が有意に増加した。以上のデータから、MSNs からの GABA 性シナプス終末に存在する M1 受容体活性化によって、CINs への GABA 逆流が抑制されることが示唆される。

21. 電気生理学的手法を用いたビオブレリン部分欠乏マウスにおける運動障害発症機構の解析

一瀬 宏（東京工業生命理工学院）
知見聡美、南部 篤（生体システム研究部門）

パーキンソン病の運動障害（パーキンソニズム）は、黒質線条体系ドーパミニーニューロンの変性による線条体でのドーパミン欠乏により引き起こされることが知られている。一方、ドーパミン欠乏が細胞変性ではなく、ドーパミン生合成の障害により生じる場合には、パーキンソニズムではなく、ジストニアを発症する場合もある。

ドーパミンの生合成は、L-チロシンの水酸化により L-dopa を合成するチロシン水酸化酵素（TH）が律速酵素として知られている。TH の反応には、補酵素としてテトラヒドロビオブレリン（BH4）が必要とする。

BH4 生合成酵素の変異、チロシン水酸化酵素欠損症では、パーキンソニズムがかりでなくジストニアを発症する場合があることが報告されている。しかし、ジストニアとパーキンソニズムの違いを生む詳細なメカニズムについては明らかとなっていない。そこで、本研究ではビオブレリンの部分欠乏を有するマウスモデルを用いて、モノアミン欠乏による表現系の違いを検討することを目的としている。

ビオブレリン還元酵素（SPR）は、BH4 生合成の第 3 段階に働く酵素である。Spr を欠損するマウス（Spr-KO マウス）は、脳内 BH4 量が野生型の約 4 分の 1 に低下しており部分的 BH4 欠乏状態にある。成獣の Spr-KO マウスの脳内ドーパミン・ノルアドレナリン・セロトニン量は、野生型の 10%以下に低下しており運動量が少なく加齢とともに前肢の震えが現れる。Spr-KO マウスでは、大脳皮質運動野の電気刺激により淡蒼球内節で現れる三相性電位変化（興奮→抑制→興奮のうち、抑制が野生型に比べて Spr-KO マウスで弱くなっていることを見出した。また、淡蒼球内節や外節におけるニューロンの自発放電パターンについても検討し、野生型と比べて異常な神経活動が Spr-KO マウスで増加していることを発見した。

Spr-KO マウスの脳内では、3 つのモノアミンが全て欠乏しているため、上記の現象がどのモノアミン欠乏による症状であるかの解釈を複雑にしている。そのため、ニューロン特異的な遺伝子欠損を行うために、条件付き Spr-KO マウスの作製を進めている。条件付き Spr-KO マウスを用いてドーパミニーニューロンの遺伝子欠損を制御した際に、上述の三相性の電位変化がどのように変化するか解析していく。
22. ドーパミン受容体遺伝子操作マウスを用いた運動制御機構の解析

笹岡俊邦, 小田佳奈子, 齊藤奈英（新潟大学脳研究所 動物資源開発研究分野）
大久保直, 佐藤子、岡本浩嗣, 佐藤俊哉（北里大学医学部）
知見聡美, 南部 篤（生理学研究所 生体システム研究部門）

パーキンソン病（PD）は高齢者の重要疾患であり、病因解明、新規治療法の開発が急務である。PDの症状は脳の黒質-線条体のドーパミン神経の変性によるドーパミン欠乏が主な原因と考えられている。本研究では、ドーパミンの情報伝達の主要経路である、大脳基底核のD1ドーパミン受容体（D1R）を介する「直接路」及びD2ドーパミン受容体（D2R）を介する「間接路」に着目し、D1R及びD2Rの発現をそれぞれ可逆的に操作できるマウスを用い、「直接路」または「間接路」の情報伝達を遮断し、運動調節及び学習記憶の機能を解析すると共に、神経活動を電気生理学的に解析して、PDの運動症状、非運動症状の仕組みを理解する。

これまでに、生理学研究所の南部教授と共同して、D1Rノックダウン（D1R KD）マウスを用い、D1Rを欠損させると運動量が減少し、大脳基底核出力部において、正常では「興奮-抑制-興奮」の3相性の神経活動が観察されるところ「抑制」の消失を発見した。この結果はD1Rを介する情報伝達は「直接路」の信号伝達と運動の発現に不可欠であり、「ダイナミック活動説」を支持している（Chiken et al. Cereb Cortex, 2015）。

また、成熟期にDIRを欠損したDIR KDマウスの運動量は減少するが、DIRノックアウト（KO）マウスは運動量過剰を示す。そこで、DIRを欠損させる時間の差が行動表現型に影響するかを検討するため、出生後および成熟期にDIR欠損状態のマウスを作製し、これらの運動機能をDIR KOマウスと比較した。その結果、新生児期および成熟期にDIR欠損状態のマウスは、DIR KOマウスよりも重度の運動能力の障害を生じた。これらの結果は、DIRは多彩な機能を有し、DIR欠損のタイミングは、若年期から成熟期の正常な運動活動に大きく影響することを示した（図1）（Okubo et al. Int. J.Dev. Neurosci. 2018）。

脳研の崎村教授と共同し、D2Rノックダウン（D2R KD）
マウスが完成した。この D2R KD マウスを用いて「間接通路」の伝達抑制により運動症状と神経活動を解析する。さらに脳研の田井中特任教授と共同し、マウスの全脳無化技術 CUBIC による全脳レベルの神経活動の包括的観察法を用いて運動・学習記憶機能と神経活動の関係性を明らかにする。

23. 大脳基底核アストロサイトによる運動制御機構の電気生理学的解析

和中明生, 辰巳晃子（奈良県立医科大学 解剖学第二講座）
佐野裕美, 知見聡美, 南部 篤（生体システム研究部門）

マウスに自発運動を負荷すると基底核間接通路に属する淡蒼球におけるアストロサイトの形態変化を誘導することができる（Tatsumi et al. Front. Cell. Neurosci. 10:165, 2016）。神経活動がアストロサイトに影響した結果と考えられるが、近年アストロサイトから神経細胞に調節する機能が存在することが示唆されている。そこで光遺伝学的手法により Olig2-CreER マウスの淡蒼球に AAV-CMV-Flex-ChR2-EYFP を注入し、タモキシフェン誘導することで同部位のアストロサイトに ChR2 を発現させることを試みた。この系での蛋白発現量は十分では無かった。そこで GFAP-Cre マウスに AAV-CMV-Flex-ChR2 を注入し、淡蒼球のアストロサイトでの充分な発現を確認した。行動実験と併行して Olig2-Cre と GFAP-Cre マウスでの GFP 発現パターンの詳細を比較検討した。Olig2 系譜のアストロサイトと GFAP 発現アストロサイトは基本的に互いに排他的な分布を示し、このパターンは淡蒼球以外の全脳に渡って認められた（Tatsumi et al. Front. Neuroanat. 12:8, 2018）。この事実を受けて、光遺伝学よりも DREADD 法を適用した方がこの2種類のアストロサイトを用いて長期的な観察が可能と考えた。そこで Olig2-CreER マウスと GFAP-Cre マウスの片側淡蒼球に AAV-CMV-Flex-hM3Di を発現させ、CNO（人為リガンド）を腹腔投与し行動実験を行った。シリンダーテスト（ビーカーにマウスを入れた状態でのビデオ撮影を行い、回転、立ち上がり行動などを記録）ではウイルス注入側とは反対の方向への動きが減少する傾向が認められたが有意ではなく、Olig2 マウスと GFAP マウスの間に大きな違いは認められなかった。さらにこれらのマウスに 6-OHDA を片側黒質黒質密部に微量注入したモデルを作成して DREADD 法の効果を現在検討中である。同系での基底核回路神経核群、大脳皮質運動野における神経活動の電気生理学的解析を行う予定である。

24. ミクロトーム組込み型走査電子顕微鏡(SBF-SEM)を用いた脳動脈瘤形成における超微細形態変化の解明

小関宏和（東京女子医科大学 東医療センター 脳神経外科）
大野伸彦（自治医科大学 医学部 神経学講座 神経学部門）
志茂 聡（京師医科大学 健康科学部 作業療法学科）
青木友浩（国立循環器病研究センター研究所 分子薬理部 創薬基盤研究室）

脳動脈瘤は、死亡率が50%に及ぶも下出血の主因となる疾患であり、病態形成進展機構の理解に基づいて適切に治療することが社会的に重要である。近年、脳動脈瘤の病態形成機構が血流ストレス依存的疾患であり、一方ではマクロファージに制御される慢性炎症疾患であるという観念が確立しつつあるが、血流ストレスが脳動脈瘤壁に認められる弾性板の破壊や血管壁の進行性変化、および炎症細胞浸潤をもたらす機序については依然不明であり、ミクロトーム組込み型走査電子顕微鏡 (SBF-SEM) を用いてこれらの点を明らかとすることを目指す。
我々は、一般的な脳動脈瘤モデル動物として知られるモデルラットを、片側総頚動脈結紮と高血圧誘導を行い対側の脳血管分岐部の血流ストレスを増加することにより作製し、検討を行ってきた。今年度の検討では、脳動脈瘤の外膜において、線維芽細胞の小胞体が著明に発達していることを見出した。この線維芽細胞の形態学的変化にどのような力学的因子が関与し得るかを検討するため、内皮細胞にGFPを発現するトランスジェニックラットを用いて、これらの細胞が見られる脳血管分岐部の動体変化を多光子顕微鏡で観察した。すると、同部位の血管壁に伸展張力が加わっていることが示唆されたため、次にこの伸展張力が線維芽細胞を活性化させるかを、細胞伸展装置を用いてin vitroで検討を行った。その結果、ヒト大動脈線維芽細胞において、伸展刺激により種々のサイトカイン、ケモカインの発現が促進することを見出した。これらのことから、脳動脈瘤の病態機序に重要とされているマクロファージの浸潤過程において、その初期に血流ストレス増加によって外膜線維芽細胞が伸展刺激を受け、マクロファージ遊走因子であるMCP-1を発現することが病態形成において重要である可能性を見出した。

また、今年度はヒト脳動脈瘤標本をSBF-SEMで観察した。モデル動物と異なり、ヒトの動脈瘤壁では病態がかなり進行しているため、観察範囲のほとんどには内皮細胞や中膜平滑筋が脱落しており血管腔側に少量の泡沫細胞を認めた。従来の報告では、動脈瘤壁において脂質を蓄えた細胞の存在が示唆されているが、今回の検討によってそれが証明されたこととなる。今後、この泡沫細胞が脳動脈瘤病態形成機序における役割を検討していく。

25. SBF-SEMを利用した骨格筋の酸化ストレスによるミトコンドリアの構造変化の解析

渡邉敬文（信州大学学術研究院農学系）
亀谷清和（信州大学基盤研究支援センター機器分析部門）
大野伸彦（自治医科大学医学部組織学部門）

2014年頃から過度に成長した肉用鶏（ブロイラー）の胸肉（浅胸筋）に炎症が起こる事例が多く報告されている。現在までにこの異常は骨格筋の酸化ストレスから起こることが有力な仮説となっている。提案者は透過型電子顕微鏡を用いた予備実験により、異常を呈する胸肉のミトコンドリアの膨張と破壊を確認している。本研究では3次元的にミトコンドリアの構造変化を解明し、早期の診断方法の確立を望むものである。2017年度は鶏の骨格筋のミトコンドリアの3次元構造の基礎的知見を得るために、浅胸筋の多くを占める速筋と対照として大腿部の多くを占める遅筋からサンプルを採取して各タイプにおける正常なミトコンドリアの2次元および3次元構造を解析することにした。

透過型電子顕微鏡像では、遅筋はミトコンドリアが大型で密に存在し、また大型の脂質滴が観察された。一方、速筋のミトコンドリアは小型で分布も粗であった。SBF-SEMによる3次元解析像では、速筋は太く直線状のミトコンドリアが筋原線維と平行して観察された。脂質滴は筋節の構成単位となるZ線に沿って規則的にミトコンドリアに埋め込まれていた。また、異なるミトコンドリアに挟まれている脂質滴や単一のミトコンドリア内に存在している脂質滴も確認できた。速筋では、小型のミトコンドリアが多く散在し、脂質滴は認められなかった。また、隣り合うものを同士で融合しているミトコンドリアや融合せず近隣に配置するミトコンドリアも存在した。3次元イメージングの統計解析の結果から、速筋と遅筋では全体に占めるミトコンドリアの割合は遅筋で有意に高かったもの、体積におけるミトコンドリアの数個には両者に有意な差は認められなかった。

従来の透過型電子顕微鏡観察では、遅筋のミトコンドリアは速筋よりも豊富に分布していると考えられていたが、SBF-SEMを用いた3次元的な解析により、速筋はミトコンドリアの数個の増加よりも、1個当たりの大きさを変化させ、且つ、脂質滴を密に配置させることで効率的なエネルギー生産を担っていることが示唆された。本研究成果は、骨格筋の酸化ストレスによるミトコンドリアの構造変化を遅筋と速筋に分け分析する必要があることを示すものとなった。
26. 連続ブロック表面 SEM によるカエル舌の茸状乳頭上皮に分布する神経の三次元構造解析

田所 治（松本歯科大学口腔解剖学講座）
大野伸彦，Huy Bang Nguyen（自然科学研究所分子神経生理研究部門）
齋藤 成（自然科学研究所電子顕微鏡室）

哺乳類の舌にある味蕾の原型に相当すると考えられているカエル舌の味覚円盤は、表層、中層、基底層の三層からなり、形態的に6種の細胞型が知られている。6種の細胞型のうち、中層には3種の細胞（体）がみられる。これら3種の細胞（体）のうち、自由表面や基底部に向かって長短の突起を伸ばし、神経の終末部が接している細胞型（II型細胞とIII型細胞）は、様々な味刺激に応答することから、味の受容と伝達への関わりが予想され推察されている。しかしながら、形態の根拠を示す報告は少なく、詳細は不明である。我々は、味覚円盤における神経の分布を知ることを目的としてsubstance PやCGRP免疫反応性を調べたところ、これらのペプチド反応性神経は基底膜を貫いてほぼ直線に走行し、自由表面付近に達して繊維状や球状を呈して終わっている。哺乳類の味細胞のマーカー蛋白は、味覚円盤のいずれの細胞型にも反応を認めないが、ペプチド反応性神経と現象することが明らかとなった。ペプチド反応性神経と共存することが明らかとなり、ペプチド反応性細胞自体が味受容に関与する可能性が示唆された。そこで、ペプチド反応性神経とその周囲の細胞との3D構造を明らかにすることを目的として、substance Pの免疫染色を施した後に様々な条件を設定して観察を試みた。しかしながら、免疫反応部位と細胞形態の観察が極めて困難であったので、通常の4%PFAで固定しOTO染色を施した試料から得た。これまでのSBF-SEM連続断面画像において、神経を含む画像を中心に選び出し、神経とその周囲の細胞の3D構造再構築と構造の解析を行なった。今回の解析では、自由表面に至る神経終末はみられなかったが、II型細胞の細胞体が接する神経終末をとらえた。神経末端は小胞を含んでおり、接触するII型の細胞体内部には小さな管状構造がみえ、いわゆるシナプス下槽の構造に似ていた。このII型細胞から自由表面に至る細長い細胞質突起は、グリア様細胞と呼ばれるIc細胞の細胞質突起に、味覚円盤の表層で螺旋状に密に絡み合っていた。II型細胞の核上部には多量の滑面小胞体がみられた。以上の結果は、これまでに透過型電子顕微鏡によって報告されていた断片的な結果を更に支持し、味覚円盤におけるII型細胞と神経終末の關係が、味蕾のII型細胞と神経終末の関係と似ていることを示唆するとも言える。今後は自由表面に至る神経末端と、II型細胞-神経終末の3D構造を更に追究し、機能的意義を検討する予定である。

27. 成体脳内における新生ニューロンの高速移動を制御する超微細構造の解析

澤本和延，金子奈穂子，澤田雅人，松本真実（名古屋市立大学）
大野伸彦（自治医科大学）
古瀬幹夫（生理学研究所）

側脳室周囲組織である脳下室では、成体でも持続的にニューロンが産生されている。産生された幼若な新生ニューロンは移動能が高く、先導突起と呼ばれる短い突起を前方に伸ばして高速で嗅球に移動する。これらは嗅球で成熟し、嗅覚神経回路の可塑性に寄与する。また傷害後には、損傷部に移動してニューロン再生に寄与する。この移動を制御する様々な分子が報告されてきたが、実際に新生ニューロンがどのように周囲組織・細胞と接し、移動に必要な足場を形成しているのかは不明である。本研究では、走査型3D電子顕微鏡を用いて、新生ニューロンの高速移動を制御する超微細構造を明らかにすることを目的として調査を行った。
ロウの周囲組織との接触・接着形態を網羅的に解析し、成体脳内での高速移動制御に関わる微小環境との相互作用の形態的特徴を明らかにすることを目的とし、以下の解析を行った。
①新生ニューロンの一次繊毛の解析
3D-SEM・3次元再構築法を用いて、嗅球へ移動中の新生ニューロンに存在する一次繊毛とその前駆構造の細胞内での形状・位置、それらの移動相との関係、嗅球での成熟過程における変化を解析した（Matsumoto et al, in preparation）。
②移動する新生ニューロン間の接触の解析
新生ニューロンは、嗅球や傷害部へ移動の際に、細長い細胞塊を形成し、互いを足場としている。昨年度に引き続き、これらの状況下における新生ニューロン同士の接触部を3D-SEM・3次元再構築法により定量的に解析した。傷害部へ移動中の新生ニューロンの細胞間接着と生理的な移動経路における細胞間接着には、質的・量的差異があることを見いだした（Matsumoto et al, in preparation）。
③新生ニューロンの移動を制御する細胞突起の形態解析
我々は、新生ニューロンが嗅球で移動を停止する際に、微細な突起を形成することを見いだした。この突起の形成位置・周囲組織や成熟ニューロンとの空間的関係を3D-SEMを用いた3次元再構築法により解析した（Sawada et al, EMBO J, 2018）。
④新生ニューロンと活性化アストロサイトの接触の解析
脳梗塞で活性化したアストロサイトが梗塞部へ移動中の新生ニューロンを被覆している。新生ニューロンと接触面では、細胞表面に微細突起が形成されないことを見いだした（Kaneko et al, in revision）。

28. 細胞接着分子の遺伝子欠損による異常な精子完成における精細胞とセルトリ細胞の相互作用に関連する膜性構造物の三次元的構造解析
若山友彦（熊本大学大学院生命科学研究部・生体微細構築学分野）
大野伸彦（生理学研究所・分子神経生理研究部門/自治医科大学医学部・解剖学講座組織学部門）

精子形成は、精祖細胞の有糸分裂、精母細胞の減数分裂、精子細胞の形態変化（精子完成）からなる複雑な過程である。精子完成において、精子細胞は、将来の精子の頭部になる核周囲の構造と、鞭毛になる尾部の構造が形成される。精子完成では、精子細胞とセルトリ細胞の細胞膜を介する直接作用が重要であり、これに細胞接着分子が関与する。
精子完成に必須の細胞接着分子であるCell adhesion molecule-1 (CADM1)は、伸長精子細胞の尾部の細胞膜に局在する。CADM1の遺伝子欠損マウスでは、尾部の形成障害を起こす。
本研究では、野生型とCADM1遺伝子欠損マウスを用いて、精子完成における尾部の形成に焦点を絞り、ミトコンドリアの分布を3次元構造解析により明らかにした。まず、15週令のマウスより精巣を採取し、細切して固定し、SBF-SEM観察用の炭素含有のエポキシ樹脂で包埋した。標本を生理学研究所のSBF-SEMで観察して連続画像を取得した。得られた画像データは、FIJI(ImageJ)を用いてTIFF画像に変換して軸合わせを行った。step8以降の精子細胞の連続画像を切り出し、Microscopy Image Browserを使って得られた連続画像から精子細胞の核とミトコンドリアを画像セグメンテーションして抽出した。さらに、画像解析ソフトAmiraを用いて画像セグメンテーションした精子細胞の三次元再構築像を作成した。
野性型の精子細胞の平均ミトコンドリア数は、約420個であったが、CADM1遺伝子欠損マウスでは、約330個でミトコンドリア数の減少が見られた。CADM1遺伝子欠損マウスでの尾部の形成障害により、ミトコンドリアの増殖、分裂が阻害されることが示唆された。精子完成において、セルトリ細胞と精子細胞の相互作用に関与する細胞接着分子CADM1により精子細胞内のミトコンドリアの数が制御されていることが示唆された。
29. バクテリア DNA 凝集構造の位相差電子顕微鏡による観察

金子康子（埼玉大学教育学部・大学院理工学研究科）
林 真子，ゴーシュ・イリカ（埼玉大学大学院理工学研究科）
村田和義（生理学研究所）

活発に増殖する桿状シアノバクテリアで、細胞分裂に先駆けて DNA が凝集し染色体のような構造をとることが示された。本研究では、この DNA 凝集体のより詳細な構造を明らかにすることを目指している。シアノバクテリア細胞内には、光の受容や光化学反応に関わるタンパク質を有するチラコイド膜、二酸化炭素を固定する酵素ルビスコの集合体であるカルボキシソーム、細胞内で用いられるポリリン酸を蓄積するポリリン酸体が存在するが、いずれもシアノバクテリア細胞活動の維持・増殖に必須である。これらの構造がすべて、細胞分裂時に娘細胞に均等に分配される仕組みがあるはずであり、細胞分裂時に現れる特徴的な DNA 凝集構造とこれらの構造との関わりも追究する。また、桿状のシアノバクテリア Synechococcus elongatus PCC7942 は、2~6 個クロモソーム DNA を持つが、通常 2 分裂を繰り返して増殖する。個々のクロモソーム DNA が複製されるタイミングと複製に伴う構造変化も明らかにしたい。まず、電子顕微鏡下で DNA を可視化するための特異的な標識方法の検討を行っている。分裂増殖中の細胞 DNA に EdU を取り込むことで、クリック反応により蛍光標識することができる。この方法を応用して電子顕微鏡下で可視化できる標識方法を確立し、DNA 発現時と細胞分裂時における変化と染色体構造の関係を追求した。また、桿状のシアノバクテリア DNA の凝集構造の詳細と、他の主要な細胞構造との関わりを明らかにしたい。

30. 小胞体フォールディングセンサー酵素 UGGT の電子顕微鏡解析

佐藤匡史（名古屋市立大学、大学院薬学研究科）
Song Chihong, 村田和義（生理学研究所、脳機能計測・支援センター）
加藤晃一（岡崎統合バイオサイエンスセンター）

小胞体ではタンパク質に結合した N 型糖鎖の末端に付加されるわずか 1 残基のグルコース残基の有無を目印として、タンパク質のフォールディング状態が観察されている。この品質管理システムにおいて、門番役として機能するのが UDP-glucose:glycoprotein glucosyltransferase (UGGT) である。この酵素は、立体構造が未完成なタンパク質に対してのみグルコース残基を転移することで、フォールディングセンサーとしての機能を果たしている。

本研究では、多角的な構造生物学的アプローチを用いることで、柔軟なモジュール構造をもつ UGGT の可視化に成功した。本酵素は約 130 kDa のフォールディングセンサー領域と約 30 kDa の触媒ドメインから構成されているが、X 線結晶構造解析によってそれぞれの立体構造を決定することに成功した。その結果、フォールディングセンサー領域はチオレドキシン様ドメイン 4 つと β リッチドメイン 1 つがタンデムに繋がったマルチドメイン構造を有していることが見出された。興味深いことに、フォールディングセンサー領域の中心には大きな空洞が存在し、まさに新生の新生タンパク質を包み込む様な構造から生じていた。また、その内部には幅広い疎水性パッチが存在していたことから、この領域を介した基質糖タンパク質のセンシングするメカニズムが推測された。
次に UGGT の全体構造を明らかにすることを目的として、X 線小角散乱およびクリオ電子顕微鏡解析を行った。その結果、溶液中においてマルチドメインからなる本酵素は極めて柔軟な構造をとっていることが明らかになった。特に、2 番目のチオレドキシン様ドメインと触媒ドメインの高い柔軟性が観測された。最後に、本酵素の構造ダイナミクスを明らかにすることを目的として、高速 AFM 解析を行った。その結果、本酵素はフォールディングセンサー領域と小さな触媒ドメインが柔軟なリンカーによって結ばれた構造をとっていることを見出した。以上の結果から、フォールディングセンサーとして働く UGGT は幅広い疎水性バッチを有する可動性のセンサー領域を介して、疎水性残基を露出した変性糖タンパク質基質を認識していることが推測された。

【参考文献】

31. SBF-SEM 3次元立体再構築法を用いた細胞接着関連分子による神経シナプス形成機構の形態構造レベルでの解析

溝口 明, 王 淑杰, 廣内愛加（三重大学大学院医学系研究所神経再生医学・細胞情報学講座）

概要
シナプス超微細構造の 3 次元立体構造は、シナプスの伝達能、可塑性、電気的特性に関与する神経科学の基本データとして、極めて価値が高いと考えられる。最近、SBF-SEM 新技術が発達し、その解析が可能になった。申請者らは、海馬苔状細線維終末シナプスを上記新技術で解析し、WT に比し、細胞接着関連分子 Afadin 欠損海馬では、スパイクの枝分かれ数、ドッキング状態シナプス小胞数の低下、シナプス形態の複雑さの減少を証明した。

本研究では、上記新技術で、シナプス 3次元超微細構造の複雑さを忠実に再現可能な 3D プリンター模型を駆使し、その 3次元的な特徴を体感した上で各特徴を定量化し、正常範囲と加齢や認知症に伴う変化を解明することを目的とする。

背景
SBF-SEM 新技術は、真空内でブロック表面をダイヤモンドナイフやイオンビームで自動連続薄切し、新しい表面の走査電顕反射電子像を自動撮影することで 1000 枚以上の連続切片画像を獲得する。この SBF-SEM は、欧米では進んでおり、特にアメリカではオバマ・コネクト計画として脳全体の神経線維の連絡の網羅的解明を国家戦略として展開されている。

申請者らは SBF-SEM 法による海馬苔状細線維終末シナプスの立体構造解析と、デジタル画像から 3D プリンター模型を作製し、これを構造解析の補足資料として併用して多くの形態的特長を発見した（図1）。

図1

図2
内容
申請者らの研究では、マウス海馬苔状線維終末シナプス構造の3次元再構築をSBF-SEMで解析した結果、Nectin・Afadin系細胞接着装置において、Afadin欠損シナプスではWTに比べて、①プレシナプスのポストシナプス表面カバー率の低下、②PAJの数の低下、③スパイクの枝分かれ数の低下、④ドッキングしているシナプス小胞数の低下を見出し、この発見は、細胞接着分子Nectin・Afadin細胞接着装置、PAJが複雑なシナプスの形態形成に必須であることを世界に先駆けて証明したものである（Mizoguchi, A. et al. J.Comp.Neurol. 2017. 図2）。

SBF-SEM法と3Dプリンター模型作製を駆使し、海馬、網膜シナプス微細3次元形態の加齢や認知症に関連した変化を定量的に解明することを目的とする。また、免疫電顕サンプルについても、分子の数が定量できるSBF-SEM改良法の開発をも目的とする。

32. イネ萎縮ウイルスの構造構築機構の解明

宮崎直幸、東浦彰史、堤 研太、中川敦史（大阪大学蛋白質研究所）
村田和義（生理学研究所）

ウイルスが正確に形成される過程は、ウイルスの感染・増殖においては非常に重要である。特に、レオウイルス科のウイルスは、正二十面体対称をもつ直径60〜80nmの球状粒子で、複雑な多層のキャプシドを持っているのが特徴である。したがって、その複雑なキャプシドがどのように正確に構築されるのかということは、非常に興味深い問題である。また、そのウイルス粒子の形成過程を阻害することで、抗ウイルス剤の創製にも繋がると期待される。我々は、これまでにX線結晶構造解析法を用いて、植物レオウイルスであるイネ萎縮ウイルス（Rice dwarf virus: RDV）の二重殻キャプシドの原子構造を決定し、キャプシド内殻がP3タンパク質120分子から構成され、外殻が260のP8タンパク質3量体から構成されていることを明らかにした。さらに、そのキャプシドの原子モデルに基づいて、タンパク質間の相互作用を見積もりことにより、外殻タンパク質が正二十面体対称の3軸のところで内殻と結合することで内殻形成が開始され、そこを起点にして、外殻タンパク質の3量体同士が内殻の外側に沿って平面的に会合していくことによって、完全に内殻を覆った外殻が形成されると推定した。しかし、その外殻タンパク質の会合モデルは、実験的に検証されていなかったので、我々は外殻タンパク質の3量体同士の相互作用を阻害した外殻タンパク質変異体を用いて、その構造構築機構の検証を実施した。

3量体同士の相互作用を阻害するために、P8タンパク質のC末端にGFPを融合したP8変異体をデザインして、バキュロウイルス発現系を用いて作製した。そして、その変異体をRDVの内殻粒子に結合させて、形成された粒子を構造解析に用いるため、バキュロウイルス発現系を用いて調製した。その結果、外殻タンパク質変異体は、内殻の3軸のところにだけ結合しており、その他の場所には全く結合していなかった。この結果は、我々が提唱していた外殻構造構築モデルを完全に一致し、我々の提唱モデルが正しかったことを実験的に証明することができた。さらに、このデータに基づいて蛋白質研究所においても研究を発展させ、ボルタ位相板を用いた位相差クライト電子顕微鏡法により、6.3オングストローム分解能での構造解析にも成功した。
33. 連続ブロック表面 SEM による感覚ニューロン系の 3 次元超微形態解析

高浪景子，佐藤慧太，坂本浩隆（岡山大学 大学院自然科学研究科・理学部附属臨海実験所）
村田和義（生理学研究所・脳機能計測センター・形態情報解析室）

痛みや痒みなどの知覚の伝達とその修飾にペプチドホルモンが関与することが知られている。しかし、知覚を伝達するシナプス構造の詳細な微細構造解析は進んでいない。それは、各知覚特異的な分子基盤の解明や三次元的なシナプス構造解析が難しかった背景による。我々は、痛み感覚を特異的に伝達するペプチドホルモンであるガストリン放出ペプチド（GRP）(Sun and Chen, 2007, Nature)に着目し、痛み伝達機構の形態学解析を行ってきた。痛みを伝達する GRP 陽性ニューロンは脊髄後角表層に線維を投射する。透過型免疫電子顕微鏡解析では、このGRPを含有する神経終末では明調性小胞や有芯性小胞が多く認められた(Takanami et al., Journal of Comparative Neurology, 2014)。また、連続ブロック走査型三次元電子顕微鏡を用いた解析では、GRP 免疫陽性神経終末が連続したバリコシティ構造をしていることが示唆された。しかし、このバリコシティ構造の周囲には、シナプス構造があまりみられなかった。以上から、同じ脊髄においても、求心性の知覚神経系と遠心性の神経系において、ペプチドを含有するシナプス構造の相違がみとめられた。

34. Xanthomonas citri に感染する巨大バクテリオファージ XacN1 のクライオ電子顕微鏡単粒子構造解析

川崎 健，山田 隆（広島大学大学院先端物質科学研究科）
ソン チホン，村田和義（生理学研究所）

病原菌を自然界の天敵ファージを用いて駆除する技術（ファージセラピー、ファージバイオコンストロール）の研究・技術開発が急激に進展している。申請者は、柑橘類における病害「カンキツかいよう病」の病原菌 Xanthomonas citri を対象とした、ファージバイオコンストロール技術開発を目指している。XacN1 は、カンキツかいよう病の病原菌 Xanthomonas citri から単離された巨大な Myovirus であり、384,670 bp のゲノムを有し最大ファージ系を構成する。しかし、その詳細な構造は不明である。

本研究では、生理学研究所が行っているクライオ電子顕微鏡単粒子構造解析法により、XacN1 の高分解能構造解析を行い、その性状を明らかにする。広島大学において培養・精製したウイルス粒子を生理学研究所のクライオ電子顕微鏡室に持ち込み、試料凍結装置（FEI Vitrovor MarkIV）を用いて、Holey Carbon Grid 上で液体エタンにより急速に凍結した。凍結試料は、クライオホルダーを用いて行うクライオ電子顕微鏡（JEM2200GS, JEOL）に
セットし、必要な枚数の高分解能電子顕微鏡像を撮影した。得られた電子顕微鏡像是、Rilion softwareにより、単粒子構造解析して、その三次元再構成像を得た。

XacN1は主として直径約160nmの頭部と全長約150nmの尾部から構成される（図）。これらを一度に解析するには大容量の画像処理が必要になることから、頭部と尾部に分けて構造解析を始めた。頭部は正二十面体対称性を過程して17Å分解能のマップを得た。そして、5回対称軸頂点に突起状の構造を持つことがわかった。尾部の部分は、らせん対称性過程して9Å分解能のマップを得ることができた。今後さらに高分解能化を進めるとともに尾部の先端にあるスパイクの構造、および頭部と尾部の結合部分の構造についても解析し、巨大ファージのゲノム格納および放出機構を解明する予定である。

35. SBF-SEMを用いた小型甲殻類の比較形態学

A. Richard Palmer, 梶 智就（University of Alberta）

本研究の目的は、SBF-SEMを用いることにより小型甲殻類の超微形態を解析し、比較形態学的手法により深海性カイアシ類Heterorhabdidaeにおける毒腺配置の進化プロセスを解明、及びタナイス類カリアプセウデス科に見られる特異な出糸腺構造を解明することにあった。

本年度の滞在は4月1日から5月31日であり、前年度の滞在2月22日から3月31日に引き続いてものである。Heterorhabdidaeは外洋性カイアシ類であり主に黒潮流域に生息する。この科のうち祖先系統は粒子食者であり派生系统は毒針を用いて狩りを行う肉食性と、その摂餌戦略に見事な進化的勾配が見られることが知られ、漸進進化による進化新機軸の獲得モデルコースとして考えられている。本年度においては、前年度SBF-SEMを用いてデータを取ることが叶わなかったDisseta属について2光子顕微鏡を用いてその三次元構造を見たかし、また前年度に引き続き毒腺配置をImarisを用いて画像解析を行い、詳細な三次元モデルを作成し、形態要素同士の相対性を検証した。その結果、Heterorhabdidaeにおいて毒腺及び筋肉の相対性は保たれているにもかかわらず、Heterorhabdus属のみにおいて毒腺の特殊化に関連した特異な新規筋肉が発達していること、また他の属に見られない毒精出に特化した筋肉配置が見られることが明らかになり、Heterorhabdus属における毒腺の機能的特殊性が示唆された。

続いてタナイス類カリアプセウデス科の第一胸肢における特化した出糸腺構造をSBF-SEMにより詳細にスキャンし、これまでに知られていなかった腺細胞の存在、そしてそこから連なる分泌液輸送ダクト群の存在を明らかにした。これまでは感覚剛毛であると考えられていた付属肢尖端の剛毛群は、今回発見された腺細胞から伸びるダクトの延長、つまり出糸剛毛であることが明らかになった。また、第二、第三、第四胸肢においてもスキャンを実施し、それぞれの付属肢形態の一見した違いにもかかわらず基本的な出糸腺構造はどの足においても共有されていることが明らかになった。

これらの結果の論文化を現在進めており、カイアシ類の結果については投稿原稿が完成間近となっている。
36. 従来型解析にバイオインフォマティクスを取り入れた新規長鎖遺伝子の機能解明

増田知之（筑波大学 医学医療系）
小林憲太（自然科学研究機構 生理学研究所）

神経軸索ガイダンス（神経回路形成）において中心的な役割を果たす分子は、神経軸索を誘引する分子と反発する分子であり、これまでの研究から、実際にさまざまな分子が軸索を誘引・反発することが明らかとなってきた。しかしながら、多くの神経回路においては、未だその構築を担う分子メカニズムは不明であり、その解明が待たれている。私たちはマイクロアレイとバイオインフォマティクスを併用した解析を推し進め、2つの新規長鎖遺伝子がコードする分泌型蛋白質（mF1とmF2）が、高等脊椎動物の神経発生に何か重要な役割を果たしていることを見出した。

今年度は、昨年度に着手したアデノ随伴ウイルスベクター（AVV）を用いた解析をさらに推し進め、その発現分布の状況を詳細に検討した。具体的には、mF1およびmF2遺伝子の全長cDNAを組み込んだ遺伝子ベクター（GFPタグ付き）をマウス・ニワトリ胚の神経系および間葉組織に導入し、その発現分布を蛍光実体顕微鏡および共焦点顕微鏡にて継時に観察・評価した。導入する部位・時期およびその量によって、発現分布は大きく異なり、現在、導入条件と発現分布の関係をまとめたデータベースを構築中である。このデータベースを完成させたのちには、mF1とmF2を導入した部位における神経系での変化の有無を解析する予定である。

37. ウィルス遺伝子工学による腹側海馬-腹側線条体回路の生理的役割の解明

田中謙二, 木村 生, 鈴木 暢, 吉田慶多朗, 西村宇貴（慶應義塾大学医学部 精神・神経科学教室）

海馬の機能は背側部と腹側部で異なる。背側海馬は空間記憶の形成に関与し、一方、腹側海馬は意欲・恐怖・不安といった情動機能に関与することが知られている。我々はこれまでに腹側海馬が腹側線条体へ密な投射をしていることを見出したが、腹側海馬-腹側線条体回路の生理的な役割はまだ不明である。

本共同研究では、遺伝子変異マウスとアデノ随伴ウィルス（AAV）を用いて腹側海馬から腹側線条体へ投射する経路の意欲行動における役割を明らかにすることを目的とした。AAVを用いて当該経路をラベルし、その抽出された経路を光操作することによって意欲行動がどのように変化するか調べた。以下の①〜③の実験をおこなった。

① Rbp4-Cre マウスの腹側海馬に AAVmChR2/EYFP を注入し、免疫染色法を用いて腹側海馬からの投射領域を同定した。
② Rbp4-Cre マウスの腹側海馬に AAVmChR2/EYFP を注入し、行動実験中に腹側線条体を光照射して、意欲行動の変化を観察した。
③ Rbp4-Cre マウスの腹側海馬に AAVmChR2/EYFP を注入し、行動実験中に腹側線条体を光照射して、意欲行動の変化を観察した。

意欲行動の評価には、エサ報酬を動機付としたレバー押し行動を用いた。レバーを押す間に腹側海馬の活動を下げると意欲行動が増加し、活動を上げると意欲行動が低下した。

ウィルス遺伝子工学によって経路特異的な光操作が可能になった。光操作実験から、腹側海馬-腹側線条体神経路における意欲行動の役割を明らかにすることが出来た。
38. アデノ随伴ウィルス（AAV）を用いた神経系の発生および恒常性維持に関わる分子機構の解析

備前典久, 矢野真人, 吉岡望, 落合(森)由紀子, 竹林浩秀 (新潟大学)
小林憲太（ウィルスベクター開発室）

我々は神経系の発生および恒常性維持に関わる分子機構を明らかにするために、アデノ随伴ウィルス（AAV）を用いた外来遺伝子発現法を用いて解析を行っている。今年度は以下の2つの実験を行った。

1つ目の実験として、我々の先行研究によりオリゴデンドロサイトの分化を促進することが示唆されている因子（OIF）のAAVによる強制発現実験を行った。OIFとGFPを共発現するAAV（AAV5-OIF-IRES-GFP）とコントロールAAV（AAV5-IRES-GFP）を作成し、それぞれのAAVを成体マウス脳梁内に注入したところ、CC-1陽性成熟オリゴデンドロサイトの数が顕著に増加した。興味深いことに、脱髄モデルとして知られるShivererマウスにおいても、同様の結果が得られた。以上の結果は、OIFが野生型マウスだけでなく、脱髄モデルマウス脳内においてもオリゴデンドロサイト分化を誘導できることを示唆している。今後は他の脱髄モデルマウスを用いて、OIFによるオリゴデンドロサイト分化誘導を検証する。また、OIFによるオリゴデンドロサイト分化促進作用の分子機構についても解析する予定である。

2つ目の実験として、Cre組換え酵素発現するウィルス（AAV-Cre）と緑色蛍光タンパク（GFP）を発現するウイルス（AAV-GFP）を作成して、成体のマウスの中枢神経系にこれらのAAVウィルスを注入する事により、Dystonin（Dst）遺伝子の部位特異的ノックアウトマウス（Dst cKOマウス）の作製を行った。その結果、注入部位周囲においてDst遺伝子発現の顕著な減少を確認した。今後は、ウィルスを注入する場所、時期を検討していき、Dst全身ノックアウトマウスで見られる運動異常症状の責任領域および時期について明らかにしていく。

39. ウィルスベクターを用いた集中的リハビリテーションの作用機序の検討

飛田秀樹, 石田章真（名古屋市立大学大学院医学研究科脳神経生理学分野）
小林憲太（生理学研究所ウィルスベクター開発室）

脳卒中などの脳損傷後には神経系においてある程度の自発的再編成が生じる。集中的リハビリテーション（以下、集中リハ）はこれら中枢神経系の再編成を促進し、それにより運動機能回復を促進すると考えられている。しかしながら、集中リハによりどのような神経系の再編成が生じるかについては未だ不明な点が多い。

我々はこれまでに、内包出血モデルラットを用いた一連の検討を行い、①麻痺肢の集中リハにより出血同側の皮質赤核路が増加し、同経路を選択的に機能遮断すると集中リハによる改善した運動機能が再度低下すること、②集中リハ開始時より皮質赤核路を遮断した場合、運動機能が問題なく回復し、皮質赤核路の代わりに皮質網様体路の増加が認められたこと、などの結果を確認してきた。本年度はこれを受け、皮質赤核路および皮質網様体路の集中リハにおける役割および相互作用を明らかにするため、両経路の選択的遮断を行い、運動機能回復に対する影響を確認した。

Wistar系雄性ラットに対し、出血同側の赤核および網様体にレンチウィルスベクター（Fug-E-TRE-EGFP.eTeNT／Fug-E-MSCV-Cre）を、運動脳野にアデノ随伴ウィルスベクター（AAVdj-CaMKII-rTAV16／AAVdj-EF1a-DIO-hM4D(Gi)-mcherry）を注入した。その後、内包出血を生じさせ、出血後1-8日目に麻痺肢の集中使用を行わせた。この実験系において、(1) 13-20日にclozapine-n-oxide（CNO）を投与し皮質網様体路を遮断する、(2) 1-28日にdoxycyclineを投与し皮質赤核路を遮断した場合、運動機能は問題なく回復し、皮質赤核路の代わりに皮質網様体路の増加が認められたこと、などの結果を確認してきた。
40. 逆行性ウィルスベクターを用いた体液恒常性維持神経回路の解析

木田昌晴，桧山武史（基礎生物学研究所）
小林憲太（生理学研究所）

動物が水と食塩水を自由に選択できる状態にして，それぞれの摂取量を解析すると，脱水状態では，飲水量が飛躍的に増加するのに比べ，塩水の摂取量は伸びない。逆に塩欠乏状態では，塩水の摂取量が増加するのに比べ，飲水量はあまり増えない。本研究では，このように体液状態に応じて口渇感や塩欲求が選択的に制御される仕組みについて解析してきた。逆行性ウィルスベクターを用いて神経経路選択的に光感受性タンパク質を発現し，その活動を光操作した時に塩分摂取や飲水量に生じる影響を調べる実験から，脳弓下器官（SFO）に口渇感を制御するニューロンと塩欲求を制御するニューロンがあることを見出し，それぞれ水ニューロン及び塩ニューロンと命名した。

水ニューロン及び塩ニューロンはいずれもアンジオテンシンⅡ（AngⅡ）受容体AT1aを発現していたが，水ニューロンが終板脈管器官（OVLT）に投射しているのにに対し，塩ニューロンは分界帯中枢側部（vBNST）に投射していた。水ニューロンにシナプス結合を形成している抑制性ニューロンは生体内ペプチドの一種であるコレシストキニン（CCK）によって活性化し，水ニューロンの活動を抑えていた。一方，塩ニューロンにシナプス結合を形成している抑制性ニューロンは体液Na⁺レベル依存的にグルリア細胞からのシグナルを受けて活性化し，塩ニューロンの活動を抑えていた。本年度，無飲症性高ナトリウム血症（Adipsic hypernatremia）の発症機序に，SFOに結合する自己抗体制の産生によるSFOの炎症が関与することを報告したが，水ニューロンの機能不全が口渇感の喪失につながったものと考えている。

また，これまでに，塩欠乏時にはSFO内部のCCKレベルが上昇していることを見出したが，そのCCKが中枢由来であることが示唆された。本年度は，これに加えて血圧制御神経回路についても，逆行性ウィルスベクターを用いた神経経路選択的な光制御を試み，血圧を人為的に制御することに成功した。

41. ウィルスベクターを用いた経路選択的遺伝子操作による霊長類神経回路の機能解析

伊佐正，小川正晃，尾上浩隆，越水義登，伊佐かおる（京都大学大学院医学研究科）
小林憲太（ウィルスベクター開発室）

脳や脊髄に損傷を受けた後の機能回復過程では，大規模な神経回路の機能シフトが起きるが，その機構の解明には，神経回路機能を操作する研究手法が重要な役割を持つ。我々は，そのために，ウィルスベクターによる経路選択的遺伝子操作を用いて霊長類神経回路の機能解析を行った。
路選択的な機能操作法を用いて、マカクザルを用いた頸髄部分損傷後の手指の機能回復機構や一次視覚野損傷後の眼球運動の視覚運動変換機構の回復過程を研究してきた。本共同利用研究では、このようなウイルスベクターを用いた霊長類での回路操作技術をさらに改良するため、ウイルスベクター開発室と共同して様々な経路選択的ベクターツールを開発し、それをげっ歯類やマカクザルおよびマーモセットに遺伝子導入して効果を検証する研究を推進することを目的とした。

昨年度から開始した腹側被蓋野(VTA)や前脳基底部(BF)から皮質への投射経路を光遺伝学的技術によって操作することにより、この経路の機能回復における役割を明らかにする実験では、1.ラットを用いて、VTAに順行性AAVベクター、皮質運動野に逆行性ウイルスベクターを注入して、Cre-loxPシステムにより二重感染細胞特異的にチャンネルロドプシン2やクリムゾンRを発現させる実験系において、組織学的検索により最適と思われる組合せを決定し学会での発表準備を進めた。さらにこれらの投射経路の細胞特性の探索も開始した。2．ラットの結果を受け、ニホンザルVTAにウイルス注入を行った。順性性AAV-CAG-GFPの注入実験から組織化学的解析を進め、ニホンザルの皮質の広い範囲への投射とさらに特徴的な投射経路を発見した。この新しいデータに基づき、VTAにチャンネルロドプシン搭載AAVウィルスベクターを注入したニホンザルの前頭前野を光刺激することにより、ドーパミンが放出されることをマイクロダイアリシスにより検出することができた。今後この系でさらに詳細な解析を進める予定である。3．逆行性ウイルスベクターをマーモセット上丘に注入し、マーモセットの皮質における眼球運動関連領域の探索を進め、学会発表を行った。現在羅文化に向かい、さらにデータ取得を進めるとともに、このデータを元にマーモセットにおける電気生理実験や回路操作実験を進めている。

42. 皮質・基底核・視床回路を解析する研究

藤山文乃（同志社大学大学院脳科学研究科）

大脳皮質 - 大脳基底核 - 視床ループは行為選択や随意運動実行に関与している。げっ歯類の線条体背外側部はこのうち運動機能に関わり深い部位とされ、大脳皮質の一次運動野・二次運動野や、運動視床核から興奮性シナプス入力を受ける。

本研究ではこの目的のためにバルブアルブミンのプロモーター配下にmyrGFP-LDLRct遺伝子を導入したトラスジェニックマウス(PV-FGLマウス)を用い、運動皮質及び運動視床核から投射する軸索は順性性ウィルストレーサーアAAVdj-CAG-hChR2-H134R-tdTomatoを用いて標識した。その結果、線条体の背外側部においてはPVニューロンは視床からは樹状突起の近位に、大脳皮質からは樹状突起の全体に投射をするという傾向をもつことが示され、線条体PVニューロンへの興奮性入力は視床と大脳皮質で形態学的に異なることが明らかとなった。このことから、視床入力はPVニューロンに対してdriverとして働く可能性があることと、大脳皮質はPVニューロン樹状突起の局所的な興奮/抑制のバランスを調整するmodulatorの役割を有する可能性が示唆された。

43. 外側傍小脳脚核－扁桃体中心核外側部投射路の情動における役割

重本隆一, 田畑栄一, Huseyin Cihan Onal
(Institute of Science and Technology Austria)

我々は、外側傍小脳脚核－扁桃体中心核外側部投射路は、疼痛によるnegative emotionの誘導に関与している可能性が示唆されているが、その明確な証明はない。本研究の目的は、ウィルスベクターを使ったpharmacogeneticsによって、この投射路の情動における役割を行動実験と組み合わせて明らかにすることにある。我々は、痛覚による情動記憶に関連すると言われている外側傍小脳脚核から扁桃体中心核外側部への投射がmedium spiny様の神経細胞のスパインではなく主に樹状突起にシナプスを形成することを見出し(Dong et al., 2010, 腰椎第5神経の障害後の神経因性疼痛によって引き起こされるこのシナプスの増強が、シナプス面積の増大やAMPA型グルタミン酸受容体の増加を伴う事を見出した(Takahashi et al., submitted)。また、同様の障害が痛覚消失後も持続する不安行動を誘発することも見出した(Dong et al., unpublished)。本研究では、ウィルスベクターによってGi-coupled hM4D DREADDを外側傍小脳脚核で発現させ、扁桃体中心核外側部にclozapine-N-oxideを注入することによってこの投射路を抑制し、神経因性疼痛によって起こる不安情動が抑えられるかどうかをOpen field, Light-dark transition, Elevated plus maze等によって検証している。これまでの結果、ウィルスベクターの外側傍小脳脚核への注入は高い確率で成功し、扁桃体中心核外側部に多くの神経終末にGi-coupled hM4D DREADDが発現することが確認された。また、扁桃体中心核外側部でclozapine-N-oxideを注入するためのカニューレも適当と思われる位置に設置されていることが確認された。ただ、これらの手術は侵襲性が高くそれだけで、動物に不安を引き起こすことが懸念される。実際に、単に蛍光蛋白質を発現させた動物においても不安を誘導することが多く、特にElevated plus mazeでは、ほとんど時間をclosed armで過ごす動物が多くみられた。そこで、手術手技をより改善するとともに、動物のストレスを耐性の高いものに変更し、Light-dark transitionで、蛍光蛋白質を発現させた動物において良好な結果を得ることができるようになった。現在、Gi-coupled hM4D DREADDを発現させた動物で本実験を行っており、近い将来に結果が得られることが期待される。

44. 小脳をモデルとした抑制性ニューロンの数の制御メカニズム

金子涼輔（群馬大学大学院医学系研究科）
平林真澄（生理学研究所）

我々の脳神経系において「抑制性ニューロンの数」は適切に制御されている。例えば、抑制性ニューロン数の異常は精神疾患の一因となる。さらに、進化の過程で霊長類は抑制性ニューロン数が増加した。これらは高次脳機能発現における抑制性ニューロンの「数」制御の重要性を示唆する。しかし、その「数」制御メカニズムには未解明な部分が多い。

本研究では申請者らの知見「プロトカドヘリンγ(Pcdhγ)欠損マウスにおける小脳抑制性インターニューロン数の半減」（未発表）のメカニズムを解明し、抑制性ニューロン数の人為的制御方法を開発する。これにより、精神疾患の新たな治療法を開発すると共に霊長類脳の進化機構の一端を解明する。

今年度は以下2つのサブテーマを進めた。（1）小脳抑制性ニューロン特異的遺伝子発現操作実験系の開発、（2）小脳抑制性ニューロン数の制御メカニズム解明。

サブテーマ1では、小脳抑制性ニューロンに特異的に発現する遺伝子Laminin B1に着目した。本遺伝子を含む細胞人工染色体(BAC)を購入・改変し、Cre組み換え酵素およびテトラサイクリン応答性遺伝子発現制御因子tTAを導入した。本改変BACを用いてトランスジェニックマウスを作製し、4系統のF0ファウンダーマウスを得
た。これらマウス系統の中の1系統ににおいて、一部の小脳抑制性ニューロンにて Cre活性を認めた。しかしながら、他のニューロン種にも Cre活性が見られた。

また、Pcdh発現レポーターマウスが新たに完成した。今後は、本レポーターマウスの組織学的解析ならびにセルソーター解析にて、Pcdh発現変化を介した、小脳抑制性インターニューロン数の半減メカニズムを解明する。

サブテーマ2では、どの細胞タイプにおけるPcdh-gが小脳抑制性インターニューロン数の制御に関与するかを調べた。そのため、小脳の各細胞タイプ特異的なCreマウスとPcdh-g floxマウスを交配した。今年度は小脳顆粒細胞特異的にPcdh-gを欠損するマウスが得られた。本マウスを灌流固定後、脳切片を作製し、組織学的に解析した。その結果、本変異型マウスの小脳抑制性インターニューロン数は野生型マウスと同程度であった。一方、本マウスにて行動学的な異常が見られた。今後は本マウスにおける精神疾患様の行動異常の有無を精査する。

45. 生理学的アプローチによるクラスター型プロトカドヘリン(Pcdh)の視覚神経回路形成の機能解明

大森研一, 上村允人（東京大学大学院医学系研究科 統合生理学）
平林真澄（生理学研究所）

マウス1次視覚野には視覚情報の様々な方位に反応する神経細胞（方位選択性細胞）が存在する。その中の細胞系譜が同一の神経細胞（姉妹細胞）の選択性方位が類似していることが私たちのグループにより明らかにされている。また、姉妹細胞間の相互シナプス結合の割合が高いことが明らかになっており、姉妹細胞間での特異的な相互シナプス結合によって方位選択性の類似性が形成されていると考えられる。我々は相互シナプス結合の分子メカニズムとしてクラスター型プロトカドヘリン（Pcdh）を注目した。

14分子のPcdhα、22分子のPcdhβ、22分子のPcdhγのうち特定のサブセットがマウス発達時期の姉妹細胞で発現することが示唆されており、姉妹細胞間のPcdhの機能によって同一の傾向に反応する特異性が生まれている可能性と考えられた。

これを証明するために、二光子カルシウムイメージングを行い、Pcdh遺伝子をすべて欠損した（PcdhKO）神経細胞の方位選択性を評価した。PcdhKOマウスは生後すぐに致死であるため、胎生期のPcdhKOマウスから樹立したPcdhKO-iPScをマウス胚盤胞に導入し、野生型（WT）脳組織にPcdhKO-iPSc由来の神経細胞が混在するキメラマウスを作製することで生後の機能イメージングを可能にした。その結果、WTとPcdhKO-iPSc由来の細胞で視覚刺激に応答する細胞のうちの方位選択性を持つ細胞の割合は32.2%±4.0と46.8%±7.4、また方位選択性度合いの指標であるgOSIは0.559±0.03と0.524±0.03でいずれも有意な差がなく、Pcdhは方位選択性の鋭さに影響していないことが明らかになった。次に両間で方位選択性の類似度を調べたところ、選択的な方位の差が10度以下で、WT姉妹細胞の割合は非姉妹細胞群と比べて1.21と約21%高いのに対して、PcdhKO-iPSc由来細胞は1.00と差なく、PcdhKO姉妹細胞間の方位選択性の類似性が消失していた。この結果から、Pcdhが姉妹細胞間での選択性方位の類似性を生み出すシナプス結合に特異的に機能していることが明らかになった。今後はこの結果をさらに確かめるために、PcdhKO姉妹細胞でプロトカドヘリン分子の人工的な発現により、方位選択性の類似性が回復するか確かめていく予定である。

200
46. ヒト型SIRPaを発現するヒト化モデルラットの作製

濡伸早苗, 山口智之（東京大学医学系研究科）
平林真澄, 後藤哲平（生理学研究所）

マウスにおいては、免疫不全に加えてヒト細胞に対するマクロファージの貪飢が寛容となる変異型SIRPaを持つ免疫不全マウス（NOD/Scid, NSG（NOD/Scid/IL2rgKO））では、移植したヒトの組織細胞のみならず造血幹細胞までが高効率で生着するヒト化マウスが知られている。ヒト化モデルラットが作成されれば、マウスよりも大型のげっ歯類のヒト組織細胞生着モデルとして汎用性が高くなると思われる。そこで本研究では、BACを用いてラットマクロファージ特異的にヒト型SIRPa（hSIRPa）を発現させ、ラットマクロファージの貪飢がヒト細胞に対して寛容となるモデルラットの作成を目指した。

CRISPR/Cas9システムを用いてラットROSA遺伝子座へBACによるhSIRPa遺伝子をノックインしてヒトの移植細胞に対するラットのマクロファージの貪飢を寛容にするためのベクターおよびgRNAを構築し、マイクロインジェクションによるhSIRPa発現Tgラットの作製を行った。PCRによるgenotypingの結果、BAC/hSIRPa（＋）のファウンダー（F0）を得ることに成功した。しかし、いずれのBAC/hSIRPa（＋）F0ラットもROSA遺伝子座にはノックインしていなかったことから、BAC/hSIRPaがランダムにゲノムに挿入されたことが示唆される。BAC/hSIRPa（＋）F0ラットの末梢血中のhSIRPaの発現をフローサイトメトリーにより確認したところ、末梢血中のマクロファージの約50％でhSIRPaを発現していた。

BAC/hSIRPa（＋）F0ラットのマクロファージでのhSIRPaの発現が、BAC/hSIRPaのゲノムにランダム挿入されたことによるgene silencingによるものか、モザイクによるものかを確認するために交配を行った。しかし、得られたBAC/hSIRPa（＋）F0ラット（♂）では、自然交配では次世代を得ることができなかったため、卵細胞質内精子注入法（Intracytoplasmic sperm injection; ICSI）により次世代作成を行った。その結果、CSIによるF1Tgラットでは、BAC/hSIRPa（＋）であり、さらに末梢血中の全てのマクロファージでヒト型SIRPaを発現するBAC/hSIRPaTgラットの作製に成功した。BAC/hSIRPa（＋）F1ラットのオスは、BAC/hSIRPa（＋）F0ラット同様に不妊であった。以上のことから、本研究において、ヒト細胞に対して寛容となることを目的とした末梢血中の全てのマクロファージでヒト型SIRPaを発現するモデルラットの作製に成功した。しかし、残念ながらオスによる系統維持が出来なかったため、現在はメスによる交配を検討している。

47. 摂食と生殖を制御するエネルギーセンサー細胞とその神経経路の同定

前多敬一郎, 松田二子, 美辺詩織（東京大学大学院農学生命科学研究科獣医学専攻）
平林真澄（生理学研究所）

哺乳類は、摂食や繁殖機能を制御しエネルギー恒常性を維持する。グルコースは、末梢ならびに中枢のグルコースセンシング機構によりモニターされ、摂食や繁殖機能を制御するシグナルとして機能している。脳には、多様なグルコースセンシング機構が存在していることが明らかとなっており、一つが後脳のグルコースセンシング機構である。後脳グルコースセンシング機構は、グルコース濃度の低下を感知し、糖新生と摂食を促進するほか、繁殖機能を抑制することが明らかになっている。しかし、その機構においてどのようにグルコース濃度の低下が感知され、どのようにそのシグナルが伝達されているのかはまだ解明されていない。

脳室を裏打ちする上衣細胞は、Ⅱ型グルコース輸送体や脳細胞型グルコキナーゼを発現させているほか、細胞外グルコース濃度の低下に応じて細胞内カルシウム濃度が上昇するという特徴を有している。そこから、我々は、この上衣細胞が後脳のグルコースセンシング機構においてグルコースセンサーの役割を果たしているのでは
ないかと考えている。本研究では、低エネルギー状態による性機能抑制メカニズムを明らかにするため、低エネルギーシグナルの伝達を担う神経経路を同定することを目的とした。そのために、センサー細胞の候補である後脳上衣細胞をターゲットとし、神経トレーサー（WGA）を発現する遺伝子変異マウス2系統の作製を行った。
1. CAG-STOP floxed-WGA-2A-GFP マウス：Creを発現する細胞でWGAとGFPを発現する。
2. Vim-Cre-ERT2 マウス：上衣細胞でタモキシフェン作動性Creを発現するマウス。
現在、両系統について、遺伝子型解析ならびに表現型解析による系統樹立をおこなっている。系統が確立したのち、両系統のマウスを交配しダブルトランスジェニックマウスを得る。そのマウスの第4脳室にタモキシフェンを投与し、後脳上衣細胞特異的にWGAを発現させ、その局在を解析することで低エネルギーシグナルの伝達を担う神経経路を同定する予定である。

下垂体は、多数のホルモンを合成する主要な内分泌組織であり、時空間的に発現する多数の転写因子や増殖因子によって、幹・前駆細胞の増殖とホルモン合成細胞への分化が進行する事で組織形成が完成する。本研究課題は、それらの幹・前駆細胞から、下垂体が形成される機構を明らかにするため、幹・前駆細胞に特徴的な因子（PROP1, PRRX1, PRRX2, S100β）を指標として、下垂体の幹・前駆細胞ニッチの形成や維持、細胞供給システムの解明を目的に研究を進めている。本研究では、幹・前駆細胞に特徴的な4種の因子のうち、先ず、PRRX1とS100βを指標とした細胞系譜の解析を行うために、組換え体ラットを用いた実験を展開してきた。

前年度までの3年間で、PRRX1とS100βのプロモーターの下流にCreERT2を連結した組換え体を用いて、タモキシフェン存在下でCreERT2依存的組換えにより蛍光タンパク質Venusを発現する、Prrx1-CreERT2/CAG-L2-VenusラットとS100β-CreERT2/CAG-L2-Venusラットで、それぞれ1系統ずつ作製して解析を進めてきた。

しかし、マウスの系の様々なタモキシフェンによるVenusの発現誘導が出来なかった。タモキシフェンを使用最低濃度で投与したり、摘出した下垂体の分散細胞をタモキシフェンで処理したが、Venusの発現誘導は確認できなかった。そこで、タモキシフェンの活性型である水酸化タモキシフェンを用いて、in vitro系でPRRX1発現細胞を使った評価系の開発を行った。先ず、尻尾の切断組織をゼラチンコートしたウェルで組織培養を行い、遊走して増殖した纖維芽細胞にPRRX1が発現している事、を確認した上で、水酸化タモキシフェンを含む培地で培養した。しかし、培養後の尻尾のPRRX1発現細胞ではVenusの蛍光は観察されなかった。また、その培養細胞から調製した全RNAを用いたRT-PCRでも転写物は確認されなかった。今回の課題が達成できなかった原因は、組換え体の問題や、組み込んだCreERT2のコピー数の問題など、幾つか考えられる。以上の実験の経緯と結果、および考察を加えて、記録を残し（明治大学農学部研究報告、67:69-75、2018）、本研究を終了した。
49. 生殖を制御する脳内メカニズム解明のための遺伝子変換モデルの作製とその解析

東村博子，上野山賀久，井上直子，大蔵 聡（名古屋大学大学院生命農学研究科）
松田二子（東京大学大学院農学生命科学研究科）
平林真澄（生理学研究所）

本研究ではラット，マウス，スンクス，ヤギといった神経内分泌学研究に重要な意義をもつ実験動物の遺伝子変換モデルを作製し，キスペプチンを中心とした生殖機能を制御する脳内メカニズムの解明を目指している。キスペプチンは性腺刺激ホルモン放出ホルモン（GnRH）分泌を制御する神経ペプチドであり，卵胞発育と排卵という生殖の二つの重要なイベントを制御する。視床下部内にある二つのキスペプチンニューロンの集団のうち，弓状核に位置する集団が卵胞発育を制御し，視索前野に位置する集団が排卵を制御するという仮説に基づき，二つのキスペプチンニューロン集団の生理的役割を明らかにする目的で，Cre/loxPシステムによるKiss1コンディショナルノックアウトラットの作製，Cre/loxPシステムによるキスペプチンニューロン特異的なDesigner Receptors Exclusively Activated by Designer Drugs（DREADD）発現ヤギの作製を進めた。

昨年度作製したラットKiss1遺伝子座をloxPで挟んだ配列を有する8匹のキメララットのうち5匹において組換えKiss1遺伝子の生殖系列移行を確認した。続いて，兄妹交配により，この組換えKiss1遺伝子を両アレルにもつKiss1-floxedラットを作出し，それらの繁殖機能に異常のないことを確認した。また，Kiss1-floxedラットと全身性にCreリコンビナーゼを発現するCAG-Creラットとを交配して得た産仔において，Kiss1遺伝子がノックアウトされ，性成熟不全を呈することを確認した。現在，同ラットを用いて，脳領域特異的Kiss1ノックアウトラットの作製を進めている。

また，Transcription Activator-Like Effecter Nucleases（TALEN）を用いて，培養ニホンイノシトラッキ細胞において，KISS1遺伝子座へのCreリコンビナーゼ遺伝子の相同組換えを行い，スクリーニングにより相同組み換えに成功した3個のクローンを得た。今後，これらの細胞核の移植により，キスペプチンニューロン特異的にCreリコンビナーゼを発現する遺伝子変換ラットの作製を目指す。

50. ヒストンH2BユビキチンリガーゼBre1aの神経幹細胞における機能の解析

等 誠司（滋賀医科大学医学部）
平林真澄（生理学研究所）

神経幹細胞は，発生過程に沿って，神経幹細胞自身の増殖期→神経細胞産生期→グリア細胞産生期と，性質を大きく変化させる。この過程には，エピゲノム修飾が深く関与すると考えられるが，その分子機構は不明な点が多い。我々は最近，神経幹細胞の未分化性の維持に関与し，しかも細胞周期制御において，ヒストンH2BユビキチンリガーゼBre1aを同定した。本研究では，Bre1aの機能解析を行うことにより，哺乳類の初期発生と神経発生におけるエピゲノム修飾の意義を明らかにすることを目的とした。

我々はこれまでに，トラップラインES細胞を用いたBre1aノックアウトマウスを作製し，解析してきたが，胎生早期致死であったため，神経発生におけるBre1aの機能を解析できなかった。また，リーコックによるBre1a発現がみられたが問題であった。そこで本年度は，①Bre1aの過剰発現/機能喪失ES細胞を新たに樹立するとともに，②Bre1aコンディショナルノックアウトマウスを作製して，Bre1aの機能解析を進めた。①については，テトラサイクリンシステム（過剰発現）およびCRISPR/Cas9システム（機能喪失）を利用してES細胞を樹立した。Bre1aノックアウトES細胞は，著者に増殖速度が低下するとともに，3胚葉への遊走が変化することが判明した。この現象
は、Bre1a ノックアウト胚盤胞でも観察された。そこでさら
に Bre1a ノックアウト ES 細胞の、未分化状態や分化条
件での遺伝子発現パターンを比較し、細胞周期関連遺伝子
や胚葉分化に関わる遺伝子の発現が、Bre1a が司るヒストン
H2B モノユビキチン化によって制御されていることを明らかにした。②については、遺伝子組換え ES 細胞の樹
立→キメラマウスの作製を行っている。

動物の取り扱いは滋賀医科大学の動物実験指針に従
い、マウス解析時においては麻酔薬の腹腔内投与などに
よる苦痛軽減に努めた。

51. 機能的な神経回路形成における神経細胞の個性化の役割

神経細胞に発現する細胞接着分子、クラスター型プロ
トカドヘリン（c-Pcdh）は、マウスでは 58 種類の遺伝子
からなり、α（14 種類）、β（22 種類）、γ（22 種類）の
3 つクラスから数種類の c-Pcdh アイソフォームが発現
していること、個々の神経細胞で発現する c-Pcdh アイソ
フォームの組み合わせが異なることが明らかとなって
いる。また、発現しているアイソフォームの種類が一致
した場合に強い細胞接着活性を示すことが培養細胞を
用いた実験で示されている。しかし、神経回路形成にお
ける c-Pcdh の役割は、未だ明らかとはいえないので、本共同
研究では、c-Pcdh の多様性を遺伝子操作により改善した
様々なマウスを作製、解析することにより、神経回路形
成における神経細胞の個性化の役割を明らかにすること
を目的とする。

本年度は、既に作製している Pcdhγ をコンディショナ
ルに欠損させるマウス（Pcdhγflox）と野生型マウスの受
精卵に対して、CRISPR/Cas9 システムを用いて Pcdhα を
欠失したマウスの作製をおこなった。その結果、4/30 匹
で目的の遺伝子領域が欠失したマウスが得られ、そのう
ち 1 系統を ΔPcdhα-Pcdhγ マウスとして樹立した。これ
までの研究により、Pcdhα を欠失するとセロトニン神経
の線維投射に異常が生じることが知られているが、今回、
CRISPR/Cas9 システムを用いて作製した ΔPcdhα-
Pcdhγflox マウスでも同様にセロトニン神経の線維投射
異常が確認できた。次に、作製した ΔPcdhα-Pcdhγflox マ
ウスと野生型マウスの受精卵に対して、CRISPR/Cas9 シ
ステムを用いて Pcdhβ を欠失させるマウスの作製をおこ
なった。22 種類からなる Pcdhβ の遺伝子領域は、およそ
250kb に及ぶ。解析の結果、13/45 で変異が認められ、そ
のうち 3 系統を ΔPcdhα-ΔPcdhβ-Pcdhγflox マウスとして
樹立することができた。

52. 染色体工学技術による疾患モデルラットの作製

ダウン症候群はヒト 21 番染色体トリソミーにより引
き起こされる先天性疾患であり、心奇形、精神発達遅滞
など多彩な表現型を示す。21 番染色体部分トリソミーの
ダウン症患者の研究から表現型とヒト 21 番染色体遺伝
子領域との関係はおおよかに分かってきたが、どのような
遺伝子（群）がダウン症候群に見られる種々の症状に
対応しているのかは不明な点が多く残されている。それ
までに我々が作製したヒト 21 番染色体を保有するマウ
スはダウン症候群の多くの表現型を呈したことから、ダ
ウン症発症メカニズムを知る上で重要であると考えた
が、マウスではヒトで見られる症状と必ずしも対応がみ
られなかった。ラットは高次脳機能の研究に有用な動物
種だが、技術的ハードルの高さからこれまでダウン症
候群モデルラットは作製されてこなかった。本研究では、
高次脳機能を保持した新規のダウン症候群モデルラットを作製し、行動異常等の表現型の異常を検索し、その原因遺伝子を同定することを目的とする。ダウン症候群モデルラットは、野生型ラット由来の胎児腔にヒト21番染色体領域を持つトリソミーラットES細胞を注入し、キメラを介して作製した。ダウン症候群モデルラット各組織のFISH解析により、脳、胸腺、心臓、肺、肝臓、脾臓、腎臓、小腸、精巣において90%以上の細胞核でヒト21番染色体が保持されていることがわかった。さらに、各組織におけるヒト21番染色体上の遺伝子発現をRT-PCR法により確認したところ、ShinoharaらによるHMGの報告どおり、ヒト21番染色体上の遺伝子をヒトと同様に組織特異的に発現していた。また、明暗試験により正常ラットと比較したときに有意差が認められ、不安様行動がダウン症ラットで観察された。

今後はこれらのラットを用いて行動異常を中心とした表現型の異常を詳細に解析し、遺伝子領域と表現型の関係を明らかにする予定である。将来的には同ラットは、治療薬開発のモデル動物として活用できるものと期待される。

53. 3次元走査型電子顕微鏡(SEM)を用いた進行性糸球体疾患の荒廃に至る動態の解析研究

城謙輔（東北大学大学院・医学系研究科・病理病態学講座・病理診断学分野）
高木孝士（昭和大学 電子顕微鏡室）
永井将哲（成田記念病院 腎・糖尿科）
齋藤成（藤田保健衛生大学 医学部 解剖学講座II）
大野伸彦（自然科学研究機構・生理学研究所分子生理研究系・分子神経生理研究部門）

これまで14症例の糸球体腎炎がSBE-SEM法により撮影され、そのうち、IgA腎症（急性活動性症例4例、慢性進行性症例2例）について、構成細胞を色づけした後、立体構成（Segmentation）により解析した。

今回の研究で得た新しい知見として、第1にIgA腎症6症例のうち3症例において、糸球体基底膜を細胞が貫通していた。その貫通した細胞は、細胞核をボウマン腔内に持つ上皮細胞（足細胞）由来と細胞核を血管内腔に持つメサンギウム細胞由来があり、症例によって異なる様式であった。しかし、糸球体基底膜を貫通した細胞を介して、それぞれ上皮細胞とメサンギウム細胞が直接接している所見は共通していた。予想に戻って、相互に接触する細胞は、上皮細胞とメサンギウム細胞に限られ、上皮細胞と内皮細胞との接触は、これまでに確認されていない。また、上皮と接触するメサンギウム細胞はメサンギウム基質から糸球体基底膜緻密層直下に伸張し、メサンギウム間内の形で上皮と接触するため、上皮が血管内腔に露出することはない（図）。脚細胞とメサンギウム細胞がメサンギウム間入時に直接接触している所見は、世界で初めての知見であり、メサンギウム細胞によるメサンギウム基質の産生が足細胞との細胞間の直接の接触により誘導されている可能性が示唆された。

第2の知見として、IgA腎症の分節性菲薄基底膜病変は臨床的にミクロ血尿を招来すると言われている。そのため、菲薄基底膜病変を追跡して、糸球体基底膜の破壊に繋がるかどうか解析した。その結果、糸球体糸球基底膜病変の部位において、明らかな基底膜の断続は確認できなかった。すなわち、上皮は菲薄基底膜の部位においても内皮と接触する機会を持たず、基底膜の断続は正常な厚さを持つ基底膜に限られ、さらにメサンギウム基質に開まれた部位において上皮とメサンギウム細胞の接触に限定された。一方、菲薄基底膜病変のうちも高度に菲薄化した部位においては、内皮細胞が腫大し、細顆粒状のオルガネラの集簇が見られた。

第3に、基底膜断続の機序を示すため、マクロファーージが糸球体毛細血管内に浸潤して、糸球体基底膜へ直接傷害する可能性を疑ったが、現在のところ、直接の基底膜傷害の現場は確認されていない。
研究目的

本研究は，轴索内におけるRap2 small GTPaseの活性状態を2光子蛍光寿命イメージング顕微鏡によって可視化することにより，シナプスパターン形成時におけるRap2の分子機能，ならびにRap2の活性状態の空間的制御機構を明らかにすることを目的とする。Rap small GTPaseはPlexinによって負に制御されていることが構造生物学的，生化学的研究から明らかにされているが，その生理的意義についてはほとんど明らかになっていない。本研究では神経発生におけるPlexin/Rap2 の役割を明らかにする。

研究計画

申請者らはこれまでに，線虫の運動神経において，PlexinがRap2の活性を局所的に抑制することでシナプス形成を制御することを示唆する結果を遺伝学的実験から得ている。本共同研究では，Rap2の軸索内における活性状態を直接的に可視化することにより，Rap2の軸索内での時間的活性状態を観察することを目的とする。また，Rap2の活性が軸索内において局所的に制御されていることを明らかにする。

方法・使用装置

Rap2およびそのFRETマーカーを単一の運動神経で発現させた形質転換線虫を使って，2光子蛍光寿命イメージング顕微鏡法によりRap2の活性を野生型及変異体において観察を行った。

結果

線虫運動神経の一つであるDA9神経において，Plexinが局在している軸索領域においてRap2の活性が有意に抑制されることを観察した。変異体においてはこのRap2活性の抑制が消失したことから，軸索内におけるRap2の局所的活性抑制はPlexinに制御されていることが示唆された。また，GAP活性を欠いたPlexinをDA9神経において発現させても変異体の表現系が回復しなかったことから，PlexinがRap2のGAPとして直接的に作用していることを強く示唆する結果を得た。本共同研究はRap2の活性が軸索内において局所的に制御されていることをはじめとして明らかにしただけでなく，線虫においてもFLIMが有効に活用できることを示したという点において意義のあるものである。
55. 一次体性感覚野における温度センシング機構の解明

飛田秀樹（名古屋市立大学大学院医学研究科脳神経生理学）
吉田匡伸（名古屋市立大学医学部）

温度感覚は外界環境に適応するために重要な感覚であり、感覚の中枢である一次体性感覚野（S1）が温度情報処理において重要な役割を行うことがヒト、霊長類、げっ歯類の研究で示唆されていた。しかし、この領域の神経細胞が単一細胞レベルで、温度情報をどのように処理するか不明であった。本課題では、2 光子顕微鏡を用いた生体イメージングにより、S1 神経細胞の温度情報処理機構を明らかにすることを目的とした。

実験では、麻酔下のマウスの S1 神経活動を 2 光子顕微鏡を用いて可視化し、マウス後足の温度刺激（32-42℃、32-20℃）により誘発されるカルシウム応答を観察し、その応答様式を解析した。イソフルラン麻酔（2%）下のマウスの脳にアデノ随伴ウイルスベクター AAV-synapsin - gcamp6f を投与し、S1 神経細胞に gcamp6f を発現させた。AAV 投与から 3 週間後にイソフルラン麻酔下で、開頭し、骨をカバーガラスに置換した後、イメージングを行った。マウスに苦痛を与えないように温度刺激を非侵襲刺激を用い、鎮静剤 chlorprothixene (1mg/kg) を腹腔内投与し、イメージングを行った。温度刺激は温度制御可能なベルチャ素子を用いて行った。

温度刺激によるカルシウム応答記録後の Image J と MatLabo による解析によって応答性のパターン分析した結果、温刺激に反応する細胞と冷刺激に反応する細胞が存在することが明らかになった。また、両刺激に反応する細胞も存在することも示された。さらに皮質における温刺激応答細胞、冷刺激応答細胞、両細胞応答細胞の皮質内マッピングの作製することができた。

56. E2-ferritin 融合タンパク質の感染中和抗体誘導効果とその粒子構造解析

篠田隆字、渡邉則幸、相崎英樹（国立感染症研究所）

C 型肝炎ウイルスのエンベロープタンパク質である E2 は侵入に重要なタンパク質で、ワクチン抗原の候補として解析が行われている。しかし、E2 上に修飾される糖鎖やアミノ酸変異による免疫回避のため有効なワクチンが開発されていない。本研究では感染中和領域を効率よく提示する E2 ワクチン抗原の開発を目的として E2 と自己集合タンパク質の ferritin の融合タンパク質（E2-ferritin）を作製した。そこで本研究では E2-ferritin による中和抗体誘導効果、及びその粒子構造を解析することを目的とした。

分泌配列を付加した E2-ferritin 発現プラスミドを 293 細胞にトランスフェクションして一過性に E2-ferritin タンパク質を培養上清中に分泌発現させた。培養上清中に分泌された E2-ferritin タンパク質の発現をウエスタンブロットで確認した。さらに酵素密度勾配により分画した E2-ferritin タンパク質の発現を確認したところ、多重体を形成していることが示された。そこで、さらにゲル通過で分画し、約 1800kDa の分子量に E2-ferritin タンパク質は検出された。この E2-ferritin タンパク質サンプルをクライオ電子顕微鏡で観察すると中空粒子構造が確認された。粒子の表面において E2 タンパク質が 3 量体を構成していた。この E2-ferritin タンパク質をマウスに免疫して E2 抗体誘導を確認したところ、E2 抗体が誘導され、感染中和活性も確認できた。今後はさらに E2-ferritin タンパク質の精製を進めて、その構造と免疫性を解析する予定である。
57. 組織化学的手法を応用した細胞超微形態の三次元構造観察

臼田信光, 深澤元晶（藤田保健衛生大学 医学部）
野田 亨（東京大学 医療保健学部）
宮川 剛, 中尾章人（藤田保健衛生大学 総合医科学研究所）
大野伸彦（自治医科大学 医学部）

細胞超微形態の立体構造解析において, SBF-SEM を用いた観察は観察空間が広く、多数の断面像が得られるため, 切片の透過型電顕観察に比べて格段に広い立体空間を観察対象に出来る。しかし, SEM 特有の標本作製法の困難さ, 多数の断面像を画像情報処理する煩雑さ, これらの問題点が解決していないために, 広い立体空間を観察できる方法の優位性が生かされていない。組織化学の手法を併用することにより観察法を改良し, 細胞の全体像の中で細胞内超微構造を効率よく立体視することを技術的な目標としている。本年度は, 肝細胞全体の Golgi 装置の立体構造の解析のため, Golgi 装置を高電子密度に染めたいずれの組織化学である ZIO 法を肝臓組織に適用し SBF-SEM 観察を行った。

【材料と方法】ラット肝臓組織をグルタルアルデヒド固定後, ZIO 染色液（Zn, I, Os 混合液）で染色し, 樹脂包埋したブロックを, SBF-SEM（3View2-Marlin, 加速電圧 1.2kV）で切削し, 組織表面から反射電子像を取得し, 1600 枚の連続断層像から立体構築ソフトで三次元構築した。【結果】導電染色・電子染色を行わない標本であるが, 観察において帯電性の問題はなく, 形質膜が明瞭に出観察できる高電子密度が得られることで, 形質膜の透過型電顕観察と同等の画像が得られた。Golgi 装置では, cis から trans 側の層板・小胞が陽性となった。画像の高コントラストは, 画像処理において半自動的な segmentation を可能にした。肝細胞の Golgi 装置（図1）は約 20 個に分かれており, 多くは毛細胆管に沿って存在した（図2）。

【結論】ZIO 法における重金属は, 試料の導電性を高め, 導電染色なしに SEM 試料作製を可能としたと考えた。さらに, 観察において得られた反射電子像が形成に大きく寄与した。画像が高コントラストであるため, 画像処理が容易であった。他の多くの細胞では細胞内で一様に照明された構造であるが, 肝細胞では複数の Golgi 装置が存在する。これは肝細胞特有と考えられ, それは従来の光顕・電顕観察による二次元像と矛盾しなかった。今後も重金属を用いた組織化学を SBF-SEM 観察に応用したい。【図の説明】肝細胞を ZIO 染色を行い電顕観察を行った。

図 1: Golgi 装置の SBF-SEM 観察写真 (バー: 0.5 μm)。
図 2: 肝細胞全体の SBF-SEM 観察写真 (バー: 5 μm)。

58. 独自の Transgenic (TG)マウス（Arc::EGFP-CapZ）を用いた記憶研究

鍋倉淳一（生体恒常性発達機構研究部門）
山田麻紀, 久保山和哉（徳島文理大学・香川薬学部）

【目的】近年, 記憶を保持する神経細胞は一部（数%程度）であるという説が主流になっており, その数の記憶担当細胞/スパイクを発出する電気信号を紫色蛍光タンパク質 EGFP によって可
視化できれば、記憶現象を観測する新しい窓と期待できる。その目的のため、LTPを起こしたスパインに増加するCapZをEGFPと融合し、活動依存に発現できるArcPromoterによって発現誘導させるようにしたトランジェニックマウス（Arc::EGFP-CapZ, 略称AiCE-TG）を作成した。本共同研究では、多光子顕微鏡を用いた生体イメージング法を活用し、学習タスクによるEGFP蛻光の経時変化をAiCE-TG脳内で解析することを目的とした。

【実験計画・方法】
記憶が成立する刺激の入力によってAiCE-TGの脳に起きる変化を、EGFP-CapZの蛻光変化の形で捉えることをめざした。

実験方法は、AiCE-TGマウス大脳皮質視覚野上に観察窓を設置し、多光子顕微鏡下でフォーレン麻酔下に撮像したのち、一時的に麻酔を解除して視覚依存恐怖条件付けタスクを行い、タスク前後でのEGFP-CapZ蛻光の経時変化を観察した。なお、防音箱の中での視覚依存恐怖条件付けでは、回転する縞模様での視覚刺激に反応して恐怖反応を示していた。

【結果】
視覚依存恐怖条件付けをディスプレイを用いて起こせる操作の前後で、AiCE-TG脳内一次視覚野の蛻光変化を観測したところ、視覚野内の一部の領域で時間依存的に周囲に比した上昇が観察された。しかし、観察後の個体での視覚依存的な恐怖反応は測定できなかった。

【考察】
連合学習が成立したとは考えられないにもかかわらず、脳内での蛻光上昇が、転写翻訳によらないと考えられる短時間（刺激後30分）の細胞体外領域でも観察された。このことから、LTP誘起時と同様のEGFP-CapZのシナプスへの集積が視覚刺激だけで観察できた可能性が考えられた。

【展望】
現在、視覚野、感覚野などで上記の可能性を補強できる実験系を構築して確認を進めている。すなわち、連合学習を必ずしも誘起しない新奇刺激だけでLTP誘起時と同様のEGFP-CapZのシナプスへの集積が起こる、という作業仮説に基づいて研究を展開している。固定後切片でのデータが安定する刺激方法が確立した後、再度生体内観察を行うことで、説得力のあるデータを得ることを期待する。

59. 内耳ステレオシリアの配列におけるPCPの役割についての解析

月田早智子、田村 淳
（大阪大学大学院生命機能研究科/医学系研究科分子生体情報学）

内耳の有毛細胞は、アピカル面にV字型に並ぶ特殊な微絨毛を持つ細胞である。この微絨毛は、ステレオシリアと呼ばれ、胎生期後期に配列が完成し、聴覚のセンサーとして機能する。

本解析では、ステレオシリアの配列が乱れるフェニタイプを示すKOマウスの解析を、SBF-SEMを用いて進めることを目指す。マウス解析は、大阪大学の遣伝子組換え実験および動物実計画書に遵守して進める。

具体的には、マウス個体を醜牛を採取し、初代培養系に移行させた。その後、培養を進める、分化段階に応じてSBF-SEM用に固定し、エボン樹脂包理へと進んだ。一方で、培養を移行しないで、摘出器官の観察も進めることで、内耳有毛細胞の分化段階における、形態と機能の相関について、定量的な解析を計画した。

期間内では、サンプリングから予備観察まで進めた。内耳の内外有毛細胞のステレオシリア、支持細胞の微絨毛が区別して観察された（図）。今後、発生段階を追っただ本観察を計画している。
マラリアは亜熱帯や熱帯地方に見られる蚊媒介性の熱帯病であり、年間約70万人の死者が報告されている。マラリアを引き起こす原虫（Plasmodium）の中で熱帯熱マラリア原虫（P. falciparum）は特に症状が重篤化しやすいため、ワクチンの早急な開発が必要とされている。P. falciparumは蚊の吸血の際にヒト体内へと侵入し、細胞侵入型のメロゾイトが赤血球に感染する。原虫は寄生胞膜と呼ばれる膜に包まれた状態でリング、トロホゾイト、シソントへと発育し、シゾント内で分裂し形成された新たなメロゾイトが血流へ放出されて次の赤血球に感染し、ヒト体内で増殖を繰り返していく。このような宿主赤内期において、P. falciparumは感染赤血球細胞質内にマウレル裂と呼ばれる膜状構造を形成して病原性発露に関与する原虫分子の輸送を行い、また赤血球表面にノブと呼ばれる突起構造を形成して血管内皮細胞の表面に対する接着分子を発現し、赤血球全体の構造を改変していく。

昨年度は、ヒトに自然感染するサルマラリア原虫P. knowlesiの宿主赤内期の各発育ステージにおける原虫及び感染赤血球全体の画像をSBF-SEMにより取得し、三次元的な微細構造解析及び定量解析を行った。そして、本年度はP. knowlesi感染赤血球内に形成される膜状構造（SMC, Sinton Mulligan’s clefts）についてSBF-SEM像を撮影し、三次元再構築及び微細構造解析を行った。まず最初にStreptolysin Oを用いて感染赤血球の膜透過処理を行うことにより内部のヘモグロビンを除き、膜状構造を観察しやすいようにした。そして得られたSBF-SEM像及び三次元再構築像を観察したところ、SMCは端が膨らんだプレート状構造をしており、P. knowlesiの分子輸送において感染赤血球内であたかもゴルジ体のような様相と役割を持つことが示唆された。またこのような分子輸送のメカニズムと微細構造は、P. falciparumで見られるマウレル裂と類似していた。上記の内容は、論文として報告した（Asare et al., Parasitol Int 2018. in press）。
61. 血管平滑筋細胞の細胞核の3次元超微細構造計測

杉田修啓（名古屋工業大学）
村田和義（生理学研究所）

細胞は細胞周囲からの外力により刺激を受け、様々な細胞応答を示す。我々は、細胞外力が細胞骨格を通じて細胞核に伝わり、細胞核形状を制御して核内クロマチン構造が変化することで細胞応答が生じるとの仮説を支持している。実際に、血管平滑筋細胞では、フェノタイが異なると細胞骨格量が大きく異なり、また細胞機能が変化することが知られている。そこで、細胞骨格の変化により細胞核内のクロマチン構造が変わるのを検証することを目指した。この検証にあたり、本申請とは別に実施していたウサギ胸大動脈組織のSerial Block Face-Scanning Electron Microscope（SBF-SEM）画像にて、ユークロマチンが観察できることを確認したため、この手法でクロマチン構造観察することを計画した。

当初は組織中と培養した平滑筋細胞の両者の細胞核を比較することを計画したが、アドバイスにより培養細胞でフェノタイが異なる2種を用意し、この違いを見ることに計画を変更した。培養細胞を用いることで、細胞のフェノタイプ変化が容易に観察できることになる。この計画により、血管平滑筋細胞の細胞核内クロマチンの超微細構造を詳細に解析することが可能となった。

62. 社会ストレスによる脳組織の超微細な細胞生物学的変化とその機序・役割の解明

永井裕崇、古屋敷智之（神戸大学大学院医学研究科薬理学分野）
大野伸彦（自治医科大学医学部組織学部門）
古瀬幹夫（生理学研究所細胞構造研究部門）

社会や環境から受ける心理的ストレスは、短期的には適応的な変化を引き起こすが長期的には精神疾患の発症リスクとなる。これまで、短期的なストレスがドパミンD1受容体を介して神経突起やスパインの形成とストレス抵抗性の増強を引き起こすこと、ならびに長期的なストレスがミクログリア活性化やミクログリア由来の炎症関連分子の活性化を介して神経突起の退縮と情動変容を引き起こすことが示されてきた。このように、ストレス抵抗性の増強や減少に応じて、前頭前皮質神経細胞の樹状突起やスパインの形態は大きく変化する。この形態変化は細胞内小器官やグリア細胞が重要と考えられるが、これらのストレス病態における関与は殆ど不明である。本研究は次元電子顕微鏡を用いることにより神経細胞とグリア細胞並びにその細胞内小器官を同時比較することを計画したが、アドバイスにより培養細胞でフェノタイが異なる2種を用意し、この違いを見ることに計画を変更した。培養細胞より血管平滑筋細胞を単離し、細胞核形状を観察することを目指した。
63. 蝶鱗粉の構造色発色性微細繰り返し構造形成を制御する細胞骨格の構造解析

安藤俊哉（自然科学研究機構・基礎生物学研究所）

生物由来の構造色を呈する微細繰り返し構造とその物性は材料工学の分野で精力的に解明されてきているが、生体組織及びそれを構成する細胞が如何にして微細繰り返し構造を形成するのかに関しては明らかにされていない。本課題では、紫色の構造色を呈する蝶（リュウキュウムラサキ）を用いて、構造色発色性構造の形成直前の細胞表面の微細構造および細胞を裏打ちする細胞骨格の配向性を明らかにすることを目的とした。細胞内の細胞骨格の3次元的な配置を調べる前段階の実験として、透過型電子顕微鏡解析を行ったところ、特徴的な細胞の形態変化が見出され、それに伴い細胞外気質（クチクラ）に微細繰り返し構造が形成される様子が観察された。突起の形態変化の様子から突起部分と非突起との間での張力制御が重要だということが推測された。以上の結果に基づき、この仮説を検証するための実験を進めることとした。
超高圧電子顕微鏡
共同利用実験報告
超高圧電子顕微鏡共同利用実験報告

[目 次]

1. 巨大ウイルスのウイルス工場形成過程の三次元構造解析（武村政春ほか）………………………………… 216
2. プラナリアの繊毛運動の波形の3次元構造と筋肉の位置関係から高速推進機構の解明（今井洋ほか）…… 216
3. 真核生物鞭毛の振動運動を担う蛋白質ナノモーター「ダイニン」が遊泳中の鞭毛軸糸で示す動的構造変化の解析（今井洋ほか）……………………………………………………… 217
4. 超高圧電子顕微鏡によるヒト血小板α顆粒の三次元構造の解析（鈴木英紀）……………………………… 218
5. 超高圧電子顕微鏡を用いた細胞骨格・オルガネラ・細胞壁ダイナミックスの解析（唐原一郎ほか）………… 219
6. 植物寄生性線虫の感染部位の微細構造解析（吉野博則ほか）…………………………………………… 219
7. 組織化学的手法を応用した細胞小器官の三次元構造観察（臼田信光ほか）……………………………… 220
8. 頭蓋骨と視覚野ニューロンの電気シナプスの機能と三次元形態構造の対応（日高聡ほか）……………… 221
9. 社会行動の分子神経基盤の理解に向けて：仲間感覚神経系の神経細胞ネットワークの微細3D形態学的測定（尾崎まみこほか）……………………………………………………… 222
10. 低温超高圧電子顕微鏡法を用いたCD38のin situ膜局在の解明（坂本浩隆ほか）……………………… 223
1. 巨大ウイルスのウイルス工場形成過程の三次元構造解析

武村政春（東京理科大学理学部第一部）
岡本健太（ウプサラ大学 BMC）
村田和義（生理学研究所）

昨今「巨大ウイルス」と呼ばれるウイルスの分離が世界中から報告され、日本でも我々がいくつかの巨大ウイルスを水環境から分離することに成功している。多くの巨大ウイルスは「ウイルス工場」と呼ばれる宿主細胞内構造体を形成するが、その形成過程に関しては未だ不明な点が多い。本研究では、武村により分離されたミミウイルス・シラコマエならびにメドゥーサウイルスに関して、宿主アメーバ細胞内に形成するウイルス工場の経時的な三次元構造解析を、厚切り切片を用いた超高圧電子顕微鏡トモグラフィーにより行うことを目的とし、平成29年度はこのうち特に、メドゥーサウイルスの宿主細胞内動態に関して興味深い知見を得た。

メドゥーサウイルス感染アメーバの培養上清からメドゥーサウイルス粒子を精製し、クライオ電子顕微鏡を用いて観察したところ、メドゥーサウイルスが直径約250 nmの正二十面体ウイルスであり、そのカプシド表面には約14 nmのスパイク（棘）状の構造が存在することが確認された。

メドゥーサウイルス感染アメーバを、感染直後から経時的に採取し、透過型電子顕微鏡で観察したところ、感染後8時間で細胞質中にメドゥーサウイルス中空粒子が大量に合成されることが明らかとなった。これらと並行して行ったメドゥーサウイルス感染アメーバにおけるウイルスDNAを標識したFISH解析実験からは、(1)メドゥーサウイルスDNAは感染後4時間から8時間の間に宿主アメーバ細胞の核内において複製されること、(2)ウイルス感染アメーバの培養上清には、少なくとも感染後24時間から29時間の間にメドゥーサウイルス粒子が放出されることがわかった。このことから、感染後4時間から24時間までの間にアメーバ細胞内もしくは細胞核内でウイルス工場が形成されると考えられ、感染後4時間、8時間、15時間、24時間後の感染アメーバ内において、他の多くの巨大ウイルスでみられるようなウイルス工場は確認できなかった。このことからメドゥーサウイルスにはユニークな複製機構があることが示唆された。

2. プラナリアの繊毛運動の波形の3次元構造と筋肉の位置関係から高速推進機構の解明

今井洋（大阪大学大学院・理学研究科）
河﨑駿弥、上村慎治（中央大学・理工学部）
ソンチホン、村田和義（生理学研究所）

淡水にすむプラナリアは体長数ミリ程度の多細胞の動物で、川などの石の上を、腹側の繊毛と体内の筋肉を使い1秒間に2〜3㎜という高速の滑走運動をする。これは通常の鞭毛や繊毛により推進力を得ている運動の約10倍という高速運動である。その高速運動法の仕組みを解明することが本研究の目的である。

プラナリアは一定時間滑走運動するとその運動を停止する。私たちは、プラナリアの滑走運動中は、体長が長く体幅が細く一方、滑走運動を停止すると、体長が短く体幅が太くなることに注目した。この時、この体長と体幅の変化が、プラナリアの腹部の繊毛の密度を変化させて、高速の繊毛運動を駆動する原因の1つである可能性が高いと考えて、その密度の変化を定量することを試みた。
3. 真核生物鞭毛の振動運動を担う蛋白質ナノモーター「ダイニン」が
遊泳中の鞭毛軸糸で示す動的構造変化の解析

今井 洋（大阪大学大学院・理学研究科）
真行寺千佳子（東京大学大学院・理学系研究科）
ソン チホン、村田和義（生理学研究所）

真核生物の精子は、卵まで泳ぐことにより受精する。精子の鞭毛運動の原動力は、鞭毛の内部のダイニンと呼ばれる蛋白質のナノモーターである。このダイニンが精子が泳いでいる状態でどのように働いているかを知る目的で本研究が行われた。

鞭毛が遊泳している時の波形を保った状態で急速凍結してクライオ電子顕微鏡で観察できれば、生理学的に重要な構造が得られると思われるが、技術的な困難さからその構造はまだ明らかにされていない。これまでに鞭毛軸糸が波打ち運動している時に、カーブしている部分と直線の部分でダイニンの活性が違う可能性や、9本のダブレット微小管の上のそれぞれダイニンの活性が違う可能性が、光学顕微鏡を用いた実験から、示唆されている。（Shingyoji. 2013. Method Enzymol. 524: 147-169）本研究では、これらの構造をクライオ電子顕微鏡で直接観察することで明らかにすることを目的とした。

ウニ精子が海水中を泳いでいる状態で、通常のクライオ電子顕微鏡で直接観察することで明らかにすることが目的とした。

そこで、厚い試料を凝固状態でそのまま凍結できる加圧凍結装置でウニ精子が泳いでいる状態で凍結した。その後、凍結置換装置で化学固定し、樹脂に包埋した。その切片をミクロトームで作成した。この切片を超圧電子顕微鏡で観察したところ、鞭毛の頭部と鞭毛の基部を観察できた（図1）。しかし、鞭毛の全長の波形を観察をし、液体エタノール中で凍結した。その試料をクライオ電子顕微鏡で観察した結果、精子鞭毛がカーボン膜に不規則に貼り付いていた。様々な条件を試したが、カーボン膜との相互作用のため、泳いでいる波形と程遠い形状でしか凍結できなかった。
4. 超高圧電子顕微鏡によるヒト血小板α顆粒の三次元構造の解析

鈴木英紀（日本医科大学 共同研究施設 形態解析研究室）

ヒト血小板α顆粒は血小板の中で最も重要な顆粒で、血小板1個あたり数十個存在するとされる。本顆粒中にフィブリノゲンなどの接着蛋白をはじめとして多くの蛋白質が貯蔵される。血小板活性時には本顆粒貯蔵樹をもって放出され、血小板粘着、凝集に関与する。α顆粒は必ずしも球形ではなく、その形態には多様性（heterogeneity）があり、内部構造も通常の分泌顆粒とは異なっており、基質は電子密度の異なる3領域が見られ、もっとも明調な部位には微小管構造が存在する（下図、矢印、αG: α顆粒、M: ミトコンドリア）。そこで、本研究ではヒト血小板試料を超高圧電子顕微鏡で観察し、α顆粒を三次元的（three-dimensional: 3D）な立体像を構築することにより、正常血小板α顆粒の形態的多様性を明らかにすることを目的とした。

具体的には、ヒト血小板α顆粒の微細形態を精査するために、膜構造および微小管構造の保存が良いタンニン酸を加えたグルタルアルデヒドで前固定した。タンニン酸は微小管を構成するチュブリンの保存に優れていると知られている。従って、タンニン酸の採用により、α顆粒明調部の微小管構造が良く観察されることがある。次いで、四酸化オスミウム後固定後に、酢酸ウラニルによるブロック染色してエポキシ樹脂に包埋した。切片は通常および超高圧電顕で観察できるように100, 200, 400, 800 nmおよび1.5 μm厚のものを調製し、酢酸ウラニルおよびクエン酸鉛で電子染色した。

ところで、ヒト血小板α顆粒明調部の微小管構造は顆粒の複雑性のために、その横断像は容易に見つからないのが現状であった。申請者が撮影した所見を村田准教授の前申し出たところ、本構造は超高圧電顕ではさらに見るにくいとの話になり、まず200 kVの電顕で確認しようとのことになった。そこで、準備してきた100 nm厚の切片を使い、数十個の血小板α顆粒を観察した。

しかし、顆粒明調部の微小管構造の横断像は確認できなかった。その後のディスカッションで、現行の試料では超高圧電顕観察には不適であるとの結論になり、α顆粒観察の効率を上げるために、α顆粒のみの細胞画分の試料作りを提案された。現在、その方法を模索中である。
5. 超高压電子顕微鏡を用いた細胞骨格・オルガネラ・細胞壁ダイナミクスの解析

唐原一郎（富山大学大学院理工学研究部），篠笥公隆（富山大学理学部）
竹内美由紀（東京大学大学院農学生命科学研究科）
峰雪芳宣（兵庫県立大学大学院生命理学研究科）
村田和義（生理学研究所）

筆者らは、植物の細胞・組織・器官それぞれのレベルでの三次元構造のダイナミクスの解析に取り組んでいる。X 線 CT により乾燥種子の非侵襲形態解析を行うことで、乾燥種子においては皮層細胞壁の波状のしわが観察され、種子発芽に必要な急速な細胞体積増大のメカニズムの手掛かりが得られた。この細胞壁のしわ構造が真実の構造か否かを検証するため、異なる手法による観察として、比較的厚い切片で広範囲に微細構造を観察できる、超高圧電子顕微鏡を用いた観察に取り組んだ。シロイヌナズナ Arabidopsis thaliana (L.) Heynh. の乾燥種子をグルタールデヒド水溶液で12時間4℃で前固定の後、en bloc 染色として二重オスミウムによるEllisman らのプロトコルを一部修正して行い、試料を調製・包埋した。そこから1 µm の厚さの切片を切り、post staining を行わず、金粒子の塗布とカーボンコートを施した後、胚軸部の切片を加速電圧1,000 kV の超高圧電子顕微鏡(H-1250m、日立)観察に供した。これまでに、水を含む固定液中における固定によっても、試料を切り上げた胚軸の内皮細胞の横断面（横断切片）における、縦断壁（longitudinal wall）に入り入るしわが観察されることを確認できていた。昨年度、縦断面（縦断切片）を観察したところ、1 層しかない内皮細胞を捉えることはできなかったものの、皮層細胞の横断壁（transverse wall）におけるしわを観察することができた。しかし予想に反し、縦断壁におけるしわは見られなかった。そこで本年度は、同じ方向と同じ種子試料を切り進め、異なる場所での皮層細胞の縦断壁を観察した。撮影倍率は1000倍とし、Saxton スキームで傾斜画像を撮影し立体再構成を行った。その結果、やはり縦断壁ではしわが観察され、縦断壁では観察されなかった。細胞壁のしわをより広い範囲で見た場合の3次元構造の可能性として、ドレープ状またはディンプル状の構造を想定した場合、縦断壁ではドレープ状構造をとっている可能性が示唆された。今後、これを明らかにするためには、1 細胞の縦断壁の中で縦断面を広げて確認する必要がある。また、横断壁の構造については、今回の場合に対して垂直な方向からの縦断壁を観察する必要がある。

6. 植物寄生性線虫の感染部位の微細構造解析

古賀博則，梅本紗恵子，鈴木優里（石川県立大学生物資源環境学部）
ソン チホン，村田和義（生理学研究所）

ダイズセンチュウは古くから「忌（嫌）地病」や「菱黄病」などと呼ばれ、寄生細胞内に侵入し、成熟すると、200～400 個の卵を内蔵するレモン型（長さ約0.5mm）のシストを形成する（図 1）。本線虫は根内に侵入後、シスト内に（シスト内に）発生する、融合細胞（融合細胞）形成を誘導し、シストからの卵を直接に吸収する（図 1）。シスト内に卵が吸収されると卵が分裂し、卵内に形成される新細胞が吸収されるため、特殊な微細構造を形成していると考えられるが、その内部の微細構造には不明な点が多い。そこで本研究では、シンシチウム内の微細構造を三次元的に観察するために、観察対象を人工接種したダイズ根を、オスミウム浸軟法（細胞内容物を除去して膜系のみ固定する方法）を用いて電界放射型走査電顕で観察するとともに、超高圧電顕による三次元的解析を行った。

下記の3方法で電顕観察し、像の比較を行った。①通常の透過電顕観察（グルタルアルデヒド・四酸化オスミウム二重固定、ウラン・鉛による電子染色）、②オスミ
ウム浸軟処理した試料の電界放射型走査電顕観察。超
高圧電顕での撮影画像の3Dトモグラフィー（ホルマリ
ン・グルタルアルデヒド前固定後、zinc iodine-四酸化オ
スミウム後固定、500nm厚切り切片のウラン・鉛による
電子染色、+60°から+60°まで2°毎傾斜して超高圧電
顕（H-1250M）で撮影した61枚の画像の3Dトモグラ
フィー作製）。

シンセチウム内を透過電顕で観察すると、内部生長し
た細胞壁の周りに、cisternal-ER、ゴルジ体、ミトコンド
リア、液胞などの細胞内小器官の他に最大幅約200nm、
長さ60～200nmの楕円形の白抜きの部分が多数認めら
れた（図3左図）。電界放射型走査電顕で観察すると、
透過電顕で楕円形の白抜きの像が認められた部位には直
径100nmの管状構造物が観察された（図3中図）。この
管状構造物はcisternal-ERと結合している部位が観察さ
れたことから、この構造物はERであると考えられる。
この部位を超高圧電顕で観察し、3Dトモグラフィー作製
した結果、電界放射型走査電顕で観察された管状のER
と類似の構造が認められた（図3右図）。以上のことか
ら、通常の透過電顕では楕円形の白抜きとして観察され
る部位には、管状のERが存在することを超高圧電顕に
よる3Dトモグラフィーにより示すことができた。

図1.ダイズシストセンチュウの生活環

図2.ダイズシストセンチュウのダイズ根への感染過程
①ダイズ根への本線虫の侵入、②本線虫は細胞壁分解酵素を分
泌して、細胞壁を分解する、③隣り合う細胞が融合することに
より、多核で大きな融合細胞（シンシチウム）が形成される。
線虫は生命、ここから養分を吸収する。

図3.シンシチウム内の管状小胞体（ER）の凝集部位の透
過電顕像（左図）、電界放射型走査電顕像（中図）、超高圧電顕像
（右図）M：ミトコンドリア、図中のスケールは0.5μm

7．組織化学的手法を応用した細胞小器官の三次元構造観察

臼田信光（藤田保健衛生大学医学部）、野田　亨（藍野大学医療保健学部）
園井悠人（名古屋工業大学院工学研究科）、村田和義（自然科学研究機構生理学研究所）

超高圧電顕により細胞構造を観察する際、組織化学的
染色により電子密度高く標識を行い細胞小器官の立体構
造を効率よく観察し、さらに連続ブロック表面走査型電
子顕微鏡SBF-SEMの併用により、細胞全体についての3
次元構造観察に進めることが計画された。本年度はGolgi
装置について、肝細胞を材料として、古典的な組織化学
の方法である還元オスミウム法（ZIO）を行い、超高圧
電顕観察とSBF-SEM観察を行った。予備的な実験とし
て、ferricyanide osmium（FO）法により染色した胃底腺壁
細胞について細胞内分泌細管の観察を行った。

【材料と方法】ラット肝組織をグルタルアルデヒド固定
後、ZIO染色液で染色し、樹脂包埋した。2-5μm切片を
超高圧電顕（H-1250M加速電圧1000 kV）で観察し、同
一樹脂ブロックをSBF-SEM用標本台に装着し、SBF-SEM
超高圧電子顕微鏡共同利用実験報告

生理学研究所年報 第39巻 (Dec, 2018)

【結果】超高圧電顕（図1）によると、一部の Golgi 装置は毛細胆管近傍に主に局在し、一部は核から毛細胆管まで大きく連続した構造として観察された。SBF-SEM 観察（図2）では、透過型電顕像と同様のコントラストで画像が得られ、肝細胞全体における Golgi 装置の配置が示された。SBF-SEM 観察においては、画像処理の限界により、画像の分解能は超高圧電顕に比べやや劣り、Golgi 装置の構造の詳細を描画することが困難であった。

【結論】ZIO 染色は画像の高いコントラスト故に、超高圧電顕と SBF-SEM の両者で使用することができた。超高圧電顕では構造の詳細が描画可能で、SBF-SEM においては細胞全体像が描画可能である。そこで、両機器の長所を活かした併用が必要と考えた。

FO 法も得られる画像のコントラストが高いので、両観察法に有利な染色法として現在検討中である。

8. 網膜と視覚野ニューロンの電気シナプスの機能と三次元形態構造の対応

日髙 聡（藤田保健衛生大学医学部生理学教室）
南部 範（生理学研究所・生体システム研究部門）

脳神経系で電気シナプスの機能に着目し、網膜神経節細胞間のギャップ結合と、大脳皮質視覚野ニューロンでのギャップ結合の微細形態や電気シナプスの生理機能との関係を調べた。生後間もないラットの視野・細胞間のギャップ結合を電気生理学実験で解析し、ギャップ結合による接触形態を対応して解析した。また小型のサル・コモンマーモセットの網膜や視覚野ニューロンの細胞形態とギャップ結合の存在の有無・その位置や微細形態を調べ、その結果を数値解析することにより、霊長類の神経系での電気シナプスの生理機能を探索することを試みた。

今回、生後7ヶ月のコモンマーモセットを灌流固定し、網膜と脳組織を摘出し、網膜と大脳皮質視覚野ニューロンにおけるギャップ結合的存在・その位置や微細形態を見つけるために、超高圧電子顕微鏡で解析した。ギャップ結合の微細形態を電気シナプスの形態構造を観察するために、コモンマーモセットの網膜と脳組織をエポニ樹脂に包埋し、厚さ1μmから2μm切片を作成し、1,000 kVの加速電圧で超高圧電子顕微鏡で観察した。超高圧電子顕微鏡の試料ステージの傾斜によって2° ～5° ±60° で撮影し、IMOD プログラムを用いてその立体再構成を行って、コモンマーモセットの大脳皮質視覚野ニューロンの形態を解析した。視覚野ニューロンの形態が超高圧電子顕微鏡で観察された（図1）。ここでは認めなかったニューロンが見られた。実験ステージを約45° で傾斜した時、視覚野ニューロンの細胞体同士が接触していることが観察され
た（図2）。この細胞体間の接触形態は解剖学的に認められるギャップ結合に似ている。またギャップ結合蛋白connexin36の細胞内ドメインに対する抗体（Hidaka et al., 2004）を利用して、抗体反応性を調べた結果、このようなコモンマーモセットの視覚野ニューロンの細胞体同士の接触部には、connexin36免疫陽性のギャップ結合斑punctaが観察された。今後、さらにギャップ結合斑punctaを超高圧電子顕微鏡で調べ、コモンマーモセットの網膜と大脳皮質視覚野でギャップ結合の存在とその機能を調べて行きたい。

図1. 生後7ヶ月のコモンマーモセットの視覚野ニューロンの配列・超高圧電子顕微鏡像、厚さ1μm切片、試料傾斜±0°、加速電圧1,000kV。矢印は図2での拡大像の部位。

図2. +50°傾斜で見つかった（図1の矢印の拡大部位）。コモンマーモセットの視覚野ニューロンの細胞体同士の接触（矢印の間）を示す超高圧電子顕微鏡像、厚さ1μm切片、加速電圧1,000kV。

9. 社会行動の分子神経基盤の理解に向けて：仲間感覚神経システムの神経間連絡ネットワークの微細3D形態学的測定

尾崎まみこ（国立大学法人神戸大学）

社会の形成・維持には“仲間感覚”の発達が不可欠である。これまでにSBF-SEM観察で、クロオオアリ（Camponotus japonicus）の巣仲間識別感覚子内に格納されている100本以上の嗅覚受容神経束のアーキテクチャーの特徴である300個以上の新奇な瘤状構造の部分で隣接神経の膜間連絡が900か所以上にわたって認められた。

今回の共同研究においては、次のA）B）C）の研究計画を考えていましたが、方法論的な変更を加えるなどして、当初目的と等価ないし、それに代わる成果が、以下のように得られ、生理学研究所との共同研究成果として原著論文を作製することができた。

A) 当該感覚子内神経ネットワークを対象に超高圧電子顕微鏡画像をもとに概観するとしていたが、まず、TEMで細胞間接着境界線を観察したのちに、部分的な接着面のトモグラフィーを解くことによって接着部分での細胞膜の陥入の様子が分かった。

B) ネットワークの要である、ギャップジャンクションと予想される神経間連絡を立体的に高分解能で観察するとしていたが、超高圧電子顕微鏡は使用せず、高分解能蛍光顕微鏡によって、抗イネキシン抗体を使って標識した感覚子の内部構造を観察することにより、ギャップジャンクションの存在をより正確に証明することができた。

C) 餌やタスク別（内勤アリ vs 外勤アリ）のサンプルで比較してこのネットワークの可塑性を証明する予定であったが、今回の共同研究でこの課題は進まっていないので、今後、もし機会があれば、実施したいと考えている。

以上、生理学研究所の共同利用によって得られた形態学的知見をもとに、数学・情報科学的な観点から当該感覚子内神経間連絡ネットワークのモデルを組み立て、この感覚子を模倣した化学センシング機構のin silicoシミュレーションを行ったところ、このようなネットワークを利用することにより、アリが仲間識別を行う際のセンサー応答のコンタラストが高くなることが予想された。

これらの成果をもとにして、現在、原著論文をFrontiers in Cellular Neuroscienceへ投稿中である。
10. 低温超高圧電子顕微鏡法を用いた CD38 の in situ 膜局在の解明

坂本浩隆, 高浪景子, 佐藤慧太（岡山大学・大学院自然科学研究科・理学部附属臨海実験所）

オキシトシン分泌の制御分子候補として, リンパ球の増殖を活性化する膜タンパク質である CD38 の関与が報告されている (D. Jin et al., 2007, Nature)。CD38 は細胞膜上に存在し, ニコチンアミドアデニンジヌクレオチド (NAD) からサイクリック ADP リボース (cADPR) を合成する。合成された cADPR は, 小胞体膜上に存在するリアノジン受容体に結合し, 小胞体からのカルシウム流出を促し, オキシトシンの開口分泌を誘導するものと考えられている。しかしながら, オキシトシン・ニューロンにおける CD38 の in situ 膜局在は不明である。そこで本研究では, 低温超高圧電子顕微鏡 (電顕) 法を用いて, CD38 の in situ 膜局在を明らかにすることを目的とする。

研究代表者のラットを用いた予備的な免疫電顕, および生化学的解析から, CD38 はニューロン細胞体の膜構造に加えて, オキシトシン分泌顆粒の膜上にも存在する, という非常に興味深い結果を得ている（投稿準備中）。本研究では, ラット視床下部-下垂体系における CD38 の in situ 膜局在について低温超高圧電顕を用いて 3 次元的に解析した。まず, 限外ろ過法によりオキシトシン・ニューロンに由来する分泌顆粒を分離し, 本サンプルを低温電顕で観察した結果, 分泌顆粒を単離したサンプルで効率良く観察することに既に成功した（平成 27 年度報告書）。今年度は, 精製サンプルに対して CD38 免疫染色（2 次抗体にコロイダルゴールドを使用）を施し, 冰を乾燥後に低温電顕観察を行なった。その結果, 安定して分泌顆粒の観察をすることができたが, CD38 に特異的な免疫陽性反応は観察されなかった（図参照）。今後は効率的な標識を行うための条件検討を引き続き実施していく予定である。さらに, ex vivo で高カリウム刺激を行った直後に同様の解析を行い, 開口分泌の際, CD38 の in situ 膜局在が変化するかどうかも検討したい。

図: ラット下垂体後葉から単離した“分泌顆粒まるごと”の低温電顕像（未固定、無染色、氷包埋）。CD38 に対する免疫染色を施したが, 特異反応は観察されなかった（矢印）
生体機能イメージング
共同利用実験報告
生理学研究所年報 第39巻 (Dec,2018)

生体機能イメージング共同利用実験報告

[目 次]

1. 脳磁図による運動視知覚の神経基盤の解明 (今井 章ほか) ... 228
2. 頭から笑いを抽出する脳内メカニズムを反映する脳活動の特性 (三木研作) ... 228
3. 手指運動時における体性感覚領域の働きの解明 (和坂俊昭) .. 229
4. 耳鳴り患者における聴覚誘発脳磁場反応の周波数特性の検討 (高橋真理子ほか) 229
5. 呼吸誘発性脳血流変化による体性感覚認知への影響 (中田大貴ほか) .. 230
6. 時間、空間、音声の知覚に共通する認知・神経機能の解明 (森 満一ほか) ... 230
7. MEG を利用した聴覚時空間的脳活動の検討 (根本 拓) ... 231
8. 共同運動課題時の複数名同時脳活動計測 : コミュニケーション形成の神経的基盤を探る (大師正樹ほか) ... 232
9. 社会的接触の神経基盤の解明 (荻野祐一ほか) ... 233
10. 温熱的快適感の脳内形成機序の解明 (永島 計ほか) ... 233
11. 社会的疲労の神経基盤研究 (渡辺恭良ほか) .. 234
12. 7テスラ MRI 装置における8チャネル並列送信技術の開発 (田中啓治ほか) 235
13. 表情と音声による視聴覚知覚の文化差を生み出す神経基盤 (田中章浩ほか) 235
14. クロスモーダルな感覚情報の脳内表現様式の解明 (宮脇陽一ほか) ... 236
15. 社会的報酬および罰が運動パフォーマンスに及ぼす影響の神経機構の解明 (中山義久ほか) 237
16. 語用論的解釈の神経基盤 一 発話における意図的不調和の処理過程に着目して (松井智子ほか) 237
17. 共感性と情動の相性作用における脳内機能 (高橋浩也) ... 239
18. 脳波・機能的 MRI 同時計測法を用いた睡眠覚醒機能の解析 (石井 徹ほか) 239
19. 語音運動の機能的ネットワークの解析 (三浦健一郎ほか) ... 240
20. 漢字学習におけるN400の発現 (井田正仁ほか) ... 240
21. 聴覚覚覚刺激とその抑制における大脳半球差 (田村正敏) ... 241
22. MRI を用いた大脳基底核新経路の検証 (吉田篤司) .. 242
23. 3次元シナリオ制御磁気共鳴法の基礎的検討 (佐々木 智ほか) ... 242
24. 眼球運動の機能的ネットワークの解析 (三浦健一郎ほか) ... 243
25. 神経アミノ酸マッピングのための化学シフトイメージングの解析 (梅田雅宏ほか) 244
26. 創造的修辞表現生成に関わる神経ネットワーク・認知メカニズムの解明 (寺井あずさほか) 245
27. 経済的選択行動における認知制御の役割の解明 (地村弘二ほか) .. 245
28. 情動制御における内側前頭皮質機能の解明 (筒井健一郎ほか) ... 246
29. 癲癇症解剖の非ヒト類動物の大規模なモデルの生成 (田村正仁ほか) .. 247
30. 脳内を用いた人工神経接続法の確立と有効性の検証 (西村幸男ほか) ... 247
31. マカクザルの脳構造撮影 (鯉田孝和ほか) ... 248
1. 脳磁図による運動視知覚の神経基盤の解明

今井 章, 髙瀬弘樹（信州大学学術研究院人文科学系）
田中慶太, 内川義則（東京電機大学理工学部）
岡本秀彦（国際福祉医療大学生理学教室）

本研究では、運動視知覚の神経基盤を探るため脳磁図（MEG）を取得した。視覚情報は一次視覚野に到達した後、物体視路と空間視路に分かれて情報が処理され、運動視には主に空間視路が関与していると考えられている。しかし現実場面で運動する物体は様々な特徴を持つことから、空間視路のみではなく物体視路の賦活も同時に生じているはずである。この点を検討するため、物体視路がより強く賦活される刺激を用いて運動視成立時の MEG 反応を取得し、空間視路と物体視路の両賦活と、さらにその分離された情報の統合について検討することにした。

本研究では、物体視路をより強力に賦活するため刺激を 3 次元的（3D）に提示することにし、両眼視差を利用した立体視を成立させることにした。刺激は球体（眼球）画像とし、この画像を空間的に約 5 度離れた 2 つの位置に動的に提示した。提示条件として 3D 条件と 2D 条件を設けた。それぞれの条件内では、①運動が最適に知覚できる最適試行、②最適に知覚できるが持続時間が最適試行より長い最適試行、および③刺激が同時に提示される同時試行の 3 種類の試行を用意した。モニター中央に凝視点を配置し、刺激を凝視点から左右 5.09 度離れたどちらかの周辺部から中央の凝視点直下に提示する場合と、中央部から周辺部に提示する場合とを設定した。周辺部に提示する場合は 0.76 度の大きさで、中心部に提示する場合は 2.29 度で提示した。

健常成人の実験協力者 11 名に対して、3D 条件と 2D 条件をランダムに提示した。それぞれの提示条件では、①から③の 3 種類の試行と左右周辺から中央、中央から左右周辺、という 2 種類の提示方向があり、したがって 6 種類の提示試行がランダムに出現した。この 6 種類の提示試行は、それぞれが最低でも 80 回の加算平均波形が得られるように提示した。

今回の分析の対象としては、MT/V5 領域と頭頂連合野に相当する領域を選択した。その結果、MT/V5 領域では 2D 条件と 3D 条件との間には明確な差異を認めることができなかった。また、頭頂連合野でも、2D 条件と 3D 条件では有意差が認められなかった。解析時間や条件間の比較に用いる部位などの選択について再検証の必要がある。

2. 顔から笑いを抽出する脳内メカニズムを反映する脳活動の特性

三木研作（日本赤十字豊田看護大学）

以前行った研究において（Miki et al., 2011. Clinical Neurophysiology）, 健常成人では笑った顔への変化に対して特異的な情報処理過程が存在することが示唆された。今回、脳波を用いて、被験者に与えられた表情を認知するメカニズムの違いを検討した。被験者は、被験者に与えられた表情に慣れていなかった 21 名、被験者に慣れていなかった 19 名であった。用いた画像は、表情の表情、笑った顔、怒った顔を用いた。画像を提示し際際に誘発される顔に特異的な脳波成分（N170）を検討した。また、実験後に、用いたこれらの画像の好みを 1（好ましくない）～7（好ましい）の評点を被験者にはつけてもらった。

まず、評点に関しては、無表情の顔に対する評点が被験者に与えている人に関して有意に低かった。また、顔に特異的な脳波成分 N170 の頂点潜時ならびに最大振幅には、条件間ならびに被験者群間に有意な差
はみられなかった。

今後は、初期視覚野の活動を反映した脳波成分の検討を行っていき、顔から笑いを抽出する脳内メカニズムを反映する脳活動の特性を検討していく。

3. 手指運動時における体性感覚領域の働きの解明

和坂俊昭（名古屋工業大学）

手指の運動に注目すると、その巧みさに驚かされる。手指の巧緻的な運動の背景には、運動を行いながら皮膚や筋の感受器からの感覚情報のフィードバックが運動の制御に対して重要な働きを担っていると考えられる。しかし、手指の感覚運動に関連する神経機構については明らかにされていない点が多い。本研究では、脳磁図を用いて、手指の様々な運動時における体性感覚領域の活動を定量化することで、ヒトの手指運動の巧緻性に関わる神経基盤を明らかにすることを目的とした。

手指の運動の複雑さや物体の操作によって体性感覚情報のフィードバックの働きが異なることが予想されるため、物体の操作の有無と運動の複雑さを組み合わせた4つの運動条件を設定した。条件は①掌の上で2個のボールを時計回りに回転させる（Ball Rotation条件）、②2個のボールを持続的に握る（Ball Grasping条件）、③ボールのない状態でボールを回しているように手指を動かす（Air Rotation条件）、④5本の指の開閉運動（Stone and Paper条件）であり、すべて右手で行った。

体性感覚誘発脳磁場のM30成分は、すべての条件において振幅減少がみられた。この結果は、運動時における一次体性感覚野の活動減少に関する先行研究の報告と一致するものである。しかし、M38成分はBall Rotation条件においてのみ振幅の有意な増大がみられた。この結果は、運動遂行時の一次体性感覚野の活動が単純な抑制現象ではなく、手指を複雑に動かしながら物体を操作する時には促通することを示している。以上のことをから、手指の運動の文脈に依存して体性感覚情報の働きが異なり、単純な運動では運動の妨げにならないように情報を抑制し、巧緻的な運動では感覚情報の処理が促通することで複雑な運動を行っていることが示唆された。

4. 耳鳴り患者における聴覚誘発脳磁場反応の周波数特異性

高橋真理子、関谷健一（名古屋市立大学）
岡本秀彦（国際医療福祉大学）

昨年度は、脳磁計を用いて聴力閾値に左右差の無い片側耳鳴り患者に対し、神経間の抑制を反映しているといわれる周波数特異性を他覚的に計測することで、主観的耳鳴りがヒト聴覚における側方抑制を低下させることを明らかにした（Sekiya et al., 2017）。本年度はさらに研究を発展させ、耳鳴りの発症と深くかかわる感覚難聴を、周波数特異性に与える影響を、脳磁計を用いて調べた。

申請者らは、耳鳴りでは周波数特異性が低下するのに対して、片側高度感音難聴患者では健聴耳の周波数特異性が通常よりも向上しているのではないか、という仮説を抱いている。聴力が両耳とも正常な場合、雑音下では左右の耳から入った音情報を統合することで、雑音下の音の聞き取り能力を向上させている。しかしながら、片側高度感音難聴患者ではそれが不可能であるため、脳の可塑性変化により健聴耳の周波数特異性を代償的に向上させているのではないか、と考えている。

この仮説に基づき、我々は脳磁計を用いて片側高度難聴の患者に対し、健聴耳のマクロレベルでの周波数特異性を他覚的に計測した。刺激音として日常生活で重要な役割を果たしている1000Hzの純音を用いて、マスキング音として1000Hzの周辺の周波数帯域を広域雑音より除去することで作成した周波数帯域除去雑音を用いた。刺激音を単独、または周波数帯域除去雑音を背景音として提示した時に誘発される脳磁場を測定した。対象となる
5. 呼吸誘発性脳血流変化による体性感覚認知への影響

中田大貴, 芝崎 学（奈良女子大学）
柿木隆介

脳血流量は血中炭酸ガス分圧に非常に高い反応性を有し、血中炭酸ガス分圧が増加すると脳血流量は増加し、血中炭酸ガス分圧が低下すると脳血流量も低下する。そのため本実験では換気と呼気ガスを調節し、血中炭酸ガス分圧を変化させて脳血流量を増減させ、その際の体性感覚認知に関わる一次体性感覚野（SI）と二次体性感覚野（SII）の神経活動動態を検討した。実験は、自発的呼吸間隔を基準として、メトロノームで調整したControl Breathing（CB）、脳血流量が減少するように呼吸法を指導したRapid Breathing（RB）を行った。その際に実験条件として、①CBで大気ガスを吸気するNormocapnia CB条件（Norm CB条件）、②RBで大気ガスを吸気するNormocapnia RB条件（Norm RB条件）、③CBでダグラスバッグに入った高炭酸ガス（5%二酸化炭素と21%の酸素、残りは窒素によるバランス）を吸気するHypercapnia CB条件（Hyper CB条件）、④RBで高炭酸ガスを吸気するHypercapnia RB条件（Hyper RB条件）、以上の4条件を設定した。それぞれの条件において、左手正中神経刺激を刺激間隔3秒とし、計80回加算平均した。実験条件として、①CBで大気ガスを吸気するNormocapnia CB条件（Norm CB条件）、②RBで大気ガスを吸気するNormocapnia RB条件（Norm RB条件）、③CBでダグラスバッグに入った高炭酸ガス（5%二酸化炭素と21%の酸素、残りは窒素によるバランス）を吸気するHypercapnia CB条件（Hyper CB条件）、④RBで高炭酸ガスを吸気するHypercapnia RB条件（Hyper RB条件）、以上の4条件を設定した。それぞれの条件において、左右正中神経刺激を刺激間隔3秒とし、計80回加算平均した。被験者は一般成人とし、予備実験で3名、本実験で5名の計測を行った。引き続き、2018年度も実験を継続する予定である。
先行音と後続音は（1）と同じであった。無音区間長は0msec（無音無し）,（1）で測定した50%無音閾値と同じ長さ,十分に長いもの,の3種類を用意し,それぞれを1:8:1の割合でランダムに先行音と後続音の間に挿入した。能動的に無音検出を行うために,毎回の音刺激呈示後に無音有りか無しかをボタン押しで報告させた。その結果,周波数内条件で閾値と同じ長さの無音区間を挿入すると,後続音開始後100msec付近に明確な聴覚反応が観察された。一方,周波数間条件では,0msec及び閾値と同じ長さの無音長のどちらにおいても後続音開始後100msecで明確な聴覚反応が観察された。これら聴覚反応については,音刺激を右耳呈示したにも関わらず,右半球（同側）優位の傾向が見られた。また,能動的聴取により,無音有りと無しの反応に対して活動波形が異なるか検討を試みたが,どちらかの反応に偏る傾向が強く,十分な分析は出来なかった。次年度以降は,能動的聴取が聴覚反応に与える影響を明確に観察出来るよう実験計画を修正する予定である。

7. MEGを利用した聴覚時空間的脳活動の検討

本研究の目的は,旋律の認知の機構を,多義的旋律聴取時のMEGの計測により研究することである。多義的旋律とは,我々の提案したもので,図1(a)のようなものである。A4音とE5音が背景音として連続して提示されている。このときC5音が断続的に提示されると,場合によってはC5-A4-C5-A4,という旋律が聞こえ,場合によってはC5-E5-C5-E5,という旋律が聞こえる。錯聴と考えてよいと思われる。これは聴覚系,特に音楽認知に関わる機構において,旋律として再構成を行っていると考えられる。したがってこのときの脳反応を調べることは,旋律認識の研究に役立ちのではないかと考えている。

図1(b)-(e)は実験に使用した音刺激の例である。背景音はすべての例でA4,とE5であり,それぞれ37.5Hz,42.5Hzで振幅変調されている。すべての例で第3小節目には,誘導のための旋律C5-A4-C5-A4(Down)またはC5-E5-C5-E5(Up)が挿入されている。誘導旋律のあと図1で示したのと同じ多義的旋律部分が続く。このとき聴者は,誘導旋律を錯聴する可能性が高い。2個の正弦波を異なる変調周波数で振幅変調してASSRを測定すると,搬送波周波数の高い方に対するASSRが低い方向を抑制することが知られている。そこでE5に対するASSR振幅HとA4に対するASSR振幅Lの比を,誘導旋律別に求めた。しかしH,Lは錯聴によるだけでなく,その前の誘導旋律そのものの直接影響を受けると考えられるので,図1の(b),(c)におけるそれぞれの値Hbg,Lbgで正規化した。すなわちH＝H/Hbg, L＝L/Lbgとしてこれらの比を求めた。結果を図2に示す。Downに対するときの比が有意に大きかった。多義的旋律から聞く旋律に依存したMEG反応が初めて得られたので,これから実験方法をさらに精査して,より多くの知見を得たい。

2017年度は主に夏期休暇や冬季休暇を利用して,生理学研究所のMEG装置を利用させていただきました。研究室の柿本隆介教授ならびに竹島康行氏に深謝いたします。
図2. E5に対する正規化ASSRとA4に対する正規化ASSR振幅の比H/Lを誘導旋律UpとDnで比較したもの。11人の被験者の結果。

8. 共同運動課題時の複数名同時脳活動計測：
コミュニケーション形成の神経的基盤を探る

阿部匡樹（北海道大学大学院教育学研究院健康体育学分野）
高橋康介（中京大学心理学部実験心理学領域）
渡邊克巳（早稲田大学理工学術院基幹理工学部表現工学科）

二人以上の集団が一つのゴールのためにお互いの行為を統合する共同運動課題は、身体を介した直接的な個人間コミュニケーションの典型例である。そこで、巧みな協応により個々の能力以上のパフォーマンスが生成される一方、理論的には決して効率的とはいえない社会的相互作用も生じる。これらの現象は心理物理実験やゲーム理論において示されてきたが、その神経的基盤はいまだ明らかにされていない。特に、2名による共同課題での研究例は少数ながら存在するものの、社会性の影響が顕著になることが示唆されている3名以上の共同課題における神経活動の研究例はほとんど無である。本研究では共同課題時の複数名（最大3名）の脳活動を同時に記録・解析することにより、共同課題時特有の脳内情報処理過程を明らかにすることを目的とした。

これまで、我々は2人の把持力の合計を標的力に合わせるという共同把持力調整課題を用い、その際の脳活動を調べることで、共同行為の組織化に関する神経基盤を検討してきた。その結果、単純な力調整課題でもmentalizing systemと呼ばれる脳領域の賦活が生じること、その中でも右の側頭-頭頂接合部（TPJ）が他者との協調に大きな役割を示すことを明らかにしている。この力調整課題にさらに1名加えて3名とした場合、より複雑かつ高次の社会性が要求され、その神経基盤の詳細を検討することが可能となると考えられる。そこで、本年度は昨年度に引き続き2台の3T-fMRIスキャナと1台の7T-fMRIスキャナを同時に用いる実験環境の構築を進め、かつ実験課題の精査と検証を行った。

3台のfMRIスキャナおよび視覚刺激の同時使用に関して、当初はインターネット等の通信手段を介した同期が検討されたが、精度や信頼性の問題があったため、現在は延長USBケーブルによる別棟間の直接接続を前提とした実験系の構築を進めている。また、それに使用される7T-fMRIに関しては、3人のうち1人のみfMRI計測を行う形で予備実験を行い、問題なくデータが取得できることを確認している。実験課題に関しては課題間で視覚刺激や課題困難度の差が生じることが問題となっていたが、人工信号の導入などによって改善が加えられた。これらの整備により、2018年度中には3台のfMRIスキャナを用いた実験を行う予定である。
9. 社会的接触の神経基盤の解明

荻野祐一（群馬大学大学院医学系研究科）
川道拓東（群馬大学医学部）
菅原翔（生理学研究所心理生理学研究部門）

ヒト社会は、他者との連関である社会的紐帯を基本単位として構成されている。社会的紐帯を構成する他者と社会的に触れ合う（社会的接触）は重要な社会的行動の一つであり、その効果は大きい。例えば、社会的接触による感情的サポートを通じて、自己が置かれた苦境を乗り越えることができる（Mikulincer et al., 2003）などがある。これは社会的接触により陰性感情反応が減弱することにより実現されると考えられる（Coan et al., 2006, Kawamichi et al., 2015）。

我々は、社会的接触として、個人間の身体的接触を取り上げ、その神経基盤の実験的検討を行った。実験においては、生理学研究所のSiemens社製3 T MRIを用いて、親密な関係にある男女ペア（交際関係：8組16名、20.3歳±0.3歳）、あるいは、女性ペア（友人同士：9組18名、20.5歳±0.3歳）の身体的接触によって惹起される脳活動を計測した。

実験条件としては、ペアが身体的接触をする条件（P: Pair）、および、ペアと同性の実験者が身体的接触をする条件（E: Experimenter）の二つを課した。この時に、実験参加者には知らせずに、両条件ともに実験者が触れるところをキャンセルアウトした。

解析の結果として、ペアによる身体的接触は主観的幸福感を表象するsACCの活動を惹起することを確認した。今後、本実験で得られたデータを統合的な解析、および、論文化を加速する。

10. 温熱的快適感の脳内形成機序の探索

永島 計（早稲田大学人間科学学術院）
中田大貴（奈良女子大学生活環境科学部）
原田宗子（広島大学感性イノベーション拠点）
定藤規弘（生理学研究所心理生理学研究部門）

温度に関わる感覚の客観評価、脳の責任領域の同定のために、機能的核磁気共鳴画像法（functional Magnetic Resonance Imaging; fMRI）を用いて実験を行なった。先行研究では温度感覚と温熱的・快不快感が異なる責任領域にある可能性が提示されている。我々が行なった一連の実験では、末梢及び全身の温度条件、温度感覚の心理学的評価の違いに基づき、局所温度刺激時に共通した脳領域が活動している可能性が示唆された。さらに、局所温刺激実験を追加したデータを解析し、投稿の途中である。以下が投稿内容の概要である。

2. 方法

男女16名を対象に局所温度刺激（18℃, 41.5℃）と皮膚表面温度刺激（17℃, 32℃, 47℃）を組み合わせた実験を行った。ペルチエ素子により前腕局所温度刺激、水還流スーツを用いて皮膚表面温度を変化させた。その間のBOLD信号を測定した。またVisual analogue scale（VAS）を用いて温度感覚、温熱的快・不快感評定させた。

3. 結果・考察

局所温刺激は、全身還流温に関わらず熱いと評価された。局所温熱的快・不快感は、還流温が47℃の際に不快であると評価された。局所冷刺激は、全身還流温に関わらず冷たいと評価された。局所温熱的快・不快感は、還流温が47℃の際に快、還流温が18℃の際に不快と評価された。fMRIの解析では、全ての実験条件を通じて両側性感覚野、左島皮質、内頭皮質、縁上回、帯状回、内側前頭皮質を含む比較的広範囲な脳活動が見られた。

興味深いことに、行動実験の結果では、全身を冷却した場合に局所温度と快感不快感の相関値は、高い相関を
生理学研究所年報 第39巻（Dec.2018）

11. 社会的疲労の神経基盤研究

渡辺恭良，佐々木章宏，水野　敬，渡辺恭介
（国立研究開発法人理化学研究所ライフサイエンス技術基盤研究センター）
定藤規弘（自然科学研究機構生理学研究所）

疲労は過度の活動や精神的ストレスの蓄積によって生じる。疲労状態においては認知機能の低下や副交感神経活動の低下と交感神経活動の亢進が認められ、疲労は認知機能、自律神経機能と密接に関連する。

社会的場面で見られる他者から評価を受けるなどの状況は不安感の増大のみならず心拍数の上昇など自律神経系への影響を示すことが知られている。このような社会的ストレスの自律神経系への作用と疲労や疲労感の関連は明らかになっておらず、本研究では他者の視線を受けた状況が認知課題により惹起される疲労感をより増大すると予想し、検証試験を行った。

18名の健康被験者に他の者を視線を受け、又は視線を受けない環境のそれぞれで30分間の疲労負荷課題とその前後の疲労評価課題からなる急性疲労負荷試験に参加した。疲労負荷課題にはコンピュータの画面上に連続的に示される数字を記憶し、新たに示される数字との異同を回答する二択課題を用い、課題中に表示された数字を同異を回答する2バック課題を用い、課題中の興奮状態を記録した。疲労評価課題は数字と平仮名のターゲットを探索しボタン押しを行うmodified advances trail making test（mATMT）のE課題を5分間繰り返し行い、正答数、課題を繰り返すまでの潜時を評価した。更にvisual analog scale（VAS）による主観評価も行った。

VAS評定から疲労感の有意な増大を認め、疲労荷負課題における不快感に関しては内側前頭前皮質や前補足運動野、快感に関しては前帯状回、線条体が関与している可能性が示唆された。

fMRIの解析では、全身温度刺激を行なった実験を通じて両側体性感覚野、左島皮質、内前頭皮質、縁上回、帯状回、内側前頭皮質を含む比較的広範囲な脳活動が見られた（図1）。

また、局所温度刺激では、右体性感覚野、両側の島皮質、中前頭皮質、帯状回、内側前頭皮質に脳活動が見られた。これらの領域は温度の質に関わらず、外界からの温度刺激そのものを処理する領域と判断された（図2）。

図1

図2
問題の妥当性を認めた。さらに他者の視線を受ける条件で
はストレスの評定が有意に増大した一方で、視線を受け
ない条件では有意な意義の低下と眠気の評定が増大した。
つまり視線を受けることで精神的ストレスが増大した一
方で視線が無い時には課題に対する飽きが生じたと推測
された。疲労評価のmATMT課題では両条件で正答数が
疲労負荷後に増大し学習効果を示したが、条件間での有
意差は認めなかった。一方、課題を繰り返すまでの潜時
は視線を受ける条件でのみ疲労負荷前よりも疲労負荷後
に有意に短くなることを認めた。つまり他者の視線を受
けることが被験者の覚醒度を高めた可能性が示唆された。
また脈波の解析結果は心拍数や自律神経活動における条
件間での有意差を示さなかった。本研究では他者の視線
が精神的作業による疲労感をより増大させる効果は認め
なかった。しかしながら他者の視線による社会的ストレス
は覚醒度を高めることが明らかとなり、視線を受けな
い時は異なる機序で疲労感が誘起きられる可能性が示
唆された。

12. 7テスラ MRI 装置における8チャネル並列送信技術の開発

田中啓治, R Allen Waggoner, 上野賢一, Shubham Gupta
(理化学研究所脳神経科学研究所 臨床機能現象解析チーム 機能的磁気共鳴画像測定支援ユニット)

下側頭葉や前頭眼窩野などでの磁化率アーチファクト
の除去のために並列送信法を開発している。4T-MRI 装
置に8 チャネルの並列送信システムを含む、並列送信
技術を開発してきた。並列励起では、供給エネルギーの
局所最大値を安全基準以下に抑える方法を確立する必要
がある。私達は個々の被験者の頭部模型を作成して供給
エネルギー分布をシミュレートし、さらに温度イメージ
ングにより温度変化を実測してシミュレーションの信頼
性を確認する方法を開発した。4T-MRI 装置で2 チャネ
ルの送受信兼用コイルを自作し、4T-MRI 装置で寒天ファ
ントムを用いた並列送信撮像を行い、シミュレーション、
温度イメージングによる測定、熱電対による直接測定の
3 つがよく一致することを確認した。また、7T-MRI 装置
用8 チャンネルの送受信兼用コイルを設計・自作し、7T-
MRI 装置に接続するためのインターフェースを業者に委
託製造した。

13. 表情と音声による視聴覚情動知覚の文化差を生み出す神経基盤

田中章浩 (東京女子大学 現代教養学部心理学専攻)
高木幸子 (常磐大学人間科学部コミュニケーション学科)
田部井賢一 (三重大学大学院医学系研究科認知症医療学講座)
原田宗子 (広島大学大学院医歯薬情報学研究科 感性イノベーション推進)
定藤規弘 (自然科学研究機構生理学研究所システム脳科学研究領域心理生理学研究部門)

他者の情動を適切に知覚することは、円滑な社会的コ
ミュニケーションをおこなう上で非常に重要である。
Tanaka et al. (2010, Psychol Sci) は表情と音声の視聴覚統
合様式に文化差があることを初めて明らかにし、日本人
はオランダ人よりも声優位性が高いことを心理実験に
よって示した。本研究ではこの知見を踏まえ、日本人と
オランダ人実験参加者を対象に、fMRI を用いて視聴覚
情動知覚の文化差の神経基盤を検討している。

1) 2016 年度までの研究概要
実験では日本人とオランダ人参加者に、視聴覚に活動刺
激（日本人およびオランダ人による喜びと怒りの情動表
現）を提示し、顔と声の情動価（一致／不一致）を操作
した。参加者は顔または声のいずれかに注意を向けて、
2 脳強制選択（喜び／怒り）で情動を判断した。上記に加
えて、視聴覚単独提示の条件も設けた。
分析の結果、行動データは Tanaka et al. (2010) の先行研
2017年度の研究成果

2017年度は、日露の文化差を生み出す神経基盤について詳細な知見を得ることを目的として、引き続きイメージングデータの解析をすすめた。具体的には、一次聴覚野（BA17）／一次聴覚野（BA41）／TVA／FFAを関心領域としたROI解析を実施した。分析手法は、以下の2パターンであった。第一は、要因計画を注意課題（顔／声）×顔と声の情動価（一致／不一致）、従属変数を領域ごとのEffect sizeとする分析であった。第二は、要因計画を文化（日／露）×注意課題（顔／声）、Effect sizeから算出した一致性効果（不一致条件時の正答率から一致条件時の正答率を引いた値）とする分析であった。

分析の結果得られた主要な知見は、以下の2点であった。まず、第一の分析から、文化によらず一次聴覚野（BA41）の活動には左右差（活動：左＞右）がみられることが明らかになった。一次視覚野（BA17）においては、第一の分析から文化によらず顔課題の一致性は顔と声の情動価が不一致の場合よりも一致している場合に大きいことが明らかになった。また、第二の分析から、一次視覚野の左右どちらにおいても、顔課題の一致性効果は日本人よりもオランダの方が大きいという文化差がみられることを示された。つまり、情動判断時の視聴覚情報の干渉に関して、行動データで観測された文化差は一次視覚野の一致性効果の差に基づいて生じる可能性がある。

今後は、より詳細な解析を実施し、得られた知見の論文化を試みる予定である。

14. クロスモーダルな感覚情報の脳内表現様式の解明

宫脇陽一、衛藤祥太（電気通信大学 情報理工学研究科）
神谷之康（京都大学情報学研究科）
角谷基文、北田亮、福永雅喜、定藤規弘（生理学研究所 心理生理学研究部門）

感覚野の情報処理は、単一の感覚モダリティだけでは閉じず、視覚、聴覚、触覚などの複数の感覚器から得た情報が相互作用することにより、統一された知覚表象が獲得されている。このような異種感覚間の情報相互作用には、高等生物が生存環境に適応する過程で獲得してきた、複数情報を統合し補完する巧みな情報処理手法の普遍原理を理解するための重要なヒントが含まれているに違いない。そこで本研究では、機能的磁気共鳴画像（fMRI）計測法によってヒト脳活動を計測することにより、大脳皮質感覚野における異種感覚情報の相互作用および統合過程を調べ、ヒト脳内の異種感覚情報の表現在様式を解明することを目的とする。

2017年度では、昨年度から引き続き、触覚刺激情報のクロスモーダルな脳内表現在について着目して研究をすすめた。これまでに実施した、示指、中指、薬指の三指先端部に運動線分刺激を提示した際の脳活動計測実験の
データの追加解析を中心に研究を実施した。具体的には、单変量解析に基づく脳活動部位同定に加え、マルチボクセルパターン解析、サーチライト解析、表現類似度解析などの多変量解析を実施し、他側面からの解析を実施するとともに、必要な対照実験データ収集のための準備を進めた。また機能画像計測時における分解能向上を目指した撮像方法の改良の検討を実施した。

その結果、触覚刺激時においては、体性感覚野に加え、頭頂間溝において脳活動が比較的再現性高く観察されるが、第一次視覚野の脳活動強度は被験者に依存した差がある可能性が示唆された。また、マルチボクセルパターン解析の結果より、体性感覚野からは多くの被験者間で触覚刺激を高成績で予測することが可能であるが、第一次視覚野においては触覚刺激の予測が不能な可能性があることを複数の解析アルゴリズムにて検証した。これらの結果をまとめ論文として公刊する準備を進めた。

15. 社会的報酬および罰が運動パフォーマンスに及ぼす影響の神経機構の解明

中山義久、西村幸男、鈴木朋秋（東京都医学総合研究所）

スポーツや勉強の場面で、意欲に満ち溢れている時には高いパフォーマンスを出し、よい結果を得ることができるということは多くの人が経験することである。また、リハビリテーションの現場でも、意欲を持ち続けることが、運動機能回復が早くなるということが経験的に知られている。さらに、意欲を有する脳部位である側坐核が運動を生み出す運動野に直接的に働きかけ、この系が運動の生成に重要であることが神経科学の分野でわかってきた。しかし、精神状態とパフォーマンスとの間の因果関係を説明する神経科学的根拠については未だ不明である。そこで本研究では、意欲や社会的要因によって左右される精神状態とそれにより制御される身体運動制御機構の神経基盤を解明することを目的とする。

本年度は金銭報酬による社会的な介入に関わる実験を実施した。握りグリップを合図の提示後に素早く握る課題を作成し、合図の提示から決められた時間よりも早く握れば500円または50円を得る条件（獲得条件）と、握るのが遅くなれば500円または50円を失う条件（損失条件）を設定することで、意欲の操作を行った。また、コントロールとして反応時間によらず金銭の増減が生じない条件も設定した。各試行の最初に視覚刺激によって、当該試行がどの条件であるかを指示した。本年度は30名が実験に参加した。損失や獲得の額が大きいほど運動が成功する（早く握る）割合が高くなり、グリップを握る力が強くなるという行動データが得られている。また、fMRIデータの解析により、獲得条件において側坐核や腹側被蓋野といった報酬に関わる脳領域と、グリップを握った手と反対側の一次運動野の活動が確認された。以上の結果は、金銭報酬が得られる状況では意欲や報酬に関与する脳領域が活動し、それが運動野の活動に影響を与え、高い運動パフォーマンスを生成する可能性を示唆する。また、運動パフォーマンスを生成するメカニズムの認知的な側面に着目した研究も実施している。たとえば赤信号を見てブレーキをかけるという場面では、自動車を運転する場合とバイクを運転する場合では具体的な運動は異なる。このように運動を選択し実行するための「目的」に着目し、行動選択を運動情報に変換するメカニズムを7テスラMRIにより検討する実験を実施している。現時点で17名が参加し、行動データおよびfMRIデータの解析を現在実施中である。

16. 語用論的解釈の神経基盤 ー 発話における意図的不調和の処理過程に着目して

松井智子（東京学芸大学国際教育センター）
内海 彰（電気通信大学大学院情報理工学研究科総合情報学専攻）
中村太戸留（慶應義塾大学環境情報学部）

私たちをとりまく環境は変化が激しく、個人が有している内在的知識と、その個人が受け取る外的情報との間に
は、常に何らかの不調和が生じている。発話における意図的な不調和は、文字通りの意味ではない語用論的な解釈をする際の重要な手掛かりとなる。その不調和の感知と解消においては、脳内の認知処理および情動処理のネットワーク間の協働が重要な役割を果たす可能性が考えられる。本研究では、その神経基盤の検証を目的とし、(A)「皮肉における発話内容とプロソディの不調和処理の神経基盤を探る」と (B)「面白さを誘発する隠喩的表現における不調和処理の神経基盤を探る」を進めている。

(A)皮肉に関して、本年度は韻律という手掛かり情報の役割を探るための刺激の作成をおこない、その特性を探るための予備実験、本実験、そしてその行動データの解析を実施した。刺激は文脈と発話で構成した（図1 左）。文脈におけるネガティブ(N)な出来事に対してポジティブ(P)な内容の見解を発話した場合には、文脈の効果を有する皮肉が想定される（内山他, 2012）。一方、韻律が出来事や見解と不調和な場合には、韻律の効果を有する皮肉が想定される（松井他, 2016）。松井他(2016)においては文脈の効果と関連した神経基盤(心の理論などの賦活)が認められず、その理由としては実施した課題の難易度が低かった可能性が考えられるため、本研究ではその難易度を上げる工夫を施した。また、韻律の基準状態として、文脈と発話を棒読み(m)の韻律で提示し、韻律が手掛かり情報となったように工夫した条件も設定した。皮肉の度合いの7件法(皮肉を7、文字通りの意味[字義]を1)による回答(行動データ)の特性は本実験と予備実験とで合致した（図1 右）；「NPM」などの条件名は「出来事、見解、韻律」の順でPからNかmを記載；予備実験は5件法で実施したものを利用表示)。

(B)隠喩に関して、面白さを生じる際、不調和解消が重要な役割を担うと提案されているが、特有の神経基盤は特定されていないのが現状である（Vrticka 他, 2013）。そこで、不調和の感知段階と解消段階を分離する方法を考案して実験したところ、扁桃体の重要性が示唆されたため、その旨を記した論文を発表した（中村他, 2017）。

来年度は、これらをもとに解析と考察を進め、語用論的な解釈をする際、どのような不調和処理の機構が関与するのかに関する検討を進める予定である。

引用文献
17. 共感性と情動の相互作用にかかわる脳内機構

飯高哲也（名古屋大学・大学院医学系研究科）

脳機能研究において近年では、課題を用いない安静時fMRIの応用が進んでいる。とりわけ患者群と健常群で、脳領域間の機能的結合性を比較する研究が多い。安静時fMRIの前処理は課題時fMRIと異なり、生理学的ノイズや頸部の動きの影響に注意する必要がある。このため白質や脳内の信号値を、データから取り除く処理を加えることは、安定した時系列データが得られると言われている。しかし脳全体の信号値をデータから除去するグローバル信号再帰（global signal regression: GSR）方法を用いるか否かは議論の対象となっている。本年度は脳領域間の機能的結合性に、GSRがどのような影響があるかを患者群と健常群で検討した。

安静時fMRIデータは米国の多施設共同研究（Autism Brain Image Data Exchange）から取得した、男性の自閉スペクトラム症（ASD）と健常者（CTL）のデータ（平均年齢10.8歳）である。MRI機種別に3群（G, P, S）に分類した。被験者数はG群で89名（ASD/CTL: 44/45）、P群で76名（38/38）、S群で79名（45/34）であった。データはSPM12とDPARSF（http://www.rfmri.org/）で処理され、90個の脳領域間の信号値の相関係数が計算された。GSRの前後でデータの歪度と尖度にどのような変化があるか、機種群と疾患群別で検討した。最後に頸部の動きが歪度に与える影響について、動きの大きい被験者を順に群から除外しながら検討した。

GSRはASDとCTL両群において、また全ての機種において、脳領域間の相関係数をゼロを中心とした分布に変えることが分かった。GSR前にはASD群とCTL群で有意に異なっていた相関係数の平均値は、GSR後にはその有意差が消減していた。頭部の動きが大きい被験者を削減することについては、GSR後にのみ相関係数の歪度を低下させた。

これらの結果をまとめると、以下のようになる。第一にGSRを行うと、相関係数の分布が左に変位して平均値がゼロに近づくことが分かった。第二に、GSR前にASD群とCTL群の間に存在した結合性的有意差が消失した。第三に、領域間の過剰な相関値を低下させる役割は乏しかった。第四に頭部の動きが大きい被験者を除外することとは、歪度に好影響を与え、しかしサンプル数の減少は、実験の統計的パワーを減少させた。GSRを行うかどうかは現時点では定説はなく、方法は研究者に任せられている。以上のようなる点を考慮して、自らの仮説検証に適切な手法を採用する必要がある。

18. 脳波・機能的MRI同時計測法を用いた睡眠覚醒機構の解明

石井 徹, 髙屋成利, 麻生俊彦（京都大学大学院医学研究科附属脳機能総合研究センター）

睡眠と覚醒、意識と無意識の境界が如何にコントロールされているか、あるいは脳科学領域に残された大きな課題の一つである。睡眠覚醒及び睡眠ステージの分類は1966年のR&K criteria発表以来、脳波所見を元に行われている。しかし、それら個々の脳波所見を生じる脳活動については未解明の部分が多く、覚醒睡眠を生み出す神経基盤や調節機構については未だ謎のままと言える。そこで本研究では、睡眠判定のgold standardであり高い時間分解能を有する脳波と、高い空間分解能を有するMRIの同時計測手法を行い、覚醒から睡眠の各段階を調節する脳機能に基づくことを目的とした。

18-35歳の健康な男女を対象として被験者を募集し、午睡実験を行った。自然睡眠中の脳活動計測を3T MRI（Siemen社、verio）及び脳波計測装置（BrainProducts社BrainAmp）により行い、MRIの連続撮像は1時間を超えない範囲とした。覚醒から睡眠NREM stage1に入り際の脳活動・脳内ネットワークの変化に焦点をあて、リアルタイムの視覚脳波判定によりstage shiftが起きた時点で
被験者に覚醒を誘導する方法を用いた。当初 fMRI 撮像中に生理研所属の脳波装置が error を起こし実験中断を余儀なくされることは繰り返した。fMRI の時間分解能を高める multiband 法での撮像による RF 負荷増大が一因と考えられたが、京都大学所有の同一機器にて実験を行なったところ error は再現されなくなった。このため、大学より機器貸出手続きを行い実験継続した。これにより当初の計画より遅れが生じたが、2017年度に16名（女性8名、平均21.8±3.4歳）の撮像を終えた。

解析として、まず周波数解析による自動睡眠段階判定を行い、視察判定による睡眠 stage との一一致率を検証した。これまでのところ、個人差はあるものの概ね1時間の撮像間に複数回の睡眠覚醒 stage shift を誘導できており、視察での脳波睡眠 stage 判定と周波数解析による判定が高い一致率を示すことができた。これらデータから順次 fMRI 解析に着手している。

今後覚醒睡眠/睡眠段階の切り替えに伴う脳活動や脳内ネットワーク変化の分析を主体に、fMRI 個人解析を行ったうえでグループ解析へと進む予定である。

19. 課題正解率を変える呼吸と脳活動の相互作用の解明

中村 望、越久仁敬（兵庫医科大学生理学生体機能部門）
福永雅喜、定藤規弘（自然科学研究機構生理学研究所システム脳科学研究領域心理生理学研究部門）

日本古来より禅や仏教で実践されている呼吸の整え、調息は、社会活動におけるさまざまな作業成果の向上、課題遂行の成績向上に重要な役割を果たすと考えられてきた。しかしながら、その作用機序についてはほとんど明らかにされていない。

我々は2017年度において、これまで得られたヒト心理生理実験データを詳細に検討した。その結果、見本合わせ認知課題を行ったとき、記憶想起の一連の過程（想起画像提示からボタン押しまで）が、特に呼息相-吸息相転移期を含んでいる場合、課題正解率が著しく低下することを発見した（n=18, p=0.004, 論文投稿中）。一方、記憶想起の過程が吸息相-呼息相転移期を含んでいる場合は、正解率の変化が観察されなかった。また記憶エンコーディングにおける呼吸相による効果は、記憶想起とエンコーディングにおける呼吸相の組み合わせによってその効果が明確に示された（論文準備中）。このように、呼吸相による認知過程への作用を詳細に検討したため時間を要したが、数秒単位で起こりうる記憶想起に対する呼吸相のタイミング効果を明確に見出すことができた。

この成果を踏まえて2017年11月より、fMRI 実験を開始し、同一の心理生理実験を fMRI 計測上で再現するためさまざまな設定の調節および fMRI 予備実験を行った。現在、それらの設定調節は完了し、今後は、被験者での実験を本格的に開始する段階にある。実験では、同一の見本合わせ認知課題を用いて、記憶想起において、特定の呼吸相位に合わせた課題提示とそれ以外の課題提示を比較するデザインにて fMRI 計測を実施する。そして、特に前頭前皮質、海馬、青斑核の活動に注目し、呼吸相のタイミング効果における記憶想起の神経基盤を明らかにしていく。

20. 漢字表記と仮名表記における N170

井田佳祐（早稲田大学大学院文学研究科）
日野泰志（早稲田大学文学学術院）
木田哲夫（生理学研究所統合生理研究部門）

文字列を視覚的に提示すると、文字列以外の刺激を視覚的に提示した場合に比べて、提示後170ms付近で後頭側頭部の陰性の振幅が増加する（N170）。顔や物体に対するN170が右半球優位もしくは両側性であったのに対し、
文字列に対するN170は左半球優位であった(Bentin, Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999)。また，文字=音韻対応が規則的なドイツ語では，語/非語のいずれにおいてもN170の左半球優位性が観察された(Maurer, Brem, Bucher & Brandeis, 2005)。一方，文字=音韻対応が不規則的な英語では，語においてのみN170の左半球優位性が観察された(Maurer, Brandeis & McCandliss, 2005)。こうした結果から，N170の左半球優位性は文字から音韻への変換処理に関与している可能性が示唆されている(Maurer & McCandliss, 2007)。

しかし，申請者らがこれまでに行った予備実験では，(規則的な文字=音韻対応を持つ)仮名および(不規則な文字=音韻対応を持つ)漢字の語/非語のいずれにおいてもN170の左半球優位性が観察されなかった。本研究では，N170の左半球優位性が文字=音韻対応の規則性を反映するかについてさらに検証するため，多数の刺激を使い，刺激の特性を説明変数とした回帰分析を行うことで，N170の左半球優位性に影響する要因を探索した。

実験参加者は18名の右利きの成人男女であった。ターゲットは漢字語(e.g., 台風), カタカナ語(e.g., スナック)を各240語, 漢字の非語(e.g., 造交), カタカナの非語(e.g., コブイン)を各60個使用した。各試行では凝視点が1000ミリ秒間提示された後，ターゲットとなる文字列が提示された。実験参加者は非語が提示された場合にはキーを押し，語が提示された場合には1秒間何もしないように指示された。ターゲット提示の100ミリ秒前から1000ミリ秒後までの脳波を測定し，刺激項目ごとに加算平均を行った。N170の区間はターゲット提示後120msから180msとした。

P7の平均振幅からP8の平均振幅を減算した値をN170の左半球優位性の指標とみなし，回帰分析における従属変数とした。回帰分析の結果，漢字語とカタカナ語のいずれにおいても，N170の左半球優位性と相関のある刺激特性は観察されなかった。また，標準偏回帰係数は，文字=音韻対応の規則性よりも出現頻度や画数で大きくなった。

本研究においては，N170の左半球優位性が文字=音韻対応の規則性を反映する指標であることを示すデータは得られなかった。一方，刺激提示の170msよりも後の波形が仮名と漢字で異なっており，文字から音韻への変換を反映する成分はN170よりも遅い処理による可能性が考えられる。

21. 聴覚変化応答とその抑制における大脳半球差

ヒトは迫る危険を察知して，適切な行動をとらなければならない。この知覚探知に関わる情報処理過程はミリ秒単位の高い時間分解能を有する脳波や脳磁図で捉えることができる。突然の音特性変化(test刺激)から約50～250ms遅れて後期活動が誘発され，この脳活動は物理的変化量に依存し，"変化関連脳活動"と考えられる。さらに，test刺激の直前の微弱な音特性変化_prepulseにより，この脳活動は減弱する。音が消えるというオフ応答もprepulse抑制がみられることもある(Motomura et al., 2018)。

今回，全頭型脳磁図計(Vectroview, ELEKTA Neuromag)を用い，健常者を対象として変化応答とその抑制における大脳半球差の解明を目指した。100-Hzクリック連発音を左右の片耳に呈示し，途中で音圧を3dB上げる(test刺激)ことで誘発されるChange-N1mを解析標的とした。prepulse刺激として，音特性変化前の2連続click音の音圧を約3dB上げた。双極子解析により左右聴覚野に推定された皮質活動を用い，Change-N1m振幅とその抑制率について大脳半球差を検討した。左側と比較して，右聴覚野の皮質活動では，Change-N1m振幅や有意に高く，prepulse刺激によるChange-N1m振幅の抑制率も有意に低かった。

変化関連脳活動にみられるprepulse抑制は，感覚情報に対する入力制御を直接的に脳活動の動きとして捉えることができる。右半球においてChange-N1m振幅のprepulse抑制が左半球と比べて弱いということは，新奇刺激に対する入力制御が小さく，音特性変化に敏感に応答することを示唆すると考えられる。Test刺激に対するChange-N1m振幅と合わせて，変化検出における右半球優位性を明らかにできた。

241
22. MRIを用いた大脳基底核新経路の検証

吉田篤司
(理化学研究所ライフサイエンス技術基盤研究センター・機能構築イメージングチーム・基礎科学特別研究員)

大脳基底核は赤信号なら止まる、青信号なら進む、というようなルールに従った運動の制御に関与するとされている。また、学習を通じて獲得する認知機能にも関与するとされている。大脳基底核はこれまでの解剖学的研究で大脳皮質や視床、脳幹など脳内の多くの部位と連結があることが明らかにされ、3つの経路（直接路、間接路、ハイパー直接路）が機能的に重要と考えられてきた。しかし、申請者はサルの行動課題遂行中に間接路の一部とされる淡蒼球外節から神経活動記録を行い、淡蒼球外節には2つの種類の神経細胞が存在すること、更に3経路と別の第4の経路が存在している可能性を提唱した。

本研究は、第4の経路を含めた4つの経路がどのような機能に関与しているのかを明らかにするために、健常被験者を対象として学習と組み合わせた課題遂行中の機能的磁気共鳴画像法（以下fMRI）を行う。

課題には提示されたターゲットと同側のボタンを押す課題（congruent課題）、反対側のボタンを押す課題（incongruent課題）、いずれのボタンも押さない課題（NoGo課題）という3つの行動課題を用いる。課題は2つのブロックで構成される。一つのブロックでは、被験者が見たことのない複数の視覚刺激を用意し、提示される視覚刺激と行うべき行動のルールは事前には明示されないため、試行錯誤により視覚刺激と選択すべき行動の連合学習を行う必要がある。それに対して、別のブロックではどの視覚刺激が提示されたときにどの課題を行うか、事前にルールを明示するため、連合学習は必要としない。これらの2つの条件下で3つの課題を行っている最中のfMRI画像を行う。これにより学習を必要とする運動時に活動する脳領域と学習を必要としない運動時に活動する脳領域を探索することができ、申請者が提唱する経路を含めた4つの経路の役割を明らかにする。

今年度は初年度に作成した視覚刺激提示プログラムを用い、撮像を行った。まずファントムを用いた撮像を行い、MRI撮像パラメータの調整を行った。その後提示プログラムの修正を行い、実際に1名の健全被験者を対象としてfMRI実験を行った。今年度は提示プログラムの細部の調整終了後に被験者の募集を行い、撮像を行う予定である。

23. 3次元シネ位相コントラスト磁気共鳴法の基礎的検討

礒田治夫（名古屋大学脳とこころの研究センター）
福永雅喜（自然科学研究機構生理学研究所）
福山篤司、田嶋駿亮、水野 崇、MAJUWANA GAMAGE Roshani（名古屋大学大学院医学系研究科）
小森芳秋（シーメンスヘルスケア株式会社）

1. 背景

脳動脈瘤の発生・成長・破裂には血流動態、特に壁剪断応力（Wall share stress, WSS）等の血流速度バイオマークーが関与していると報告されている。血流動態を評価する方法として、3次元シネ位相コントラスト磁気共鳴法（3-dimensional cine phase-contrast magnetic resonance imaging, 3D-Flow）を使用した磁気共鳴流体力学（Magnetic resonance fluid dynamics, MRFD）解析がある。

MRFD解析における空間分解能は4D-Flowの空間分解能に依存する。従来使用されている臨床用1.5Tesla (T)・3T MR装置では4D-Flowの空間分解能に限界があり、直径3mm程度の血管では、その解析精度は十分でない。7T MR装置では1.5T・3T MR装置よりも高空間分解能で4D-Flowを撮影できるため、直径3mm程度の血管を対象としたMRFD解析で解析精度が担保されることが期待される。本研究の目的は自作流体ファントムを3T MR装置
と7T MR装置の4D-Flowで撮影し、装置間のMRFD解析精度を比較することである。

２．方法
内径3mmのアクリル製直管を使用したファントムと流量計を含む流路を作成し、ポンプを用いて模擬血液を循環させた。名古屋大学の3T MR装置（MAGNETOM Verio, Siemens）と生理学研究所の7T MR装置（MAGNETOM 7T, Siemens）で流路上のファントムを4D-Flowで撮影した。撮影して得られたMR画像を血液解析ソフト（Flowa, R’tech）で解析し、速度プロファイル・管直径・断面最高流速・断面平均流速・体積流量を算出した。撮影時に、流量計で流量を経時に測定し、基準値とした。速度プロファイルは視覚的に評価し、管直径・断面最高流速・断面平均流速・体積流量は基準値との相対誤差を算出した。

３．結果
7T MR装置の速度プロファイルは3T MR装置より壁近傍の流速が精度よく計測された（Fig. 1）。3T MR装置・7T MR装置の管直径・断面最高流速・断面平均流速・体積流量は両者ともに基準値との相対誤差は20％以内であった（Fig. 2）。4．考察
7T MR装置の撮影は3T MR装置の撮影に比べて高空間分解能で撮影可能であったため、壁近傍の流速が精度良く測定されたと考えられた。WSS等の血流速度バイオマーカーは壁近傍の流速ベクトルを使用して算出されるため、3T MR装置より7T MR装置の方が有用と考えられる。7T MR装置の流速・体積流量は基準値と比べて誤差がやや大きくなったが、これは実験時のポンプ性能の不安定性に起因すると考えられた。

５．結語
本研究の速度プロファイルの結果から内径3mm程度の血管を流れる血流の壁近傍の流速ベクトルを精度良く取得するためには7T MR装置を使用して4D-Flowを撮影することが望ましいと思われた。流速・体積流量については今後さらに検討したい。

24．眼球運動の機能的ネットワークの解析
三浦健一郎（京都大学大学院医学研究科）
福永雅喜、山本哲也（自然科学研究機構生理学研究所）

眼球運動の神経機構は神経科学分野の古くからの研究対象であり、動物を使った研究から多くのことが明らかになっている。しかし、ヒトの眼球運動の神経機構に関する知見は微細であり、動物から得られている解剖学的、生理解学的知識との対応が未だに不明確である。その問題を解決するためには、ヒト被験者を直接対象とした眼球運動の神経機構の研究が必須である。ヒトの神経疾患や精神疾患に付随して眼球運動の異常が認められることも多く、その神経機構の解明は病態メカニズムの理解にも繋がることが期待できる。本研究では、MRIを用いて、ヒトの眼球運動制御に関わる機能ネットワークを解明することを目的とする。

本年度の研究では、眼球運動課題遂行中の5名のヒト健常成人被験者を対象として、HCP（human connectome project）プロジェクトに準拠したMRI計測を行った。被験者は3テスラMRI内でスクリーンに投影された視覚刺激に応答する眼球運動を検出し、その結果から眼球運動の機能的ネットワークを解明しようとした。
25. 神経アミノ酸マッピングのための化学シフトイメージングの確立

梅田雅宏, 榊口敏宏, 河合裕子, 村瀬智一（明治国際医療大学医学教育研究センター）
服部憲明（大阪大学森之宮病院 神経リハビリテーション研究部）
浦山慎一（京都大学学際融合教育研究推進センター）

【目的】超高磁場 MRI の利点として MRS を利用した代謝解析がある。MRI 装置で得られるスペクトルは分子毎に異なるケミカルシフトと隣接する原子核の磁化による分裂パターンを持つ。ケミカルシフトは電子雲により外部磁場が遮蔽されることにより生じ、これにケミカルシフトの大きさは静磁場に依存する。一方、隣接する原子核磁化による分裂は静磁場に依存しない。このため、静磁場が高くなると相対的なスペクトル解析が容易になり、精度も向上するため、分子構造解析では NMR 装置の高磁場化が進められてきた。一方、生体の MRS では領域選択のため倾斜磁場による周波数の広がりと、遮蔽効果によるケミカルシフトは同じ周波数軸上に展開され区別が付かない。このために、得られたピークのケミカルシフト毎に選択領域のずれが生じ、このずれは静磁場に依存している。感度が向上するため、分子構造解析では NMR 装置の高磁場化が進められてきた。一方、生体の MRS では領域選択のため倾斜磁場による周波数の広がりと、遮蔽効果によるケミカルシフトは同じ周波数軸上に展開され区別が付かない。このために、得られたピークのケミカルシフト毎に選択領域のずれが生じ、このずれは静磁場に依存している。静磁場が高くなると相対的にスペクトル解析が容易になり、精度も向上するため、分子構造解析では NMR 装置の高磁場化が進められてきた。一方、生体の MRS では領域選択のため倾斜磁場による周波数の広がりと、遮蔽効果によるケミカルシフトは同じ周波数軸上に展開され区別が付合わない。このために、得られたピークのケミカルシフト毎に選択領域のずれが生じ、このずれは静磁場に依存している。静磁場が高くなると相対的にスペクトル解析が容易になり、精度も向上するため、分子構造解析では NMR 装置の高磁場化が進められてきた。一方、生体の MRS では領域選択のため倾斜磁場による周波数の広がりと、遮蔽効果によるケミカルシフ
26. 創造的修辞表現生成に関わる神経ネットワーク・認知メカニズムの解明

寺井あすか（公立はこだて未来大学）
地村弘二（慶應義塾大学）
近藤淳一（生理学研究所生体機能情報解析研究所）
定藤規弘（生理学研究所システム脳科学研究領域心理生理学研究部門）

無意味な模様・風景・物体などが異なる物に見えるパレイドリア現象（Hadjikhani et al. 2009）として、人間が外界を認識する際の「新たな意味」が創造出されることが報告されています。この新たな意味は外界からの刺激だけでなく、人間の心理状態が段階的に生じ、パレイドリア現象を活用した心理テストとしてロールシャッハ検査が知られています。そこで、このような視覚刺激からの内的表象の形成・投影による新たな意味の創発に基づく認知・神経メカニズムが明らかになろうとする目的として、実験を実施しました。

まず、multiband EPIのスキャンパラメータの調整、刺激提示用機器のセッティングに関する確認を目的として、被験者1名にてパイロットスキャンを実施しました。その結果、マルチバンドファクターを8とし、マトリックスサイズ96 x 96、スライス厚2 mm、平面解像度2 mm、繰り返し時間0.8秒、エコー時間30ミリ秒、フリップ角50度で72枚の撮像を行いました。そして、被験者17名にて画像説明課題を用いた実験を実施しました。

画像説明課題では、画像（ロールシャッハ的図形：カラーバリエーション12種、モノクロ4種）を被験者に提示し、自由に口頭で提示された画像の説明を行ってもらい、課題遂行中の被験者の発話を全て録音するとともに、脳血流をMRI（Verio 3T）を用いて測定しました。画像説明課題は8セッションからなりており、各セッションは52秒の刺激を各3分間提示しました。また、事後課題としてインタビューを行い、課題遂行中に生成された説明が提示された画像のどの部分に対するものかについて明らかにしました。

今後、追加実験を実施し、被験者数を増やすことを予定しています。さらに追加実験終了後、実験において得られた全説明に対し第3者評価を実施することで提示された画像の色・形に関する説明（字義通り表現）と他の概念を用いた説明（修辞表現）に分類し、課題遂行中の発話オンセット数秒前から発話オンセットを対象とした時系列分析を行うことで、修辞の表現生成過程の神経ネットワーク・認知メカニズムの時間動態を明らかにする予定です。

27. 経済的選択行動における認知制御の役割の解明

地村弘二、阿坂光紗（慶應義塾大学理工学部生命情報学科）
田中大輝（慶應義塾大学大学院理工学研究科基礎理工学専攻）
吉本隆明（生理学研究所システム脳科学研究領域心理生理学研究部門）
近藤淳一（生理学研究所生体機能情報解析研究所）
定藤規弘（生理学研究所システム脳科学研究領域心理生理学研究部門）

異時的選択は、結果の大きさと出現までの時間が異なる状況における経済的選択行動の一つである。異時的選択の傾向は、選択行動の自己制御を反映しているとされており、将来的な報酬価値の割引（遅延割引）により定量化されてきた（たとえば Green & Myerson 2004）。
一方で、自己制御は、認知の制御（たとえば Shamosh et al. 2008; Jimura et al. 2018）や、健康的な食品選択（たとえば Hare at al. 2008）に関わっていることが示唆されている。そこで本研究は、自己制御と、認知制御の脳機構、食品選択に関わる脳機能の関係を調べた。

健常ヒト被験者（N = 59）は、味と健康に関する食品の評価を行った。そして機能的MRI撮像中に、評点をも
とに分類された食品が2種類提示され、どちらを食べたいか選択することが求められた。行動解析の結果、被験者は健康よりも味を重視して選択していることが示された（P < .001）。また、「健康に良くて味が悪い」食品と「健康に悪くて味が良い」食品が提示された試行(相反試行)において、「健康に良くて味が悪い」食品を選ぶと反応時間が長くなった（P < .05）。

全脳で探索的な画像解析を行ったところ、上部前頭回の内側外側面および帯状回は、相反試行において「健康に良くて味が悪い」食品を選択したときに顕著に活動した（図1A; P < .05 パーミュテーション法によるクラスメタファーに基づく修正）。この結果は、前頭領域は、味と健康が相反する状況において健康を重視する選択に関わっていることを示唆している。そして、仮想的金銭報酬による異時意思決定に課題により推定される、遅延割引の大きさと相関を被験者間で調べると、自己制御の強い被験者ほど、活動が大きくなっていることがわかった（図1B; 同上）。この結果は、異時的意思決定において、すぐに得られる少ない報酬よりも、大きな報酬を得るために待つことを選択する被験者は、健康の重視に関わる前頭領域の活動が大きくなることを示唆している。

さらに、Human Connectome Project (HCP) と同じ手法のN-Back作業記憶課題遂行中の脳活動を計測し、HCPと一致する結果を得た。そして、健康的な食品を多く選ぶ被験者において、作業記憶に関する脳活動が大きくなる前部前頭前野領域が同定された。これらの一連の結果は、経済的意思決定における自己制御が健康と味に基づく食品の選択に関わっていることを示唆している。

28. 情動制御における内側前頭皮質機能の解明

筒井健一郎（東北大学・大学院生命科学研究科）
畑中伸彦, 南部 篤（生体システム研究部門）

本研究では、サルを用いた動物実験によって、情動制御に関わる内側前頭皮質のはたらきを解明するために、経頭蓋磁気刺激（TMS）を用いて内側前頭皮質を局所刺激し、神経活動の変調に伴うサルの行動や気分・情動の変化を定量的に調べるとともに、硬膜下皮質表面電位（ECoG）や単一ニューロン活動等の電気生理学的計測をする実験を行っている。内側前頭皮質の様々な領域に抑制性低頻度反復TMSを施した結果、内側前頭皮質の腹側部、特に前帯状皮質の膝前部・膝下部を含む領域を刺激した場合に、ケージ内における自発活動量の低下や動機づけの低下といったテフ症状を引き起こすことが明らかとなった。また、報酬と罰に関わる確率条件付け課題を新たにデザインしてサルに行わせたところ、報酬と罰の確率の違いにより行動および生理指標に違いがみられるとともに、課題遂行中の脳波（EEG）にも特徴的な波形が現れることが明らかになった。今後は、ECoGや単一ニューロン活動記録のための記録部位を決定するために脳構造画像をMRIにて撮像し、内側前頭皮質の腹側部を中心とした様々な領域における神経活動を計測する予定である。
29. 脊髄損傷後の非ヒト霊長類の中枢回路の大規模再編過程の7T MRIによる解析

伊佐 正, Zenas Chao, 岡田知久, 山口玲欧奈（京都大学大学院医学研究科）
富山峰道, 福永雅喜, 定藤規弘（生理学研究所心理生理学研究部門）

マカクザル（ニホンザル）を用いた実験から、皮質脊髄路を損傷した後の手指の巧緻運動機能の回復過程において、脊髄だけでなく大脳皮質運動関連領域、さらには側坐核などの辺縁系が機能回復に寄与することが我々の先行研究から明らかになった（Nishimura et al. Science 2007; Sawada et al. Science 2015）。これらの先行研究から、脳の大規模回路の動作にどのような変化が起きているのかは不明である。本研究では、マカクザルを対象として、脳の大規模回路の結合特性の変化を明らかにするため、記録した6頭のうち、3頭の安静時MRIデータを用いて、ネットワーク解析手法の1つであるEigenvector centrality（EC）解析を行った。結果として、両側頭頂葉の中心性が損傷後に増加することが示された。今後は、未解析の3頭のデータを加えて、全脳網羅的解析に精度の高いROI相関法を適用することを目的とした。

30. 霊長類を用いた人工神経接続法の確立と有効性の検証

○西村幸男, 中山義久, 石田裕昭
（東京都医学総合研究所）

日本には10万人の脊髄損傷患者、130万人の脳梗塞患者がおり、これらの機能回復を促進するリハビリテーションや機能再建を実現する革新的な治療戦略が待望されている。このような不治の病と考えられている脳梗塞・脊髄損傷者の随意運動と体性感覚機能を回復させる革新的な治療法を開発し、機能回復過程の各段階で麻酔下における安静時MRIデータを取得した。そして、大規模回路の結合特性の変化を解析することで、機能回復過程における大規模回路の再編のメカニズムを明らかにすることを目的とした。

本研究は2016年度からの継続課題である。2016年度では2頭の損傷モデル動物を作成し、7T MRIのコイル導入が遅れたため、3T MRI(Allegra, SIEMENS)を用いて、脳の大規模回路の結合特性の変化を明らかにするため、記録した6頭のうち、3頭の安静時MRIデータを用いて、ネットワーク解析手法の1つであるEigenvector centrality（EC）解析を行った。結果として、両側頭頂葉の中心性が損傷後に増加することが示された。今後は、未解析の3頭のデータを加えて、全脳網羅的解析に精度の高いROI相関法を適用することをさらに進めることで、脊髄損傷後の脳における大規模回路再編の詳細を明らかにする。

人工神経接続法の確立のため、霊長類を用いた基礎的な研究を実施した。まず対象となる脳機能を調べるために、脳内に電極を挿入して神経活動の記録を行い、電極を挿入する脳部位を正確に確認するためには、事前もしくは事後にMRI装置を用いてサルの脳の構造を観察することが不可欠であるが、提案者で所属する東京都医学総合研究所はMRI装置を有していない。そのため、本申請により、生理学研究所のMRI装置にて脳構造を撮影した。

MRI撮影の際には、まず東京都医学総合研究所よりニホンザルを生理学研究所に搬入した。その後、ケタミン（5-10 mg/kg, im）およびキシラジン（1 mg/kg）によって導入し、イソフローラ麻酔（1-2%）にて維持を行った。頭部を頭部固定具に固定し、3T MRI画像撮影装置内(Siemens Allegra)に臥臥位にて寝かせ、MRIによ
高解像度の脳構造画像が得られ、その後東京都医学総合研究所で実施した神経活動記録実験で、電極を対象となる脳部位に正しく挿入されたことが確認された。

31. マカクザルの脳構造撮影

鯉田孝和（豊橋技術科学大学 エレクトロニクス先端融合研究所）
小松英彦，郷田直一（生理学研究所 感覚認知情報研究部門）

提案代表者は、視覚認知に関わる神経基盤を理解するために、覚醒下マカクザルから脳神経細胞の活動を記録している。微小電極を目的の脳部位に正確に導くためには正確な脳構造を知る必要がある。サルの脳には個体差があるため、個体ごとに脳の三次元構造をMRIにより取得することが望ましい。提案代表者の研究機関ではマカクザルを用いた慢性電気生理実験が可能であるが、MRIが配備されていない。そこでサルMRI撮影可能な生理研イメージング機器を利用することとした。

生理学研究所のイメージング機器（MRI, Allegra）を用いて、2018年1月11日に6時間の機器専有でマカクザル二頭の脳構造画像を取得した。サルはナショナルバリオリソースから提供を受けたもので、豊橋技科大において飼育飼い慣らされている。ヘッドホルダー取り付けなどの外科処置は行われていない。これらサル二頭を業者に依頼輸送し、外部利用者用の処置室にて麻酔等の前処置を行った。動物は、ケタミン（10 mg/kg）及びペントバルビタール（20 mg/kg）により麻酔非動化し、MRI室に運搬した。一頭あたり約40分かけて脳構造画像の撮影を行った。撮影後サルを処置室に戻し、同様の手続きで二頭目の撮影を行った。

撮影結果は良好であり、ターゲットとなる神経核、大脳皮質領域、脳溝が十分に目視確認できた。郷田助教の開発した解析プログラムを利用することで画質が改善し、耳道および眼窩下部を基準とした座標系に変換され、簡易に利用できるようになった。取得データは今後、記録用チャンバーの取り付け、ならびに電極刺入時の参照地図とする予定である。

また、前年度に引き続き、提案代表者が開発している神経電極、豊橋プローブの生体内でのMRIによる計測可能性を調査した。MRIによる撮影テストをしたところ、Siの基板や電極先端の金属に由来するアーティファクトはごくわずかであった。このことから生体内で電極の位置を確かめることができると考えられる。ワイヤーはフレキシブルプラスチックフィルムに銅配線したもののが良好であった。一方でピンやコネクタ部位はアーティファクトを生じることが分かり、慢性留置時には別の対策が必要であると言える。
【研究会報告】
研究会報告

[目的]

1. シグナル動態の可視化と操作に基づく多階層機能解析の新展開
 (代表者：大久保洋平 2017年9月14日－9月15日) 253

2. 生体界面研究会
 (代表者：日比野浩 2017年7月6日－7月7日) 262

3. 膜システムの機能的・構造的統合
 (代表者：老木成稔 2017年9月5日－9月6日) 274

4. 体内環境の維持機構における上皮膜輸送の多角的・総合的解
 (代表者：林 久由 2017年9月7日－9月8日) 283

5. 温熱生理研究会
 (代表者：永島計 2017年8月23日－8月24日) 291

6. 痛みを中心とする有害状況適応の神経戦略バイオロジー
 (代表者：加藤総夫 2017年12月14日－12月15日) 302

7. 感覚免疫学研究会
 (代表者：丸山健太 2017年7月3日－7月4日) 316

8. 心臓・血管系の頑健性と精緻な制御を支える分子基盤の統合的解明
 (代表者：赤羽悟美 2017年10月12日－10月13日) 325

9. TRPチャネル～オルガネラ Ca2+シグナルの重要な媒介分子～
 (代表者：白川久志 2017年6月22日－6月23日) 343

10. オルガネラダイナミクスの新規制御機構とその病態生理
 (代表者：富澤一仁 2017年5月31日－6月1日) 359

11. 食欲・食嗜好の分子・神経基盤研究会（食欲・食嗜好研究会）
 (代表者：佐々木努 2017年6月10日－6月11日) 372

12. 臓器相関による生体制御システムとその変容の仕組み
 (代表者：山内敏正 2017年9月23日－9月24日) 387

13. 大脳皮質回路の機能原理を探る
 (代表者：稲村宜和 2017年9月7日－9月8日) 396

14. 記憶・学習の統合的解明に向けたアプローチ
 (代表者：松尾直毅 2017年10月10日－10月11日) 400

15. 先天的と後天的なメカニズムの融合による情動・行動の理解と制御
 (代表者：小早川高 2017年10月10日－10月11日) 407

16. シナプス・神経回路機能の時空間制御
 (代表者：久場博司 2017年10月30日－10月31日) 416

17. 視覚の総合的解明を目指して — 生理学、心理物理学、計算論
 (代表者：本吉勇 2017年6月8日－6月9日) 424

251
18. 脳の階層的理解を目指して
（代表者：虫明 元 2017年11月24日-11月25日）... 434
19. 認知神経科学の先端 意識の脳内メカニズム
（代表者：村山正宜 2017年9月25日-9月26日）... 444
20. 発達・脳科学と教育実践学の融合的連携を探る ～対人相互関係の理解と育成をめざして～
（代表者：松村京子 2017年12月4日-12月5日）... 450
21. 行動を制御する神経ネットワーク機能の解明に向け
（代表者：松本正幸 2017年12月8日-12月9日）... 455
22. 第7回社会神経科学研究会「サル脳に学ぶ社会神経科学の基盤」
（代表者：南本敬史 2017年11月30日-12月1日）... 462
23. 第1回ヒト脳イメージング研究会
（代表者：松田哲也 2017年9月1日-9月2日）... 467
24. クライオ電子顕微鏡によるタンパク質の高分解能単粒子構造解析
（提案代表：岩崎憲治 2017年11月28日-11月29日）..................................... 475
1. シグナル動態の可視化と操作に基づく多階層機能解析の新展開

2017年9月14日－9月15日

代表・世話人：大久保洋平（東京大学大学院医学系研究科細胞分子薬理学）
所内対応者：久保義弘（生理学研究所神経機能素子研究部門）

（1）ライブセル超解像イメージングを実現するタグ・プローブ技術の開発
○浅沼大祐，並木繁行，廣瀬謙造（東京大学大学院医学系研究科神経生物学）

（2）光スキッティング Ca²⁺指示薬 -超解像機能イメージングを目指して
○松田知己，藤原沙都姫，永井健治（大阪大学産業科学研究所以生体分子機能科学）

（3）長波長 Ca²⁺光プローブの分子設計および開発
○塚谷聡生，安井正人（慶應義塾大学医学部薬学教室）

（4）多面的シグナル伝達解析を可能とするマルチモダル 2 光子顕微鏡技術の開発と応用
○松田知己，藤原沙都姫，永井健治（大阪大学産業科学研究所以生体分子機能科学）

（5）In vivo 心筋ナノイメージング
○下澤東吾１，広川恵里沙２，小比類巻 生２，大山廣太郎３，照井貴子２，石渡信一２，福田紀男２（1.東京大学理学部，2.東京慈恵会医科大学，3.早稲田大学理工学術院先進理工学研究科）

（6）間葉系幹細胞の TRPV4 を介した基質硬度の感知機構
○小林 剛，曽我部正博（名古屋大学大学院医学系研究科メカノバイオロジー）

（7）酸性オルガネラ内機能イメージングのための、耐酸性 GFP の開発
○篠田 肇，Yuanqing Ma，中島良介，櫻井啓介，松田知己，永井健治（大阪大学産業科学研究所以生体分子機能科学）

（8）RAW264 および RAW264 由来破骨細胞における phagosomal pH のオシレーション
○久野みゆき，海住太郎，森浦芳枝，日野佳子，川脇順子，酒井 啓（大阪市立大学大学院医学研究科分子細胞生理学）

（9）聴覚に必須な蜗牛の電位環境を維持する K⁺循環の駆動メカニズム：実験と計算科学による解析
○任 書晃１，吉田崇正２，村上慎吾３，緒方元気１，土塚 学４，土塚勝美３，澤村晴志朗１，猪原秀典４，小宗静男２，倉智嘉久６，日比野 浩１（1.新潟大学医学部分子生理学，2.九州大学医学部耳鼻咽喉科，3.東邦大学医学部統合生理学，4.大阪大学医学部耳鼻咽喉科，5.近畿大学医学部耳鼻咽喉科，6.大阪大学大学院医学系研究科分子細胞薬理学）

（10）シナプス小胞動態の可視化と操作に基づく機能解析の試み
○高橋智幸（沖縄科学技術大学院大学）

（11）てんかん誘発性神経細胞死を担う一酸化窒素依存性 1 型リアノジン受容体活性化
○大久保洋平１，三上義礼３，金丸和典１，飯野正光３（1.東京大学大学院医学系研究科細胞分子薬理学，2.東邦大学医学部統合生理学，3.日本大学医学部細胞分子薬理学）

（12）N 末端変異リアノジン受容体における分子動力学計算とカルシウムシグナルの相互解析
○山澤徳志子（東京慈恵会医科大学分子生理学）
【参加者名】
大出晃士 (東京大学大学院医学系研究科システム薬理学), 桑島 謙 (東京大学大学院医学系研究科システム薬理学), 勝俣敬寛 (東京大学大学院医学系研究科システム薬理学), 花岡健二 (東京大学大学院薬学系研究科薬学薬理学), 池野秀之 (東京大学大学院薬学系研究科薬学薬理学), 山澤徳子 (東京慈恵会医科大学細胞生理学), 池野喬之 (東京大学大学院薬学系研究科薬品代謝化学), 松田知己 (大阪大学産業科学研究所生体分子機能科学), 篠田 肇 (大阪大学産業科学研究所生体分子機能科学), 稲垣一郎 (大阪大学産業科学研究所生体分子機能科学), 藤谷睦生 (慶應義塾大学医学部薬理学教室), 塚本精一 (東京慈恵会医科大学細胞生理学), 下澤東吾 (東京大学理学部技術部), 飯野正光 (日本大学医学部細胞分子薬理学), 大久保洋平 (東京大学大学院医学系研究科細胞分子薬理学), 任書晃 (新潟大学医学部細胞分子薬理学), 陳以珊 (生理学研究所神経機能素子), 粧慎一郎 (生理学研究所神経機能素子), Rizki Tsari Andriani (生理学研究所神経機能素子), 平澤輝一 (生理学研究所神経機能素子)。

【概要】
シグナル分子が示す多様な時間的・空間的動態により、種々の生体機能が発現される。よって分子の羅列ではなく、シグナル動態解析に基づいた機能解析が生命現象の理解には不可欠である。細胞内カルシウム動態解析を端緒とするシグナル動態可視化研究においては、近年様々なシグナル現象・分子の可視化を可能にするプローブが開発され、研究対象が急速に拡大しつつある。また並行して、二光子顕微鏡や超解像顕微鏡などをはじめとする光学技術の発展も顕著であり、時空間的に多階層の高品質データを得ることが可能になっている。さらに光学伝達をはじめとする操作法は、シグナル動態と機能の関の因果性について直接検証を可能にする強力なツールとして、活発な応用が進められている。以上に加えて、高効率発現を可能とするトラスジェニックマウスやウイルスベクターは近年の研究の屋台骨を成していると言え、遺伝子編集技術は研究にさらなる効率化と自由度をもたらすと期待される。
以上の現状を改めて鑑み、分子・細胞・個体の多階層に渡り、シグナル動態解析に基づいた機能解析について、「今できること」そして「今後やるべきこと」を自身の研究成果をもとに討議し、各々の参加者に対して今後の研究戦略立案の端緒を提供し、当該研究分野のさらなる発展を目指して、本研究会を開催した。上記目標を達成するために、シグナル動態可視化法、その他の分子動態解析法、シグナル動態操作法、新規光学技術、個体レベルの機能解析などに携わる多様な分野に渡る15名の講演者を全国から迎え、総勢33名の参加者により活発な討議を行なった。修士・博士課程の大学院生の参加もあり、若手の積極的な討議も見られた。また特に異なる階層・分野の研究者の間で建設的な討議が行われ、今後の生体機能解析研究の新展開に資する研究会となった。

（1）ライブセル超解像イメージングを実現するタグ・プローブ技術の開発

○浅沼大祐、並木繁行、廣瀬謙造（東京大学大学院医学系研究科神経生物学）

分子位置決定顕微鏡法（single-molecule localization microscopy; SMLM）は数十nmの抜群の高空間解像度を実現するが、実用的な応用は固定細胞に限られている。本研究では、生きた細胞における分子のナノスケール動態を可視化するため、新規の分子標識技術であるDeQODEタグ法（DeQuenching of Organic Dye Emission tag method）の開発を行った。本法では、蛍光色素に光消光団をリンカーで繋いだ小分子化合物であるQODEプローブ（Quenched Organic Dye Emission probe）は単独では消光しているが、光消光団と特異的に結合するDeQODEタグへ結合すると蛍光性となる。この蛍光明滅現象を基にSMLMによるライブセル超解像イメージングを行う。

QODEプローブの消光団としてジニトロフェニル基（DNP）を採用し、蛍光色素と繋いだ化合物の設計・合成を行った。また、DNPモノクローナル抗体を取得し、一本鎖抗体化したものをDeQODEタグとして取得した。さらに、リアルタイムの超解像観察に適した蛍光明滅を生じるように、DeQODEタグへの変異導入、および、QODEプローブの光消光団の誘導体化により、タグ・プローブの解離速度を高速化した。DeQODEタグを発現させたHeLa細胞にQODEプローブを応用したところ、生きた細胞において超解像イメージングが可能であることが明らかとなった。

（2）光スイッチングCa2⁺指示薬 -超解像機能イメージングを目指して-

○松田知己、藤原沙都姫、永井健治（大阪大学産業科学研究所生体分子機能科学）

Ca2⁺は様々な生命現象に関わる普遍的なシグナル因子であるため、その動態を生細胞・生体内でライブイメージングにより解析するための指示薬開発が活発に行われてきた。特に、蛍光タンパク質を用いたCa2⁺指示薬の発展は目覚ましく、次々に新しいCa2⁺指示薬が開発され、それらを用いたライブイメージングによって得られた時空間データが現象の解明に汎用的に用いられている。その開発は、主に蛍光強度やダイナミクスの増強を目指して行われてきたが、超解像顕微鏡技術が一般化しつつある現状においては、細胞内構造の解析に特化していた超解像イメージングをCa2⁺動態等の機能に拡張することによりイメージングの新たな可能性がもたらされることが期待される。超解像Ca2⁺イメージングにより神経スパイン等の微小空間において従来のイメージングでは得られなかった詳細な分布を解析することが可能になる。本発表では、そのような超解像Ca2⁺イメージングを実現するための光スイッチングCa2⁺指示薬の開発を紹介した。
(3) 長波長 Ca²⁺ 蛍光プローブの分子設計および開発

○花岡健二郎(東京大学大学院薬学系研究科薬品代謝化学)

現在蛍光メージングに広く用いられている Ca²⁺ プローブは紫外から可視領域に吸光、蛍光波長を有しており、レシオ型プローブでは Fura-2 (λₐ = 505 nm), off/on 型では 緑色蛍光プローブ Fluo-3 (λₐ = 526 nm)や赤色蛍光プローブ Rhod-2 (λₐ = 578 nm)などが汎用されている。しかしながら、さらに長波長領域の蛍光を有した実用的な Ca²⁺ プローブは殆どない。そこで、他の可視領域の蛍光プローブや蛍光タンパク質とのマルチカラーイメージングの目的として、長波長蛍光 Ca²⁺ プローブの開発を行った。

従来、長波長蛍光 Ca²⁺ プローブの開発が困難であった理由の一つは、生体応用および Ca²⁺ プローブへの機能化に適した長波長蛍光色素が存在しなかったためである。我々はこれまでに長波長蛍光色素を分子設計、具体的にはフルオレセインおよびローダミンの 10 位 O 原子を Si 原子に置換することで、赤色蛍光色素 TokyoMagenta (TM)および近赤外蛍光色素 SiR の開発に成功している。これら色素が従来の長波長蛍光色素よりも蛍光プローブへの誘導化に適していることを見出し、これらを母核とした新規 Ca²⁺ プローブを開発した。具体的には赤色 Ca²⁺ プローブ CaTM-3 (λₐ = 609 nm), および近赤外蛍光 Ca²⁺ プローブ CaSiR-1 (λₐ = 664 nm)の開発に成功した。

(4) 多面的シグナル伝達解析を可能とするマルチモダル２光子顕微鏡技術の開発と応用

○塗谷睦生, 安井正人（慶應義塾大学医学部薬理学教室）

シグナル伝達の研究において、複数の現象を同時に対視化解析することが非常に重要となる。ここで、多光子顕微鏡は近赤外光の組織透過性の高さや時空間分解能の高さなどから組織での可視化解析に有効であるが、多光子現象には良く知られた 2 光子励起に加えて他のものが存在する。その内の一つが、第二高調波発生 (Second Harmonic Generation: SHG) である。SHG は界面現象の可視化に優れ、細胞においては形質膜の特異的な可視化、そして電位変化などの膜の変化の検出に非常に有用である。重要なことに、SHG は励起とは独立した光学現象であるため、これらの二つのモダリティに由来する情報の独立かつ同時の取得の実現によるマルチモダル２光子顕微鏡解析が可能となる。特に、近年開発された SHG 専用の色素を用いることにより、形質膜に由来する SHG と種々の細胞内蛍光レポーター分子の 2 光子励起によるシグナルを独立かつ同時に計測が可能となった。これを利用することにより、形質膜とその近傍で起こるシグナル伝達などの現象を、色収差や色相間の相互作用などの懸念を排除して多面的に解析することが可能となると期待される。本発表では SHG を利用したマルチモダル２光子顕微鏡技術のシグナル動態可視化研究への応用について議論した。

(5) In vivo 心筋ナノイメージング

○下澤東吾 1, 広川恵里沙 2, 小比類巻 生 3, 大山廣太郎 2, 照井貴子 2, 石渡信一 1, 福田紀男 2
(1.東京大学理学部技術部, 2.東京慈恵会医科大学細胞生理学, 3.早稲田大学理工学術院先端理工学研究科)

心臓のポンプ機能の原動力は、心筋細胞のサルコメラの収縮である。そのため、心臓機能を分子レベルで理解
するには拍動中のサルコメラ動態と心臓のマクロパラメータを関連付けて詳細に観察することが必要となる。しかしながら、in vivoでのサルコメラ動態の観察は技術的に極めて困難であり、これまで生理的条件とかけ離れた条件においてのみ実験が行われていた。我々は、Z線の蛍光標識技術、麻酔下動物の固定方法などを工夫することで、スピニングディスク共焦点顕微鏡を用いて、麻酔下マウスの拍動中心臓のサルコメラ動態を20 nm、10 msの分解能で観察する実験系を構築した（Kobirumaki-Shimozawa et al., J Gen Physiol 2016; Shimozawa et al., Prog Biophys Mol Biol 2017）。この装置を用いて、心室内圧、心室容積などのマクロパラメータとサルコメラ動態を世界で初めて同時に測定したところ、拍動中心臓のサルコメラの長さは一様ではなく、同一細胞内でも最大400 nmも異なる場合があるなど、in vivo観察によって初めて分かる結果が得られた。本発表では、摘出心臓における心筋細胞内Ca2+動態の観察手法なども合わせ、in vivo心筋興奮収縮連関の解明に向けた我々の取り組みについて紹介した。

（6）間葉系幹細胞のTRPV4を介した基質硬度の感知機構

○小林 剛, 曽我部正博（名古屋大学大学院医学系研究科メカノバイオロジーラボ）

細胞は伸展やずり応力などの力学刺激を受動的に感知して様々な応答を示す。また最近、細胞は周囲の機械的な性質（硬さ）を能動的に感知することも分かってきた。例えば、間葉系幹細胞（MSC）を骨、筋肉、あるいは脳組織の硬さを持つ基質上で培養すると、硬さ依存的にそれぞれの組織の特徴を有する細胞に分化する。MSCは、接着分子を介してストレス線維で足場を引っ張ることで足場の硬さを感知するものと想定されているが、その詳細は分かっていない。

今回、我々は、硬い足場で培養したMSCにおいて自発的・局所的な細胞内カルシウム上昇が生じることを見出した。カルシウムプローブGCaMPsを発現したMSCの細胞膜近傍を共焦点蛍光顕微鏡で観察すると、細胞周縁部において高い頻度で数秒間持続する一過的的な細胞内カルシウム上昇（カルシウムスパーク）が観察された。その発生頻度は、軟かい足場（ヤング率≦1 kPa）、ストレス線維の張力発生の阻害、あるいは細胞外液のCa2+除去や機械刺激受容チャネル阻害剤GsMTX-4によって有意に抑制された。さらに、Trpv4チャネルの薬理学的な阻害や発現抑制によっても強く抑えられた。以上の結果から、MSCはストレス線維の自発的牵引力で生じた足場の硬さ依存的なストレスによりTrpv4を活性化し、足場の硬さを局所的に、一過的な細胞内Ca2+濃度に変換していると考えられた。

（7）酸性オルガネラ内機能イメージングのための、耐酸性GFPの開発

○篠田 譲, Yuanqing Ma, 中島良介, 櫻井啓介, 松田知己, 永井健治（大阪大学産業科学研究所生体分子機能科学）

蛍光タンパク質は、細胞・細胞小器官・タンパク質の追跡マーカーやイオン濃度変化等の生理機能を可視化するセンサーとして生命科学研究に欠かすことのできないツールである。しかしながら、既存の蛍光タンパク質の多くは酸性環境下で蛍光を失うため（pKa ≈ 6.0）、リソソーム・分泌小胞・エンドソーム・液胞などの酸性細胞小器官（pH ≈ 4.5-6.0）に局在化させてイメージングを行うことは困難である。中でも緑色で有用なものは知られておらず、これらの小器官での分子動態のイメージングやセンサーを用いた機能イメージングへ緑色蛍光タンパク質を応用することには制限があった。本研究で我々は、ハナガサクラゲから優れた耐酸性を持つ（pKa = 3.8）二量体緑色蛍光タンパク質dfGFPの遺伝子を新規にクローニングし、遺伝子変異導入を繰り返して改良することにより、
メージングに有用な耐酸性単量体緑色蛍光タンパク質Gamillus（pKa = 3.5）の開発に成功した。Gamillusの融合タンパク質をHeLa細胞内で発現させると、目的とする様々な小器官/構造体に正しく局在し、生体分子のタグとして有用であることが示された。今後、Gamillusを、分子動態イメージング・センサー作製とそれを用いた機能イメージング応用することで、酸性細胞環境下で起こる未知の生命現象の解明に貢献することが期待される。

（8）RAW264およびRAW264由来破骨細胞におけるphagosomal pHのオシレーション

破骨細胞は骨に接着して閉鎖空間を作り、ここに酸とlysosomal enzymeを分泌し骨組織を融解する。骨吸収窩には有機および無機の融解産物が蓄積され、その多くは、骨吸収窩に面する細胞膜（ruffled border）から取り込まれ（endocytosis）、基底膜まで移動し（transcytosis）、血中に分泌（exocytosis）すると考えられている。しかしながら、一連の過程がどのように制御されているのかの全容は解明されていない。私達は、マクロファージ系cell line（RAW264）とRAW264より分化させた破骨細胞（RAW-OCL）に、FITC-conjugated zymosan particleを貪食させ、単一phagosomeのpH（pHV）の変動を調査した。RAW264のpHVはproton pump（V-ATPase）により5.6以下に低下した後、一部の小胞で急激なpH上昇（pH spike）を含む変動が生じた。RAW-OCLでも同様なoscillationが観察され、pH spikeの発生頻度は、PMA（protein kinase Cのactivator）によって増加し、peak pHは細胞外pHに依存した。これらの結果からV-ATPaseとslow H+-leak以外のpHv動態に関わる要因を検討した。

（9）聴覚に必須な蝸牛の電位環境を維持するK⁺循環の駆動メカニズム：実験と計算科学による解析

内耳蝸牛断面の外側に位置する蝸牛側壁は、ラセン靭帯と血管条からなる。機能的に内外二層の上皮層とみなせる側壁のイオン輸送により、内リンパ液に備わる+80 mVの高電位が維持されている。Endocochlear potentialと呼ばれるこの電位環境は、聴覚に必須であり、内外層の膜電位の総和である。これら膜電位は、側壁を介して蝸牛を一方向性に巡るイオン流「循環電流」によって制御されていると考えられている。この概念の妥当性は、側壁に発現するイオン輸送装置の活性を数式で表して構築した等価回路モデルNin-Hibino-Kurachi（NHK）modelで示されてその存在が、証された。近年我々は、ラセン鰭帯を対象としたin vivo電気生理実験により、Na⁺,K⁺-ATPaseを介したK⁺を輸送、膜の高いNa⁺透過性、という2つの特性を示した。本実験では、実験で見出したこれらの特性をNHKモデルに組み込むことで新たな数理モデルを構築した。このモデルにより、以前は再現できなかった実験結果をシミュレーションできた。さらに、予測された結果を実験により検証できた。したがって、循環電流にはラセン鰭帯においてのNa⁺,K⁺-ATPaseとNa⁺透過性が関わって成立する。以上、ラセン鰭帯を含めた蝸牛循環電流の駆動システムが、初めて包括的に解明された。
（10）シナプス小胞動態の可視化と操作に基づく機能解析の試み

○高橋智幸（神経科学技術大学院大学）

脳のはたらきは、神経回路を伝播する活動電位によって媒介され、神経回路のダイナミックな開閉はシナプス伝達の強度によって決定される。シナプス伝達強度は、シナプス小胞の再使用を介して維持されると考えられているが、神経終末における小胞輸送動態の研究は、初期段階に留まっている。脳機能の維持機構に直結するこの問題に取り組むためには、小胞動態のイメージングを最適化することが必要と考え、細胞培養下に大型の前末端を有するシナプスを形成することを試み、安定した結果を得た。そこで、多数のシナプス小胞に蛍光プローブ（eg, quantum dot）をendocytosisを介して取り込み、ラベルし、各小胞の移動速度と軌跡を同時測定してImarisを用いて解析した。その結果、静止時の前末端における小胞の動態は一様でなく、移動速度・距離は、前末端の成熟度、小胞タンパク質の種類、放出部位からの距離、微小管の有無によって影響を受けることが明らかになった。しかし、シナプスの生理的機能に関連する小胞動態は、ほとんど検出されず、更なる時空間分解能の向上と、戦略の立て直しが必要なことが明らかになった。

（11）てんかん誘発性神経細胞死を担う一酸化窒素依存性1型リアノジン受容体活性化

○大久洋平1, 三上義礼2, 金丸和典1, 飯野正光3
（1.東京大学大学院医学系研究科細胞分子薬理学, 2.東邦大学医学部統合生理学, 3.日本大学医学部細胞分子薬理学）

てんかん重積状態はしばしば神経変性を引き起こすが、そのメカニズムには不明な点が多い。これまでの報告において、興奮毒性の発現に一酸化窒素が不可欠であること、そしててんかん発作時に脳内の一酸化窒素濃度が上昇することが示されている。さらに我々は、一酸化窒素がS-ニトロシル化を介して1型リアノジン受容体を活性化し、小胞体からのCa2+放出を惹起することを既に発見している。以上のメカニズムの関与を検証するために、1型リアノジン受容体のS-ニトロシル化を遺伝学的に阻害したマウスを確立し、解析を行った。このマウスにおいててんかん発作に伴う神経細胞死は顕著に抑制されていた。さらに野生型マウスにおいては、リアノジン受容体の阻害薬であるダントロンの投与が神経保護作用を示すことも明らかにした。以上の結果は、一酸化窒素およびS-ニトロシル化依存性の1型リアノジン受容体活性化がてんかん発作に伴う神経変性を担うことを示している。

（12）N末端変異リアノジン受容体における分子動力学計算とカルシウムシグナルの相関解析

○山澤德志子（東京慈恵会医科大学分子生理学）

恶性高熱症（malignant hyperthermia, MH）は1型リアノジン受容体（RyR1）のCa2+誘発性Ca2+放出（Ca2+-induced Ca2+ release, CICR）活性の異常亢進により引き起こされると考えられている。そこで、MH患者から報告されているRyR1遺伝子変異を野生型（WT）のRyR1に導入してCICR活性を細胞レベルで調べることにより機能の変異を明らかにすることを目的とした。変異RyR1遺伝子をヒト胎児由来腫膜（HEK）細胞に導入し、CICR活性をCa2+イメージングにより解析した。これにより、WTに比べて静止時のCa2+濃度が上昇する変異、CICR活性
が亢進する機能的変異と CICR 活性には影響を与えない変異があることが明らかになった。さらに、MH 変異による RyR1 のチャネル構造に与える影響を検証するため、分子動力学計算法によるシミュレーションを行った。これより、A→B ドメイン間（D61 と R283 残基）の結合確率は CICR 活性と正に相関、その一方で A→C ドメイン間（D447 と R45 残基）の結合確率は静止時と負に相関した。従って、D61 と R283 の間の静電相互作用の増加は、CICR 活性の感受性を高めるために重要な役割を果たし、D447 と R45 の間の静電相互作用の減弱は小胞体から Ca²⁺ をリークし易くすることが示唆された。

（13）多重リン酸化による生体リズム時刻情報の制御

○大出晃士 1,2, 上田泰己 1,2
(1. 東京大学大学院医学系研究科システムズ薬理学, 2. 理化学研究所生命システム研究センター合成生物学)

睡眠覚醒週期は、個体全体の行動生理を制御する代表的な生体リズムである。睡眠覚醒は、およそ 24 時間の周期性を保つと同時に、一定量の睡眠時間を確保する睡眠恒常性によって制御されている。では「24 時間周期」や「一定量の睡眠時間」といった時間・時刻シグナルの原子実体は何なのだろうか。

哺乳類概日時計は、その基盤に細胞自律的な周期的遺伝子転写活性があるが、その周期長決定要因は十分に明らかでない。我々は、周期的な転写リズム発振に中心的な役割を果たす転写抑制因子 CRY1 に着目し、このタンパク質上の構造上柔軟な p-loop 領域周辺に集中する多重リン酸化サイトが相加的に周期長を変化させることを見出した。CRY1 の周期長制御ドメインの特徴を中心として、概日周期長制御を担う他のタンパク質群と広く比較しながら、24 時間の概日周期長を生み出す機構を議論した。

一方、睡眠恒常性を担う分子機構については、鳥類、海棲哺乳類、あるいは人類の脳波測定から、睡眠恒常性を担う機構の少なくとも一部は、大脳皮質に散在して存在しうることが示されている。この状況は、睡眠恒常性の一部は特異的な神経回路ではなく皮質神経自律的に担われていることを示唆する。我々は逆遺伝学スクリーニングから、皮質の神経細胞に発現し、細胞内 Ca²⁺ 依存的な膜電位過分極を担うと考えられる遺伝子群が睡眠時間制御を担うことを示した。

（14）Development of chemiluminescent low affinity Ca²⁺ indicators applicable to analyzing Ca²⁺ dynamics in endoplasmic reticulum

○Md. Nadim Hossain, 鈴木和志, 岩野 恵, 松田知己, 永井健治
(大阪大学 産業科学研究所 生体分子機能科学)

Intracellular Ca²⁺ concentration is liked to elaborate regulation of numerous physiological processes from fertilization to apoptosis. Different parts of the cell store, and use, Ca²⁺ at different concentrations, so distinct indicators with different affinities are needed for each compartment. For example, Ca²⁺ is stored in the sarco/endoplasmic reticulum in millimolar amounts and is important for controlling the cytosolic Ca²⁺ level. To study SR/ER Ca²⁺ dynamics, several fluorescent protein based genetically encoded calcium indicators (GECIs) with low Ca²⁺ affinity have been reported. Recently our group reported bioluminescent protein based GECI’s with high Ca²⁺ affinity named the green enhanced Nano-lantern Ca²⁺ (GeNL(Ca²⁺)) series (Ca²⁺ Kd 60-520nM). They do not require excitation light and overcome the
constraints of fluorescence imaging such as phototoxicity, photobleaching and autofluorescence from the specimen. To investigate Ca\(^{2+}\) in the SR/ER by bioluminescence, we have successfully developed a cyan color variant with low affinity named CeNL(Ca\(^{2+}\)). In addition, we have developed an orange color variant with intermediate Ca\(^{2+}\) affinity, OeNL(Ca\(^{2+}\)) that is adapted to mitochondrial Ca\(^{2+}\) imaging. The tools can be combined for simultaneous subcellular Ca\(^{2+}\) studies across three orders of magnitude [Ca\(^{2+}\)] in single cells by expression of ER localized CeNL(Ca\(^{2+}\)), mitochondria localized OeNL(Ca\(^{2+}\)) and nuclear localized GeNL(Ca\(^{2+}\)). SR Ca\(^{2+}\) dynamics in C2C12 myoblasts cells has also successfully been studied with the low affinity CeNL(Ca\(^{2+}\)) probe.

(15) Yellow Cameleon-Nano140 融合α-actinin を用いたラット幼若心筋細胞におけるサルコメア動態と
局所 Ca\(^{2+}\) 濃度の同時観測

○塚本精一 1, 藤井輝之 1, 大山広太郎 1, 下澤東吾 2,
小比類巻 生 1, 石渡信 - 3, 福田紀男 1
(1.東京慈恵会医科大学細胞生理学, 2.東京大学理学部技術部,
3.早稲田大学理工学術院先進理工学研究科)

Ca\(^{2+}\) は様々な生体反応において極めて重要な役割を担っている。心臓を構成している心筋細胞の収縮・弛緩も細胞内 Ca\(^{2+}\) 濃度の変化によって引き起こされる。我々は、心筋細胞内のサルコメアの挙動とその周囲の局所 Ca\(^{2+}\)濃度変化を同時に計測できるシステムを開発した（Tsukamoto et al., J Gen Physiol 2016）。すなわち、高感度 Ca\(^{2+}\) 指示タンパク質である yellow cameleon-Nano（YC-Nano）を α アクチニンの C 末端に配置した融合タンパク質を作製し、これをラットの培養心筋細胞に発現させた。発現した融合タンパク質は Z 線に局在していた。我々は、2 光路系の蛍光顕微鏡を駆使することによって、各 Z 線における Ca\(^{2+}\) 濃度変化とサルコメア長変化を同時に計測することに世界で初めて成功した。本発表では、心筋細胞の興奮収縮連鎖が局所レベルでどのように調整されているかに焦点を当て、一連の研究成果を紹介した。in vivo 心筋細胞内の局所的な Ca\(^{2+}\) 濃度とサルコメア長を同時に計測し、健常および病態時の収縮機構をナノレベルで解析する今後の予定についても紹介した。
2. 生体界面研究会

2017年7月6日−7月7日

代表・世話人：日比野浩（新潟大学大学院 医歯学総合研究科分子生理学分野）
所内対応者：久保義弘（生理学研究所 神経機能素子研究部門）

（1）細胞をはかる、つかうための機能的界面の形成

○椎木弘, 木下隆将, 石木健吾, 長岡勉
（大阪府立大学大学院 工学研究科 物質・系専攻 用化学分野）

（2）糖鎖を介した炎症性腸疾患の新しい病態解析

○三井史之, 藤井安雄, 新崎信一郎, 齋藤顕宏
（大阪大学大学院 学系研究科 分子薬物動態学, 2プロメディオ発展研究開発部）

（3）多種多様な生物応答を分析・把握する新規プロファイル解析手法（ディープフェノタイピング法）の開発

○木之下節夫1,2, 水野忠快1, 前寺正太郎1, 山口めぐみ2, 楠原洋之1
（1 東京大学大学院 学系研究科 分子薬物動態学, 2プロメディオ発展研究開発部）

（4）ヒトiPS細胞由来心筋細胞のセルモーションイメージング

○黒川洋子, 山口賢彦（静岡県立大学大学院 薬学部 薬学科 生体情報分子解析学）

（5）帯電した界面近傍の流れ場の理論と可視化

○上野謙太郎, 矢野潤子, 名倉浩, 佐賀健, 御部, 川野智昭
（大阪大学大学院 基礎工学研究科 機能創成専攻 機能デザイン領域）

（6）脂質組成に非対称性を取り入れたモデル脂質二重層膜の分子動力学シミュレーション

○早川志保1, 安藤嘉倫2, 岡崎進1,2
（1名古屋大学大学院 工学研究科 応用物質化学専攻 応用物理化学, 2名古屋大学大学院 工学研究科 附属計算科学連携教育研究センター）

（7）脂質二重層膜とイオンに関する理論的研究

○川本一郎, 長尾秀樹（金沢大学 理工学研究科 物質科学系 計算科学コース 計算バイオ科学）

（8）互いに逆の電荷配置をもつ多糖・イオン性極性頭部基をもつ脂質の合成と脂質膜物性

○相川達男1, 根津友祐1, 横田圭亮1, 岡部祥士1, 近藤剛史1,2, 湯浅真1,2
（1 東京理科大学 理工学部 先端化学学科 湯浅・近藤研究室, 2東京理科大学 総合研究）

（9）蛍光および中性子を用いた脂質の膜間移動の検出

○中野実, 杉浦太一, 中尾裕之, 池田惠介
（富山大学大学院 医学薬学研究部（薬学）生体界面化学）

（10）新しい脂質2重膜法によるチャネル-膜相互作用研究

○老木成稔, 岩本真幸（福井大学 学術研究院 医学系部門 形態機能医科学講座 分子生理学）

（11）生体膜に発現する温度感受性TRPチャネルの構造と機能

○富永真琴1,2
（1岡崎統合バイオサイエンスセンター（生理学研究所）細胞生理研究部門, 2総合研究大学院大学 生理科学専攻）

（12）生体界面のナノ形状動態を可視化する高速走査型イオンコンダクタンス顕微鏡

○井戸大貴1, 高橋康史1,2, 周連瑞1,2, 熊谷明哉1, 珠玖仁4, 末永智一1
(1) 東北大学大学院 環境科学研究 先端環境創成学専攻 自然共生システム学講座 環境生命機能学
(2) 金沢大学 理工研究域 電子情報学系, JST さきがけ,
(3) 東北大学大学院 工学研究科 環境資源化学講座 電気化学

(13) 胃酸分泌刺激による壁細胞頂端膜界面の構造変化
藤井拓人 1, 高橋康史 2, 清水貴浩 1, ○酒井秀紀 1
(1) 富山大学大学院 医学薬学研究部（薬学）薬物生理学, 2 金沢大学 理工研究域 電子情報学系

(14) ダイヤモンド微小電極を基盤とした生体内測定システムの構築
○浅井 陽 1, 花輪 藍 1, 栗長泰明 1, 2
(1) 慶應義塾大学 理工学部 化学科 無機物性化学, 2 JST-ACCEL

(15) レーザ干涉計の技術展開による内耳ナノ振動の計測と分析
○太田 岳 1,2, 郷 森悦 2,3, 任 書晃 1,2,4
(1) 新潟大学大学院 医歯学総合研究科 分子生理学, 2 AMED-CREST AMED,
3 新潟大学 工学部 電気情報工学, 4 新潟大学 超域学術院

(16) DNA 二重鎖がつくるソフトな界面の特殊性とその応用
○前田瑞夫（国立研究開発法人理化学研究所 前田バイオ工学研究室）

(17) 界表面固定化されたカルシウム応答タンパク質の赤外分光法による構造追跡
○野口秀典 1,2, 魚崎浩平 1
(1) 国立研究開発法人物質・材料研究機構 エネルギー・環境材料研究拠点,
2 北海道大学大学院 総合化学研究所 界面エネルギー変換材料化学

(18) 流動性リン脂質膜へのタンパク質吸着と界面水
○高井まどか 1,2
(1) 東京大学大学院 工学系研究科 バイオエンジニアリング専攻,
2 岡山大学大学院 環境生命科学研究科 資源循環学専攻 環境プロセス工学

【参加者名】
黒川洵子（静岡県立大学）, 山口賢彦（静岡県立大学）, 富永真琴（自然科学研究機構岡崎統合バイオサイエンスセンター）, 日比野 浩（新潟大学）, 任 書晃（新潟大学）, 芹方 玮（新潟大学）, 若川 達也（新潟大学）, 太田岳（新潟大学）, 栗長泰明（慶応義塾大学）, 浅井 阳（慶応義塾大学）, 花輪 藍（慶応義塾大学）, 中野 実（富山大学）, 田井 謙太郎（大阪大学）, 近藤 剛史（東京理科大学）, 相川達男（東京理科大学）, 大倉 晃月（東京理科大学）, 高部 拓士（東京理科大学）, 佐藤 榎（東京理科大学）, 三善英知（大阪大学）, 鎌田 佳公（大阪大学）, 伊藤 智美（東邦大学）, 田村 晃（東邦大学）, 安藤 愛（名古屋大学）, 琴祝 仁（東北大学）, 井田大貴（東北大学）, 総 直雄（金沢大学）, 森田 智（東京大学）, 前田 瑞夫（理工学研究科）, 酒井秀紀（富山大学）, 佐藤 亜子（東京工業大学）, 川口 一朋（金沢大学）, 老木伸信（福井大学）, 木村 宏（大阪府立大学）, 宮本 信（日本医療研究開発機構）, Erkin Kurganov（自然科学研究機構岡崎統合バイオサイエンスセンター）, 久保義弘（生理学研究所）, 立山充博（生理学研究所）, 下村拓史（生理学研究所）, 陳 以珊（生理学研究所）, 町 慎一郎（生理学研究所）, Rizki Tsari Andriani（生理学研究所）, 平泽 嘉一（生理学研究所）

【概要】
従来の医・生物学は、細胞内や形質膜、そしてバルク細胞外液で生ずる事象を主な対象としてきた。結果として示された多様な生命現象やその成立機構は、種々の病因の同定にも貢献した。しかし、成因不明の生体機能や難病は未だ多い。そこで本研究会では、これまで注目されてこなかった細胞外液と形質膜の間の境界相であ
研究会報告

（1）細胞をはかる、つかうための機能的界面の形成

椎木 弘, 木下隆将, 石木健吾, 長岡 勉
(大阪府立大学大学院 工学研究科 物質・化学系専攻 応用化学分野)

物質の機能は表面の状態に強く依存する。表面は異なる物質と接することで初めて機能を発現する。つまり、界面で生じる現象に着目することで機能の本質を理解することが可能となる。微生物が形成する様々な界面を着目し、光学的、電気化学的手法を用いた計測法の開発に取り組んだ。細菌の表面は種々の化学種からなっており、周囲の分子種との間にさまざまな結合や相互作用を形成する。このことを利用して分子インプリンティング法を適用し、細菌表面の特定化学種に対する分子鋳型ポリマーを形成した。分子鋳型と細菌との間の機能的界面は特異結合性を発現する。この機能を特定細菌の迅速検出や単一細胞の表面解析に応用した。さらに、細菌と分子間で働く相互作用を着目することで、分散液中における細菌の生存率計測にも成功した。

細菌は固体表面に付着した後、バイオフィルムを形成することが知られている。バイオフィルムは食中毒や感染症の被害拡大の原因となる一方、汚水浄化や有害物質の分解、燃料電池における負極への微生物固定など有用な側面を有する。そこで、細胞を生きたまま固定したプラットフォームを開発し、バイオフィルムの形成過程を追跡した。

（2）糖鎖を介した炎症性腸疾患の新しい病態解析

三善英知, 藤井宏修, 新崎信一郎, 鎌田佳宏
(大阪大学大学院 医学系研究科 保健学専攻 機能診断科学)

症性腸疾患 (IBD; Inflammatory Bowel Disease) は腸管に慢性・再発性に炎症を引き起こす原因不明の難病であり、免疫学的異常が関与していると考えられている。近年、糖鎖による免疫制御機構が注目されており、これまで研究室では、細胞の糖鎖構造変化が腸炎の発症や病態に影響を及ぼすことを明らかにしてきた。今回私は、IBD との関連が深いと言われるフコースに着目し、腸管炎症におけるコアフコースの病態生理学的意義について検討した。IBD 患
者の腸管炎症粘膜では、非炎症粘膜に比しコアフコースの発現が増加していた。コアフコースを生合成するα1-6フコース転移酵素（Fut8）の欠損（KO）マウスにT細胞を介したTNBS腸炎モデルを誘導したところ、Fut8 KOマウスでは野生型マウスに比べ体重減少率が低く、組織学的炎症所見も軽微であり、炎症性サイトカインの産生が有意に抑制されていた。Fut8 KOマウスのT細胞では、T細胞受容体のraftへの移行が抑制されていることが、T細胞の活性化抑制に関わることを証明した。

Fut8 KOマウスのT細胞は、T細胞受容体のraftへの移行が抑制されていることが、T細胞の活性化抑制に関わることを証明した。T細胞のコアフコースは、IBDの新たな治療の標的として期待される。

(3) 多種多様な生物応答を分析・把握する新規プロファイル解析手法（ディープフェノタイピング法）の開発

○木之下篤夫1,2, 水野忠快1, 前寺正太郎1, 山口めぐみ2, 楠原洋之1

(1) 東京大学大学院薬学系研究科 分子薬物動態学, (2)プロメディコ㈱ 研究開発部

我々は、オミクス解析により得た膨大な情報から、薬物に対する生物応答を体系的に捉えることを目的とし、独自の多変量解析手法を開発している。この解析手法は、いくつかの薬物処置により変化した遺伝子あるいはタンパク質発現プロファイルデータから、さまざまな生理応答を直交ベクトルの組み合わせで線形的に集約・分割して表現するものである。これにより、研究者が定義していない（できていない）生理応答の検出に加え、直交ベクトルの加減算により併用効果の予測等が可能となり、生理応答をさらに深く理解できるようになると考えている。我々は、このようにプロファイルデータを分析することを「ディープフェノタイピング」と名付け、その有用性を評価するためのモデル薬物群として、薬効標的分子が多様（初期反応の多様性）であり、かつ細胞死という生理応答に収斂する抗がん剤に着目した。これまでの検討で、VinblastineとLY294002の併用効果を予測し、その効果を確認できた。一方、我々は、二次元電気泳動法の精度を大幅に改善することに成功し、ローコストで既存よりも数倍のスポット情報を無数のサンプル間で比較可能にしている。将来、タンパク質レベルで被検化合物の薬効・毒性の推定、併用効果の予測を可能にするディープフェノタイシングのプラットフォームを構築していきたい。

(4) ヒトiPS細胞由来心筋細胞のセルモーションイメージング

○黒川洵子, 山口賢彦

(静岡県立大学大学院薬学部 薬学科 生体情報分子解析学)

ヒトiPS細胞由来心筋細胞は、心毒性評価への新機能用が検討されている。評価対象には心毒性不整脈および心機能低下（心不全）があり、いずれも深刻な有害事象である。不整脈毒性の評価系は細胞外電位記録に収束してきたが、収縮機能を解析する実験系は確立されていない。我々は、これまでに、自動心筋表面の超高速ビデオカメラ画像から動きベクトルを計算し、ヒトiPS細胞由来心筋細胞の収縮特性を解析するというセルモーションイメージング法を開発した。本法では、非侵襲的にin vitroでハイスループットに収縮速度と弛緩速度を分けて解析できる。マウス心臓から急性単離した心筋細胞およびヒトiPS細胞由来心筋細胞(iCell-CM, CDI, FUJI FILM)から得られた動画解析は、S18000 Sonyセル動作画像システム(Sony Corporation)を用いて行った。動きベクトルの波形の差から、薬理学的作動および心筋タンパク質の発現に違いが見られた。以上により、今回、細胞表面の動きベクトル解析から細胞特性を予測するシステムの基盤となる結果が得られた。
（5）帯電している界面近傍の流れ場の理論と可視化

土井謙太郎, 矢野絢子, 名倉 諒, 二戸郁賀, 辻 徹郎, 川野聡恭
（大阪大学大学院 基礎工学研究科 機能創成専攻 機能デザイン領域）

近年、微細加工技術の進歩により、比較的容易にマイクロメートルサイズの流体デバイスを作製することが可能となった。マイクロ流路を用いることにより、極微量の送液技術やバイオセンサなど多様な応用展開が期待されている。一方、そのような微視的空間では、従来とは異なる特徴的な現象が見られる。マイクロ流体デバイスを用いる場合には、液体の流動に対して固液界面の影響が強く現れる。特に、電解質溶液のような極性溶媒中に曝露されるガラスやシリコン表面は負に帯電することから知られている。このとき、それらの表面近傍に対イオンが集中し、固液界面に分極が生じて電気二重層が形成される。液中のイオンは、外部電場によって泳動し、さらに周囲の溶媒分子を牽引して流動へと発達する。この現象は電気浸透流として知られ、作動流体の体積に比べて面積の影響が支配的となるスケールに特有の現象である。我々はこれまで、マイクロ流体デバイスにおける微粒子や生体高分子の輸送現象に注目し、固液界面近傍のイオン分布と電場の関係を理論と実験の両面から明らかにした。さらに、巨視的には液中の至るところで電気的中性とされる溶液場においても、微視的スケールでは、局所的に電気的中性が破れることを境界電現象と電気流体力学流れの可視化により確認した。

（6）脂質組成に非対称性を取り入れたモデル脂質二重層膜の分子動力学シミュレーション

早川志保, 安藤嘉倫, 岡崎 進
（1）名古屋大学大学院 工学研究科 応用物質化学専攻 応用物理化学
（2）名古屋大学大学院 工学研究科 附属計算科学連携教育研究センター）

これまで当グループでは、胸腺細胞および肝臓細胞の細胞膜について、正常な細胞の細胞膜を模した細胞の細胞膜脂質組成を模したモデル脂質二重層膜を計算機上に再現し、生体温度・圧力条件下での分子動力学（MD）シミュレーションを行うことにより、これら膜内にある膜物性の差異を分子レベルから明らかにしてきた[1,2]。正常膜と機能膜とは膜の秩序性および膜の流動性が異なること、およびその傾向が細胞の種類によって異なることなど興味深い知見が得られたものの、計算対象の脂質二重層膜の脂質組成が単層膜ごとに同じ、すなわち対称であるという点で、実際の細胞膜でのそれと異なりというモデル化上の問題があった。そこで、より実際の細胞膜に近い内外単層膜間での脂質組成の非対称性を取り入れたモデル脂質二重層膜に対するMDシミュレーションを行うことで、実際の細胞膜において存在するであろう単層膜ごとの膜物性の違い、および単層膜間での膜物性相関の実際を明らかにするための一連の研究を進めた。その端緒として図1にあるよう

肝臓細胞の外単層膜と内単層膜の脂質組成をモデル化した2種類の二重層膜系を用意し、それらの基本的物性の違いを明らかにしたともに、非対称な二重層膜系を構築するための最適な脂質分子数を探った。図1の系に対する解析の結果、肝臓細胞の内外単層膜間での膜物性の違いが明らかとなった。

図1 肝臓細胞の外単層膜(a)および内単層膜(b)脂質組成を模倣した脂質二重層膜
(7) 脂質二重層膜とイオンに関する理論的研究

〇川口一朋, 長尾秀実
（金沢大学 理工研究域 数物科学系 計算科学コース 計算バイオ科学）

内耳蝸牛を満たす内リンパ液は, 外リンパ液を基準として約 80 mV の電位を示す。この電位差は聴覚に必須である。内リンパ液電位が基づく膜電位は細胞内外のイオンの濃度差に依存する。膜電位に関する研究は実験的手法だけでなく, 分子動力学（MD）シミュレーションによっても行われ, 脂質膜の構造, 物性に対する影響などが調べられてきた。

我々はこれまでに, いくつかの脂質膜に対して, イオンによる構造, 物性の変化をシミュレーションしてきた。本研究では, 理論および MD シミュレーションにより, 細胞内外でのイオン分布と膜電位の関係を明らかにする目的とした。膜を約 5 nm の間隔をあけて二枚配置し, 二つの溶液層を用意した。層ごとに異なる濃度でイオンを配置し, 二重膜内外でイオン濃度差を発生させた。この初期配置を用いて, MD シミュレーションを行った。

膜面に垂直な z 軸方向の電位分布 \(\psi(z) \) は以下のポアソン方程式により求めた。

\[
\frac{1}{\varepsilon_0} \int_0^z d' \int_0^{z'} \rho(z'') dz'' = \frac{1}{\varepsilon_0} \int_0^z d' \int_0^{z'} \rho(z'') dz''
\]

\(\varepsilon_0 \) は真空の誘電率である。\(\rho(z) \) は z 軸方向の電荷分布であり, MD の結果から求められた。膜内外の溶液層に K⁺イオンを配置し, 電荷分布および電位分布を求めた。

今回は, 膜内外の溶液層に異なる濃度で K⁺イオンを配置した。これにより約 500 mV の膜電位を再現した。また, 膜電位の K⁺イオン濃度に対する依存性を調べた。さらに, 細胞内容物のモデル分子として Ala₁₀を高電位側の溶液層に挿入し, 膜電位に与える影響を調べた。

謝辞: 本研究は JSPS 科研費 16K21094 の助成を受けたものです。

(8) 互いに逆の電荷配置をもつ双性イオン性頭部基をもつ脂質の合成と脂質膜物性

〇相川達男, 根津友祐, 横田圭亮, 大倉葉月, 岡部祥士, 近藤剛史, 湯浅真
（1 東京理科大学 理工学部 先端化学科 湯浅・近藤研究室,
2 東京理科大学 総合研究院）

脂質二分子膜は, 細胞膜の基本構造である。脂質二分子膜の流動性・表面電荷・電荷密度などの特性は, 膜タンパク質の機能をはじめとする生体反応の調節に密接に関与する。そのため, 脂質二分子膜のこれらの特性を制御することが, 生体反応の調節を可能にする。当研究グループでは, 脂質二分子膜中における脂質分子どうしの分子間相互作用を制御するため, inverse charge zwitterlipids (ICZLs)に着目している。ICZLs は, ジアシルグリセリドを基本骨格とし, その極性頭部の電荷配置は, ホスファチジルコリンのそれとは逆になっていることが特徴である。これまで, ホスファチジルコリン (DPPC) とスルホベタインを有する ICZL との分子間相互作用は, 極性頭部の電荷配置が互いに逆になっていることに起因していることを明らかにした。今回は, カルボキシペタインを有する ICZL と DPPC との相互作用について報告した。スルホベタイン型の ICZL の場合と同様に, DPPC と引力的な相互作用が見られたが, その相互作用は, スルホベタイン型の ICZL との場合に比べ強くなることが明らかになった。ICZL の極性頭部の官能基の種類のほかに, 頭部基の柔軟性も脂質間の分子間相互作用に寄与していることが示唆された。
(9) 蛍光および中性子を用いた脂質の膜間移動の検出

○中野 実, 杉浦太一, 中尾裕之, 池田恵介
(富山大学大学院 医学薬学研究部(薬学) 生体界面化学)

生体内には数千を超える脂質種が存在し、それらが目的の場所に輸送されて機能を発揮する。生体内にはこれらの脂質輸送に関わるタンパク質が存在し、それらが特定の脂質を特定の場所に輸送することで生体膜の機能を動的に制御している。

タンパク質の脂質輸送能の計測には、脂質にラベルを入れる必要があるが、ラベルによっては脂質の物性を大きく変化させ、タンパク質による認識を妨げてしまう可能性がある。とくに、脂質輸送タンパク質の多くは脂質頭部の違いを認識するため、頭部に修飾を入れることはできない。放射性同位体ラベルを用いればこれらの問題は解消されるが、輸送を計測する際、輸送元（ドナー）と輸送先（アクセプター）の粒子を分別する操作が必要となる。

本実験では、ピレンのエキシマー蛍光を利用した手法、ならびに、中性子散乱を用いて脂質の移動（輸送）の検出を試みた。前者では、タンパク質による認識にできる限り影響しないように、リン脂質のアシル鎖を重水素のピレンで標識している。後者ではアシル鎖を重水素化した脂質を用いるため、タンパク質による認識に影響を与えない。いずれの手法でも、ドナーとアクセプターを混合したままで測定を行うため、時間変化を追跡できるという長所をもつ。これらの手法による時間変化測定を行い、リン脂質輸送タンパク質の脂質輸送能をそれぞれエキシマー蛍光、中性子散乱強度の減少によって計測できることを明らかにした。

(10) 新しい脂質2重膜法によるチャネル-膜相互作用研究

○老木成稔、岩本真幸
(福井大学 学術研究院 医学系部門 形態機能医科学講座 分子生理学)

イオンチャネルは複雑な生体膜の中でリン脂質や膜の物理的状態から多様な影響を受けている。様々な実験やシミュレーションが適用されてきたが膜との相互作用の仕組みを明らかにすることは容易ではない。私達はチャネル機能を明らかにするために再構成膜法を使ってアプローチしてきた。精製したチャネルを既知のリン脂質組成の膜に埋め込み、チャネル機能やその構造変化を追跡する。チャネル活性の膜組成に対する依存性の実験を細菌由来KcsAカリウムチャネルで行った。私達が開発したContact bubble bilayer (CBB)法では、ガラスピペットから微小な電解質液滴を油相中に吹き出し(bubble), 油水界面に形成した単分子層を接触させて脂質2重膜を形成する。この方法により、疎水性分子を油相に注入し2重膜に到達させることができるようになった。また2重子層と2重膜の共存系であることを利用し、2重膜の張力とその変化を測定することができた。チャネルは外力による機械的張力だけでなく膜組成変化による張力変化で機能が変化することが明らかになった。
（11）生体膜に発現する温度感受性 TRP チャネルの構造と機能

○富永真琴 1,2
（1）岡崎統合バイオサイエンスセンター（生理学研究所）細胞生理研究部門、
2）総合研究大学院大学 生理科学専攻

感覚神経では、細胞膜表面に発現するイオンチャネル型温度感受体分子が温度で活性化して陽イオン流入から脱分極が起こり、電位作動性ナトリウムチャネルの活性化から活動電位が惹起されると考えられている。その陽イオン流入をもたらすイオンチャネルの中心的な分子が温度感受性 TRP チャネルである。TRP チャネルはカルシウム透過性が高いことから、流入したカルシウムが TRP チャネルと複合体を形成しているカルシウム活性化クロライドチャネルを活性化して、クロライド流出からさらなる脱分極が引き起こされるモデルが提唱されている。ヒトでは、27 の TRP チャネルが知られており、そのうち 11 に温度感受性があることが報告されている。その多くは植物由来の化学物質（カプサイシンやメントール）でも活性化する。温度感受性 TRP チャネルは大きな温度変化に曝されない深部臓器にも発現しており、体温近傍の小さい温度変化の中で活性化がダイナミックに変わる。温度感受性 TRP チャネルのいくつかは、その活性化温度閾値がダイナミックに変化することが知られており、例えば TRPV1 は炎症時にリン酸化等の修飾を受けて活性化温度閾値が下がる。このように、温度感受性 TRP チャネルは多くの生物種で幅広い温度域で活性化して様々な生理機能に関わっている。

（12）生体界面のナノ形状動態を可視化する高速走査型イオンコンダクタンス顕微鏡

○井田大貴 1, 高橋康史 1,2,3, 周緑 formulid, 熊谷明哉 4, 珠玖仁 4, 末永智一 1
（1）東北大学大学院 環境科学研究 先端環境創成学専攻 自然共生システム学講座 環境生命機能学、
2）金沢大学 工学研究域 電子情報学系、JST さきがけ、
4）東北大学大学院 工学研究科 環境資源科学講座 電気化学

細胞膜界面には微小構造が存在しており、それらの協調的な働きが複雑な生理現象を引き起こす。しかし、ナノスケールで柔らかい微小構造の動きを観察するには、光の回折限界を超えた空間分解能を持ち、高時間分解能かつ非侵襲的な測定手法が必要である。我々は、細胞膜表面の動きを観察するため、非標識・非侵襲で細胞表面のナノスケール形状を評価可能な走査型イオンコンダクタンス顕微鏡（空間分解能：50 nm）を、従来の 50 倍以上高速化した（18 sec/images）。その結果、細胞膜界面で縦横に動き回る微絨毛や、クラスリン依存エンドサイトーシスなど、細胞表面の連続的な動きを可視化できた。また、上皮細胞にヒト上皮成長因子を添加すると、細胞膜から微絨毛が速やかに解消され、その際に動態の異なる二種類の微絨毛を確認できた。これらの観察結果から、我々が開発した高速走査型イオンコンダクタンス顕微鏡が、細胞膜表面における微小構造の動きを連続的に可視化できることが示された。
（13）胃酸分泌刺激による壁細胞頂端膜界面の構造変化
藤井拓人1，高橋康史2，清水貴浩1，○酒井秀紀1
（1）富山大学大学院 医学薬学研究部（薬学）薬物生理学
（2）金沢大学 理工研究域 電子情報学系

胃壁細胞は、胃粘膜において塩酸（HCl）分泌を担う細胞であり、酸分泌休止時から刺激時への移行にともない、その形態が劇的に変化する。この形態変化の主要因は、休止時に細胞内に豊富に存在する細管小胞が互いに融合し、頂端膜に連結するためである。しかし、壁細胞の頂端膜表面の酸分泌に関連する微細構造変化を、細胞が生きた状態でとらえた報告はない。これは、従来の研究で用いられている単離胃腺や単離胃酸分泌細胞では、頂端膜が外液に露出しない閉じた管腔を形成するためである。本研究ではまず、ラット胃粘膜より単離した胃酸分泌細胞の初代培養系を構築し、頂端膜の露出した細胞を得ることを試みた。プロナーゼ処理により壁細胞を単離し、コラーゲンをコーティングしたカバーガラス上で培養し、蛍光ラベルした抗胃プロトンポンプβ鎖抗体で細胞膜透過未処理条件において染色した。その結果、頂端膜上に明瞭なシグナルが観察された。次に走査型イオンコンダクタンス顕微鏡（SICM）により膜表面の形態を観察すると、数μmレベルの凹凸が観察された。ジブチルcAMP（1 mM）処理による酸分泌刺激を行うと、劇的な形状変化が引き起こされた。これに伴い頂端膜界面のpHが、酸性側にシフトすることを蛍光色素による実験で確認した。以上の結果から、本細胞系は、頂端膜の形状を生きた状態で観察可能であり、機能も保持されていることが示唆された。

（14）ダイヤモンド微小電極を基盤とした生体内測定システムの構築
○浅井 開1，花輪 藍1，栄長泰明1,2
（1）慶應義塾大学 理工学部 化学科 無機物性化学，JST-ACCEL

生命現象の理解から医療応用まで医学・生理学の発展に欠かせない生体内測定だが、種々存在する測定手法の中でも電気化学測定は原理が単純であり、生体内におけるリアルタイム測定を可能とするという面で優れている。また、ホウ素を高濃度にドープした導電性ダイヤモンド薄膜（BDD電極）は、高い耐久性および生体適合性により、生体内での安定した測定へ展開が可能である。しかし、リアルタイム性・安定性・選択性を兼ね備えた測定系は実現されていないのが現状である。
この課題を克服する測定手法としてFast Scan Cyclic Voltammetry（FSCV）がある。カーボンファイバー（CF）が電極材料に用いられているが、安定性が低いことが課題となっている。そこで本研究では、被毒しにくい表面をもち長期間の安定した測定が期待されるBDD電極を用いたFSCV測定を取り組んだ。
BDD電極のFSCVに対応する基礎特性を評価するため、CF電極において最も研究が進み基礎的な情報が蓄積されているドーパミンのFSCV測定を行なった。不純物の少ないBDD電極ではドーパミンの吸着が少ないためFSCVにおける反応性が低いことが示された。不純物成分であるsp2炭素を制御することで、FSCVの反応性と耐久性を兼ね備えたBDD電極の作製が可能になると言える。
（15）レーザ干渉計の技術開発による内耳ナノ振動の計測と分析

○太田 岳,1,2 崔 森悦,1,2 任 書晃,1,2 日比野 浩,1,2,4

（1 新潟大学大学院 医歯学総合研究科 分子生理学, 2 AMED-CREST AMED, 3 新潟大学 工学部 電気情報工学, 4 新潟大学 超域学術院）

感覚は動物の活動に必須である。聴覚の末梢器官は内耳蝸牛である。音が蝸牛に到達すると、センサー細胞や細胞外マトリックスなどからなる「感覚上皮帯」という組織に、0.3〜10 nm の振動が生ずる。ナノ振動は、センサー細胞により電気信号に変換され、脳へ伝えられる。蝸牛は小さい音ほど敏感に反応する。この“非線形性”の成立には、音刺激に呼応してセンサー細胞に観察される能動的な動作が関わると指摘されているが、詳細は十分に理解されていない。そこで我々は、古典的なレーザ干渉法を改良し、生きた動物の感覚上皮帯を標的とするナノ振動計を創出した。「二重正弦波位相変調（Dual SPM）法」と名付けた本手法によって、生体を模したビーゼ素子駆動のミラーにおいて最小 40 pm の振動振幅を検出した。生モルモットの蝸牛では、入力音圧に対して非線形的な感覚上皮帯の振動を、最小振幅 60 pm まで定量した。非線形性は、報告通り、動物の死後には消失した。Dual SPM 法では、振動の中心の“位置ずれ”も振幅と同時測定できるのが新たな特徴である。位置ずれは、現在最も普及しているレーザドップラー振動計では検出できない。感覚上皮帯計測の準備実験として、Dual SPM 法で振動させたミラーを計測したところ、位置ずれを 2 nm まで追尾できた。この技術を介して蝸牛の非線形的な反応を支える別の作動原理が抽出される可能性が示唆された。

（16）DNA 二重鎖がつくるソフトな界面の特異な性質とその応用

○前田瑞夫（国立研究開発法人理化学研究所 前田バイオ工学研究室）

生体物質と相互作用をする人工材料は、その表面構造が機能発現の重要なカギとなる。標的とする生体分子と結合すると同時に、他の分子とは相互作用をしない表面が求められており、それには合成高分子やバイオ分子などのソフトマターが形成する動的な界面（ソフト界面）が有効である。我々は、20 塩基程度の二重鎖 DNA をプラシ状に固定したナノ粒子が、分散媒（水）と DNA 層の境界に位置する末端塩基対の構造に敏銳に応答して、コロイド安定性が大きく変化することを見出した。その末端塩基が相補的に対応する場合は自発的に粒子が凝集するのでに対して（非架橋凝集凝集）、自由末端の一塩基がミスマッチとなるだけで粒子は高イオン強度条件下でも安定に分散するのである。この特異現象を利用して遺伝子の一塩基多型、生体エネルギー物質 ATP、補酵素 FMN、重金属イオン Hg²⁺などの目視検出法を開発した。また、一本鎖 DNA 的鍵型上に DNA 担持金ナノ粒子を等間隔に配置した系ビーズ状集合体を作製し、隣接粒子同士を非架橋凝集させて全体構造を変換することに成功した。一方、DNA 担持金ナノロッドも合成しており、非架橋凝集現象を使って縦方向または横方向に金ナノロッドを並べることにも成功している。こうした構造制御は新規バイオマテリアルやセンシングデバイスの基盤として有望である。
（17）界表面固定化されたカルシウム応答タンパク質の赤外分光法による構造追跡

○野口秀典1,2, 魚崎浩平1
1 国立研究開発法人資源エネルギー技術研究所 エネルギー・環境材料研究所
2 北海道大学大学院総合文化学研究院エネルギー変換材料化学

Calmodulin(CaM)は細胞内Ca2+濃度変化のシグナルを伝達するCa2+結合タンパク質であり、筋収縮をはじめとする多くの生理現象に関わっており、CaMの酵素活性メカニズムの解明は非常に重要である。そこで本研究はCa2+濃度変化に応じたCaMの構造変化およびCaM結合ペプチドであるMastoparan(mp)との結合、解離の過程をin situ赤外吸収分光法によりリアルタイムで直接観測することを目的として行った。

N末端にオリゴヒスチジンタグを発現させたCaMを金基板上に修飾したnickel-chelating nitrilo-triacetic acid(Ni-NTA)と結合させることで基板に固定し(図1)，赤外吸収測定を行った。図2は金基板上に固定されたCaMの各Ca2+濃度のアミド領域のIRスペクトルである。Ca2+濃度が10^{-7}(図2(a))から10^{-3}M(図2(e))へ上昇するにつれて、1550と1634cm^{-1}にピークが出現した。これらはEFハンド内の酸性残基がCa2+と配位結合した際に現れるピークとセントラルヘリックスが伸びた構造をとる際に現れるピークに帰属された。また再びCa2+濃度が10^{-3}から10^{-7}M(図2(i))へ減少するとこれらのピークは消失した。この結果は過去の均一系の報告と同様な変化を示したことから固定化されたCaMは均一系と同様に振舞うと考えられる。

（18）流動性リン脂質膜へのタンパク質吸着と界面水

○高井まどか1, 島内寿徳2
1 東京大学大学院工学系研究科バイオエンジニアリング専攻
2 岡山大学大学院環境生命科学研究科資源循環学専攻環境プロセス工学

細胞膜のリン脂質極性基、ホスホリコリシン(PC)基を模倣した2-メタクリロイルオキシエチルホスホリコリシン(MPC)ポリマーは、タンパク質の吸着を抑制する代表的な材料として医療デバイス用に用いられている[1]。またこのタンパク質吸着抑制は、PC基に親和性の高い水分子の存在によることを和周波発生分光(SFG)法により明らかにしてきた[2]。本研究では、流動性をもつリン脂質膜を平面基板に形成させ、タンパク質吸着と界面水の挙動を解析した。Poly(MPC), PC-SAMは表面開始型原子移動ラジカル重合法、シリアルカップリング反応によりガラス上に作製した。脂質、DPPC(1,2-dipalmitoyl-sn-glycerol-3-phosphocholine), DOPC(1,2-dioleoyl-sn-glycerol-3-phosphocholine)をAu-SAM上に形成した。
最表面の分子構造は同じであるが、表面 PC 基の密度、側方拡散係数が異なった。PC 基密度、および縦および横方向の流動性の違いにより、タンパク質吸着挙動が異なることが明らかとなった。

3. 膜システムの機能的・構造的統合

2017年9月5日-9月6日

代表・世話人：老木成稔（福井大学医学系部生物機能学）
所内対応者：久保義弘（生理学研究所神経機能素子）

（1）膜電位存在下でのKv1.2チャネルの機能構造
○重松秀樹（理研ライフサイエンス技術基盤研究センター）

（2）魚の相同遺伝子から探るKCNEサブユニットのKCNQ1チャネル電位セッターメ厕修飾機構
○中條浩一（大阪医科大学医学部・生理学教室）

（3）電位依存性ホスファターゼVSPの酵素活性に対する膜近傍領域の役割
○川嶺陽, 橋本真宜, 神野有香, 坂本康平, 岡村康司
(大阪大学大学院医学系研究科統合生理学教室, 大阪医科大学医学部生理学教室)

（4）脂質-タンパク質同性によるEGFRの膜近傍ドメイン2量体形成機構
○前田亮, 佐藤毅, 岡本憲二, 佐甲靖志（理化学研究所・佐甲細胞情報研究室）

（5）内向き整流カリウムチャネルのK-iオン透過の制御機構
○柳（石原）圭子（久留米大学医学部・生理学講座・統合自律機能部門）

（6）細菌機械感受性チャネルMscLの開口過程における張力センサーとゲートの連携機構
○澤田康之, 曽我部正博（名古屋大学大学院医学系研究科メカノバイオロジー・ラボ）

（7）ヒドロキシンコレステロールのSlo1BKカリウムチャネル機能に対する影響
○田嶋信義, 劉暁艶, 加藤伸郎, (1)金沢医科大学医学部生理学, 2)華中科技大学神經内科

（8）膜内在性力場によるチャネル活性の変化
岩本真幸, 老木成稔（福井大学・医学系部・分子生理学）

（9）灰色藻Cyanophora paradoxaの葉緑体チラコイド膜に存在する新奇拡散チャネルTPOR
○児島征司（東北大学学際科学フロンティア研究所）

（10）Quantitative investigation of ionic mechanisms underlying the regulation of membrane excitability during GLP-1 stimulation in pancreatic beta-cells
○Yukari Takeda, Takao Shimayoshi, Akira Amano, and George G. Holz
(福井大学・医学系部・統合生理学)

（11）1分子可視化技術の微生物学への応用
○西坂崇之, 中根大介（学習院大学・理学部）

（12）高速AFM観察によるK+チャネルKcsAとサソリ毒ペプチドAgtx2の分子結合動態解析
○角野歩, 1,2, 内橋貴之, 3, 炭塚真司, 4, 老木成稔
(1)金沢大学 新学術創成研究機構, 2)バイオAFM先端研究センター, 3)名古屋大学理学研究科, 4)福井大学医学系研究科)

（13）四量体型ナトリウムチャネルにみられる透過イオンや阻害剤との非対称な相互作用
○入江克雅（名古屋大学細胞生理学研究センター）

（14）Ivermectin activates GIRK channels in a PIP2-dependent, Gαi-independent manner, and an amino acid residue at the slide helix governs the activation
○I-Shan Chen, Michihiro Tateyama, Yuko Fukata, Motonari Uesugi, Yoshihiro Kubo
(1)Division of Biophysics and Neurobiology, National Institute for Physiological Sciences,
【参加者名】
塚本寿夫（分子科学研究所生体分子情報研究部門）、中條浩一（大阪医科大学生理学教室）、上原明（福岡大学医学部生理学）、曾我部正博（名古屋大学大学院名古屋大学メカノバイオロジー・ラボ）、澤田康之（名古屋経済大学）、田嶋信義（金沢医科大学医学部生理学）、岡村康司（大阪大学大学院医学系研究所研究科統合生理解学教室）、川端陽（大阪大学大学院医学系研究所研究科統合生理解学教室）、有馬大貴（大阪大学大学院医学系研究所研究科統合生理解学教室）、竹内綾子（福井大学学術研究院医学系部門統合生理解学）、竹田有加里（福井大学学術研究院医学系部門統合生理解学）、前田亮（理化学研究所佐甲細胞情報研究室）、老木成稔（福井大学医学部分子生理学）、岩本真幸（福井大学医学部分子生理学）、有馬大貴（名古屋大学大学院医学系研究所研究科統合生理解学）、角野歩（金沢大学新学術創成研究機構高速バイオA F M応用研究ユニット）、入江克雅（名古屋大学細胞生物学研究センター細胞生理解学研究部門）、橋本哲郎（日産化学工業㈱生物科学研究所医薬研究所）、西村秀義（京都大学医学学部西山研究室）、齊藤真（理化学研究所理学研究所）、陳以珊（理化学研究所）、平澤輝一（理化学研究所）

【概要】
生理研研究会「膜システムの機能的・構造的統合」では生理学のみならず生物物理学や最先端測定技術領域などからも若者を招き、チャネル分子から匂い応答、さらには実験法の人工知能による応用まで多彩なトピックスについて活発な討論を繰り広げることができた。研究対象はイオンチャネルの原子レベルのイオン透過・選択性から分子構造レベルの研究、さらに受容体・細胞膜・細胞レベルの研究まで広くカバーした。また測定法としても電気生理学を中心に、結晶構造解析、一方子測定、分光学、シミュレーションなど複数の手法が発表され、他に例のない研究会になった。特に、イオンチャネルの分子レベルの研究では日本でこの研究会よりも深く議論される場はないと推察する。これをもとに生理学の本道である生命機能のダイナミクスという共通項を基盤として深い議論が交わされた。参加者の専門領域が少しずつ異なったが、発表・討論時間を十分にとったことで常に緊張感をもつた、相互に実り多い議論となり、異なるバックグラウンドのある研究者にお互いに理解することができた。討論も十分かみ合ったものであり、討論の時間が不足したと感じるほど、熱心な議論が繰り広げられた。新しいメンバー、特に若い研究者を発掘する場にもなっており、今後このメンバーの中から共同研究が育っていくことが期待される。日本のイオンチャネルの分子レベルの研究が世界レベルに匹敵しうるものかという危機感がこの研究会始まるきっかけの一つであったが、最近の研究会を見ていると、生理学のみならず、生物物理学など周辺領域にも若手研究者が少しずつ育っているという印象を持った。
（1）膜電位存在下での Kv1.2 チャネルの機能構造

○重松秀樹（理研ライフサイエンス技術基盤研究センター）

本研究はイオンチャネルの構造を膜電位存在下で明らかにするクライオ電子顕微鏡単粒子解析法を開発し、膜電位作動性カリウムチャネル Kv1.2 チャネルの電位センサーの脂質膜中での構造変化を可視化することを目的としている。試料としては脂質膜環境としてリポソームを利用することでリポソーム内外のバッファー成分を変え、脂質膜電位作動性カリウムチャネルを可視化することができ、今回、X 線結晶構造解析で得られた構造と比較するために、膜電位なしの状態で取得した構造を 7.5 Å 分解能で明らかにした構造と、ここで使用した直径約 40 nm のリポソームを用い、flux assay により膜電位を十分な時間保持できることを確認したので、そのことを報告する。構造解析にはリポソームに由来する新しいコンポーネントをあらかじめ差し引いてから画像処理をすることで、膜外に飛び出した領域を使って画像処理が可能になっている。また、膜電位の発生にはバリノマイシンを用い、ACMA の蛍光強度をモニターすることで、イオン濃度勾配が発生することを確認した。この条件をクライオ電子顕微鏡単粒子解析に適用することで、-100 mV の膜電位存在下での Kv1.2 チャネルの構造を明らかにすることができると考え、データ取得、画像解析に取り組んだ。

（2）魚の相同遺伝子から探る KCNE サブユニットの KCNQ1 チャネル電位センサードメイン修飾機構

○中條浩一（大阪医科大学・医学部・生理学教室）

膜タンパク質は、多くの場合複数種類のサブユニットからなる膜タンパク質複合体として機能する。電位依存性カリウムチャネルの一種である KCNQ1 チャネルもその例外ではなく、KCNE と呼ばれる 1 回膜貫通型タンパク質により、その機能が大きく変化する。心臓では KCNQ1 と KCNE1 からなるイオンチャネルが心臓の非常遅いカリウム電流（IKs）を担う。肺や腸などの上皮細胞では KCNQ1 と KCNQ3 が常時開状態のカリウムチャネルを構成し、トランスポーターと機能的に共役することで Cl⁻の輸送に関わっている。

近年の成果により、KCNE1/KCNQ3 が電位センサーの働きを変えることが分かってきたが、実際どのようなメカニズムによって電位センサーの動きが変化するかについては、よくわからていない。今回、ゼブラフィッシュの KCNQ1 を開きっぱなしにする機能がなく分かった。そして、膜貫通領域の真ん中から下の領域が KCNQ1 を開きっぱなしにする機能がなく分かった。そして、 KCNQ1 を開きっぱなしにする機能を持つと予想されたが、実際にそうであることを人工遺伝子により確認した。 KCNQ3 の KCNQ1 を開きっぱなしにする機能は、陸上に上がる進化の過程で獲得されたと想像される。

（3）電位依存性ホスファターゼ VSP の酵素活性に対する膜近傍領域の役割

○川鍋 陽, 橋本真宜, 米澤智子, 神野有香, 坂田宗平, 岡村康司（大阪大学大学院医学系研究科統合生理学教室）

電位依存性ホスファターゼ VSP は、膜電位を感じる電位センサーと細胞質側の脱リン酸化酵素領域が連関することで電位依存的酵素活性を実現している。この酵素活性制御のメカニズムは未だに完全には理解されておらず、
現在でも重要なテーマである。われわれは VSP の基質が脂質であることから膜境界面が重要であると考え、酵素領域の結晶構造中で膜近傍に位置していると推測される疏水性領域 (L284, F285: ホヤVSP (Ci-VSP)) に注目した。この領域は種を越えて保存されており、酵素領域と相同性のあるヒト PTEN にも保存されているため、酵素活性に対してなんらかの役割があるものと予想された。

そこで、Ci-VSP を用いてこの疏水性領域の変異体を解析したところ、酵素活性がアミノ酸側鎖の疏水性に比例することが判明した。また、芳香族アミノ酸を導入したところ、一段と酵素活性が上昇することが示唆された。これが酵素活性に影響を与えるメカニズムを明らかにするために、電位センサーの動き、酵素領域自身の活性、電位センサーと酵素領域のカップリングへの影響などを解析した。発表ではこれらの結果を踏まえて、VSP の酵素活性における膜近傍疏水性領域の役割について議論した。

（4）脂質-タンパク協同性による EGFR の膜近傍ドメイン 2 量体形成機構

○前田 亮, 佐藤 毅, 岡本憲二, 佐甲靖志（理化学研究所・佐甲細胞情報研究室）

上皮成長因子受容体（EGFR）はチロシンキナーゼ型受容体の 1 つで、細胞増殖や分化に関与する。EGFR は細胞外ドメイン、一回膜貫通ヘリックス、膜近傍ドメイン（JM）、および細胞質側キナーゼドメインから構成される。細胞外ドメインに EGF などリガンドが結合すると細胞外ドメインの構造変化および二量体化が誘起され、細胞質側でキナーゼドメインが活性化し、下流シグナル分子をリン酸化する。この過程においては脂質に二重膜分子の二量体形成が重要であり、その際 JM ドメインが細胞質側の脂質二重膜分子と相互作用し、二量体を形成することが重要であると考えられているが、そのメカニズムに関しては不明な点が多い。

そこで本研究では、ナノディスクと分子 FRET 計測を組み合わせることで、脂質二重膜分子による JM ドメインの二量体形成メカニズムの解明を目指した。本研究から、POPS や PIP2 といった負荷の脂質分子を含む膜において JM ドメインの二量体形成が促進され、一方で活性抑制に関わるとされる Thr654（JM に存在）がリン酸化されると JM ドメインの二量体化が解消されることを見いだした。これらの結果から、JM ドメインと脂質膜分子の静電的な相互作用によって、JM ドメインの二量体形成が制御されていることが分かってきた。

（5）内向き整流カリウムチャネルの K+透過の制御機構

○柳（石原）圭子（久留米大学医学部・生理学講座・統合自律機能部門）

内向き整流カリウム（K⁺）チャネルは心筋細胞などの興奮性細胞において背景カリウム電流を担う静止電位を維持するため発現する。構造上は膜電位センサーを持たない 2 回膜貫通型チャネルファミリーに属し、強い内向き整流性（外向き電流抑制）を引き起こす開閉機構は細胞質に存在する有機カチオンであるポリアミンによる電位依存性チャネルブロックを反映するものとされている。開状態のチャネルの K⁺透過も細胞外 K⁺濃度のほぼ平方根に比例して変化するため、それらのメカニズムとして古くから細胞外 K⁺による何らかの制御メカニズム（K⁺-activation mechanism）の存在が示唆されてきたが、詳細はよく分かっていない。我々は電気生理学的な手法であるパッチクランプ法を用いて、インサイド-アウト・パッチ膜とアウトサイド-アウト・パッチ膜から巨視的な Kir2.1 チャネル電流を記録し、細胞外 K⁺-free による電流抑制のメカニズムと、ポリアミンブロックが外れた "開チャネル" の K⁺透過性と細胞外 K⁺濃度の関係について調べた。その
の結果、Kir2.1において開チャネルのK⁺透過性の制御に細胞外K⁺は関わっていないという結論を得た。

（6）細菌機械受容チャネルMscLの開口過程における張力センサーとゲートの連携機構

○澤田康之,曾我部正博（名古屋大学大学院医学系研究科メカノバイオロジー・ラボ）

ゲーティング機構（刺激受容から開口に至る仕組み）の理解は、イオンチャネル研究における究極課題の一つである。細菌機械受容チャネル MscL は、閉状態の結晶構造が解かれ、膜張力のみで開口し、膜張力センサーとゲートの責任アミノ酸が同定されているので、ゲーティング機構の完全理解に最も近い対象である。今回我々は、センサーとゲートを力学的に仲介する仕組みを発見したので報告する。MscL は 2 回膜貫通型（αヘリックス）サブユニットの環状ホモ 5 量体であり、内側ヘリックス (TM1) がポアを裏打ちし、外側ヘリックス(TM2)が外壁を構成する。隣接する TM1 同士は脂質膜内葉で交差して 5 角形状のゲートを構成する。交差部は Gly22 などの疎水性アミノ酸間の相互作用により骨格構造を保持すると同時に脂水性部分に水や電解質の透過を阻止している。一方、脂質膜外葉の油水界面近傍に位置する TM2 の Phe78 は、脂質との安定した相互作用を通して脂張力センサーとして働く。我々は既にゲート開口の局所機構を解明しているが、Phe78 で受容された張力のゲートへの伝達経路は不明であった。今回、自発開口する G22N、張力刺激でも開口しない F78N、および二重変異体 G22N/F78N の挙動を分子動力学的に解析する中で、F78 と、隣接する TM1 上の複数のアミノ酸残基との相互作用が F78 からゲートへの張力伝達に必須であることを突き止めた。

（7）ヒドロキシコレステロールのSlo1 BKカリウムチャネル機能に対する影響

○田嶋信義 1, 劉 暁艶 1,2, 加藤伸郎 1（1 金沢医科大学医学部生理学 I, 2 華中科技大学神経内科）

ヒドロキシコレステロールはコレステロールの代謝産物であり、神経機能の維持、免疫機能、腫瘍の増殖に関与している。我々は、Slo1 BK カリウムチャネルを HEK293 細胞に発現させ、Inside-out patch clamp 法を用いて内因性のヒドロキシコレステロールの影響を調べた。側鎖が-OH 化されたヒドロキシコレステロールは Slo1 BK チャネル活動を低下させたが、環状部が-OH 化されたものでは抑制は見られなかった。また、抑制の程度は環状構造(D環)の近接部位の-OH 化が最も大きく、遠位部に行くにしたがって低下した。次に我々は、脳内コレステロールの代謝産物である 24(S)-ヒドロキシコレステロール(24(S)-HC)に着目し、Slo1 BK チャネル活動抑制機構の詳細を調べた。24(S)-HC は濃度依存的に Slo1 BK チャネル活動を低下させ、チャネルの開口確率を著しく低下させた。また、24(S)-HC は Slo1 BK チャネルの活性化過程を著しく減速したが、脱活性化過程には影響を及ぼさなかった。更に、細胞膜ステロールのスキャベンジャーとして働く γ-シクロデキストリンは 24(S)-HC によって引き起こされた抑制から Slo1 BK チャネルを回復させた。これらの結果から、24(S)-HC は細胞膜内に挿入された後 Slo1 BK チャネルに作用し、チャネルのイオン透過路のゲートを閉状態に誘導すると考えられる。
（8）膜内在性力場によるチャネル活性の変化

岩本真幸, 〇老木成稔（福井大学・医学系部門・分子生理学）

細胞膜には多種類の脂質成分が存在し、非対称に局在化する。中でもコレステロールはチャネルに結合したり、膜の物性を変えることでチャネルに様々な影響を与えていている。KcsAチャネルは細菌由来であるが細菌の膜にもステロール様物質が含まれることが知られている。そこでチャネルに対するステロールの効果を新たに開発したCBB（Contact Bubble Bilayer）法で検討した。CBB法では膜脂質組成を急速に変化させる膜“灌流”が可能である。Azolectin（fosfatidylcholineを主成分とするリン脂質混合物）のCBBに再構成したKcsAチャネル（不活性化しないE71A変異）の単一チャネル電流を測定しつつ、コレステロールの膜灌流を行った。チャネル活性は消失し、これは活性化ゲートが閉じたことを示す。膜内コレステロール濃度が低下するとチャネル活性は回復した。このようなKcsA活性化ゲートに対するコレステロールの可逆的な効果は他のステロール類（ergosterol, epicholesterol）でも観察された。ただし各ステロール効果の濃度領域は大きく異なった。この中で立体異性体であるepicholesterolでも効果があったことから、これは膜物性の変化を示唆する。

CBB法では界面化学的測定が可能であることを利用し、2重膜の厚さと張力を測定した。その結果、ステロールは2重膜張力を低下させることが明らかになった。各ステロールのチャネル活性に対する効果と2重膜張力への効果は強い相関を示した。そこでチャネル活性を2重膜張力に対してプロットすると、ステロール種類の差異は消滅し、単一の2重膜張力依存性を示すことが明らかになった。KcsAチャネルはazolectinもつか内在的な2重膜張力により開状態が維持されており、ステロールによって低下した張力で閉じることが明らかになった。

（9）灰色藻 Cyanophora paradoxaの葉緑体チラコイド膜に存在する新奇拡散チャネル TPOR

〇児島征司（東北大学学際科学フロンティア研究所）

葉緑体の起源は原始真核細胞に細胞内共生した藻類（酸素発生型光合成を行う細菌）である。自然環境で検出される藻類が細胞内小器官である葉緑体へと変異する過程では、宿主細胞との物質のやりとりに制限するため、葉緑体内への物質輸送や透通の機構を根本的に変える必要があります。その具体的な工程は、藻類の膜系（外・内膜、チラコイド膜）のチャネルやトランスポーターの分子的・機能的な変換として説明されるはずである。事実、最も原始的な葉緑体の一つである灰色藻 C. paradoxaの葉緑体では、藻類の表層膜（外膜）の主要構成成分の殆どは既に失われており、その替わりに非特異的拡散チャネル活性を持つ蛋白質（CppS/Fと名付けた）が外膜の主要成分となっている[1,2]。加えて、当研究過程で私、灰色藻葉緑体のチラコイド膜から強い拡散チャネル活性が検出されたことを偶然に発見した。本チャネルをTPOR(thylakoidal porin）と名付け、本蛋白質の精密・同定と機能解析を行ったところ、TPORは①藻類には存在しないが植物系統全般に保存されていること、②分子量約600以下の化合物を非特異的に透通する機能を持つこと、③Ca2+, Mg2+的存在下で透通性が大きく減少すること、の3点が明らかになった。本発表では、TPORの機能を中心に、これまでの成果を紹介した。

【参考】
Quantitative investigation of ionic mechanisms underlying the regulation of membrane excitability during GLP-1 stimulation in pancreatic beta-cells

○Yukari Takeda, Takao Shimayoshi, Akira Amano, George G. Holz

Pancreatic β-cells generate bursts of action potentials in response to glucose, thereby inducing cyclic changes of [Ca2+], that drive pulsatile insulin release. The incretin hormone GLP-1 potentiates the glucose-stimulated insulin secretion by regulating membrane excitability, Ca2+ dynamics, and Ca2+-dependent exocytosis through cAMP-dependent mechanisms. Here, we report a theoretical simulation analysis that predicts how GLP-1 modifies action potential "bursting" activity, while also taking into account plasma membrane (PM) Ca2+ entry and endoplasmic reticulum (ER) Ca2+ mobilization. Building on our prior model, we consider effects of GLP-1 on inositol 1,4,5-trisphosphate receptor (IP\textsubscript{3}R) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) on ER membrane as well as voltage-gated Ca2+ channels (VGCC), delayed rectifier K+ channels, ATP-sensitive K+ channels, and nonselective cation channels (NSCCs) on plasma membrane. An unexpected finding is that a stimulatory action of GLP-1 at NSCCs is predicted to underlie its ability to reduce the time interval separating bursts of action potentials. In contrast, the action of GLP-1 to prolong the burst duration results from its stimulatory effects directly at the VGCC and IP\textsubscript{3}R and indirectly at the Na+/Ca2+ exchanger.
(12) 高速 AFM 観察による K⁺チャネル KcsA とサソリ毒ペプチド Agtx2 の一分子結合動態解析

○角野 歩 1,2, 内橋貴之 3, 炭竈享司 4, 老木成稔 4
(1 金沢大学 新学術創成研究機構, 2 バイオ AFM 先端研究センター, 3 名古屋大学理学研究科, 4 福井大学医学系部門)

【緒言】サソリの毒液に含まれる神経毒ペプチドであるアジトキシン-2 (Agtx2) は, K⁺チャネルの細胞外表面に結合してポアを塞ぐことで K⁺透過をブロックする。Agtx2 と K⁺チャネルの巨視的な親和性や静的な結合様式の情報は報告されているが, 結合のダイナミクスは不明である。本研究では, Agtx2 が K⁺チャネル KcsA の細胞外表面に結合・解離する様子を高速原子間力顕微鏡 (HS-AFM) によって一分子動態観察した。

【実験】KcsA チャネルは細胞外側が観察面になるように配向制御してマイカ基板に組織化し, ここへ脂質分子を導入して KcsA チャネルを再構成した。AFM の観察溶液中に 0-1000 nM の Agtx2 を添加し, 平衡状態での結合・解離観察を行った。

【結果と考察】調製した固定化平面膜を AFM 観察すると, 一つの KcsA チャネルに相当する中心の窪んだ直径 5 nm 程度の四角形が観察された。ここへ Agtx2 が結合すると, 窪んでいたチャネルの中心が 0.5 nm ほど高くなり, Agtx2 の結合を高速 AFM で捉えることに成功した。チャネル中心部への Agtx2 の結合・解離をチャネル中心部の高さの時間変化としてチャネル毎に抽出し解析すると, 結合確率が 10 % 未満および 90 % 以上の低親和性および高親和性結合状態があることがわかった。Agtx2 の濃度が高くなるほど高親和性状態の割合が増加したため, Agtx2 はアロステリック促進効果を有していると考えられる。また Agtx2 が解離した瞬間から 100 ms 程度は高親和性状態が維持されていることがわかり, Agtx2 の結合によって低親和性構造から高親和性構造へとインデューストフィットが起きていることが示唆された。

(13) 四量体型ナトリウムチャネルにみられる透過イオンや阻害剤との非対称な相互作用

○入江克雅（名古屋大学細胞生理学研究センター）
Ivermectin (IVM) is a widely used antiparasitic drug in humans and pets which activates glutamate-gated Cl\(^{-}\) channel in parasites. It is also known that IVM binds to the transmembrane domains (TMs) of several ligand-gated channels, such as Cys-loop receptors and P2X receptors. In this study, we found that the G-protein-gated inwardly rectifying K\(^{+}\) (GIRK) channel is activated by IVM directly. By electrophysiological recordings in Xenopus oocytes, we observed that IVM activates GIRK channel in a phosphatidylinositol-4,5-biphosphate (PIP\(_2\))-dependent manner, and that the IVM-mediated GIRK activation is independent of G\(\beta\gamma\). We found that IVM activates GIRK2 more efficiently than GIRK4. In cultured hippocampal neurons, we also observed that IVM activates native GIRK current. By chimeric and mutagenesis studies, we identified a unique amino acid residue among GIRK family, Ile82, located in the slide helix between the TM1 and the N-terminal cytoplasmic tail domain (CTD) of GIRK2, which is critical for the activation. The results demonstrate that the TM-CTD interface in GIRK channel, rather than the TMs, governs IVM-mediated activation. These findings provide us with novel insights on the action mode of IVM in ion channels, and information toward identification of new pharmacophores which activate GIRK channel.

4. 体内環境の維持機構における上皮膜輸送の多角的・総合的解像

2017年9月7日－9月8日

代表・世話人：林久由（静岡県立大学）
所内対応者：古瀬幹夫（生理学研究所）

（1）小腸上皮細胞におけるセロトニンを介した薬物動態の制御機構
井上勝央（東京薬科大学）

（2）コレステロール・ビタミンE・ビタミンKの消化管吸収について
高田龍平（東京大学）

（3）食品成分による腸管上皮トランスポーターの制御・調節
藤原秀夫（前橋工業大学）

（4）唾液腺水分泌における細胞外グルコース濃度依存性の二相性修飾
杉田誠（広島大学）

（5）Na依存性グルコース吸収機構に対するクロージン15の役割の検討
中山美智子（静岡県立大学）

（6）小腸におけるグルコース輸送活性調節機構
林久由（静岡県立大学）

（7）腹膜線維化の病態生理と肥満細胞における電気生理現象
風間逸郎（東北大学）

（8）がん細胞の示す糖輸送特性変化-蛍光L-グルコース誘導体(fLG)を用いた可視化
山田勝也（弘前大学）

（9）食餌性リンによる腎Na依存性リン酸トランスポーター発現調節のライフステージによる違い
福田詩織（徳島大学）

（10）腎上皮膜輸送機能制御における足場タンパク質エズリンの役割について
波多野亮（立命館大学）

（11）MoesinによるNKCC2のエンドサイトーシスと電解質再吸収における役割の解明
川口高徳（立命館大学）

（12）ジヒドロピラゾール誘導体の大腸粘膜イオン輸送に対する効果
村田望（富山大学）

（13）細胞内クロライドイオンがpaclitaxelの増殖抑制効果に及ぼす影響
宮崎裕明（京都府立医科大学）

（14）数理モデルを用いたNH4+パルスによる腸管細胞内pH変化の解析
山口誠（名古屋大学）

【参加者名】
丸中良典（京都府立医科大学）、孫紅キン（京都府立医科大学）、奥井元貴（京都府立医科大学）、岡田泰一郎（京都府立医科大学）、桑原裕子（京都府立医科大学）、藤野朋幸（京都府立医科大学）、宮崎裕明（京都府立医科大学）、池内優紀子（京都府立医科大学）、丸中理恵（京都府立医科大学）、杉田誠（広島大学）、山田勝也（弘前大学）、北村健一郎（山梨大学）、吉瀬幹夫（生理学研究所）、鈴木喜郎（生理学研究所）、中山美智子（静岡県立大学）、林久由（静岡県立大学）、石塚典子（静岡県立大学）、中
村千鈴都（静岡県立大学大学）、藤 秀夫（前橋工科大学）、高田龍平（東京薬科大学）、風間逸郎（東北大学）、福田詩織（徳島大学）、石黒 洋（名古屋大学）、村田 望（富山大学）、酒井秀紀（立命館大学）、波多野亮（立命館大学）、杉岡汐里（静岡県立大学大学）、杉浦文也（静岡県立大学大学）

村千鈴都（静岡県立大学大学）、藤 秀夫（前橋工科大学）、高田龍平（東京薬科大学）、風間逸郎（東北大学）、福田詩織（徳島大学）、石黒 洋（名古屋大学）、村田 望（富山大学）、酒井秀紀（立命館大学）、波多野亮（立命館大学）、杉岡汐里（静岡県立大学大学）、杉浦文也（静岡県立大学大学）

【概要】
上皮膜の体内環境維持機構を、総合的に理解するための新たなストラテジーの構築のためには、多角的視点による、異なる科学分野を包摂した、総合的な取り組みが重要である。これら上皮膜に関する研究者は、生理学分野のみならず、薬学、栄養学、工学、理学などに属し、異なる科学分野で、異なる視点から研究を行なっている。本研究会では、上皮膜輸送の研究を行なっているバックグラウンドの異なる研究者を招聘し発表していただいた。多くの参加者を得て活発な討論が行われ、特に、若い大学院生の参加も研究の参加者や他の研究室の研究者との交流の場となった。本研究会が当初目標した上皮膜輸送の統合的な理解に向けた研究の次への進歩に繋がる新たなストラテジーを考案するために一定の役割を果たすことができた。

（1）小腸上皮細胞におけるセロトニンを介した薬物動態の制御機構

井上勝央、小林 孝、石田壮吾（東京薬科大学薬学部）

セロトニン (5HT) は神経伝達物質の一種であり、中枢神経系を介した精神活動や血小板の調節機能に関与することが広く知られている。しかし、体内5HT総含量に占める中枢神経と血小板の割合は約10%程度と小さく、残りの大部分（90%）は、腸管上皮に存在するエントロクロマフィン（EC）細胞に存在するため、5HTの主要な生理的役割は腸管機能の調節にあるとの指摘もあるが、その生理的役割は不明である。そこで本研究では、腸管5HTの主要な役割が異物応答制御であるとする仮説のもとに、毒物・異物の体内動態と5HTの接点を探るために、グルタチオン抱合・排泄機構に対する5HTの影響について、小腸様細胞株であるC2BBe1細胞および5HT枯渇ラットモデルを用いて検討した。その結果、C2BBe1細胞内で生成されたmBClグルタチオン抱合体（mBCl-SG）の細胞外への排出は、5HT添加により増大し、その効果はSLC6A4およびMAOAの特異的阻害剤により消失した。このmBCl-SGの排出増加は5HTの主代謝物である5HIAAでも認められた。さらに、5HT枯渇ラットにおける胆汁中へのbromsulphthalein-SG排泄速度は、5HIAAの投与により増加した。以上の結果より、5HTの代謝物である5HIAAが小腸及び肝臓におけるグルタチオン抱合体の排泄に関与することが示唆された。

（2）コレステロール・ビタミンE・ビタミンKの消化管吸収について

高田龍平、山梨義英、豊田 優、鈴木洋史（東京大学医学部附属病院薬剤部）

生体内の脂質恒常性維持における消化管吸収の重要性は高く、脂質異常症などの生活習慣病の発症・治療との関連が注目されている。近年の研究から、消化管からのコレステロール吸収にはNiemann-Pick C1-like 1（NPC1L1）というトランスポーターが重要な役割を担うこと、脂質異常症治療薬エゼチミン（ゼチーア）はNPC1L1を阻害することにより血清（LDL）コレステロール値の低下をもたらすことなどが次々と明らかになった。しかしながら、コレステロール選択的なトランスポーターであると考えられていたNPC1L1は、実はビタ
ミンE、ビタミンKなどの脂溶性ビタミンも輸送し、それらの体内動態制御において重要な役割を果たすことから、種々のin vitro実験、in vivo実験および臨床研究により示されている。本講演においては、これらの一連の研究成果について紹介したい。

(3) 食品成分による腸管上皮トランスポーターの制御・調節

薩 秀夫（前橋工科大学生物工学科 食品生理機能工学研究室）

腸管は“内なる外”と呼ばれ、外界と生体内を隔てる場かつとりとめる場として極めて重要である。中でも腸管の最前線に位置する腸管上皮細胞は、（1）食品栄養素の吸収機能、（2）生体異物の侵入を防ぐパリアー機能、（3）外来刺激を受容して生体内へ伝達するシグナル変換機能、など生体にとって重要な働きをしている。しかしながら腸管上皮細胞は、食品成分に最も高頻度かつ高濃度に曝されることから、その機能が食品成分によって制御・調節を受けることが十分に考えられる。一方、近年食生活の変化により生活習慣病が社会問題となっており、その一因として糖質の過剰摂取が示唆されている。

このような背景のもと当研究グループでは、HFCSの主成分であるグルコースおよびフルクトースの腸管吸収をそれぞれ担うトランスポーターであるSGLT1およびGLUT5を阻害することで糖質過剰摂取に起因する生活習慣病を予防することを目的として研究を進めた。ヒトSGLT1およびヒトGLUT5の安定高発現株を構築し、これを用いてSGLT1/GLUT5を阻害するフィトケミカルの探索をおこなった結果、ある種のポリフェノールがSGLT1あるいはGLUT5活性を阻害することを見出した。本研究会では、見出されたポリフェノールの阻害特性や機構などについても報告する。

(4) 唾液腺水分泌における細胞外グルコース濃度依存性の二相性修飾

寺地桃未、広野 力、北川道憲、杉田 誠（広島大学大学院医歯薬保健学研究科 口腔生理学研究室）

唾液腺臓房細胞は副交感神経作動薬のcarbachol刺激により細胞内Ca2+濃度が上昇し、Ca2+依存性CI−チャネル(TMEM16A)が活性化される。基底側方に局在するNa+-K+-2Cl−共輸送体を介して細胞内に輸送されたCl−が腺腔側に局在するTMEM16Aを介して腺腔側に分泌され、このCI−分泌が水分泌を駆動する。糖尿病患者では唾液分泌量の減少がみられるが、その異常が生じる機構には不明な点が多い。本研究では摘出顎下腺の灌流標本での唾液分泌速度測定および分離臓房細胞でのグラミシン穿孔パッチクランプ解析を行い、carbachol刺激により誘発される水分泌の細胞外グルコース濃度とグルコース輸送体活性への依存性、およびアミノ・水分泌の律連分子活性を明らかにすることを目的とした。

carbachol刺激は顎下腺より持続的な水分泌を引き起こしたが、その分泌速度は細胞外グルコース濃度に依存して二相性に修飾された。細胞外グルコース濃度を2.5 mMより低下させた場合、および5 mMより上昇させた場合には水分泌速度は減少した。またNa+-グルコース共輸送体SGLT1を阻害するphlorizinの投与により水分泌は抑制されることより、SGLT1を介する臓房細胞内へのグルコース取り込みは水分泌を維持するためにリアルタイムで必要とされる。phlorizin投与時も細胞外グルコース濃度の上昇時も、カルシウムシグナルの下流の分子活性が抑制され、水分泌速度が減少することが示唆された。
（5）Na 依存性グルコース吸収機構に対するクロージン 15 の役割の検討

中山美智子, 石塚典子, 林 久由 (静岡県立大学大学院 食品栄養科学専攻 生理学研究室)

食事から摂取した Na は小腸において電気的中性機構である NHE3 により吸収されている。一方、小腸における Na 依存性的栄養素吸収機構には食事由来の Na より、はるかに量の Na が必要であることが期待されるが、その Na 代謝がどのような機序で行われているかは実験的に検討されていない。本研究では、Na 依存性グルコース吸収機構における Na 輸送の特性を傍細胞経路のイオン透過性の低下が報告されているクロージン 15 欠損マウスと野生型マウスを比較し検討した。ユッシングチャンバー法を用い、グルコース添加に伴う経上皮性 Na フラックス及び電気的パラメーターを同一標本で測定した。野生型マウスにおいて短絡条件下では、グルコース誘発短絡電流上昇 (ΔIsc) とほぼ同等の Na フラックスの増加 (ΔJMtoS) が観察された。非短絡条件下では、短絡条件下とほぼ等しい ΔIsc が観察されたが、ΔJMtoS は強く抑制された。クロージン 15 欠損マウスにおいて非短絡条件下では、野生型より大きな粘膜側負電位が観察されたにもかかわらず、ΔJMtoS の抑制は小さかった。以上より、SGLT1 により栄養吸収細胞に取り込まれた Na は、Na ポンプを介して管腔側にくみ出された後、起電性的 SGLT1 により発生した粘膜側負電位を駆動力として、クロージン 15 を介して管腔側に再循環している可能性が示唆された。

（6）小腸におけるグルコース輸送活性調節機構

林 久由, 中村千紗都, 辰巳郁也, 横山可奈子, 石塚典子 (静岡県立大学 食品栄養科学部 生理学研究室)

小腸におけるグルコース輸送機構は、すでに確立された機構であると信じられ、管腔側のグルコース取り込み機構に関しては、二次性能動輸送機構である SGLT1 を介し吸収され、側底膜は促通拡散輸送体である GLUT2 を介する機構で血液側に輸送されていると考えられている。しかし、近年、いくつかのグループから管腔側、側底膜のグルコース輸送に関して、上記以外のグルコース輸送機構の存在が示唆されている。また、グルコース輸送機能の活性調節に関しては、グルコース摂取量が増加した場合に、グルコース輸送部位であると考えられている小腸では SGLT1 の機能活性は亢進することが報告されている。しかし、自由摂食時のマウス上部小腸を用い、Ussing チャンバー法で SGLT1 の機能活性を測定するとグルコース誘発の短絡電流上昇は僅かであったが、マウスを短期間絶食させると、SGLT1 の機能活性は亢進した。このため本研究では、SGLT1 の機能活性が、摂食により調節されているか否かを調べ、また、その際の糖輸送体や関連遺伝子の発現変化を検討した。

（7）腹膜線維化的病態生理と肥満細胞における電気生理現象

風間逸郎 (東北大学大学院医学系研究科 生体システム生理学分)

アレルギー反応の際に肥満細胞がヒスタミンなどを放出する過程(エキソサイトーシス)は、電気的細胞膜容量測定法による解析が可能である。そこでわれわれは、ラット腹膜由来肥満細胞に対し、本電気生理学的手法を用いることにより、Olopatadine や Ketotifen などの抗アレルギー薬が、組織のヒスタミン受容体を拮抗するだけでなく、肥満細胞におけるエキソサイトーシスの過程そのものを阻害することによって（“肥満細胞安定化作
用”）、より強力な抗アレルギー作用を発揮することを明らかにした。

近年の報告によると、肥満細胞は、炎症性サイトカインや線維原性因子を放出することにより、組織の炎症や線維化にも関わることが明らかになりつつある。そこでわれわれは、腹膜組織の線維化を合併する腎不全モデルラットに対し、抗アレルギー薬の治療的な投与を試みた。その結果、本薬剤が、腹膜局所における肥満細胞の増殖・活性を抑えることにより、腹膜線維化の進行を有意に抑制することを明らかにした。これら一連の研究成果により、われわれは、抗アレルギー薬が有する“肥満細胞安定化作用”について明らかにしたうえで、本薬剤がアレルギー疾患だけでなく、慢性炎症に伴う臓器の線維化に対する治療薬としても有用である可能性を示した。

(8) がん細胞の示す糖輸送特性変化-蛍光L-グルコース誘導体(LLG)を用いた可視化

山田勝也（国立大学法人弘前大学大学院医学研究科 統合機能生理学講座）

グルコースにはD型とL型があるが、天然に広く認められるのはD-グルコースで、L-グルコースを目にすることはほとんどない。実際、多くの生物もトランスポーターを介してD-グルコースを立体選択的に細胞内に取り込み、利用する。しかし、グルコースの輸送機構は、主に放射性標識体を利用して研究されてきたことから、個々の細胞の輸送機構の多様性には不明の点が多い。興味深いことに、D型とL型のグルコースを各種蛍光色素で標識し、細胞内への取り込みを調べたところ、培養がん細胞が立体的に増殖すると、D型のみならず、L型も選択的機構を介して細胞内に取り込むことを見出し、続いて様々ながん患者から得たがん細胞を培養せずそのまま生きた状態で観察した場合も同様の現象が観察された。がん細胞には、古典的なトランスポーターの概念では説明できない未知の糖輸送機構が存在する可能性があると考え、現在研究を進めている。

(9) 食餌性リンによる腎Na依存性リン酸トランスポーター発現調節のライフステージによる違い

福田詩織1, 林 真由1, 岸本麻希1, 吉川亮平1, 山本浩範2, 竹谷 豊1（1徳島大学大学院 医歯薬学研究部 臨床食管理学分野, 2仁愛大学 人間生活学部 健康栄養学科）

リンの恒常性維持に最も重要なものは腎近位尿細管における再吸収であり、特に近位尿細管細胞の刷子構築に局在するNaPi-IIaおよびNaPi-IIcと呼ばれるナトリウム依存性リン酸トランスポーターが再吸収の律速段階を担う。これらは食事性リンやPTH、FGF23により調節される。特に、FGF23は、α-klothoを共役受容体としてFGFRを介して作用し、NaPi-IIaおよびNaPi-IIcの発現を低下させることが腎臓でのリン再吸収を抑制する。食事からの過剰なリン摂取は、血中リン濃度やFGF23濃度の上昇、腎α-klotho発現の低下、異所性石灰化の発症を引き起こす。しかしながら、成長期や妊娠期、高齢期といったライフステージ毎のリン摂取量の違いが、腎NaPi-IIaおよびNaPi-IIc発現に及ぼす影響は不明である。そこで、C57BL/6Jマウスを用いて、ライフステージ毎に高リン食負荷試験を行った。その結果、成長期マウスの高リン食負荷群において、腎α-klotho mRNA発現は有意に低下し、腎NaPi-IIaおよびNaPi-IIc mRNA発現の有意な低下が観察された。さらに、妊娠前に高リン食負荷をした母マウスから生まれた仔マウスにおいて、腎NaPi-IIc mRNA発現は低下傾向を示したが、腎NaPi-IIa mRNA発現の変化は観察されなかった。また、高齢期マウスの高リン食負荷群においては、腎NaPi-IIa mRNA発
現の有意な低下が観察された。以上より，食餌性リンが腎ナトリウム依存性リン酸トランスポーター発現に及ぼす影響はライフステージによって異なることが示され，ライフステージ毎のリン摂取管理の重要性が示唆された。

（10）腎上皮膜輸送機能制御における足場タンパク質エズリンの役割について

波多野 亮，浅野真司（立命館大学薬学部分子生理学研究室）

エズリンはERM (ezrin-radixin-moesin)ファミリーに属するタンパク質であり，様々なトランスポーターやチャネルなどの膜タンパク質とNHERF (Na+/H+ exchanger regulatory factor)を介して相互作用するとの共に，アクチン細胞骨格との相互作用も有することで膜タンパク質をアクチン細胞骨格へ纏めし，細胞膜発現を調節する役割を有していると考えられている。腎臓においてエズリンは近位尿細管と糸球体足細胞に高い発現が見られ，近位尿細管ではリン酸トランスポーターNaPi2aの局在制御に関わること，糸球体足細胞ではPodocalyxinと呼ばれるシアル酸タンパク質の局在制御に関与していることがこれまでに示唆されている。我々のグループではエズリンのノックダウンマウス(Vil2kd/kd)を用いて，これらの細胞におけるエズリンの機能に関する研究を進めてきた。新たにVil2kd/kdマウスの尿中には，アミノ酸の漏出が見られることや，アルブミンの尿中漏出は見られないものの近位尿細管での再吸収機能が低下していることが判明し，NaPi2a以外にも様々なトランスポーターの局在制御に関わっている可能性が想定された。そこで，腎皮質刷子縁膜（Brush Border Membrane: BBM）画分を調製し，プロテオーム解析を行うことで膜輸送体タンパク質の局在について網羅的な解析を行った。その結果，近位尿細管においてグルコースやアミノ酸，有機酸の再吸収に関わる様々なトランスポーターのBBMにおける発現がVil2kd/kdマウスで減少していることを確認した。本研究会では，プロテオーム解析の結果をもとに，エズリンが腎近位尿細管及び糸球体足細胞において果たす役割についての新たな知見を報告する。

（11）MoesinによるNKCC2のエンドサイトーシスと電解質再吸収における役割の解明

川口高徳，波多野 亮，浅野真司（立命館大学薬学研究科）

Moesinは脂質ラフトに存在するPtdIns(4,5)P2との相互作用を介して膜タンパク質のエンドサイトーシスに関与する細胞骨格関連タンパク質であることが知られている。近年，Moesinが尿細管に発現するNa+, K+, 2CT共輸送体2（NKCC2）と複合体を形成し，NKCC2の細胞内小胞輸送への関与を示唆する報告がなされた。NKCC2は尿細管のヘンレの上行脚（TALH）管腔膜において，糸球体ろ過されたNa+, K+およびCl−を再吸収するこことで体液調節の主要な役割を担う輸送体である。しかし，Moesinの尿細管での電解質再吸収における役割は明らかでない。そこで，本研究では，Moesinノックアウト（MKO）マウスの尿細管での再吸収に関わるフェノタイプの解析とNKCC2のエンドサイトーシスへの影響を解析することで，個体レベルでのNKCC2の電解質再吸収におけるMoesinの役割を検討した。

その結果，MKOマウスはNa+および CITの尿中への排泄量が低下し，高Cl−血症を示すことが明らかとなった。また，MKOマウスにおいて，細胞膜上のNKCC2の発現レベルが低減し，エンドサイトーシスの抑制，エンドサイトーシスに影響を及ぼす脂質ラフトでの局在性の低下が明らかとなった。
(12) ジヒドロピラゾール誘導体の大腸粘膜イオン輸送に対する効果

村田 望1, 杉本健士2, 三浦優佳2, 清水貴浩1, 藤井拓人1, 松谷裕二2, 酒井秀紀1
(1 富山大院・薬・薬物生理学, 2 富山大院・薬・薬品製造学)

ラット単離大腸粘膜を Ussing チェンバーに装着し、粘膜を介したイオン輸送に対する各種ジヒドロピラゾール誘導体（KYY-001 ～ KYY-014）の効果を検討した。

Prostaglandin E2 (0.5 μM) または dibutyryl cAMP (DB-cAMP; 1 mM) による短絡電流 (Isc) と膜コンダクタンスの増大は、KYY-005 によって抑制されたが (IC50 = 3 μM)，その他の誘導体の効果は小さかった。構造活性相関の検討により、KYY-005 の 2,3-ジヒドロピラゾール環の 3 位に結合したパラトリフルオロメチルフェニル基の電子求引性が重要である可能性が示唆された。粘膜組織の漿膜側をナイスタチンで一価イオン透過性にし、漿膜側<管腔側の Cl- 勾配をつけ、フロセミド (100 μM) を存在させた状態において、DB-cAMP による Isc 上昇は、KYY-005 によって抑制されなかった。一方、管腔側をナイスタチンで処理し、管腔側<粘膜側の K+ 勾配をつけた状態において、DB-cAMP による Isc 上昇は、KYY-005 によって抑制されなかった。また酵素活性測定において、KYY-005 は、Na+,K+-ATPase を阻害しなかった。以上の結果から、KYY-005 は、ラット大腸粘膜において CFTR の阻害を介して Cl- 分泌を抑制しているものと考えられた。

(13) 細胞内クロライドイオンが paclitaxel の増殖抑制効果に及ぼす影響

宮崎裕明1, 田中幸恵1,3, 丸中良典1,2
(1 京都府立医科大学大学院 細胞生理学, 2 京都府立医科大学大学院 バイオイノミクス, 3 京都府立医科大学大学院 消化器外科学)

我々は、クロライドイオン (CI-) が微小管構成タンパクである tubulin の GTPase 活性を制御し、重合・脱重合をコントロールする事で神経突起伸長に重要な働きをしていることを明らかにした。本研究では、tubulin 重合を安定化することにより抗腫瘍効果を発揮する paclitaxel (PTX) の細胞増殖抑制作用に対し、細胞内 CI- 濃度変化が及ぼす影響について、胃癌由来細胞株 (MKN28) を用いて検討を行った。低 CI- 環境下では、通常の CI- 濃度下と比較して PTX の細胞増殖抑制効果が有意に減弱した。細胞周期同調法を用いた解析により、低 CI- 環境下では PTX の作用点である細胞周期の M 期を通過し、G1 期へと進行することが確認された。さらに、低 CI- 環境下では、PTX 依存的な in vitro における tubulin 重合が有意に抑制を受けた。以上の結果から、細胞内 CI- は M 期における tubulin の重合に影響を与え、PTX の細胞増殖抑制効果を制御している可能性が示唆された。PTX は広く使用されている化学療法剤であるが、癌細胞の PTX 耐性能の獲得は予後の悪化に寄与し、臨床的に大きな問題となっている。本研究の結果から、細胞内 CI- 濃度により PTX の効果を制御できる可能性が示唆されたことから、細胞内 CI- をターゲットとした全く新しい PTX 耐性克服法を提唱できる可能性が示唆された。
NH4+パルスは、細胞膜上の H+/HCO3- 輸送体の活性を調べるために一般に用いられている。本研究では、MATLAB/Simulinkで作成した膵導管上皮細胞のイオン輸送の数理モデル（Yamaguchi 2017）を用いて、NH4+パルスによる細胞内 pH（pHc）変化を解析した。内因性の緩衝系および NH4+/NH3緩衝系、NH3の細胞内外への拡散のみを計算し、細胞内の体積（1 µl）と細胞膜の面積（14.3 cm²）は一定とした。pHcの初期値を変えて、様々なpHcでの buffering capacity（β）を算出した。H+を1×10^{-10} mol/sで1秒間細胞内に injectionした（Δ[A]/ΔpHcとした。モルモット膵管への5~20 mMの NH4+パルスによる pHc変化（Szalmay 2001）にフィットさせると、NH4Cl（5 mM）存在下では、βへの NH4+/NH3緩衝系と内因性緩衝系の寄与はほぼ同等であった。この条件を用いて、HCO3-/CO2非存在下（HEPES緩衝液中）における NH4+パルスによる pHc変化（Hegyi 2003）を再現できた。
5. 温熱生理研究会

2017年8月23日−8月24日

代表世話人：永島 計（早稲田大学）
所内対応者：富永真琴（岡崎統合バイオサイエンスセンター）

（1）Thermosensory perceptual learning is associated with brain changes in parietal-opercular (SII) cortex.
Hiroaki Mano1,2, Ben Seymour1,2

1情報通信研究機構 脳情報融合研究所
2総合研究大学院大学・生理科学

（2）アスリートが感じる夏季スポーツ活動中の病的症状の発生要因

山下直之1, 久木 雅2, 新広博美3, 寄本 明4, 芳田哲也1

1京都工芸繊維大学 基盤科学系, 2京都文京短期大学 食物栄養学科, 3京都女子大学 発達教育学部, 4京都女子大学 家政学部

（3）表面温度に依存したヒト温熱・痛覚認知処理過程の特性

中田大貴1, 柿木隆介2, 芝﨑 学1

1奈良女子大学 研究院生活環境科学系, 2生理学研究所 統合生理研究部門

（4）暑熱負荷時の認知機能評価

芝﨑 学, 中田大貴（奈良女子大学 研究院生活環境科学系）

（5）暑熱負荷に対するWillis動脈輪の血流応答

佐藤耕平1, 芝﨑 学2, 小河繁彦3

1東京学芸大学, 2奈良女子大学, 3東洋大学

（6）下肢炭酸泉浴の血管内皮機能に及ぼす影響

小河繁彦（東洋大学 生体医工学科）

（7）夏季のハーフマラソンにおける市民ランナーの体温、飲水量、脱水率および血液・生化学指標

松本孝朗1, 佐野桃子1, 山下直之2, 櫻 孟1, 稲葉泰嗣1, 加治本政伸1, 堂 研一3

1中京大学 体育学研究科, 2京都工芸繊維大学, 3長野赤十字病院

（8）生息環境に応じた温度感覚の進化：異なる至適温度を持つ両生類種の比較解析

齋藤 茂1,2, 齋藤くれあ1, 太田利男3, 富永真琴1,2

1岡崎統合バイオサイエンスセンター（生理学研究所）, 2総合研究大学院大学・生理科学, 3鳥取大学・獣医薬理

（9）Functional interaction between thermosensitive TRPV4 and TMEM16A/anoctamin 1 contributes to stimulated saliva and tear secretion

Derouiche S.1, Takayama Y.1, Murakami M.2, Tominaga M.3

1Division of Cell Signaling, National Institute for Physiological Sciences
2National Institute for Physiological Sciences

（10）マウス近交系を用いた能動的低代謝メカニズムの解明

砂川玄志郎, 高橋政代

（理化学研究所 多細胞システム形成研究センター）
(11) 高体温障害の早期検知を目指した運動時の生体信号計測の試み
永島計, 増田雄太, 坂井淳良, 加藤一聖, 田島卓郎, 瀬山倫子, 桶口雄一, 桑原啓
(早稲田大学人間科学学術院, 2スポーツ科学学術院)

NTT 先端集積デバイス研究所, NTT デバイスイノベーションセンター

(12) WBGT の温熱生理学的な意義の検討
時澤健, ソンスヨン (労働安全衛生総合研究所)

(13) 青年男女の寒冷血管拡張反応に及ぼす肥満度の影響
丸井朱里, 永島計 (早稲田大学 人間科学学術院 体温・体液研究室)

(14) 被吸剤 塩化アルミニウム水溶液の長期連続塗布による汗腺構造の変化
犬飼洋子, 岩瀬敏 (愛知医科大学 医学部生理学講座)

(15) 外側腕傍核を介した神経伝達が駆動する体温調節行動
八尋貴樹, 片岡直也, 中村佳子, 中村和弘
(名古屋大学大学院医学系研究科・統合生理学, JST・さきがけ)

(16) 膽ラットにおいてエストロゲンがL-メントール刺激時の体温調節反応へ与える影響
渥美小優季, 内田有希 (奈良女子大学 生活環境学部)

(17) 脳出血による発熱の分子・細胞メカニズム：COX-1 の関与
籠堂達也, 橋本理尋, 竹内環, 片岡直也, 山下均
(帝塚山学院大学 人間科学部, 中部大学 生命健康科学部, 名古屋大学大学院 医学研究科)

【参加者名】
永島計, 丸井朱里, 小幡千紗, 藤木由香, 中田真理子, 加藤一聖, 津谷 彰 (早稲田大学), 依田珠江 (獨協大学), 松田真由美 (国際医療福祉大学), 小河繁彦 (東洋大学), 佐藤耕平 (東京学芸大学), 時澤健 (労働安全衛生総合研究所), 中村和弘, 片岡直也, 大屋愛実, 八尋貴樹 (名古屋大学), 松本孝朗 (中京大学), 山下均, 紛 (中部大学), 犬飼洋子, 加塩麻紀子 (愛知医科大学), 西村直記 (日本福祉大学), 芳田哲也, 山下直之 (京都工芸繊維大学), 菅野博彰 (情報通信研究機構), 松村縉, 畠崎一秀 (大阪工業大学), 楠堂達也 (帝塚山学院大学), 芝崎学, 中田大貴, 内田有希, 深美小優季 (奈良女子大学), 矢川弘志 (理化学研究所 多細胞システム形成研究センター), 菅谷昌宏 (九州大学), 中村義 (小牛田記念温泉病院), 川合隆治 (日本ペイントホールディングス㈱), 山田公一, 児玉政幸 (㈱デンソー), 中村康平 (トヨタ紡織), 黒田弘 (スキンス技研販売㈱), 望月計, 塚田順司 (㈱ タニタ), 野々村恵子, 松田隆志, 杉本 彌 (京都工芸繊維大学), 富永真琴 (専門職短期大学), 鈴木喜郎, 窪田 茂・高山靖規, マストファ ナツリオグル, ドロイシェ サンドラ・ケルガノ 恵, 李天邦, 山野井遊, 須篤, 井田伊之 (岡崎統合バイオサイエンスセンター)

【概要】
2017年度の温熱生理研究会（代表: 早稲田大学・永島計（以下敬称略））には温熱生理学の研究者が参集し、2日間でわたって最新の研究成果発表と活発な討論が行われた。演題では18題の最新研究成果が発表された。真野らが温度受容学習にかかわる二次体性感覚の反応を紹介した、山下らは夏期のアスリートの高体温障害の発生要因について報告した。中田らは温度、痛みの
脳処理をMEGを用いて解析した結果を発表した。芝崎らは暑熱時の認知機能変化についての知見を報告、佐藤らは暑熱時のウイリス動脈輪の血流変化の解析について述べた。小河らは下肢血管の冷熱効果による内皮機能の変化を調査の報告を行った。松本らは夏のハーフマラソンによる生理学的変化をフィールドでの調査から研究した結果を述べた。齋藤はツメガエルを用いてTRPの温度センサーの機能変化の点を報告した。Derouicheらは温度感受性TRPV4とTMEM16A anoctamin1の唾液、涙分泌に関与する作用を示し、砂川ら近交系マウスのtorporの仕組みについて考察を行った。永島らは運動時の高体温障害を事前に察知する方法についての研究結果を提示した。時澤らはWBGTの測定意義を再考し、丸井は局所冷水刺激による毛細動脈拡張反応の要因を検討から検証した。犬養らは制汗剤の汗腺機能への不可逆的変化の症例を提示した。八尋らは外側傍腕核の行動性体温調節に与える役割を検証で報告した。瀬戸らはラットへのメタトール塗布が行動性体温調節に与える影響について述べ、篠崎ら脳出血時の発熱機関についての研究を報告した。楠堂らはCCREG1の白色脂肪への褐色化にあたえる役割の経過報告を行った。いずれの報告においても有意義な議論がなされ、懇親会においても議論が継続された。

(1) Thermo-sensory perceptual learning is associated with brain changes in parietal-opercular (SII) cortex.

Hiroaki Mano1,2, Ben Seymour1,2
(1)国立研究開発法人情報通信研究機構脳情報通信融合研究センター脳情報通信融合研究室
(2)㈱国際電気通信基礎技術研究所認知機構研究所行動変容研究室)

脳機能イメージングが広く利用可能となり、ヒトの温度知覚の中枢性情報処理機構の理解についても少ないながら試みがなされているが、それらの報告は結論の一致をみていない。問題の一つとして、単一の血行動態反応モデルを全脳領域の推定に用いている点が指摘され、近年、血行動態反応モデルに依存しない手法も提案されている。

本研究では、知覚学習に伴う脳の可塑的変化を誘発させ、血行動態モデル非依存の脳計測によりこれを捉えるパラダイムを設計し実験を行った。温度知覚における学習と随伴する脳の可塑的変化を観察するため、被験者の下肢後外側に微少な温度変化をランダムに示示し、これの有無を回答させる温度変化検出課題を、5日間にわたり繰り返すトレーニングを実施した。トレーニング前後には、解剖学的MRI画像の撮像、また温度変化検出能の評価課題を実施した。

実験の結果、トレーニング期間におけるパフォーマンスの進歩的な向上と、温感・冷感の検出能向上においてはそれぞれ固有の特徴を見留めた。また、中枢性には二次性感覚野に灰白質容量の上昇を見留めた。これらは温度知覚の中枢性機序理解への新たな知見となった。

(2) アスリートが感じる夏季スポーツ活動中の病的状態の発生要因

山下直之1, 久米 雅2, 新矢博美3, 松本 明4, 芳田哲也1
(1) 京都工芸繊維大学 基盤科学系, 2 京都文京短期大学 食物栄養学科
3 京都女子大学 発達教育学部, 4 京都女子大学 家政学部

夏季に体調を崩すことによって病的状態を呈し、パフォーマンスを十分に発揮出来ないアスリートは少なくない。本研究はアスリートが感じる夏季スポーツ活動中の病的状態と、その発生要因を明らかにすることを目的とした。

大学生アスリートを対象に夏季スポーツ活動中に感
じた病の症状（めまい, 吐き気, 頭痛, 倦怠感, 舌の発赤）と体調不良要因（食欲不振, 睡眠不足, 下痢, 脱水, 疲労の蓄積, 精神的ストレス）や練習環境要因（長時間の練習）少ない休憩, 水分摂取不足, 高温, 多湿, 日射が強く, 風が少ない, 着衣が暑いと感じる）についてアンケートを行い, 病的症状発生の要因について統計解析した。

2304名のアスリートから回答を得た結果, 夏季スポーツ活動中にアスリートが感じた病的症状は, 倦怠感(1340名), 頭痛(1339名), 体調不良要因(食欲不振, 睡眠不足, 下痢, 脱水, 疲労の蓄積, 精神的ストレス)や練習環境要因(長時間の練習)少ない休憩, 水分摂取不足, 高温, 多湿, 日射が強い, 風が少ない, 着衣が暑いと感じる)についてアンケートを行い, 病的症状発生の要因について統計解析した。

これらアスリートが感じる体調不良や練習環境の要因を減少させることで, 夏季スポーツ活動中の病的状態の発生を阻止できる可能性が示された。

（3）表面温度に依存したヒト温熱・痛覚認知処理過程の特性

中田大貴1, 柿木隆介2, 芝﨑 学1
(1)奈良女子大学 研究院生活環境科学系, (2)生理学研究所 統合生理研究部門)

温熱刺激誘発電位（Contact Heat-Evoked Potentials; CHEPs)を用い, 皮膚表面温度を変化させた際のヒト温熱・痛覚認知処理過程の特性について検討した。被験者12名を対象とし, 温熱刺激にはMedoc社製PATHWAYを用いた。表面温度として30℃, 35℃, 40℃をそれぞれベースラインとし, そこから41℃の温熱刺激を与える「Warm条件」, 46℃の温熱刺激を与える「Hot条件」, 51℃の温熱性痛覚刺激を与える「Pain条件」を設定した。30℃, 35℃, 40℃のベースラインは, それぞれ30℃課題, 35℃課題, 40℃課題とした。追加実験として, 刺激装置の遠位部または近位部を同サイズの電熱装置で40℃に加温し, 30℃課題を実施した。

結果, Pain条件におけるN2-P2成分の振幅は, 40℃課題の方が30℃課題, 35℃課題よりも有意に大きくなった。しかしHot条件, Warm条件においては, 皮膚表面温度とN2-P2振幅には関係が無く, 各課題での有意な差は認められなかった。また, これらN2-P2振幅の大きさと, 温熱・痛覚に関するVASの値は相関していた。51℃の温熱性痛覚刺激が与えられるPain条件においてのみ, ベースラインの表面温度が高いほど脳反応が大きくなることが示されたことから, 冷温刺激特有の脳反応であると考えられる。さらに, 遠位または近位部を加温した実験ではいずれの条件においてもN2-P2振幅の差が無かったことから, 伝達経路におけるコンジャンクションの可能性はなく, 局所の温度プライミングが求心性信号に影響しているものと示唆された。

（4）暑熱負荷時の認知機能評価

芝﨑 学, 中田大貴(奈良女子大学 研究院生活環境科学系)

暑熱環境下に曝露されると, 頭がぼーっとするなど, 高体温状態では脳の反応性が低下していると思われる症状が認められる。我々はこれまで, 脳波事象関連電位を用いて認知処理系の反応が低下することを検討した。本研究では, 空間的分解能が高いfMRIを用い, 高体温による脳機能への影響を検討した。認知課題には視覚刺激を用いたGo/No-go課題およびフランカー課題をブロックデザインで実施した。体温は水循環服を用いて平均皮膚温を34℃から39℃まで上昇させ, 外耳道温を約1.1℃上昇させた。加温前のGo/No-go課題では, 主に頭頂合野, 前頭野, 運動前野, 補足運動野などが, フランカー課題では前頭野, 運動野, 補足運動野などが活
動していることが確認された。暑熱負荷後ではこれらの部位で活動領域がより広範囲になり、一次運動野や前帯状回などの実行制御に関する領域の活動も活発になった。暑熱負荷による高体温時には、より広範囲において脳を活動させることによって課題を遂行していることが示された。

（5）暑熱負荷に対するWillis動脈輪の血流応答

佐藤耕平1, 芝崎 学2, 小河繁彦3（1東京学芸大学, 2奈良女子大学, 3東洋大学）

暑熱負荷時に脳血流量は低下し、起立耐性の低下や熱失神の要因となる可能性が示唆されている。目的本研究の目的は、暑熱負荷に対する頭蓋内Willis動脈輪の血流応答の部位差および不均一性を明らかにすることである。方法）仰臥位の被験者（10名）に対して50℃の温水を循環させたスーツを用いて、深部体温が〜1.3℃上昇する暑熱負荷を与えた。安静時および暑熱負荷時における、中・前・後大脳動脈（MCA/ACA/PCA）および後交通動脈（PcoA）の平均血流速度（Vmean）を、超音波法により測定した。結果）安静時に比べ暑熱負荷時には、MCA/ACA Vmeanはそれぞれ24±11％、25±10％低下した。一方、PCA Vmeanの低下は、11±4％であり、MCA/ACAに比べ有意差が認められた（P<0.05）。また、暑熱負荷時におけるPcoA Vmeanは安静時から有意な低下は認められなかった（5±10％）。結論）暑熱負荷に対するWillis動脈輪の血流低下には不均一性が認められ、MCA/ACAがPCAに比べ低下が顕著であった。また、暑熱負荷時においてもPcoAの血流は維持されていることが明らかになった。

（6）下肢炭酸泉浴の血管内皮機能に及ぼす影響

小河繁彦（東洋大学理工学部 生体医工学科）

アテローム性動脈硬化症の危険因子、例えば高血圧や高脂血症、糖尿病などは、血管内皮機能を低下させる。一方、温熱療法は血管内皮機能を改善させるため、心臓循環系患者にとっては有効な治療法の一選択肢となり得る。しかしながら、熱ストレス刺激による交感神経亢進など、脳・心血管疾患発症リスクを増加させる可能性も危惧される。

二酸化炭素が1000ppm以上含まれる高炭酸泉は、温熱効果を発揮するため、高血圧患者などの恒温療法として使用されている。我々は、高炭酸泉浴が温熱療法と同様に、血管内皮機能を改善させるか検証した。12名の成人健常者において、下肢の低温水（38℃）及び同温度の高炭酸泉（1000ppm）浴を行い、その前後の血管内皮機能の指標である、血流依存性血管拡張反応（FMD）を測定した。その結果、温水浴と比較して高炭酸泉浴でFMDが増加した（P<0.01）。またFMDの増加は、皮膚血流量の変化と有意な正の相関を示した（P<0.01）。これらの知見は、高炭酸泉浴が、熱ストレスを軽減させる一方、皮膚血流量の増加に伴い血管内皮機能を改善させることを示唆している。
(7) 夏季のハーフマラソンにおける市民ランナーの
体温、飲水量、脱水率および血液・生化学指標

松本孝朗1、佐藤桃子1、山下直之2、嶋 孟1、稲葉泰嗣1、加治木政伸1、星 研一3
(1中京大学 体育学研究科、2京都工芸繊維大学、3長野赤十字病院)

マラソンは生体への熱負荷が大きく、気温の高い夏季には熱中症予防に注意が必要である。

【目的】ランナーの身体への影響を明らかにすることを目的とした。

【方法】小布施ミニマラソン（7月19日）において、黒球式熟中症指数計（タニタ）を1km毎に配置し、WBGTの時間×距離マップを作製した。ランナー29名（男24名、女5名）を対象に、レース前後で鼓膜温、直腸温、体重の測定と採血を実施した。

【結果】レース開始時（午前6時）、終了時（11時）のWBGTは22℃、30℃であった。全員がハーフマラソンを1時間22分〜3時間34分で完走した。ゴール後の直腸温は平均38.5℃、37.6〜39.7℃で、5名で39℃を超えたが、鼓膜温では一人も検出できなかった。脱水率は1.6±0.9%で、10名で2%を超えた。飲水量は0.1〜2.4Lで、発汗量は男性0.5〜2.1L/h、女性0.2〜0.8L/hであった。血清アルブミンから算出した血液濃縮率は80.7±0.9%であった。AST、ALT、LDH、CKは濃縮率以上の増加がみられ、若干の筋の崩壊が考えられた。Na、Clの増加は約1%と濃縮率に比べて低く、塩分摂取不足を示唆した。

【結論】WBGTの時間×距離マップは温熱環境を可視化する方法として有用であった。鼓膜温は直腸温の代用には成り得なかった。

(8)生息環境に応じた温度感覚の進化：異なる至適温度を持つ両生類種の比較解析

齋藤 茂1,2、齋藤くれあ1、太田利男3、富永真琴1,2
(1岡崎統合バイオサイエンスセンター（生理学研究所）、2総合研究大学院大学・生理科学、3鳥取大学・獣医薬理)

温度感覚は外界の温度の変化に応じて生理的・行動的に応答する必要が欠かせない。動物が異なる温度条件の生息地に適応する進化過程において様々な生理機構を獲得するために WAV1 感受性が進化してきたと推察される。そのような温度感覚の進化機構を分子レベルで理解するために、異なる温度環境に適応した2種のツメガエルの温度感覚特性を行動、感覚神経、温度センサーのレベルで比較した。その結果、高温刺激に対する感受性が行動および感覚神経のレベルで異なることが分かった。更に、2つの高温センサー（TRPV1とTRPA1）の機能特性にも一貫した種間差が存在し、末梢で働く温度センサーの機能変化が個体レベルの感覚や行動応答の進化的な変化を生み出したことから推察される。一方、高温耐性を持ち、幼生が40℃を越える温泉にも生息できるリュウキュウガエルのTRPV1の機能解析を行った。TRPV1の高温に対する活性は多くの脊椎動物種で維持されているにも関わらず、本種ではその活性が著しく無常に低下していた。一方、TRPA1の高温活性は維持されていた。発表ではこれらの高温センサーの機能特性と本種の特徴的な生態との関連性について考察する。
Functional interaction between thermosensitive TRPV4 and TMEM16A/anoctamin 1 contributes to stimulated saliva and tear secretion

Derouiche S.1, Takayama Y.1, Murakami M.2, Tominaga M.1
(1 Division of Cell Signaling, National Institute for Physiological Sciences,
2 National Institute for Physiological Sciences)

Anoctamin 1 (ANO1) constitutes the apical Ca\(^{2+}\)-activated Cl\(^{-}\) channel (CaCC) efflux pathway required for Ca\(^{2+}\)-dependent fluid secretion. The understanding of the mechanisms of activation and molecular interactions of ANO1 could offer new leads for the treatment of exocrine gland diseases. Our recent work has led to the characterization of a functional interaction between ANO1 and some members of the transient receptor potential (TRP) channels superfamily, exposing new regulators of the ANO1-mediated functions. One of them is TRP vanilloid 4 (TRPV4), a thermosensitive calcium-permeable channel that is reported to be highly expressed in the membrane of secretory acinar cells. Here, we report a functional interaction between TRPV4 and ANO1 in salivary and lacrimal gland acinar cells isolated from mice. TRPV4 activation induced chloride currents and cell shrinkage by increasing intracellular calcium concentrations. The chloride currents evoked by the specific activation of TRPV4 were identified as ANO1-mediated currents by using its specific antagonist. Furthermore, we showed that TRPV4 was activated through IP3 receptors and thus enhanced the muscarinic stimulation of saliva and tear secretion as this mechanism was down regulated by the blocking of TRPV4 and also in TRPV4-deficient mice. Our work suggests that TRPV4 contributes to the muscarinic pathway of salivation and tear secretion through its interaction with ANO1.

マウス近交系を用いた能動的低代謝メカニズムの解明

砂川玄志郎, 高橋政代
（理化学研究所 多細胞システム形成研究センター 細胞再生医療研究開発プロジェクト）

マウスを含む一部の哺乳類は冬期や飢餓時に能動的に基礎代謝を低下させる種が存在する。季節単位の低代謝を冬眠（hibernation）、数時間単位の低代謝を休眠（torpor）と呼ぶが、いずれも代謝が低下することで結果的に体温が低下する。そこで、我々はマウス休眠をモ델として、能動的低代謝のメカニズム解明を目指している。哺乳類の体温制御を放熱系と熱産生系の2つのフィードバック・ループでモデリングすると、冬眠動物の温度制御は熱産生系のリファレンス温度（TR）及びネガティブフィードバックの開ループゲイン（H）の両者の低下によるものであることがわかった。マウス休眠を様々な環境温度で誘導することで、休眠中の体温制御のパラメータを推定したところ、C57BL/6JマウスではTRがほとんど低下しなかったのにに対し、Hは88%の低下がみられ、冬眠動物との差は小さいことがわかった。さらに、C57BL/6Jとゲノムが極めて近いC57BL/6N系統において同様の解析を行ったところ、休眠の表現型に違いが認められた。今後はマウスの近交系間で休眠時表現型が異なるを利用し、能動的低代謝に関連する遺伝子領域を同定していきたい。
(11) 高体温障害の早期検知を目指した運動時の生体信号計測の試み

永島 計1, 増田雄太2, 坂井穎良2, 加藤一聖1, 広瀬統一2, 田島卓郎1, 瀬山倫子3, 樋口雄一4, 桑原 啓4 (1)早稲田大学人間科学学術院, (2)スポーツ科学学術院

背景. 運動時の高体温障害は環境要因と宿主要因によ
り生じる。近年発展しているウエアラブルセンサーを用
いた生体モニタリングは、屋外での生体信号計測を可能
とするが以下の点で問題がある。
1) 有用な生体信号の選択,
2) 高体温障害の予想、判断を行うか。
目的. 軽度高温環境、高負荷運動強度の運動を行った。
ウエアラブルセンサー（心電図、体温、皮膚血流）を用
いた測定を実験室内で行った。
方法. 健康な男子大学生10名を対象とした。気温32℃,
湿度50％で、30-75% peak VO2max の段階的エルゴメー
ター運動を行った。ウェアラブル心電センサー（hitoe）,
胸部・前腕の皮膚血流センサーを装着した。耳内温度を
測定した。
結果. 10名中3名が全てのプロトコールを完了した。
3名は体温が38.5℃以上になったため実験を途中で中止
した。実験の終了時には心拍数180±5 bpm、体温38.5
±0.2℃に到達した。呼吸、体動、多量発汗時にも、安定
したデータ採取しえた。被験者の安静時からの心拍数の
上昇と体温の上昇は、ほぼ一定の関係性が見られた。プ
ロトコールを終えることができなかったケースでは、こ
の関係性から逸脱するのが早期から観察された。
考察. 心拍数と体温の連続的なモニタリングにより,
運動時の高体温障害の予想が可能であると推察された。

(12) WBGT の温熱生理学的な意義の検討

時澤 健, ソン スヨン (独立行政法人 労働安全衛生総合研究所)

気温だけでなく、湿度、風、幅射熱を考慮した WBGT
（wet bulb globe temperature）は暑さ指標として広く適用
されている。基準値も設けられ、熱中症対策の一環とし
て果たす役割は大きい。60年前に創案された WBGT は
最近、熱平衡式から見直される動きや別の指標も提案さ
れている。そこで改めて熱中症につながる生理学的意義
を検証するため、夏季に想定される WBGT と体温調節反
応の関係性を明らかにした。

健常成人男性を対象に、異なる4つの WBGT の環境下
で中程度負荷に相当する 5.0 km/h の歩行を 60 分間行っ
た。過去の東京における夏季の温湿度データを参考に、
WBGT 27.0℃（室温30.0℃・相対湿度65%）、WBGT 28.5℃
（室温32.5℃・相対湿度60%）、WBGT 30℃（室温
35.0℃・相対湿度55%）、そして WBGT 31.5℃（室温
37.0℃・相対湿度50%）を設定した。

深部体温（直腸温）の上昇は、WBGT と有意な相関関
係が認められ（r=0.99、傾き0.09）、皮膚温、発汗率、
皮膚血流、心拍数、さらに温熱感覚や疲労感にも有意な
正の相関が認められた。

温度と湿度の変化による WBGT は体温調節反応と高
い相関関係にあることが明らかとなった。WBGT が 1℃
上がると、1時間の運動で深部体温は0.1℃余计に上昇す
る関係性にあり、身体冷却等の対策で WBGT 基準値を補
正する根拠ともなる。
（13）青年男女の寒冷血管拡張反応に及ぼす肥満度の影響

丸井朱里，永島 計（早稲田大学 人間科学研究科 体温・体液研究室）

手足など末梢への局所寒冷刺激により局所末梢で観察される血管収縮後に発現する血管拡張反応は、寒冷血管拡張(CIVD)反応と呼ばれている。CIVD反応は耐寒性の一指標に用いられており、加齢、性別、運動習慣、基礎代謝量など多数の影響因子が報告されている。本研究では、青年男女におけるCIVD反応に肥満度が影響するか調べた。

被験者は、男子大学生28人、女子大学生41人とした。群は、BMI中央値20.8未満をLow群(男性12人：LM群、女性22人：LF群)、BMI20.8以上をNormal群(男性16人：NM群、女性19人：NF群)とした。CIVD反応は、約3℃の冷水に第3指第二関節まで30分間浸す際の皮膚温を測定した。また、実験中の温度・痛み感覚スコア、冷え性スコアを実施した。

LF群は、実験前、開始7-17分後、実験後の皮膚温がNF群よりも低かった。一方で、LM群は、実験開始6、7分後の皮膚温がNM群より高かった。温度感覚は、BMIや男女による差は見られなかった。痛み感覚は、実験を通じてLF群はNF群よりも高かった。男性ではBMIによる差は見られなかったが、女性よりも痛みスコアが低かった。冷え性スコアは、LF群がNM群よりも高かった。

本研究より、痩せ傾向の女性はCIVD反応が低いことが示唆された。局所寒冷刺激により、末梢血管が収縮/拡張しにくくなることで、痩せ傾向の女性は末梢血管における寒冷耐性が低く、冷えを感じやすいと考えられた。

（14）制汗剤 塩化アルミニウム水溶液の長期連続塗布による汗腺構造の変化

犬飼洋子，岩瀬 敏（愛知医科大学 医学部生理学講座）

多汗症に塩化アルミニウム（Al）水溶液の外用療法が行われるが、長期連続外用による発汗機能、汗腺構造の変化の検討は乏しい。全身性多汗症で10年以上の連用により不可逆的無汗となった1例で、汗腺の病理組織学的検討を行った。症例は44歳の男性。15歳ごろから全身の多汗が出現した。28歳時に皮膚生検では汗腺導管が長い傾向であった。20%塩化Al水溶液の外用が開始され（1回／日、眼前）、著効した。後述の時期に温熱発汗試験（人工気候室40℃、50%）で全身発汗分布を確認し（Minor法）、皮膚生検を行った。35歳時（全身連用7年目）、塗布部位は無汗で、コリン性蕁麻疹が起こった。生検では、コイル状汗管は拡張し、腺房細胞高が低下し、腺房は疎になっていた。しかし1週間休薬すれば、発汗は復活した。40歳時（12年目）、塗布部位が無汗となった。14年間塗布後、1年半中止しても無汗で（43歳）、真皮内汗管は認められなくなっていった。腺房死端上皮細胞高は薄くなっていた。塗布部位は紅色汗疹となっていた。14年後、塗布部位の一部は無汗で（43歳）、1年半中止しても無汗で（44歳）、塗布部位は無汗で、真皮内汗腺は認められなくなった。A1の制汗作用は、表皮内エクリン汗管の閉塞によるが、腺分泌は維持される。よって、汗腺内腔の拡張、損傷による消失と、腺房の退縮、細胞萎縮、汗腺消失をきたしたと考えられる。汗腺の温存のため、塗布頻度を減らすことが必要である。

（15）外側腕傍核を介した神経伝達が駆動する体温調節行動

（1）外側腕傍核を介した神経伝達が駆動する体温調節行動

八尋貴樹，中村佳子，中村和弘（名古屋大学 医学部統合生理解剖学講座）
温調節行動を惹起する求心性神経回路は未だ不明であるため、我々は行動性体温調節に必要な求心性神経回路の解明をすべく以下の実験を行った。まず、教科書的に温度知覚経路である脊髄視床皮質路の遮断が体温調節行動に与える影響を調べた。視床のVPM/VPLにイボテン酸を注入し脊髄視床皮質路を遮断した視床破壊群と生理食塩水を注入したコントロール群において2プレート温度選択試験を行うと、両群において温度選択行動が見られた。これは脊髄視床皮質路が行動性体温調節に関与しないことを示す。また、温度選択試験後の電気生理実験により視床破壊群で脊髄視床皮質路が機能的に遮断されていたことが確認された。

次に我々は、自律性体温調節の中継核である外側腕傍核（LPB）の行動性体温調節への寄与を検証した。LPBでの神経活動を薬理学的に抑制した群と生理食塩水を注入した群において2プレート温度選択試験の結果を比較すると、LPB抑制群において有意に温度選択行動が見られなかった。この実験によってLPBが行動性体温調節において重要な役割を果たしていることが示された。

以上により、脊髄視床皮質路ではなく、LPBを介する経路が体温調節行動を惹起する上で重要な役割を果たすことがわかった。この発見は行動性体温調節の情動基盤を解明する一助となると考えらえる。

(16)雌ラットにおいてエストロゲンがL-メントール刺激時の体温調節反応に与える影響

渥美小優季, 内田有希 (奈良女子大学 生活環境学部 心身健康学科生活健康学コース)

【目的】本研究は、雌ラットにおいてエストロゲン（E2）が末梢の冷受容分子TRPM8を介した体温調節反応に与える影響について調べることを目的とした。

【方法】9週齢のWistar雌ラットを麻酔下で卵巣摘出し、E2（22.3 mg）含有（E2（+））または非含有（E2（−））のシリコンチューブを留置した（E2（+）群、E2（−）群）。ラットの体幹に10％L-メントールまたは対照としてエタノール（vehicle）を塗布し、環境温16℃の寒冷暴露または対照として環境温27℃の室温暴露を2時間行った。

【結果】環境温27℃時の腹腔温変化量は、メントール塗布時はE2（−）群及びE2（+）群ではvehicle塗布時よりも有意に高かった。環境温27℃及び16℃時の腹腔温変化量はE2（−）群及びE2（+）群ではvehicle塗布時の方がvehicle塗布時よりも有意に高かった。環境温27℃時の尾部皮膚温変化量はE2（−）群及びE2（+）群ではvehicle塗布時の方がvehicle塗布時よりも有意に高かった。環境温16℃のvehicle塗布時に尾隠し行動時間はE2（−）群がE2（+）群より有意に長かった。vehicle塗布時よりもvehicle塗布時方がvehicle塗布時よりも有意に長かった。

【結論】環境温27℃時、E2投与によりL-メントール塗布時の体温調節反応が減弱したことから、E2は末梢の冷受容分子TRPM8を介した体温調節反応に影響すると推測された。

(17)脳出血による発熱の分子・細胞メカニズム：COX-1の関与

篠崎一秀, 中村優太, 松村 潔 (大阪工業大学 工学研究科 生体情報研究室)

1. 背景・目的
脳出血にはしばしば発熱が伴う。私たちこれまでに脳出血性発熱にシクロオキシゲナーゼ（COX）とミクロソーム型プロスタグランジンE合成酵素（mPGES-1）によるPGE2合成が関与していることを明らかにした。今回は次の問題について検討した。
①関与するCOXはCOX-1かCOX-2か
②PGE2非依存性発熱の原因は何か
2. 方法
C57/BL6 マウス（雄 8 週齢、以下 Wild マウス）と mPGES-1 遺伝子欠損マウス（以下 KO マウス）の視索前野にコラゲナーゼを投与し脳出血を惹起した。

3. 結果・考察
① COX-1 か COX-2 か
COX-1 阻害剤によりコラゲナーゼ投与後 3 時間までの脳出血性発熱と出血領域の PGE2 量は有意に抑制された。脳出血性発熱の初期には COX-1 が関与していると考えられる。COX-2 の関与については検討中である。

② PGE2 非依存性発熱
mPGES-1 マウスに脳出血を起こした場合、脳組織の PGE2 量は全ての例で低下している。しかしあくつかの例で顕著な発熱を示したケースがあった。脳出血領域の大きさと発熱の関係を解析した結果、脳出血領域が一側の視索前野に限られる場合には発熱は抑制され、脳出血が両側の広範囲に及ぶ場合には発熱が起こった。この結果は、PGE2 非依存性の脳出血性発熱は、体温調節中枢の損傷によると考えられる。

（18）白色脂肪組織の褐色脂肪化における CREG1 の役割

楠堂達也 1, 橋本理尋 2, 竹内 環 2, 片岡直也 3, 山下 均 2
（1帝塚山学院大学 人間科学部, 2 中部大学 生命健康科学部, 3名古屋大学大学院 医学研究科）

褐色脂肪細胞はエネルギーを熱に変えて消費する細胞であり、小動物では寒冷時の体温維持やストレス時の発熱などに重要な役割を果たしている。近年、褐色脂肪組織がヒトにおいても存在することが示され、褐色脂肪組織の活性化や増量がメタボ対策の 1 つとして注目されている。我々は分泌糖タンパク質 CREG1 が褐色脂肪化因子として働くことを発見し、昨年度の同研究会で報告した。今回の発表では、遺伝子変異マウスを用いた機能解析、及び CREG1 による褐色脂肪化メカニズムについて報告する。白色脂肪組織の褐色脂肪化に成果 CREG1 の役割を検討するために、脂肪細胞特異的 CREG1 発現トランスジェニック（CREG1-Tg）マウスを作製した。CREG1-Tg マウスでは脂肪組織における CREG1 発現量が期待通りに上昇しており、血中 CREG1 濃度も上昇していた。各脂肪組織を解析した所、CREG1-Tg マウスにおいても褐色脂肪組織に形態的な変化が認められ、脂肪細胞のサイズの小型化と顕著な褐色脂肪化が認められた。また、摂食量に有意な差は認められなかったものの、CREG1-Tg マウスは高脂肪食による肥満に抵抗性を示し、肝臓への脂肪蓄積も抑制されていた。現在、CREG1 による褐色脂肪化メカニズムの解析を進めている。
6. 痛みを中心とする有害状況適応の神経戦略バイオロジー

2017年12月14日－12月15日
代表者：加藤総夫（東京慈恵会医科大学）
所内対応者：富永貞琴（岡崎統合バイオサイエンスセンター）

（1）C線維は一体何を伝えているのか？：記録と解析の諸問題について
八木淳一（杏林大学 医学部 統合生理学）

（2）HMGB1による痛みの増強に対するヒト可溶性トロンボモジュリンの抑制作用に関与する分子メカニズム
辻田隆一（近畿大学 薬学部 病態薬理学研究室, 旭化成ファーマ㈱）

（3）炎症性疼痛におけるスフィンゴ糖脂質の機能
坂井 敦（日本医科大学 薬理学分野）

（4）CCR2 upregulation in DRG neurons plays a crucial role in gastric hyperalgesia associated with diabetic gastropathy
Aye Aye-Mon（金沢大学 医薬保健学研究院 医学科 機能解剖学）

（5）小脳型ヌクレオチドトランスポーターの特異的阻害剤の同定と神経因性・炎症性疼痛への応用
宮地孝明（岡山大学自然生命科学研究支援センター）

（6）カテプシン H のプロテオリシスによるシナプス強度調節
林 良憲（九州大学 大学院歯学研究院 口腔機能分子科学）

（7）No fungal pain, no gain.
丸山健太（大阪大学 免疫学フロンティア研究センター）

（8）反復社会的敗北ストレスによる痛覚閾値の低下に対する帯状回皮質ノルアドレナリン神経系の役割
大森翔太（名古屋市立大学 大学院薬学研究科 神経薬理学）

（9）痛み関連恐怖記憶の鎮静化機構
小山なつ（滋賀医科大学 生理学講座）

（10）脳卒中後疼痛のモデル動物の確立とその発症機構の解明
原田慎一（神戸学院大学 薬学部 臨床薬学）

（11）疼痛および情動の調節因子としての脳内長鎖脂肪酸受容体 GPR40/FFAR1 の役割
中本賀寿夫（神戸学院大学 薬学部 臨床薬学）

（12）運動療法による慢性痛緩和のメカニズム：オレキシンニューロンと Exercise-induced hypoalgesia
上 勝也（和歌山県立医科大学 リハビリテーション医学）

（13）機能的 MRI を用いた神経因性疼痛モデルマウスの全脳ネットワーク解析
小牧裕司（慶應義塾大学 医学部 生理学教室）

（14）慢性痛形態の VBM, 1H-MRS を用いた知見から：コロコの痛みも含めた行動, 意識変容のモニタ－へ
福井 哲（滋賀医科大学 医学部附属病院 ペインクリニック科, 皮膚科）

（15）慢性疼痛患者の安静時 MRI から見えてきたもの：現状、課題、そして未来
寒 重之（大阪大学大学院 医学系研究科 痛み医学寄附講座）

（16）痛み関連脳活動とは何か Significance of pain-related cerebral activation
倉田英亮（東京医科歯科大学医学部附属病院 麻酔・蘇生・ペインクリニック科）

（17）特異的侵害受容器刺激による大脳皮質反応-臨床応用を目指して
西原真理（愛知医科大学 医学部 学際的痛みセンター）
生理学研究所年報 第39巻 (Dec, 2018) 研究会報告

催眠による鎮痛のメカニズム -神経生理学的研究と臨床的作業仮説- 水谷みゆき（愛知医科大学 医学部 学際的痛みセンター）

【特別講演】ショウジョウバエを利用した神経シグナル調節機構の研究 本庄 賢（筑波大学 生命環境系）

オレキシン B による脊髄膜質ニューロンの自発性抑制性シナプス伝達の促進 熊本栄一（佐賀大学 医学部 生体構造機能学講座 神経生理学分野）

PACAP 誘発痛み様行動における脊髄アストロサイト-ニューロン乳酸シャトル (ANLS) の関与 栗原 崇（鹿児島大学 院医歯学 生体情報薬理科）

催眠後角の反応性アストロサイトによる、L-乳酸を介した痛覚感作 宮本啓補（名古屋市立大学医学部 医学部麻酔科学ベインクリニック講座）

帯状疱疹関連痛の現状と帯状疱疹後神経痛予防に向けて 井関雅子（順天堂大学 医学部麻酔科学ベインクリニック講座）

【参加者名】

【概要】痛みは、生存戦略の中でも最も根源的な機能である。痛みを言語的に訴えるのはヒトの特徴だが、痛みで行動を変化させ、有害な状況を避けることによって生存可能性を向上させる戦略は、無脊椎動物からも観察される行動原理である。組織損傷や炎症の検出、伝達機構の詳細が近年の分子生理学・神経解剖学研究によって解明されてきたが、そのシステムとしての全体像の理解はまだ進んでいない。痛みシステムの作用原理の理解に必要となる以下のテーマを中心に、2つの特別講演、シンポジウム、そして18の一般演講を取り入れた企画とした。
題発表を通じて討議した。①検出された侵害受容情報はどのように局所処理されたのか？また上位中枢に送られているのか？②侵害受容信号が脳内のどのような機能に関与する神経回路に分配されそれぞれにおいてどのように処理されるのか？③その情報に基づいて、行動プログラムがどのように最適化されるのか？④その最適化の背景にある神経可塑性機構を支える作動原理はどのような機構か？そして、⑤これらの機構を介した適応化機構が慢性痛などに代表される合目的性に乏しい病的な痛みの形成にどのように関与しているのか？それをどのように改善・緩和しうるか？特別講演では、デタリアの侵害受容システムとヒト帯状疱疹後神経痛という両極端の「痛み」について最先端の知見が紹介され活発な質疑応答が展開された。ミニシンポジウムではヒトおよびげっ歯類の脳機能画像化研究の最前沿の知見を4人の演者が提示し、機能画像から見える新たな慢性痛の脳内機構と画像解析の可能性について論議した。また一般演題では末梢神経の侵害受容機構から脳内の機能分子、侵害受容神経の未知の生理防御機能、慢性痛の成立に関与するアストロサイトの関与、痛みに関連した社会性や恐怖学習など、痛みという生物機能を理解するために重要な研究成果が多数発表され、豊かな討論が展開された。生理研研究会中最多の100人を超える参加者を迎え、多面的・多角的な発表討論が繰り広げられ、この分野の生物科学における重要性とその広がりを確認した。

(1) C線維は一体何を伝えているの？記録と解析の諸問題について

八木淳一*1、小林 晴*2

(1)杏林大学 医学部 統合生理学、(2)防衛医科大学校 解剖学)

C線維を有する脊髄後根神経節(C-type DRG)ニューロンは、生体内外の様々な刺激（機械刺激、温度刺激、化学物質）に反応できるよう多様多様に分化している。DRGニューロンの電気生理学的性質については、これまでに膨大な研究論文が発表され、詳しく解析されてきた。しかし、C-type DRGニューロンが「多様な自然刺激をどのように符号化し、どのような感覚種を伝えるのか」という古典的問題は未解決である。例えば、C線維と言えば「痛みを伝える神経」を連想するが、実際には、C線維群は機械刺激に対して低閾値から高閾値までの幅広い反応閾値（Wide Dynamic Range: WDR）を呈し、温度刺激に対しては、侵害性のHeat、Cold刺激のみならず、弱いWarm、Cool刺激にも応じる。つまり、痛み以外の多くの非侵害性情報も伝える。他方、DRGニューロンの電気生理学的実験の主流である細胞体の単離標本では、神経終末部の性質を解析することはできず、標本作成時に細胞体細胞膜の性質が変化するため、反応特性を厳密に解析するには限界がある。本研究会では、DRGニューロンの記録と解析について日頃学会では論じられない諸問題を再考したい。

(2) HMGB1による痛みの増強に対するヒト型可溶性トロンボモジュリンの抑制作用に関与する分子メカニズム

辻田隆一*1、坪田真帆*1、林 佑亮*1、佐伯晴香*1、本田剛一*2、川畑篤史*1

(1)近畿大学 薬学部 病態薬理学研究室、(2)旭化成ファーマ㈱)

トロンボモジュリン（TM）は、D1～D5のドメインで構成される糖蛋白質で、DAMPsの1つであるHMGB1をD1で吸着し、D2に結合したThによりHMGB1の分解を促進する。我々は、還元型（at-）および酸化型（ds-）のHMGB1が、それぞれRAGEとTLR4を活性化することにより痛みを増強すること、また、ヒトTMの細胞外ドメイン（D1～D3）からなるDIC治療薬トロンボモジュリンアルファ（TMA）がHMGB1による痛み増強を抑制すること
を報告している。今回は、マウスにおけるHMGB1誘起アロディニアに対するTMαの抑制効果のTb依存性を検証し、酵母タンパク発現システムにより作製したTMの各ドメインタンパク（D123, D1, D2）の活性を解析した。In vitroにおいて、TMα、D123およびD2はTbによるat-およびds-HMGB1の分解を促進したが、D1は無効であった。一方、マウスにおいて、各HMGB1足底内投与によるアロディニアに対するTMαの抑制効果は、Tb阻害薬により消失し、Tbにより増強された。D123は、TMαと同様の抗アロディニア効果を示したが、D1、D2の単独および併用投与は無効であった。以上より、HMGB1誘起による痛み増強に対するTMαの抑制効果の発現には、Tbが不可欠であり、またD1、D2両ドメインの存在が必要であることが明らかとなった。

（3）末梢神経障害に伴う一次感覚神経機能変化におけるmiR-17-92の役割

坂井 敦, 鈴木秀典
（日本医科大学薬理学分野）

マイクロRNAは塩基配列特異的に多くの遺伝子のタンパク質発現を抑制する非コードRNAである。特に、miR-17-92クラスターは同一転写産物に6種のマイクロRNAがコードされていることから、機能的重要性が強く示唆される。miR-17-92クラスターは脊髄神経結紮（SNL）を施したラットにおいて、後根神経節での発現が長期的に上昇していたことから、本研究では末梢神経障害に伴う一次感覚神経の機能変化におけるmiR-17-92クラスターの役割を解析した。アデノ随伴ウイルスベクターを用いて一次感覚神経で各マイクロRNAを過剰発現もしくは機能抑制することによって、神経障害性疼痛への関与を明らかにした。miR-17-92クラスターの過剰発現は多くの遺伝子の発現を変化させたが、miR-17-92は複数のカリウムチャネルを直接の標的とし、電気生理学的にカリウム電流を調節していることを明らかにした。また、miR-17-92はHCNチャネルの機能調節に関わる遺伝子の発現も調節していた。一方、miR-17-92の過剰発現は神経突起伸長に関わる遺伝子の発現も調節しており、神経突起伸長を負に制御していることが示された。

（4）CCR2 upregulation in DRG neurons plays a crucial role in gastric hyperalgesia associated with diabetic gastropathy

Aye Aye-Mon, 塚 紀代美, 小酒井 友, 中村恵夫, 白石昌武, 奥田洋明, 尾﨑紀之
（金沢大学 医薬保健研究域 医学系 機能解剖学）

Diabetic gastropathy is a complex neuromuscular dysfunction of the stomach that commonly occurs in diabetes mellitus (DM). Diabetic patients often present with upper gastrointestinal symptoms, such as epigastric discomfort or pain. The aim of this study was to assess gastric sensation in streptozocin (STZ)-induced DM rats, and to determine the contribution of C-C motif chemokine receptor 2 (CCR2) signaling on gastric hyperalgesia. DM rats showed signs of neuropathy (cutaneous mechanical hyperalgesia) from 2 weeks after STZ administration until the end of the experiment. Intense gastric hyperalgesia also developed in DM rats at 2 weeks after STZ administration, which was significantly reduced after intrathecal administration of the CCR2 antagonist INCB3344. Immunohistochemical analysis indicated that CCR2 expression was substantially upregulated in small and medium-sized dorsal root ganglia (DRG)
neurons of DM rats, although the protein level of monocyte chemoattractant protein-1, preferred ligand for CCR2 was not significantly different between the control and DM groups. These data suggest that CCR2 activation in nociceptive DRG neurons plays a role in the pathogenesis of gastric hyperalgesia associated with diabetic gastropathy and CCR2 antagonist may be a promising treatment for therapeutic intervention.

(5) 小胞型ヌクレオチドトランスポーターの特異的阻害剤の同定と神経因性・炎症性疼痛への応用

加藤百合1, 日浅未来2, 市川玲子3, 蓮澤央4, 関瀬彰志5, 岩城 穣5, 尾 和弘5, 遠藤康男5, 北原吉朗5, 井上 剛2, 野村政寿4, 表 弘志2, 森山芳則2, 〇宮地孝明5

(1)岡山大学自然生命科学研究支援センター, (2)岡山大学大学院医歯薬学総合研究科, (3)味の素イノベーション研究所, (4)九州大学大学院医学研究院, (5)東北大学歯学部

神経・内分泌細胞は分泌小胞に充填した ATP を開口放出し、プリン受容体を介して痛覚等の多彩な生理機能を制御する（プリン作動性化学伝達）。我々は、ATP を分泌小胞に充填する小胞型ヌクレオチドトランスポーター（VNUT）を同定し、VNUT はプリン作動性化学伝達の必須因子であることを明らかにした。VNUT には塩素イオン（ON）とケトン体（OFF）によるアロステリックな代謝スイッチがあるため、このスイッチを特異的にOFF できる化合物は画期的な鎮痛薬になると期待できる。

骨粗鬆症治療薬の第一世代ビスホスホネート製剤は骨吸収抑制作用や副作用が弱く、鎮痛効果があることが報告されていたが、その作用機構は不明であった。我々は、このうちクロドロン酸が低濃度でVNUT を阻害することを見出した (IC50 = 15 nM)。興味深いことに、クロドロン酸は VNUT の代謝スイッチを選択的に OFF するアロステリック薬剤であった。神経因性と炎症性疼痛モデルマウスにクロドロン酸を投与したところ、疾患部位だけでなく鎮痛効果と抗炎症効果を発揮することを見出した。VNUT−/−マウスではクロドロン酸の効果が消失していた。15 言より、クロドロン酸の鎮痛・抗炎症効果の分子標的は VNUT であり、クロドロン酸は痛みの有害状況に適応するための新規化合物になるといえる。今後、ドラッグリポジショニングによる新規鎮痛薬のトランスポーター創薬が期待される。

(6) カテプシンHのプロテオリシスによるシナプス強度調節

林 良憲 (九州大学 大学院歯学研究院 口腔機能分子科学)

シナプス小胞は神経伝達を担う重要な構造である。多くの制御機構が解明されている一方で、そのタンパク制御はよくわかっていない。近年、シナプス小胞の形成はエンドソームからの発芽に由来することが報告され、エンドソームがシナプス小胞の制御に重要な役割を担うことが考えられる。カテプシン H はエンドソームに局在するプロテアーゼである。痛み関連ペプチドのプロセシングに関わっていることから、シナプス小胞のタンパク制御に関与するのか、そして痛みの制御に関与するのかをカテプシン H 欠損 (CatH−/−)マウスを用いて検討した。

CatH−/−マウスは野生型に比べ、熱刺激と機械刺激に対する感受性が亢進していた。また、脊髄神経のグルタミン酸の量子放出の増加が認められた。これに比例して CatH−/−マウスでは VLGUT2 の発現量の増加が生じており、CatH は VGLUT2 と共局在していた。野生型に対して siRNA(CatH)を処置することで疼痛過敏が認められた。この際、VLGUT2 の発現量の増加が脊髄で認められた。CatH は DRG に非常に多く発現しているが、TRPV1 陽性神経の除去により脊髄の CatH のほとんどが消失したところから、DRG から脊髄側に輸送される分子であると考えられる。TRPV1 陽性神経を除去した際に CatH−/−マウス
で疼痛過敏の緩和および脊髄の VLGUT2 の発現量の低下が認められた。また、軸索輸送を止めることで DRG への CatH の蓄積が生じた。以上のことから CatH は脊髄新クライオ電子顕微鏡 cryoARM VGLUT2 の代謝制御を行っているものと考えられる。

（7）No fungal pain, no gain.

丸山健太（大阪大学免疫学フロンティア研究センター）

我々は、痛覚神経が真菌感染を直接感知すると同時に、真菌感染によって誘発される炎症や骨破壊を強力に抑制する機能を持っていることを発見した。

1. Nav1.8 陽性痛覚神経は皮膚のみならず骨にも分布している。
2. 痛覚神経を遺伝学的に除去したマウスの後肢に真菌細胞壁の成分である β−グルカンまたはグラム陰性菌細胞壁の成分である LPS を皮下注射すると、前者の場合には激しい炎症が惹起されて足の骨が溶けてしまうが、後者の場合には対照群と比べて殆ど変化がない。
3. 痛覚神経には β−グルカン受容体の Dectin1 が発現しており、痛覚神経における Dectin1 は TRPV1 や TRPA1 を活性化することで CGRP の産生を促す。
4. TRPV1 や TRPA1 を欠損するマウスでは、β−グルカンを後肢に皮下注射したあとの血中 CGRP の上昇がみられず、炎症が惹起されて足の骨が溶ける。
5. Nav1.8 イオンチャンネル痛覚神経より分泌された CGRP は破骨細胞に cAMP を誘導することでアクトинの脱重合を促進し、その融合を阻害する。
6. CGRP は β−グルカンで刺激されたマクロファージの NF-κB 活性化を転写因子 Jdp2 の誘導を介して抑制する。

上記の知見は、我々の痛覚に対する概念を拡張するみならず、痛覚神経による骨自然免疫抑制メカニズムにインスピレーションした新しい抗炎症剤や骨保護制剤の開発につながるものである。

（8）反復社会的敗北ストレスによる痛覚閾値の低下に対する帯状回皮質ノルアドレナリン神経系の役割

大森翔太1, 高岸良典2, 上岡万莉1, 佐 諒佑1, 北尾優花1, 条 和彦1, 笠原二郎2, 大澤匡弘1,
(1名古屋市立大学大学院薬学研究科神経薬理学, 2徳島大学大学院ヘルスバイオサイエンス研究部神経病態解析学分野)

うつ病や不安障害に頻繁にみられる心因性疼痛のメカニズム解明を目指し、反復社会的敗北ストレス（chronic Social Defeat Stress; cSDS）モデルマウスを用いて痛覚関値の変化と前帯状回皮質（ACC）のノルアドレナリン（NA）神経の関与について検討した。
cSDS モデルマウスは、6 週齢の C57BL/6J 雄性マウスを 16 週齢の ICR 雄性マウスに 10 分間攻撃させ、その後金網で仕切り、身体的接触のない状態で翌日まで飼育を行う試行を繰り返して作製した。痛覚関値は von Frey test により測定し、うつ様行動は social interaction test により評価した。

5 日及び 10 日間の cSDS 負荷により機械刺激に対する痛覚閾値が低下した。一方、うつ様行動は cSDS の 10 日間負荷群では認められたが、5 日間負荷群では認められなかった。cSDS の 5 日間負荷により低下した機械痛覚閾値は、デュロキセチン（30 mg/kg, i.p.）や NA の ACC への微量注入（0.06 µg）によって回復した。また、健常マウスの ACC へ NA 神経毒である DSP-4（10 µg）やアドレナリン α2 阻断薬であるヨヒンビン（0.05 µg）を投与すると機械刺激に対する痛覚閾値が低下した。青斑核から ACC へ投射する NA 神経系をデザイナー受容体 (DREADD 法) により抑制しても、痛み閾値の低下が
われわれはこれまでに、母子社会分離マウスを対象として恐怖条件付け実験を行ってきた。本研究に着手した背景は2つある。第1は痛みの治療にも用いられる抗てんかん薬の気分安定作用には、神経幹細胞の自己複製能の亢進が関与しているという報告、第2は母子分離や運動負荷も神経幹細胞の自己複製能を亢進させるという報告である。これらの報告から、神経新生を亢進させる母子分離や運動負荷は気分安定作用を発揮するだけではなく、痛みの慢性化に対する「恐怖回避モデル」のメカニズムの解明に繋がるのではないかと考えた。

母子分離として、母マウスだけではなく、同腹仔マウスから、1日3時間分離する母子社会分離ストレス、期間は生後最初の2週間の早期母子分離と、3週目1週間の後期母子分離を採用した。早期母子分離マウスでは、母子分離終了時にストレスホルモンであるコルチコステロン量の増加は認められず、成熟期に行った恐怖条件付け実験において、海馬依存性の恐怖記憶の減弱が認められた。

さらにカージにファーストラック（輪回し車）を入れ、自発運動を負荷した。運動負荷の有無にかかわらず、早期母子分離マウスで、海馬依存性の恐怖記憶の減弱が認められた。一方母子分離の有無にかかわらず、運動負荷群で、マウス依存性の恐怖記憶の亢進が認められた。

恐怖記憶に対する神経新生亢進の効果は一様ではなく、最近始めた、後発の気分安定薬投与の結果も一部紹介する。

（9）痛み関連恐怖記憶の鎮静化機構

小山なつ、Kenny Daun、中路景太、等 誠司
（滋賀医科大学 生理学講座）

（10）脳卒中後疼痛のモデル動物の確立とその発症機序の解明

原田慎一1, 松浦 涉1, 劉 克約2, 西堀正洋2, 徳山尚吾1
（1神戸学院大学 薬学部 臨床薬学、2岡山大学大学院 医歯薬学総合研究科 薬理学）

本発表では、CPSPに関するこれまでの研究成果を概説すると共に、CPSPに対する新規疼痛制御分子としてのHMGB1の関与について紹介する。
（11）疼痛および情動の調節因子としての脳内長鎖脂肪酸受容体 GPR40/FFAR1 の役割

〇中本賀寿夫, 相澤風花, 徳山尚吾（神戸学院大学 薬学部 臨床薬学）

ドコサヘキサエン酸（DHA）などの n-3 系脂肪酸によって活性化される長鎖脂肪酸受容体 GPR40/FFAR1 が同定され、その中枢神経系における役割が注目されている。これまでに我々は、GPR40/FFAR1 が脳内の各部位に広く発現し、神経細胞上に発現していることや下行性疼痛制御系の活性化を介して痛みを抑制することを見いだしてきた。また、疼痛時には、脳内の各種遊離脂肪酸含量が増加することや、これらの変動制御にアストロサイトが関与していることも報告した。さらに、GPR40/FFAR1 欠損（GPR40KO）マウスに対して術後痛を与えたところ、機械的アロディニアが増強することを明らかにしている。一方、GPR40KO マウスは、脳内のノルアドレナリン値の増加を介して、情動活動の異常を示すことも示している。最近、社会敗北ストレスモデルマウスに対して、術後痛を与えたところ、機械的アロディニアが増強するとの知見を得ている。これらの結果から、心理・社会的ストレスによって引き起こされる慢性疼痛に対しても、脳内 GPR40/FFAR1 シグナル機構が関与していると示唆される。本研究会では、疼痛および情動の制御因子としての脳内 GPR40/FFAR1 の役割について我々の成績を紹介した。

（12）運動療法による慢性痛緩和のメカニズム: オレキシンニューロンと Exercise-induced hypoalgesia

上 勝也 1, 仙波恵美子 1,2

1 東京医科大学 神経内科 2 東京医科大学 神経内科

慢性痛は急性痛とは異なり、広範な脳領域の機能障害がその発症機序に深く関わり、薬物治療が十分に奏効しない難治性疼痛である。慢性痛改善に対する運動療法の有効性については evidence が高く、慢性痛のガイドラインでも強く推奨され、薬物に頼らない患者主導型医療が注目されている。運動療法の根幹をなす「運動による除痛効果 (EIH)」の機序は不明な点が多い。最近の私達の研究成果は、EIH には視床下部外側野 (VTA) ドパミン (DA) ニューロンの DA 産生の増加を介した脳報酬系の活性化が重要な役割を担っていることが示された。しかし運動がどのようにして脳報酬系活性化するのかは不明である。本研究は、VTA-DA ニューロンを活性化する神経経路のなかで視床下部外側野 (LHA) オレキシン (Orex) ニューロンに焦点をあて、神経障害性疼痛モデルマウスを用いて EIH との関連性について検討した。その結果、① 自発運動量は DA と Orex ニューロンの活性化を高め、② 自発運動量の増加は活性化 Orex ニューロンの割合を高め、さらに③ 自発運動により活性化した DA と Orex ニューロンとは有意な正の相関関係を示すことが分かった。自発運動により活性化した LHA-Orex ニューロンが、VTA-DA ニューロンの活性化を促すことにより脳報酬系が活性化されることを示した本研究結果は、EIH を生み出す脳メカニズムの解明に重要である。
従来、異痛症の評価には行動学的指標が用いられているが、これらの手法は観測者の主観的要因を排除することが難しく、神経の異常な活動分布を捉えることはできない。そこで、allodyniaを客観的に評価するためマウスを対象としたfunctional MRI（fMRI）による神経活動計測を行った。

神経因性疼痛モデルである脊髄神経部分切断結紮モデルを対象として、Aβ線維に特異的な触角様刺激を行い、fMRIを用いた脳活動分布計測を行った。触角様刺激を与えた健常マウスは一次感覚野後肢領域のみ活動をみとめたが、神経因性疼痛モデルは前部帯状回皮質、視床において異常活動が見られた。

さらに、神経因性疼痛モデルの脳領域間の相互作用を調べるために、安定時活動結合性MRIを確立し、構築された脳活動ネットワークの特性についてグラフ理論を用いて評価した。その結果、健常マウスと比較して、対側一次体感野の次元および固有ベクトル中心性は有意に低下し、前帯状回皮質のクラスタリング係数および局所効率、視床後側腹側核での媒介中心性が有意に増加していることがわかった。以上のことから、神経因性疼痛モデルの脳活動は、一次感覚野に連絡する情報量が減少し、前帯状回皮質や視床などのペインマトリックスが複雑なネットワークを構築しているのではないかと考えられた。

慢性疼痛患者では刺激を与えず、寛っている状態でタスクを与えずに脳内の臨床評価する必要性が高い。そのため灰白質体積を測定するvoxel-based morphometry（VBM）やプロトン核磁気共鳴スペクトルスコピー（1H-MRS：1H-Magnetic Resonance Spectroscopy）を用いてきた。

また、うつ、不安障害、破局化思考、環境的ストレス、愛着障害など心理社会的因子が関与して難治化することも多い。難治性慢性疼痛をみていく場合には、痛みだけをみていては、その人の苦しみ全体をみていることにはならない場合が多く、精神疾患の脳内病態の知識が必要になる。パニック障害、PTSDなどの不安障害、うつなどの精神疾患の脳内病態、さらに認知行動療法（CBT）、マインドフルネスで、どのように変化するかの知見、慢性疼痛の脳内病態に関する当施設での知見を交えて述べる。

脳内病態としては、扁桃体の委縮など不快情動処理の機能不全、ドーパミン鎮痛系に関与する部位の機能的変化が深く関与しており、慢性疼痛とは中枢性鎮痛機構がうまく働いていない状態であると推察される。

脳レベルではpain matrixだけでなく幅広い領域の脳機能の不具合、病態を考慮していく必要があり、2つの方法により明らかにされてきた痛みの脳内機構の知見について概説する。
（15）慢性疼痛患者の安静時 fMRI から見えてきたもの：現状、課題、そして未来

寒 重之、柴田政彦
（大阪大学大学院医学系研究科 疼痛医学寄附講座）

安静時 fMRI は、課題の遂行が必要なく構造画像と同様に被験者は安静にしているだけで測定がおこなえること、また自発脳活動をその対象としていることから、病態の解明や診断、予後予測を目的として、認知症をはじめとしてさまざまな精神・神経疾患の患者で実施されており、脳局所の自発活動や脳部位間の自発活動の同期性（機能的結合）に変化があることが報告されている。また慢性腰痛、線維筋痛症、片頭痛などさまざまな種類の慢性疼痛の患者に対しても安静時 fMRI を用いた研究がすでに数多く実施されており、いくつかの脳部位で機能的結合が患者の痛みと相関するとの報告や、慢性化を予測する指標として利用できる可能性があるとの報告がなされている。しかし、結果の信頼性・再現性や結果の解釈などにはまだ数多くの問題が未解決のまま残されている。我々が大阪大学医学部附属病院でおこなっている慢性疼痛患者を対象とした研究においても、先行研究の結果が再現されず、また自発活動や機能的結合に変化が生じた脳部位がどのように患者の症状と関連しているか直截的に理解することが困難な事例を少なからず体験している。本発表では、安静時 fMRI の解析・研究デザインの概要と、これらに起因する研究上の問題点について、我々の研究の実例を交えて取り上げた。また、そのような問題点を克服するためには、どのようなアプローチが将来的には可能であるかを議論した。

（16）痛み関連脳活動とは何か

Significance of pain-related cerebral activation

倉田二郎（東京医科歯科大学医学部附属病院 麻酔・蘇生・ペインクリニック科）

痛みは脳内の複数の離れた部位で並列分散処理されることは考えられている。これらの脳部位は、痛みの感覚・情動・認知成分を分担し、それらが統合された結果として痛み体験が成立する。

私たちは、実験的痛み刺激による脳活動を機能的磁気共鳴画像法で捉え、これを上行性の bottom-up 成分と下行性の top-down 成分による交互作用のモデルにより説明してきた。前者が痛みを受容するのに対し、後者は痛みに反応して抑制性要素を含む。この抑制性要素は、下行性疼痛修飾系の大脳皮質成分として働くと推測される。

実際、前帯状皮質や後頭側頭前頭皮質の脳活動がプラセボ鎮痛に関わることが報告された。私たちはさらに、これらが慢性腰痛患者で減弱することを示し、慢性痛の病態として下行性疼痛修飾系の機能不全が存在することを提唱した。

一方、痛みが減弱ないし消失するときには、下行性疼痛修飾系に加え、側坐核を中心とする報酬系が働くことが示された。すなわち、痛みがなくなる喜びを感じにくくなることが慢性痛の一面を示すと考えられる。

実生活の痛みは時々刻々変動する。これに私たちは好悪入り交じった情動反応をし、痛みを減少させる行動をとる。痛みの脳画像研究により、このような痛み体験の全体像を見ることができる。
ヒトを対象にした痛みの研究を行う上で、避けて通れない問題の一つは侵害感受性刺激の方法論である。乾らが開発した表皮内電気刺激法（Intraepidermal electrical stimulation : IES）は特異的な侵害感受性刺激を可能にする方法として近年広がりを見せている。これまでAδ線維を刺激するために、レーザー光線（YAG, CO₂）、熱、機械刺激（Pinprick）などが用いられてきたが、機器が高価であったり、Jitteringの問題があったりするため本邦においては臨床的に使用されることは少なかった。IESは比較的安価で使用法も簡便であり、またTime-lockが極めて良好なため特に時間解像度の高いEEGやMEGなどの脳機能評価に適している。また、欠点の一つであった惹起される感覚の弱さも刺激電極を増やしたり（Spatial summation）、刺激回数を調整することにより（Temporal summation）ある程度克服可能となってきた。

我々はこの方法を用いて特異的なAβ線維、Aδ線維およびC線維刺激とそれに対する大脳皮質反応の解析を試みてきた。臨床的には特に侵害感受性伝導路の障害がある症例の評価に有効性が確認できている。具体的な疾患としては末梢神経障害（糖尿病性神経障害など）、脊髄病変（脊髄空洞症）、延髄病変（Wallenberg症候群）などである。今回はこれらの臨床的な考察から垣間見える痛みの意味論について、また今後IESがどのように臨床・研究分野で応用できるかについて検討した。

催眠による鎮痛のメカニズム　－神経生理学的研究と臨床的作業仮説－

催眠によって生じる鎮痛は、現在も歯科・産科・外科など臨床の場で役立てられている。またそうした催眠現象は認知神経科学の研究にも利用されるなど、個人的経験にとどまらず、生物学的な根拠をもつことが認められている。しかし催眠は、ある人が与える暗示によって、別の人がその暗示に対する反応を個別的に生じるものであるために個人差が大きい。また、催眠のメカニズムについて複数の理説的立場の論争が長引いたために催眠の定義が定まらず、また一つにまとめられた定義は折衷的でわかりにくい。

そこで、これまで蓄積されてきた催眠鎮痛に関する脳機能画像や脳波などの神経生理学的検討において、催眠鎮痛の現象がどのように示されているかをわかりやすく提示することを試みた。

そのうえで、発表者の慢性痛に対する催眠適用研究で見られた、患者の経験、鎮痛のプロセスから、考えられる臨床的作業仮説を提示し、催眠鎮痛と意識の関係、痛みの構成について検討した。臨床的作業仮説は臨床実践を支持し安定化させるものとして有用であるが、客観的データーとしては効果の分析に基づき、神経生理学的研究によるものではない。科学的に適切な解釈であるかどうか、神経生理学の研究者からのご意見ご指摘をいただいた。
（19）【特別講演】ショウジョウバエを利用した痛覚シグナル調節機構の研究

本庄 賢（筑波大学 生命環境系）

侵害受容（Nociception）は組織損傷を引き起こす、またはその可能性のある侵害性刺激に対する応答であり、動物が生存していく上で必要不可欠な感覚・神経機能である。侵害受容はヒトにおいて痛みの知覚につながることがから、その調節メカニズムの細胞分子レベルでの理解は医学的観点からも重要な意義を持つ。ショウジョウバエ（Drosophila melanogaster）は独自の優れた遺伝学的実験ツールが利用可能なモデル動物として、遺伝、発生そして高次脳機能を含む様々な生命現象の分子メカニズムの解明に大きく貢献してきた。近年では、侵害受容のシグナル調節メカニズムの研究においてもショウジョウバエの利用が進んでいる。そこで本研究会では、神経科学研究におけるショウジョウバエモデルの特徴および、ショウジョウバエの侵害受容についてこれまで明らかにってきた事柄を概説するとともに、これまで我々が進めてきた、そして現在進めている侵害受容とその調節に関わる分子の研究結果について報告した。イトから放出されるL-乳酸が関与することが示唆された。}

（20）オレキシンBによる脊髄脳様質ニューロンの自発性抑制性シナプス伝達の促進

王 翀，藤田亜美，馬郡信弥，鈴木里佳，楊 帆，熊本栄一
（佐賀大学 医学部 生体構造機能学講座 神経生理学分野）

オレキシン B 含有ニューロンは、オキシトシン含有ニューロンと同様、視床下部から脊髄後角に投射した鎮痛に働くことが知られている。痛み伝達の制御に重要な役割を果たす後角第 II 層（脳様質）ニューロンにおいて、オキシトシンは興奮性シナプス伝達に影響を及ぼさず膜を脱分極する一方、オレキシン B はオレキシン -2 受容体を活性化して脱分極とシナプス前性の自発性興奮性シナプス伝達の促進を誘導する。オキシトシンの鎮痛作用は、その脱分極による活動電位発生を介した自発性の GABA やグリシンを介する抑制性シナプス伝達の促進によると考えられている。今回、オレキシン B の鎮痛作用機序を明らかにする目的で、自発性の抑制性シナプス伝達に及ぼすオレキシン B の作用を調べた。実験は、成熟ラット脊髄薄切片の脳様質ニューロンにパッチクランプ法を適用して行った。その結果、オレキシン B は電位作動性 Na+ チャネル阻害薬テトロドトキシンやオレキシン-2 受容体阻害薬感受性にグリシン作動性のシナプス伝達を促進することが明らかになった。一方、GABA 作動性のものは殆ど影響を受けなかった。以上より、オレキシン B はシナプス前性と後性に興奮性シナプス伝達を促進させる酵素、活動電位を発生させてグリシンを介する脳様質ニューロンの抑制性シナプス伝達を促進させることが明らかになった。オレキシン B はオキシトシンと異なる機序で鎮痛を起こすことが示唆された。

（21）PACAP 誘発疼痛様行動における脊髄アストロサイト-ニューロン乳酸シャトル（ANLS）の関与

栗原 崇 1，神戸悠輝 1，用皆正文 1，高崎一朗 2，宮田篤郎 1
（1 鹿児島大学 医歯学部 生体情報薬理学，2 富山大学 産理工学 生体情報薬理学）

我々はこれまで、下垂体アデニル酸シクラーゼ活性化ボリペプチド（PACAP）特異的受容体（PAC1）シグナ

313
ルが、脊髄アストロサイトの活性化を介して、急性の自発性疼痛様行動と長期間（12週間以上）持続する機械的アロディニアを誘発することを見出した。一方、近年アストロサイトにおけるグリコーゲン分解とL-乳酸の放出（アストロサイトニューロン乳酸シャトル: ANLS）は、学習・記憶などに重要であることが示唆されている。そこで我々は、PACAP誘発疼痛様行動におけるANLSの関与を検討し、以下の結果を得た。すなわち、1) グリコーゲン分解阻害剤DAB（100~300pmol）は上記疼痛様行動を完全に抑制し、L-乳酸（1nmol）をさらに添加すると、疼痛様行動が再現した；2) 新生マウス脊髄由来培養アストロサイトにPACAPを曝露すると、低濃度（EC50 = 6.3 pM）からグリコーゲン分解活性を示すとともに、細胞外乳酸濃度を有意に増加させ、またこれらの効果はDABやPKC阻害薬によって有意に阻害された；3) PACAP誘発疼痛様行動もPKC阻害薬によって抑制された。以上の結果から、PACAP-PAC1受容体シグナルは、アストロサイトのPKCを介してANLSを活性化することで、疼痛様行動発症に関与していることが示唆された。

（22）脊髄後角の反応性アストロサイトによる、L-乳酸を介した痛覚感作

痛覚閾値の低下に寄与する重要な役割を有するアストロサイトの機能変化に着目し、脊髄後角アストロサイト選択的に活性化すると、機械痛閾値が低下した。これは、L-乳酸を輸送するモノカルボン酸トランスポーター（MCT）の薬理学的阻害により抑制された。また、L-乳酸が脊髄後角ニューロンを活性化し、機械痛閾値が低下する。以上の結果より、神経障害性疼痛時にANLSが亢進することで、ニューロンの痛覚閾値の低下が抑制される。さらに、L-乳酸を脊髄くも膜下腔内に処置すると、痛覚閾値の低下が生じ、これは、L-乳酸をピルビン酸に変換する酵素（LDH）の薬理学的阻害によると考えられる。また、ニューロンに存在するMCT（MCT2）のRNA幹渉によるノックダウンによってもL-乳酸による痛覚閾値の低下が抑制される。以上の結果より、神経障害性疼痛時にANLSが亢進することで、ニューロンの痛覚閾値の低下が抑制される。
性に注目した。神経障害により障害側肢の痛み閾値が低下し、脊髄後角 GFAP 陽性細胞数の増加および肥大化が認められた。Rho キナーゼの阻害は神経障害時の痛み閾値の低下を抑制し、アストロサイトの増加、肥大化も抑制した。また、神経障害により PKC のリン酸化が亢進し、Rho キナーゼの阻害により、この変化も抑制された。一方、DREADD システムを用いて選択的なアストロサイトの抑制を行ったところ、神経障害による痛み閾値の低下が抑制され、PKC のリン酸化体の増加も抑制された。このことにより、脊髄アストロサイトの活性化が、脊髄後角の PKC のリン酸化の亢進および神経障害性疼痛の原因である可能性が示唆された。

(24)【特別講演】帯状疱疹関連痛の現状と帯状疱疹後神経痛予防に向けて

乙関雅子（順天堂大学 医学部麻醉科学ペインクリニック講座）

【はじめに】神経障害性疼痛には、様々な疾患が含まれているが、特に帯状疱疹後神経痛や開胸術後痛、などが、早期に神経障害性疼痛の性状の強い疼痛を経験することが多い。また、両者の痛みが残存する危険因子の 1 つとして「急性期の強い痛み」がある。特に、帯状疱疹急性期において、各科で対応困難な疼痛患者が、当科に紹介される。そのような患者的治療推移や予後を、以前に前向き研究した結果（PAIN RESEARCH 31 (2016) 165–165）を提示し、本研究会において検討課題とする。

【対象】2013 年 6 月から 2015 年 1 月に受診した発症 30 日以内の帯状疱疹関連痛患者 94 人とした。

【方法】神経障害性疼痛スクリーニング質問票 (Japan-Q), Pain DETECT Questionnaire (PDQ) の 2 つの神経障害性痛のスクリーニング質問票を用い、対象患者を 6か月間追跡し、皮疹出現から 30 日までの急性期、1〜3か月までの亜急性期、3か月以降の慢性期の各期で質問票、Visual analogue scale (VAS) を施行した。

【結果】追跡調査ができたのは 78 人であった。各病期のスコアの中央値を急性期：亜急性期：慢性期の順で示す。VAS（mm）71.5：27.5：9.5, Japan-Q スコア 12：4：3, PDQ スコア 15：9：7。神経障害性痛の要素が高い Japan-Q スコア 9点以上の割合は、急性期 53 人(68%), 亜急性期 14 人(18%), 慢性期 10 人(13%), PDQ スコア 11 点以上の割合は、急性期 61 人(78%), 亜急性期 35 人(45%), 慢性期 21 人(27%)であった。VAS 30mm 以上の痛みを帯状疱疹後神経痛と定義すると、68%が寛解、帯状疱疹後神経痛への移行率は 32%であった。移行した患者の VAS は急性期 85 と高く、慢性期には 42 まで低下している。

【考察 結論】帯状疱疹痛の病態は、皮膚炎と神経炎の合併であるが、急性期の強い痛みを持つ患者は、神経障害性痛に該当する痛みの性状を有しており、神経炎の重症度がより反映されている可能性がある。現時点において、神経障害性疼痛を治療する薬剤に関しては、神経障害性疼痛を和らげる効果があるとしても、神経障害性疼痛の発生や急性期痛を確実に予防できる手法は少ない。帯状疱疹後神経痛に関しても、臨床医としては、急性期に神経炎症の発症部位や伝達経路に対する有効なターゲット的な治療が望まれる。
7. 感覚免疫学研究会

2017年7月3日－7月4日
代表者: 丸山健太（大阪大学 免疫学フロンティア研究センター）
所内関係者: 富永真琴（岡崎統合バイオサイエンスセンター）

(1) 精神/疼痛の恒常性維持基盤における体内時計システムの役割
宝田剛志（岡山大学医学部薬学総合研究科薬物機能修復学分野）

(2) 脊髄介在ニューロンに発現する Netrin-4 は神経障害性疼痛を制御する
山下俊英（大阪大学医学部医学研究科）

(3) 皮脂トップダウン回路による触覚とその記憶の形成
村山正宜（理化学研究所）

(4) カプサイシンとメントールによるそれぞれ TRPM8 と TRPV1 の活性化制御
高石雅之（㈱マンダム）

(5) ナノメカニカルセンサ「MSS」の総合的開発
吉川元起（物質・材料研究機構 MANA）

(6) アジュバント入りワクチンは危ない？アジュバントの基礎と臨床
石井健（iFReC/医薬基盤・健康・栄養研究所）

(7) 皮膚の免疫細胞と非免疫細胞との相互作用
椛島健治（京都大学 医学部皮膚科学）

(8) インターロイキン 27 の感覚閾値調節における役割
八坂敏一（鹿児島大学医学部）

(9) 体性感覚野における発達期ミクログリアによるシナプス形成
宮本愛喜子（神戸大学 生理学・細胞生物学講座）

(10) 真菌感染性状の生物学的意義とその制御に関する一考察
丸山健太（大阪大学 免疫学フロンティア研究センター）

(11) オルガネラ損傷により誘導される自然免疫応答の理解と制御
齋藤達哉（徳島大学 先端酵素学研究所 炎症生物学分野）

(12) 中枢と末梢臓器を繋ぐ神経生理動態の包括的解析
佐々木拓哉（東京大学 薬学部）

(13) 感覚神経のイメージング
岡田峰陽（理化学研究所組織動態研究チーム）

(14) 慢性虫垂皮膚炎における表皮パリア破綻と感覚神経の活性化
高橋苑子（横浜市立大学医学部）

(15) 感覚神経における起痒物質受容体遺伝子 Mrgprx1 の発現変化
石田 樹（横浜市立大学医学部）

(16) 痒みの慢性化における神経系メカニズム：脊髄後角アストロサイトの役割
津田 誠（九州大学大学院 薬学研究部）

316
【参加者名】
吉川元起（物質・材料研究機構）、佐々木拓哉（東京大学）、加藤総夫（東京慈恵会医科大学）、村山正宜・岡田峰陽・石亀晴道・青柳秀隆（理化学研究所）、石田 梓・高橋苑子（横浜市立大学）、近藤 豪（浜松医科大学）、森田 晶子（奈良県立医科大学）、中川実優・奥出遥奈（奈良先端科学技術大学院大学）、藤田 郁尚・島田聖美・石野雅之（大阪大学）、小張真吾（医薬基盤・健康・栄養研究所）、森田- 竹村晶子（大阪大学）、観島健治・中嶋千紗（京都大学）、藤田郁尚・鳥山真奈美・山下俊英・丸山健太・三島怜子・熊谷雄太郎（大阪大学）、近藤 豪（浜松医科大学）、森田 晶子（奈良県立医科大学）、中川実優・奥出遥奈（奈良先端科学技術大学院大学）、宮本愛喜子・岡田 雅史（神戸大学）、田中 聖（岡山大学）、水野真喜（岡崎統合バイオサイエンスセンター）

【概要】
侵害受容システムは、個体に組織障害や感染の勃発を不快な感覚の惹起を通じて自覚させることで、危険からの回避や安静を促している。それ故、温痛覚や痒みといった感覚は広義の生体防御系の一部をなしているとする見方が可能である。近年、侵害受容システムが一種の内分泌器のように働くことや、侵害受容システムが免疫系と共通する異物認識受容体を用いて侵害受容をおこなっていることが見出され、神経生理学者と免疫学者の協力により新たな発見が相次ぎ、神経生理学者と免疫学者が互いに協力することで新たな知の領域が創発される可能性が高まってきた。そこで、本研究会ではこうした萌芽的学際領域を「感覚免疫学」と命名することで本邦の研究者コミュニティにおける認知度を高め、同時に、これまで交流が殆どなかった侵害受容システムと免疫システムの研究者らの出会いの場を提供することで、侵害系と免疫系双方に影響される諸疾患の解明に向けた共同研究をはぐくむことを目指す。記念すべき第1回目の研究会では、抹消の疼痛生理学・脳生理学・炎症学・骨免疫学・皮膚科学・バイオイメージング学、感覚受容体工学といった多彩な領域で活躍する新進気鋭の研究者らを招待し、本邦における免疫学免疫学の勃興を目的に活発な議論を行った。驚くべきことに、発表者のみならず参加者のダイバーシティも高く、基礎医学研究者、文系学部生、理系大学院生、臨床医、企業研究者とバラエティに富んだ構成であった。発表者からは、「隣の研究室や分野違いの学会は外国よりも遠いといわれる本邦においてなかなかお目にかかることのできない企画であり、感服した」「一流の研究者ばかりで、知的好奇心を大いに刺激された」との感想をいただいている。研究会の成果として特筆すべきは、参加者同士の交流が円滑にすすんだことでのグラントの申請や共同研究が既に開始されている点にある。一例を挙げるとするならば、本研究会で知り合いとなる14名の研究者が共同で感覚免疫学に関する新学術領域の立ち上げを行い、今年度の科研費申請に至っている。また、参加者と発表者のインタラクションの結果、遺伝子変異動物の譲渡を介した共同研究もはじまっている。当然のことながら、発表者同士での共同研究にも進展がみられており、例えば全身炎症反応における脳の感覚領域での脳波測定といった世界初の試みが進行中である。このように、免疫学領域の研究者と脳生理学領域の研究者らによる感覚免疫学の萌芽が、本研究会をきっかけとしていまさらではじまろうとしている。

（1）精神/疼痛の恒常性維持基盤における神経時計システムの役割
宝田剛志（岡山大学大学院医歯薬学総合研究科）

神経障害性疼痛は、精神的ストレスや精神疾患との関連性が臨床上指摘されている（うつを伴う慢性痛、統合失調症や自閉スペクトラム症での痛覚減弱など）。しかし、この「精神と疼痛（痛み）」の関連性の分子基盤は
生理学研究所年報 第39巻 (Dec, 2018) 研究会報告

未解明である。本研究では、睡眠障害やうつ等の精神疾患に関連性が高い体内時計システムに注目した。体内時計システムが破綻したマウス（Bmal1欠損マウス）では、脳・脊髄組織でのアストロサイトの異常活性化が認められた。同マウスにて行動学的解析を実施した結果、多動といった精神行動異常が観察された。さらに、神経障害性疼痛モデルを実施した結果、神経障害時に疼痛（アロディニア）が完全に消失していた。しかし、Bmal1-/-マウス由来培養アストロサイトを解析した結果、培養条件下ではアストロサイトの異常活性化は認められなかった。この点を踏まえ、各種細胞種特異的Bmal1欠損マウスを用いた解析の結果、この病態が、血管周囲に存在するペリサイト機能異常による血液脳関門（BBB）破綻に起因することを見出した。つまり、BBB恒常性は体内時計システムの制御下にあり、そのシステム破綻は、アストロサイトの異常活性化という段階を経て、精神/疼痛機構を共に破綻させる可能性がある。

（2）脊髄介在ニューロンに発現するNetrin-4は神経障害性疼痛を制御する

山下俊英
（大阪大学 大学院医学系研究科 分子神経科学）

我々は神経障害性疼痛に関与する因子として、ネトリシン（Netrin）に着目した。ネトリシンは細胞外基質ラミニンに類似した構造を持っている分泌タンパク質である。ネトリシンは発生・発達期の軸索ガイダンス、細胞移動、細胞生存、神経突起形成、シナプス形成に関与していることが報告されているが、成体における役割は明らかになっていない。我々はネトリシンファミリーの一つであるNetrin-4が疼痛発症に関与していることを見いだした。Netrin-4は成体脊髄において後角2層内側に局在する介在神経細胞に発現していた。Netrin-4遺伝子が欠損した動物の痛覚刺激に対する応答について検討したところ、神経障害性疼痛および炎症性疼痛が引き起こされないことを見いだした。またNetrin-4 siRNAを脊髄膿腔内に投与した実験でも同様の現象sが見られた。一方で、脊髄膿腔内にNetrin-4タンパク質を投与すると、動物は痛覚過敏を示した。Netrin-4は脊髄神経細胞に発現するUnc5B受容体と結合して、チロシン脱リン酸酵素SHP2を活性化することでアロディニアを引き起こすことがあっ。Unc5B siRNAあるいはSHP2阻害剤を脊髄膿腔内に投与すると神経障害性モデルにおける機械性アロディニアの発症が抑制された。以上の結果より、脊髄後角の神経細胞に発現するNetrin-4は、脊髄後角内において疼痛を惹起する因子であることが示された。

（3）皮質トップダウン回路による触覚覚とその記憶の形成

村山正宜
（国立研究開発法人理化学研究所 脳科学総合研究センター）

脳内における皮膚感覚の知覚（触覚覚）メカニズムには未だ不明な点が多く残っています。例えば、脳内のどの回路が知覚に関連するのか、回路間での情報の流れおよびどの神経活動が知覚の内容を表すのか等はまだ解明されていません。近年、我々は触覚覚に必須な脳回路の同定に成功しました。マウスの脳を刺激した時に脳内で起こる神経活動を単一神経細胞レベルから回路レベルまで包括的に測定しました。また、マウスが皮膚感覚を識別する課題を行っている脳内の行動を解析しました。その結果、皮膚感覚覚の情報がボトムアップ入力としてS1から高次脳領域に送られた後、再びS1へトップダウン入力として自動的にフィードバックされる反響回路を発見しました。さらに、光遺伝学的手法を用いてこのトップダウン入力を抑制したところ、マウスは皮膚覚覚を認識する能力が消失しました。
感覚を正常に知覚できなくなりました。また我々は、この回路が睡眠中にも活性化することを発見しました。ノンレム睡眠（深い眠り）中にこの回路を抑制すると、触覚の記憶が阻害されました。

（4）カプサイシンとメントールによるそれぞれ TRPM8 と TRPV1 の活性化制御

TRPV1 はカプサイシンなどの化学物質や熟刺激、低 pH により活性化し痛みを引き起こすと同時に炎症関連物質の分泌に関与する。一方、TRPM8 の活性化には抗炎症や鎮痛作用があることが知られており、低 pH に対しても活性化が抑制される。TRPV1 と TRPM8 はそれぞれ逆の作用を示すため、特定の物質は TRPV1 や TRPM8 に対して拮抗的に作用すると考えられる。そこで、各々の代表的なアゴニストであるメントールの hTRPV1 に対し作用、カプサイシンの hTRPM8 に対する作用についてパッチクランプ法を用いて評価した。

カプサイシンによる hTRPV1 の活性化電流はメントールにより、一方、メントールによる hTRPM8 の活性化電流はカプサイシンによって抑制された。さらに、ヒトを用いた感覚刺激試験の結果、hTRPV1 アゴニストである vanillyl butyl ether （VBE）によって引き起こされた感覚刺激をメントールによって抑制された。また、メントールは TRPV1 のみならず、カルシウム活性化クロライドチャネル anoctamin1 （ANO1）も抑制した。

以上から、TRPV1 及び TRPM8 のアゴニストは各々のチャネルに拮抗的に作用し、温度感覚に影響を与えていると考えられた。また、これまで明らかでていなかったメントールの鎮痛作用メカニズムに TRPV1 と ANO1 活性抑制作用があると考えられた。

（5）ナノメカニカルセンサ「MSS」の総合的研究開発

我々は、世界初の世界標準となる嗅覚 IoT センサの実現に向けて、独自に開発に成功し、高感度と小型化を実現したナノメカニカルセンサ「MSS」を軸として、産学官で連携して総合的な研究開発を進めている。嗅覚は、五官の中でも最も古い感覚器官であると考えられており、長年、広い意味での生体防御系において中心的な役割を担ってきた。しかしながら、嗅覚は五官の中でも最も発達が遅れている。これは人間が二足歩行を始めた頃から、視覚や聴覚が急速に進化したことに加え、嗅覚センサの実現に必要とされる技術が多岐にわたり、それぞれに難易度が高くなることが原因と考えられる。センサ素材には多様な化学的選択性が求められ、そこで得られるシグナルの検出元解析も必要となる嗅覚センサの研究開発は、科学技術のひとつの集大成と言っても過言ではない。このようにハードとソフトの両面において最先端の技術を統合して、これまでに無いデバイスシステムを創出し、新たな産業として確立していくアプローチは、他の課題においてもモデルケースとして参考になるものと考えられる。特に、嗅覚センサに被覆してニオイ成分を吸着させる「感応膜」は、一種の異物認識受容体として捉えることも可能であり、本講演では、嗅覚センサと感覚免疫学との共通の課題についても議論を行った。
インターロイキン 27（IL-27）は、抗炎症作用を持つサイトカインである。IL-27 の抗炎症作用の主なメカニズムは、活性化 T 細胞から制御性 T 細胞への分化を促し、抗炎症性サイトカインである IL-10 の分泌を促進するこ	とと考えられている。また起炎性の強い IL-17 を産生する Th17 細胞への分化を抑制する作用もある。疼痛に関して様々なサイトカインの報告がなされているが、IL-27 の役割については未だよく分かっていない。従来に、IL-17 が痛みを惹起すること、及び IL-10 が疼痛モデルを改善する作用を有することが報告されている。従って、IL-17 産生を抑制し、IL-10 を増加させる IL-27 が鎮痛作用を持つことが期待された。このような背景から、IL-27 ノックアウト（KO）マウスの疼痛行動を測定した。IL-27 は p28 と EBI3 とのヘテロダイマーからなり、その特異的受容体の WSX-1 と gpt30 からなる。そのため p28, EBI3, WSX-1 の KO マウスを用いた。行動試験は、機械刺激逃避閾値、熱刺激逃避潜時を測定した。KO マウスでは未処置のマウスにおいて既に逃避反応の増強が観察された。p28 KO マウスと EBI3 KO マウスにリコンバインント IL-27 を投与すると速やかに正常化した。従って、IL-27 は生理的条件下で感覚閾値を調節していることが示唆された。

（9）体性感覚野における発達期ミクログリアによるシナプス形成

宮本愛喜子
（神戸大学医学研究科システム生理学分野）

ミクログリアは中枢神経系における唯一の免疫細胞である。機能としては病態部位や傷害部位に遊走・増殖し、死細胞などを貪食することが知られていた。顕微鏡技術の発展から生理的条件下でも突起伸・退縮させ、活動することが明らかとなり、生理的条件下でのミクログリアの機能に対する注目が高まっている。その中の一つとして、ミクログリアが発達期や学習時のシナプス形成・除去に関与し、神経回路の編成に関与すること
が明らかとなってきた。例えば、発達期のミクログリアがシナプス除去に関与することが視床外側膝状体、海馬、大脳皮質視覚野で報告されている。運動学習時に運動野で生じるシナプス形成にミクログリアが関与し学習形成に重要であるといった報告もあるが、発達期においてシナプス形成に関与するかどうかは不明であった。

今回我々は体性感覚野において、ミクログリアと神経細胞を異なる蛍光タンパク質で可視化したマウスを用い、2光子顕微鏡で生体内イメージングを行ったところ、ミクログリアが接触した樹状突起部位にシナプス後部構造であるスパインの前駆体（フィロポディア）形成が生じる様子が観察された。また、ミクログリアの除去マウスを用いて電気生理学的に機能的シナプス数を調べたところ、優位な減少が認められたことから発達期のシナプス形成にミクログリアが関与することが示唆された。

(10) 真菌感染随伴症状の生物学的意義とその制御に関する一考察
丸山健太（大阪大学免疫学フロンティア研究センター）

未曾有の高齢化に不随した整形外科的手術件数の増大や免疫不全患者の増加に伴って、これまで遭遇することの比較的稀であった皮膚粘膜の真菌感染や真菌性骨髄炎がにわかに顕在化してきた。臨床的に問題となる真菌の大半はC. albicansであり、低病原性の酵母型真菌が菌糸型に変化して皮膚粘膜表層から深部組織へ浸潤を開始すると、かゆみや痛みを伴った炎症が惹起される。たとえば、抗癌剤投与中の高齢者にみられる口腔/食道カンジダ症は著名な口腔粘膜痛や嚥下痛を伴い、患者QOLを著しく低下させる要因となっている。また、女性の25%が生涯のうち一度は罹患するとされるカンジダ膣炎はおりものを伴った痒みや性交痛をもたらし、手術や褥瘡感染などが原因で骨組織に侵入したC.albicansは著名な骨痛ならびに骨破壊を惹起する。ことからC.albicansは不快な感覚を我々にもたらし、骨破壊をひきおこし得る真菌であるにもかかわらず、これらの病態に分子生物学のメスが入った痕跡は乏しい。現在我々は、遺伝子変異マウスを駆使することでC.albicans感染随伴疼痛の分子メカニズムの理解とNav1.8陽性痛覚神経による真菌性骨髄炎制御機構の全貌解明をめざした取り組みをおこなってきた。この講演では我々の最新のデータを紹介するとともに、マウスから得られた情報をもとにした先天性無痛症患者の良質な医療を実現するための方策や、ドラッグリポジショニングによる表在性真菌症の不快感をとりのぞくためのあたらしい医療を提案する。

(11) オルガネラ損傷により誘導される自然免疫応答の理解と制御
齋藤達哉（徳島大学先端酵素学研究所 炎症生物学分野）

自然免疫機構は、病原体感染によるオルガネラの損傷に反応し、サイトカインなどの炎症性因子を産生することにより、病原体を排除する役割を担っている。一方で、自然免疫機構は、病原体とは無関係の要因によるオルガネラの損傷に対しても反応し、過度の炎症を惹起して疾患の発症を引き起こす。よって、自然免疫機構の十分な理解に基づき、活性が不足している時にそれを補完し、活性が強すぎる時にはそれを抑制する手法を開発することが求められている。パターン認識受容体NLRP3を含む自然免疫機構であるインフラマソーム（NLRP3インフラマソームと呼ばれる）は、尿酸・コレステロールなどの栄養成分の結晶やシリカ・黄砂などの大気汚染物質によるファゴソームの損傷に応じて活性化し、炎症発症に関与するIL-1βの放出を強く誘導するため、炎症に起因する生活習慣病や呼吸器疾患などの発症に深く関わっている。本講演では、オルガネラ損傷により誘導
される自然免疫応答の分子機構について、NLRP3 インフラマソームの観点から解説する。また、化合物ライブラリーを用いた NLRP3 インフラマソーム阻害活性を有する化合物の同定や細胞内クリアランス機序であるオートファジーによる NLRP3 インフラマソーム活性化の抑制機序の解明などについても、併せて解説する。

（12）中枢と末梢脳器を繋ぐ神経生理動態の包括的解析
佐々木拓哉
（東京大学 大学院薬学系研究科 薬品作用学教室）

神経疾患の根本的な治療標的を考案するには、脳回路の作動原理を正しく理解する必要がある。これまで私は、脳機能の解明に向けて、神経細胞どうしへのミクロな相互作用、細胞ネットワークのマクロな多様性活動に着目して研究を進めてきた。しかし、脳は単独で活動するものではなく、末梢脳器と密接な連絡を取り合っている。今後、全身システムの中での脳機能の位置付けについて理解を深めるには、中枢と末梢の双方の連携活動を同時計測し、さらに時間変化を追跡するような実験戦略が必要になる。この課題に向けて、我々は、自由行動中のラットやマウスから多数の脳波、心電図、筋電図、呼吸リズムなどの生理活動信号を綿密的に記録するための計測技術の開発に取り組んできた。この計測法により、動物個体が様々な行動状態を呈するときに、どのような中枢末梢脳器の相互作用が生じるか、またどのような神経細胞群の発火パターンが生じるか綿密的に解析することを可能とした。本研究会では、こうした方法論によって現在取り組んでいる精神的ストレス応答に関する研究概要を述べ、さらに将来期待される生理学的知見について議論する。

（13）感覚神経イメージング
岡田峰陽 1,2, 髙橋苑子 1,2, 石田 樹 1,2, 青柳秀隆 1,2, 落合惣太郎 1, 石亀晴道 1
（1理化学研究所統合生命医科学研究センター, 2横浜市立大学大学院生命医科学研究科）

末梢神経系は、外部刺激や内部環境変化の伝達と、それに応じた機能の制御を行うが、その詳細なメカニズムには未解明の部分が残されている。免疫応答や炎症反応も、末梢神経系により影響を受けるが、数十年前から提唱・報告されていて、近年その効果のメカニズムが注目を集めている。末梢神経系から受ける影響は、免疫や炎症の種類によって様々で、例えば同じ種類で末梢神経系に影響を及ぼす。従って、末梢神経系における神経線維の活動を生体内で解析したものは非常に少ない状況であった。我々は皮膚神経のライブイメージング解析を行い、常時起こっている表面のパターンと神経ダイナミクスの関係や、外部刺激による皮膚神経活動の変化の一端を明らかにすることが出来た。また、新たなレポーターマウスを作成することにより、これまで明らかでなかった感覚神経の多様性が徐々に明らかとなってきた。
（14）慢性搔痒皮膚炎における表皮バリア破綻と感覚神経の活性化
高橋苑子1,2, 石田梓1,2, 岡田峰陽1,2
(1横浜市立大学大学院生命医科学研究科, 2理化学研究所統合生命医科学研究センター)

慢性搔痒を伴う皮膚炎において、搔破は炎症を悪化させる大きな要因である。これまで、慢性搔痒皮膚炎を発症した表皮では神経繊維の密度が変化することが報告されており、皮膚神経の構造変化が搔痒の発生に関与している可能性が示唆されていた。しかしながら、神経構造と表皮バリア構造の関係にどのような変化があり、それに伴い神経活動がどのように変化するのか明らかにされていなかった。そこで本研究では、正常皮膚マウス及びアトピー性皮膚炎モデルマウスを用いて、耳介皮膚の神経構造の比較を行った。三次元ホールマウント染色法により、皮膚炎発症前の搔破行動がない時期から、表皮バリアを担うタイトジャンクションの構造が破綻し、神経との位置関係に異常を来していることが示唆された。さらに、皮膚炎発症前のアトピー性皮膚炎モデルマウスのライブイメージング解析により、タイトジャンクションがあるべき場所の近傍において局所的に、表皮感覚神経のカルシウム濃度が持続的として高くなっていることが明らかとなった。また、これらの感覚神経を除去したアトピー性皮膚炎モデルマウスでは、搔破行動がほぼ完全に消失了。以上の結果より、慢性搔痒皮膚炎においてタイトジャンクションの破綻が、痒みを担う表皮神経活動の異常な増強を引き起こすことが示唆された。

（15）感覚神経における起痒物質受容体遺伝子Mrgprx1の発現変化
石田 梓1,2, 高橋苑子1,2, 岡田峰陽1,2
(1横浜市立大学大学院生命医科学研究科, 2理化学研究所統合生命医科学研究センター)

皮膚などのバリア組織における搔痒は、病原体を物理的に取り除く防御反応の一つと考えられるが、炎症を悪化・慢性化させる因子ともなり得る。しかしながら、痒みの起動・伝達メカニズムの全容は未だ明らかになっていない。痒みには様々な種類が存在することが知られており、神経にも発現している痒みに関わる受容体が徐々に明らかになってきている。最近、MAS-related G protein-coupled receptorファミリーに属するMRGPRX1が、起痒物質として知られるウシ副腎髄質ペプチドBAM8-22の受容体として働き、感覚神経細胞の一部と肥満細胞に発現していることが報告された。しかし、どのような種類の感覚神経細胞に、どの程度安定的に発現するのかは明らかになっていなかった。そこで遺伝子ターゲティングにより、発現の履歴を追跡するMrgprx1-Creマウスと、現時点の発現をモニターチャネルを用い、Mrgprx1-GFPマウスを作成した。Mrgprx1-Creマウス、Mrgprx1-GFマウス、Rosa26-stop-flox-tdTomatoマウスを交配して、GFPとtdTomatoの発現を同時可視化した。その結果、MRGPRX1は、出生直後には、Nav1.8ナトリウムチャネル陽性の感覚神経の大部分に発現することが示唆された。ところが成長するにつれて、MRGPRX1を発現する感覚神経細胞はその数を減らしていくことが分かった。発現履歴を持つ細胞は減っていたなかったことから、幼若期にMRGPRX1を発現していた多くの感覚神経細胞は、後にMRGPRX1の発現を下げていくことが示唆された。これらの結果から、感覚神経の痒みの知覚に関する性質が成長段階で変化する可能性が考えられた。
生物は外界から多様な刺激を受け，それを脊髄後角で適切に情報処理・統合して脳へ伝達することで，刺激を正しく認知し，外環境への適応，そして生体恒常性を維持する。一方で，炎症などの内環境の変化により，感覚系の秩序は乱れ，通常の感覚シグナルが増強する。またある感覚刺激が違う感覚に変換される場合がある。その代表例の一つとして，アトピー性皮膚炎に伴う慢性掻痒が挙げられる。掻痒は，皮膚などに付着，侵入する寄生虫などの外敵を除去する生体防御的感覚と考えられ，近年，掻痒情報伝達の神経化学的仕組みが徐々に明らかにされている。従来の研究から皮膚における免疫学的なエビデンスが蓄積されてきたが，掻痒感覚の情報伝達・処理機構における変化については殆ど理解が進んでいない。我々は研究の視点を神経系に向け，慢性掻痒モデルマウスの脊髄後角でグリア細胞の一つであるアストロサイトが活性化していることを見出した。同細胞の活性化は転写因子 STAT3 の薬理学的あるいは遺伝学的に不活化により抑制され，それらの処置により慢性掻痒モデルマウスの掻き行動および脊髄掻痒誘発物質ガストリノ放出ペプチド（脊髄後角ニューロンに作用）による掻痒行動の増強も抑制された。さらに，慢性掻痒モデルの脊髄においてリポカリン2がアストロサイト STAT3 依存的に発現増加し，慢性的な掻き行動に関与していることも明らかにした。以上の成果は，アトピー性皮膚炎等による掻痒の慢性化メカニズムとして脊髄後角のアストロサイトが重要な役割を果たしていることを示しており，新しい創薬標的となり得る可能性が考えられる。
8. 心臓・血管系の頑健性と精緻な制御を支える分子基盤の統合的解明

2017年10月12日－10月13日

代表・世話人：赤羽悟美（東邦大学医学部生理学講座統合生理学分野）
所内対応者：西田基宏（生理学研究所生体情報研究系心循環シグナル研究部門）

（1）【特別講演】TRPチャネル活性化機構の数理モデル解析

井上隆司（福岡大学医学部生理学）

（2）【特別講演】細胞運動特性と遺伝子転写制御の連携に基づく血管新生機構の解明

栗原裕基1,4,5, 和田洋一郎2,4,5, 常弘哲治1,4,5
1 東京大学医学系研究科総合診療センター, 2 アイソトープ総合センター,
3 数理科学研究科, 4 生物医学と数の融合拠点（iBMath）,
5 CREST 科学技術振興機構

（3）血管平滑筋において細胞内Ca2+マイクロドメインの基盤を形成する分子・ジャンクトフィリン2の機能解析

佐伯尚紀1, 鈴木良明1, 山村寿男1, 竹島浩2, 今泉祐治1
1名古屋市立大学薬学研究科細胞分子薬効解析学分野,
2京都大学大学院薬学研究科生体分子認識学分野

（4）心室筋活動電位中のL型Ca2+チャンネルの不活性化を支える分子機構

山田充彦, 柏原俊英, 西村仁志, 中田勉（信州大学医学部分子薬理学教室）

（5）RyR2の催不整脈変異を伴う心筋細胞の電気生理学的特性

呉林なごみ1, 村山貴1, 田村真衣1, 修一2, 3
1 1大阪大学医学系研究科生体分子薬理学教室,
2 金沢医科大学医学部 生理学II, 3 カリフォルニア大学医学部

（6）心筋細胞モデルにみられた早期後脱分極の多重安定状態:不整脈トリガーとの関連において

津元国親1, 倉田彦生2, 古谷和春1, 倉智富久
1 1大阪大学医学系研究科生体分子薬理学教室,
2 金沢医科大学医学部 生理学II, 3 カリフォルニア大学医学部

（7）低酸素曝露による心細胞電気生理学的特性の変化

高橋健次1, 坂本多穂12, 黒川海子2, 木村純子1
1 福島県立医科大学薬学部薬理学科, 2 静岡県立大学薬学部生体情報解析学分野

（8）TRPCタンパク質のチャネル活性化非依存的な役割とその病態生理学的意義

富田（沼賀）拓郎1,2, 島内司14, 小田紳矢尚12, 西村明幸12, 西田基宏1,2,3
1 岡崎統合バイオサイエンスセンター 心循環シグナル研究部門,
2 総合研究大学院大学 生命科学研究所, 3 九州大学大学院薬学研究院,
4 九州大学病院 手術部・麻酔科・救急医学

（9）膵β細胞におけるNO産生調節系と2型糖尿病病態との関係

石川智久, 森岡亜季, 佐野実咲, 金子雪子（静岡県立大学薬学部 薬理学分野）
（10）ナトリウム-グルコース供輸送体1（SGLT1）と心臓リモデリング
弘瀬雅教1，松下尚子2，衣斐美歩1，三部篤3，鈴木聡4，石田菜々絵1，
丹治麻希1，平英一5
(1岩手医科大学薬学部 分子細胞薬理学講座，2岩手医科大学医学部 内科学講座 循環器内科学分野，
3岩手医科大学薬学部 薬剤治療学講座，4福島県立医科大学 循環器内科学講座，
5岩手医科大学医学部 薬理学講座）

（11）mRNA poly(A)鎖分解を介した心臓の恒常性維持機構の解明
久場敬司（秋田大学大学院医学系研究科 分子機能学・代謝機能学講座）

（12）心筋前駆細胞としてのatypically-shaped cardiomyocytes (ACMs)：細胞分化と増殖の検討
尾松万里子，松浦博（滋賀医科大学 生理学講座 細胞機能生理学部門）

（13）異所性自発能を説明する新しい分子基盤
岡本洋介1，ナイン・イエイ・アウン2，田中将大1，山川光徳2，石井邦明1，尾野恭一3
(1山形大学医学部 薬理学講座，2山形大学医学部 病理画像解析センター，
3秋田大学大学院医学系研究科 細胞生理学講座)

（14）マウス心室筋収縮のアドレナリンα受容体刺激応答の発達変化
瀬口正悟，行方由紀，田中光（東邦大学薬学部 薬学教室）

（15）凝固第X因子が引き起こす血管平滑筋細胞内Ca2+シグナルの発生メカニズム
劉文華，平野勝也（香川大学医学部自律機能生理学）

（16）加圧による心臓血管系組織の再生
石川義弘，斎藤純一，横山詩子（横浜市立大学大学院医学研究科 循環制御医学）

（17）肺高血圧発症における血管平滑筋NCX1の関与
田頭秀章1，水田旭12，喜多紬美13，鈴木沙理1，
阿部弘太郎4，岩崎昭恵3，岩本隆宏1
(1福岡大学医学部 薬理学，2福岡大学医学部呼吸器外科学，
3徳島文理大学薬学部 薬理学，4九州大学病院 循環器内科学)

（18）肺高血圧症で機能亢進するCa2+感受性受容体の発現制御機構の解明
山村彩，高橋理恵，Abdullah Al Mamun，林寿来，佐藤元彦
（愛知医科大学医学部 生理学）

（19）早発性難聴モデルマウスの遺伝要因の解析
鈴木沙理12，松岡邦枝2，関優太3，安田俊平2，吉川欣亮2
(1福岡大学医学部 薬理学，2東京都医学総合研究所 哺乳類遺伝プロジェクト）

（20）細胞外マトリクス分子リモデリングによる運動ニューロン変性の抑制機構
田中智弘1，Lisa Nadeau2，Sudheer Tungtur2，Barbara Fegley2，
Clark Bloomer3，Jeffrey Miner2 と Hiroshi Nishimune2
(1岡崎統合バイオサイエンス 心循環シグナル研究部門，
2Division of neuroanatomy，Kansas University Medical Center，
3Division of Nephrology，Washington University School of Medicine in St. Lou）

（21）線虫自然変異体の重複変異による神経活動の可視化
中井淳一1，大倉正道1，橋本浩一2，安藤恵子1
(1埼玉大学 理工学研究科，2東北大学大学院 情報科学研究科)
（22）NK活性の動態が明らかにする炎症性サイトカインの発現制御機構
山口君空，富田太一郎，伊藤雅方，村上慎吾，三上義礼，赤羽悟美
（東邦大学医学部 生理学講座 統合生理学分野）

（23）静水圧による力学的負荷と心臓線維芽細胞に関する検討
田中 遼，梅村将就，成川雅俊，石川義弘
（横浜市立大学大学院医学研究科循環制御医学教室）

（24）肺動脈高圧血管リモデリングにおけるチロシンキナーゼFYヌの役割
倉原 琳1，2，野村正明3，岸 博子2，小林 誠1
1福岡大学医学部 生理学，2山口大学大学院医学系研究科 分子細胞生理学，
3愛知医科大学医学部病理学，
九州大学大学院医学研究院 循環器内科

（25）血管平滑筋細胞におけるSrcチロシンキナーゼによるL型Ca\(^{2+}\)チャネル活性化の分子機構の解析
柏原俊英，郭 晓光，中田 勉，山田充彦（信州大学医学部 分子薬理学教室）

（26）ヒトKv1.5チャネルに対するSKF-96365およびエホニジピンの抑制作用の相違
上田梨加，丁 雄光，松浦 博（滋賀医科大学 生理学講座細胞機能生理学部門）

（27）高血糖誘発性心不全におけるTRPC6チャネルの役割
小田紗矢香1,2，富田拓郎1,2，西村明幸1,2，西田基宏1,2,3
1岡崎統合バイオサイエンスセンター 心循環シグナル研究部門，
2総合研究大学院大学，
3九州大学大学院薬学研究院 創薬育薬研究施設統括室，
JSTさきがけ

（28）糖尿病性心筋症における心筋Ca\(^{2+}\)シグナル異常と左室拡張障害
三上義礼1，伊藤雅方1，杉本結衣1，濵口正悟2，富田太一郎1，
村上慎吾1，行方衣由紀2，田中 光2，赤羽悟美1
1東邦大学医学部 生理学講座統合生理学分野，
2東邦大学薬学部 薬物学教室

（29）新規COPDモデルマウスの詳細な肺病態解析とメトホルミン投与の影響
中嶋竜之介1，野原寛文1,2，亀井隆輔1,2，藤川春花1,2，丸田かすみ1，
川上太聖1，江藤結衣1，Mary Ann Suico1,2，甲斐広文1，首藤 剛1
1熊本大学薬学部 遺伝子機能応用学，2熊本大学博士課程リーディングプログラム「グローカルな健康生命科学バイオニア育成プログラムHIGO」

（30）腎障害に伴う消化管運動変調のメカニズムの解析
西山和宏1，東 泰孝2，中嶋秀満2，西田基宏1,3，竹内正吉2
1九州大学大学院薬学研究院 創薬育薬研究施設統括室，
2大阪府立大学生命環境科学研究科 戦医学専攻 応用薬理学教室，
3岡崎統合バイオサイエンスセンター（生理学研究所）心循環シグナル研究部門

【参加者名】
赤羽悟美（東邦大学医学部生理学講座統合生理学分野），
石川智久（静岡県立大学薬学部薬学分野），石川義弘（横浜市立大学大学院医学研究科循環制御医学），
伊藤雅方（東邦大学医学部生理学講座統合生理学分野），井上隆司（福岡大学医学部生理学），岩本隆宏（福岡大学医学部薬学），
上田梨加（滋賀医科大学生理学講座細胞機能生理学部門），
（横浜市立大学大学院医学研究科循環制御医学），
岡本洋介（山形大学医学部薬理学講座），
小澤拓海（名古屋市立大学大学院薬学研究科細胞分子薬効解析学分野）
生理学研究所年報 第 39 巻 (Dec,2018)

研究会報告

生理情報研究系心循環シグナル部門) 尾松万里子 (滋賀医科大学医学部生理学講座・細胞機能生理学部門), 川崎桂輔 (名古屋市立大学大学院薬学研究科細胞分子薬効解析学分野), 長谷川幸美 (名古屋市立大学大学院薬学研究科細胞分子薬効解析学分野), 倉倉嘉久 (大阪大学大学院医学系研究科分子細胞生理学教室), 菅原徳夫 (名古屋市立大学大学院薬学研究科細胞分子薬効解析学分野), 池野勝也 (香川大学医学部自律機能生理学), 関根直美 (名古屋市立大学大学院薬学研究科細胞分子薬効解析学分野), 末川原千秋 (愛知医科大学医学部生理学講座)。

【概要】
本研究の目的は、心臓・血管系の制御メカニズムの研究者が一堂に集結し、学会の壁を越えた異分野融合により心臓・血管系の統合的理解を深め、さらにベテラン研究者と若手や学生が交流する機会を提供することにより、次世代を担う研究者の育成に貢献することである。

特別講演 2 題、一般口演 16 題、ポスター発表 12 題を含むプログラムを以下の通り構成した。

10 月 12 日:
【Session 1】細胞内カルシウムシグナルと興奮性制御
【Session 2】ストレス応答と細胞内カルシウムシグナル制御
特別講演 I
【Session 3】心機能の恒常性を支える代謝と再生の制御機構

研究会には、ポストドク・大学院生・学部学生 19 名を含む約 60 名が参加した。

特別講演 I では、福岡大学医学部生理学講座・井上 隆司先生より、電気生理学と数理モデルの融合により TRP チャネル活性化機構の解明に至った研究成果とともに、生理学研究者としての歩みも含めてご講演頂いた。
講演IIでは、東京大学大学院医学系研究科代謝生理化学教室・栗原 裕基先生より、実験系・画像解析・数理モデルの融合研究により解明された血管新生の新たなメカニズムについてご講演頂いた。これらの講演は、本研究会に参加した研究者、とりわけ若手研究者や大学院・学部学生にとって、多くの刺激と示唆に富む内容であった。

一般口演（発表20分＋質疑応答5分）では、各発表者ともレベルの高い最新の研究成果を発表し、活発な質疑応答が行われた。今回は、初めての試みとして、【Session 4】をポスター討論会に宛てた。いずれのポスターにおいても、熱気があふるる質疑応答が行われていた。上記の通り、本研究の目的を達成し、無事に終了した。

（1）特別講演Ⅰ TRP チャネル活性化機構の数理モデル解析

井上隆司（福岡大学 医学部 生理学）

古典的生理学の枠組みでは、細胞内 Ca を増加させるメカニズムとして、2 つの異なる Ca 動員機構、すなわち「電位作動性 Ca 流入」(Voltage-operated Ca entry; VOC)と「受容体作動性 Ca 流入」(Receptor-operated Ca entry; ROC)が対概念として提唱されていた。恐らく歴史的には、Hodgkin-Huxley に代表される生体電気理論と Langley や Clark を始祖とする受容体理論、そして Miledi and Katz によるシナプス伝達理論が深く関わっているものと思われる。その後、電位依存性 Ca チャネルファミリーがクローニングされ、前者の分子実体であることが判明したものの、後者に関しては、数多くの異なる性質を持つ分子群が次々に同定された。TRP チャネルファミリーもそのような候補分子群の一つである。しかしその活性化には、受容体刺激は勿論のこと、種々の化学刺激、機械刺激、温度変化、さらには電位変化と、多様で複雑な多くの因子が関わっており、その本質は、単純な“VOC vs. ROC”の二分法的理解を遥かに越えている。

本講演では、このような TRP チャネルの複雑な制御機構を理解するために我々が進めて来たアプローチとして、電位と Ca による TRPM4 チャネル活性化や PIP2 による TRPC3/C6/C7 チャネル活性制御の数理モデルを開発した経緯を紹介し、今後の病態解明への応用可能性について言及する。

（2）特別講演Ⅱ 細胞運動特性と遺伝子転写制御の連携に基づく血管新生機構の解明

栗原裕基 1,4,5, 和田洋一郎 2,4,5, 聖解哲治 1,4,5
（1）東京大学大学院医学系研究科, 2アイソトープ総合センター, 3数理科学研究科, 4生物医学と数学の融合拠点（iBMath), 5CREST 科学技術振興機構）

血管新生は、胚発生をはじめ様々な生理的あるいは病的状態において生じる現象で、既存の血管から発芽や増殖によって樹枝状の管腔構造を発達させる過程と定義される。我々はこれまで、血管新生の過程での細胞動態を解析し、発芽伸長が特定の先端細胞によって先導されるという従来の説とは異なり、個々の細胞の活動が速度を変え、追い越したり逆方向へ遊走したり、先端細胞も常に入れ替わりながら全体として秩序ある樹枝構造を形成することを明らかにしてきた。この細胞動態に基づいたセルオートマトンによる数理モデルにより、血管伸長が根元における細胞供給に依存していることもともに、時間とともに 2/3 乗のべきで伸びるという規則性が導かれ、実験データからもほぼ矛盾しない結果が得られた。この血管伸長の素過程における細胞間の連携の観点を用いて、特に内皮細胞に特徴的な動態として、細胞接触による運動能の亢進、逆方向運動による 2 細胞の回転運動などが明らかになった。一方、血管新生の過程で発現が変
動する遺伝子を明らかにするため内皮細胞株による発芽モデルを用いて単一細胞遺伝子発現解析を行ったところ、特定の転写因子を中心とする遺伝子クラスターの存在が明らかになり、血管新生過程における細胞運動と遺伝子発現動態の新たな連携機構が示唆された。

(3) 血管平滑筋において細胞内Ca²⁺マイクロドメインの基盤を形成する分子・ジャンクトフィリン2の機能解析

佐伯尚紀1, 鈴木良明1, 山村寿男1, 竹島 浩2, 今泉祐治1
(1)名古屋市立大学大学院薬学研究科 細胞分子薬効解析学分野
(2)京都大学大学院薬学研究科 生体機能分子認識学分野

平滑筋細胞では、SR膜上のリアノジン受容体 (RyR)を介した自発Ca²⁺放出（Ca²⁺スパーク）が、近傍の細胞膜（PM）上のBKCaチャネルを活性化させることにより自発-過性外向き電流（STOCs）を惹起して膜電位を過分極させ、筋緊張を負に制御する。我々は、脂質ラフトの一種のカベオラが、この機構を効率化する中心的構造として機能する可能性を報告してきた。一方、カベオラとSRを近接させる構造の基盤となる分子は未解明であった。本研究では、平滑筋での機能的意義が不明なPM-SR膜間を架橋する構造タンパク質・ジャンクトフィリン2（JP2）に着目した。共免疫沈降法によりJP2とcav1（カベオラ構成因子、カベオリン1）の分子間相互作用が示された。さらに、JP2をノックダウンするとcav1とRyRの共在率は対照群より有意に低下し、STOCsの電流量が有意に減少した。以上より、JP2はカベオラ-SR膜間を物理的・機能的に結び付けることでCa²⁺シグナル伝達を効率化し、筋緊張制御の中枢を担う分子であることが示唆された。

(4) 心室筋活動電位中のL型Ca²⁺チャネルの不活性化を支える分子機構

山田充彦, 柏原俊英, 西村仁志, 中田 勉 (信州大学医学部 分子薬理学教室)

【緒言】心室筋活動電位中のL型Ca²⁺チャネル(LTCC)電流は、収縮と不応期を決定する。その波形は、LTCCの不活性化により影響される。本研究では、LTCCのCa²⁺依存性不活性化（CDI）と各種膜電位依存性不活性化（VDI）が、どのように連携して、活動電位中LTCC波形を決定するかを解析した。【方法】リコンビナントLTCCを、モルモット心室筋活動電位波形で膜電位固定した。CDIは、カルモジリンのドミナントネガティブ体で推定した。VDIのうち、LTCCの主サブユニットCaV1.2の細胞内I-IIリリンクール（LI-II）が関係するVDI（VDII-I）を、G436R変異で推定した。CaV1.2の遠位C末端（DCT）が関係するVDI（VDIDCT）は、DCTの欠失変異で推定した。【結果と考察】①CDIは活動電位第2相のほぼ中間で最大に達し、その後部分的にリカバリービー。CDIの発生には、LI-IIとDCTの双方の存在が必要であり、CDIとVDIは非独立であると考えられた。②VDII-Iは、VDI中最大であり、第2相終末で最大に達し、第3相でほぼ完全にリカバリービー。③VDIDCTと、LI-IIもDCTも関係しないVDI（VDIothers）は、時間依存性に増強し、リカバリーバーを示さなかった。④VDII-IとVDIDCTとVDIothersは互いに独立であることが判明した。
（5）RyR2の催不整脈疾患変異体の特性とRyR2作用薬の探索

呉林なごみ１，村山 尚１，田村真衣１，哲翁直之１，湯浅望里１，森 修一２，
影近弘之２，鈴木純二３，４，金丸和典３，５，飯野正光１，桜井 隆１
（１順天堂大・医・薬理，２東京医科歯科大・生材研，３東大院・医・細胞分子薬理
，４カリフォルニア大，５日本大・医・細胞分子薬理）

2型リアノジン受容体（RyR2）は心筋の興奮収縮連関に必須な小胞体Caの遊離チャネルで，そのアミノ酸変異は様々な致死性不整脈の原因となっているが，メカニズムはよく分かっていないない。我々はこれまでHEK293細胞発現系を用い，致死性不整脈に関連付けられるRyR2変異について解析を行ってきた。その結果，最も頻度の高い致死性不整脈カテコラミン誘発性多形性心室頻拍はRyR2活性の亢進をするgain-of-function（GOF）タイプであったが，特発性心室細動やQT延長症候群と関連付けられる変異にはGOFタイプとloss-of-function（LOF）タイプがある事が分かった。これらの変異RyR2の活性を正常に戻すためには，抑制薬，活性化薬の両方を探索する必要がある。我々はこれまで小胞体CaインジケータR-CEPIA1erによるCaシグナルがRyR1およびRyR2のCa遊離活性を反映することを示してきた。今回は小胞体Caモニタリングにより約1600種類の機能既知化合物についてRyR2抑制薬，活性化薬の探索を行った。ヒットした化合物をHEK293細胞，HL-1細胞，iPS由来心筋分化細胞を用いて調べたところ，不整脈治療薬に発展する可能性がある事が分かった。

（6）心筋細胞モデルにみられた早期後脱分極の多重安定状態：不整脈トリガーとの関連において

津元国親１，倉田康孝２，古谷和春３，倉智嘉久１
（１大阪大学医学系研究科 分子細胞薬理学教室，２金沢医科大学医学部 生理学II，
３カリフォルニア大学医学部）

心筋細胞の活動電位第2～3相において発生する一過性の脱分極（早期後脱分極：EAD）は，心室性不整脈をトリガーすると考えられている。EADの発生は，活動電位の持続時間（APD）の過剰な延長による膜電位不安定化の結果であると考えられているが，如何なる動的機序によって，EADが発生するのかは未だ議論の残るところである。本研究では，心室筋細胞の数理モデルにおける活動電位シミュレーションと数理解析（分岐解析）を組み合わせ，活動電位の動的安定性変化を調べることで，EADの生成機序を検討した。解析の結果，急速活性型遅延整流性カリウムチャネル電流（Ikr）の減少は，APDを延長した。しかしながらこの活動電位応答は，saddle-node分岐と呼ばれる動的安定性変化を引き起こすことで，EADを引き起こすことなく消滅した。この活動電位の消失の後，新たな定常応答として，EADを伴う活動電位が顕在化した。更に，同一パラメータ条件の下，細胞内Na⁺，Ca²⁺濃度といった状態変数の初期条件に応じて，APDの異なる活動電位応答を示した。この複数の活動電位応答の共存（多重安定状態）は，心室におけるAPD不均質性を大域的または局所的に増大すると考えられた。本結果は，EADの発生をきっかけとするAPD不均質性の増大が，不整脈基質を動的に形成する可能性を示唆するものである。
生理学研究所年報 第39巻（Dec,2018）

研究会報告

(7) 低酸素曝露による心線維芽細胞の電気生理学的性質の変化

高橋健次 1, 坂本多穗 1,2, 黒川洵子 2, 木村純子 1

(1) 福島県立医科大学 医学部 薬理学講座, (2) 静岡県立大学 薬学部 生体情報分子解析学分野

心筋細胞の活動電位第2～3相において発生する一過性の脱分極（早期後脱分極：EAD）は、心室不整脈のトリガーと考えられている。EADの発生は、活動電位の持続時間（APD）の過剰な延長による膜電位不安定化の結果であると考えられているが、如何なる動的機序によって、EADが発生するのかは未だ議論の残るところである。本研究では、心室筋細胞の数理モデルにおける活動電位シミュレーションと数理解析（分岐解析）とを組み合わせ、活動電位の動的安定性変化を調べることで、EADの生成機序を検討した。解析の結果、急速活性型遅延整流性カリウムチャネル電流（IKr）の減少は、APDを延長した。しかしながらこの活動電位応答は、saddle-node分岐と呼ばれる動的安定性変化を引き起すことで、EADを引き起こすことなく消失した。この活動電位の消失の後、新たな定常応答として、EADを伴う活動電位が顕在化した。更に、同一パラメータ条件の下、細胞内Na⁺、Ca²⁺濃度といった状態変数の初期条件に応じて、APDの異なる活動電位応答を示した。この複数の活動電位応答の共存（多重安定状態）は、心室におけるAPD不均質性を大域的または局所的に増大すると考えられた。本結果は、EADの発生をきっかけとするAPD不均質性の増大が、不整脈基質を動的に形成する可能性を示唆するものである。

(8) TRPCタンパク質のチャネル活性非依存的な役割とその病態生理学的意義

富田（沼賀）拓郎 1,2, 島内 司 1,4, 小田紗矢香 1,2, 西村明幸 1,2, 西田基宏 1,2,3

(1) 岡崎統合バイオサイエンスセンター 心循環シグナル研究部門, (2) 総合研究大学院大学 生命科学研究科, (3) 九州大学大学院薬学研究院, (4) 九州大学病院 手術部・麻酔科蘇生科

心臓は、過剰な環境ストレスに対しては、可逆的な構造変化により適応するが、ストレスが慢性化すると、線維化に代表される不可逆的な構造変化を起こし、機能不全に陥る。この不可逆的心臓リモデリングには、異常なCa²⁺シグナルと過剰な活性酸素種産生が重要だが、それらを介する分子機構は不明であった。これまで我々は、機械的ストレスにより惹起される心臓リモデリングにおいて、transient receptor potential canonical 3 (TRPC3)とNADPH oxidase 2 (Nox2)の機能連関が重要であることを明らかにした。最近、抗ガン剤ドキソルビシン（DOX）の投与による心委縮においても、このTRPC3-Nox2の機能連関が重要であることを明らかにした。

TRPC3-Nox2の機能連関が重要であることを明らかにした。TRPC3-Nox2相互作用には、TRPC3のC末端部が重要であり、TRPC3のC末端断片（C3-C断片）はTRPC3-Nox2相互作用を阻害した。心筋細胞特異的にC3-C断片発現させたマウスでは、DOXによる心臓における酸化ストレスの蓄積および心委縮が抑制された。一方、TRPC3のホモログであるTRPC6は、TRPC3-Nox2の機能連関を負に制御する因子となることも明らかにした。以上から、TRPC3-Nox2複合体の阻害が様々な環境ストレスにより惹起される心不全の新たな治療戦略となることが示唆された。
（9）膵β細胞におけるNO産生調節系と2型糖尿病病態との関係

石川智久, 森岡亜望, 佐野実咲, 金子雪子（静岡県立大学薬学部 薬理学分野）

当教室ではこれまでに、膵β細胞においてeNOSにより産生される低濃度のNOがインスリン分泌調節及び細胞保護作用に関わることを示してきた。本研究では、β細胞におけるeNOS由来NOと2型糖尿病病態との関係について検討を行った。

内因性NOS阻害物質であるADMAは、L-ArgからPRMTを介して産生され、DDAHにより加水分解される。β細胞株INS-1を高濃度グルコース（20 mM）に3日間曝露すると、DDAH2の発現低下及びPRMT4の発現増大が誘発され、細胞内ADMAレベルが有意に上昇した。DDAH2の発現低下は、糖尿病モデルマウスの膵島でも確認された。次に、こうした変化がβ細胞アポトーシスに及ぼす影響を検討した。Ins-1細胞において、thapsigargin処置により誘発される活性化caspase-3量の増加は、ADMA共処置により増強された。また、高濃度グルコース処置による活性化caspase-3量の増加は、siRNAによりDDAH2をノックダウンした細胞において、より顕著であった。

以上の結果から、糖尿病状態において、β細胞内でADMAが蓄積し、それによりβ細胞におけるNO産生が減弱してβ細胞保護作用が抑制されることで、β細胞のアポトーシスが亢進することが示唆された。すなわち、β細胞におけるNO産生調節系の破綻が2型糖尿病病態に関与している可能性が示された。

（10）ナトリウム-グルコース供輸送体1（SGLT1）と心臓リモデリング

弘瀬雅教1, 松下尚子2, 衣斐美歩1, 三部篤3, 鈴木聡4, 石田菜々絵1, 丹治麻希1, 平英一5
（1岩手医科大学薬学部分子細胞薬理学講座、2岩手医科大学医学部内科学講座循環器内科学分野、3岩手医科大学薬学部薬剤治療学講座、4福島県立医科大学循環器内科学講座、5岩手医科大学医学部薬理学講座）

緒言：ナトリウム-グルコース供輸送体1（SGLT1）が心臓に存在していることが報告されている。しかし、SGLT1が病的心筋の心筋リモデリングに関与しているかについては明らかでない点が多い。今回、慢性的心臓圧負荷誘発心筋リモデリングに対するSGLT1の作用を検討した。

方法：野生（WT）マウス、SGLT1−KOマウス、WT＋KGA2727マウスを用い、大動脈弓部縮窄術（TAC）を施行した。手術6週後に心筋リモデリングに対するSGLT1の作用を検討した。

結果：WTマウスはTAC施行で有意な心筋/体重比の増加と左心室筋線維化の増大があったが、SGLT1−KOマウスとWT＋KGA2727マウスでは、TAC施行でAC非施行と差はなかった。WTマウス心筋のSGLT1、IL-18、BNP、CTGF遺伝子発現は、TAC施行で有意に増加した。SGLT1−KOマウスでは、TAC施行でもSGLT1遺伝子発現は認められず、IL-18、BNP、CTGF遺伝子発現の増加はなかった。WTマウス心筋のリン酸化ERK、及びリン酸化AMPKタンパク発現量は、TAC施行で有意に増加した。SGLT1−KOマウスでは、TAC非施行及び施行群でWTマウスと比較し両タンパクのさらなる発現増加があった。WTマウス新生児心筋は、フェニレフリン投与で有意な心筋肥大を示した。SGLT1−KOマウス新生児心筋及びKGA2727を前投与したWTマウス新生児心筋では、フェニレフリン投与で有意な心筋肥大はなかった。

結論：SGLT1は、高血圧症のような慢性性心臓圧負荷による心筋リモデリングにおいて重要な役割を持っていることが示唆された。
（11）mRNA poly(A)鎖分解を介した心臓の恒常性維持機構の解明

久場敬司（秋田大学大学院医学系研究科 分子機能学・代謝機能学講座）

心不全のシグナル伝達における転写、エピゲノムなど mRNA 合成の制御機構について多くの知見が蓄積されてきた一方で、mRNA 分解など代謝制御の解析は未だ十分とはいえられない。CCR4-NOT 複合体は、遺伝子発現調節因子として転写調節、mRNA 分解、タンパク修飾など多彩な機能を持つ。私達は、CCR4-NOT 複合体を新規の心機能調節因子として発見したが、最近CCR4-NOT 複合体の mRNA ポリ A 鎖の分解活性が心臓の恒常性維持に重要であることを解明し、RNA 分解の新しい生物学的意義を見出した。Cnot3 は Atpg mRNA に結合し、mRNA ポリ A 鎖の分解、翻訳抑制を介して p53 誘導性の心筋細胞死を阻害する一方で、mRNA の分解を介したエネルギー代謝制御により心筋の恒常性維持に寄与する。さらに、マウス圧負荷心不全モデルにおいて CCR4-NOT 複合体の発現低下と心不全病態の進行に相関があり、mRNA の分解が代償期において重要であることが分かった。mRNA の poly(A)鎖分解は、心臓のエネルギー代謝、細胞死のコントロールなど遺伝子発現制御の新たな制御相であることが考えられた。

（12）心筋前駆細胞としての atypically-shaped cardiomyocytes (ACMs)：細胞分化と増殖の検討

尾松万里子, 松浦博（滋賀医科大学 生理学講座 細胞機能生理学部門）

Atypically-shaped cardiomyocytes (ACMs)は、成体マウス心室筋細胞の単離時に得られる「小型の間質細胞分画」の培養中に発見された拍動細胞である。ACMs は培養皿に接着した後、数日間かけて自発的に拍動細胞に成長することから、心筋前駆細胞の一種であると推察された。ACMs は枝分かれの多い特有の形態を有し、洞房結節細胞、心房筋細胞のタンパク質発現の特徴を併せもつこと、心筋胎児型遺伝子産物を発現していること、虚血耐性が高いことなどが明らかになった。ACMs の多くは多核であり、数日間で多量のタンパク質を発現し大きく成長するが、2ヶ月間の長期培養においても細胞分裂・増殖は確認されなかった。培養中に複数のACMs が融合して大型で複雑な形態の拍動細胞に成長することが確認されたことから、細胞融合が多核細胞形成の一因であると推察された。一方、心筋細胞と共に遠沈される比較的重い ACMs を培養したところ、近接した 2 個の核を複数組有する拍動細胞が観察された。これらのことから、ACMs において核分裂が起こっている可能性が示唆された。

（13）異所性自動能を説明する新しい分子基盤

岡本洋介1, ナイン・イエイ・アウン2, 田中将大1, 山川光徳2, 石井邦明1, 尾野恭一3

(1 山形大学医学部 薬理学講座, 2 山形大学医学部 病理画像解析センター, 3 秋田大学大学院医学系研究科 細胞生理学講座)

《背景》我々はこれまで電気生理学的な手法により、ラットの肺静脈心筋細胞から発生する異所性自動能の分子メカニズムを明らかにしてきた。今回、新たな実験技術を導入し、分子基盤をさらに探求した。《方法・結果》 (1) 独自に発見した過分極活性型 Cl 電流 (ICl,h) の分子基盤を解明するために、該当イオンチャネルのα サブユニットが Clcn2 であると想定し、共免疫沈降で発現されたβ サブユニットに相当するタンパクを質量分析器に
より決定した。（2）肺静脈心筋に特徴的に発現している Adenylate cyclase（AC）を探索するため、免疫組織染色を行った。ACIIIが左心房と肺静脈で強く発現していることが分かった。HEK293細胞では、CRISPR/Cas9によるACIIIのノックアウトにより、イソプレテレノール存在下UTP刺激によるCa²⁺オシレーションの発生が有意に抑えられた。（3）マウスとラットにおけるマイクロアレイの共発現ネットワーク解析から、洞房結節と肺静脈に固有の転写因子を探索した。《結論》（1）新規のβサブユニットを同定した。（2）ACIIIがCa²⁺駆動型自動能を促進していることが示唆された。（3）Shox2が心臓自動能組織を誘導する因子の一つだと考えられた。

（14）マウス心室筋収縮のアドレナリンα受容体刺激応答の発達変化

渡口正悟、行方衣由紀、田中 光（東邦大学薬学部薬物学教室）

【背景・目的】マウス心室筋のアドレナリンα受容体刺激応答は発達段階で異なっており、幼若期では陽性変力反応が、成熟期では陰性変力反応を示す。本研究では陽性・陰性変力反応のそれぞれの発生機序の解明と、その発達変化と興奮収縮機構の関連性について検討した。

【方法】胎生期（胎生16-18日）、新生仔期（生後0-2日）、1週齢、2週齢、4週齢のddY系マウスから心室筋組織標本および単離心室筋細胞を作製した。収縮力測定、活動電位測定、蛍光イメージング法による細胞形態と細胞内Ca²⁺動態の観察を行った。

【結果・考察】陽性変力反応はL型Ca²⁺チャネル阻害薬nifedipineの前処置により抑制された。Nifedipineの収縮力減少作用は発達に伴い減弱し、L型Ca²⁺チャネルからのCa²⁺流入量と相関する活動電位持続時間は発達に伴い短縮した。陰性変力反応はNa+/Ca²⁺交換機構（NCX）阻害薬SEA0400の前処置により抑制された。SEA0400の収縮力増大作用は発達に伴い増大し、NCXによるCa²⁺くみ出し機能と関連する活動電位持続時間は発達に伴い短縮した。蛍光イメージング法により、筋小胞体（SR）は細胞中心部から細胞膜へ、またNCXが存在するとされるT管は細胞膜から細胞中心部へ向かって発達していくことが明らかとなった。以上のような結果から、陽性変力反応にはL型Ca²⁺チャネルが、陰性変力反応にはNCXが関与しており、発達に伴う活動電位持続時間の短縮とNCX-SR連関の形成が、α受容体刺激応答の発達変化に関与していることが示唆された。

（15）凝固第XI因子が引き起こす血管平滑筋細胞内Ca²⁺シグナルの発生メカニズム

劉文華、平野勝也（香川大学医学部自律機能生理学）

血液凝固第II、Ⅶ、X因子はプロテイナーゼ活性化型受容体（PAR）を介して血管作用を発揮する。第XI因子（FXI）も蛋白質分解酵素活性を有するが、血管作用の報告はない。我々は、FXIが血管平滑筋細胞Ca²⁺シグナルを発生させることを見出した。ラット大動脈平滑筋A7r5細胞において、FXIは、小胞体からのCa²⁺放出と細胞外からのCa²⁺流入を引き起こした。Ca²⁺流入は10 nMの濃度から観察され、100 nMで最大に達した。一方、Ca²⁺放出は300 nMで観察され、その程度はごくわずかであった。FXIによるCa²⁺放出も、Ca²⁺流入もPAR1拮抗薬で消失した。FXIによるCa²⁺流入は、L型Ca²⁺チャネル阻害剤ジルチアゼムで阻害され、貯蔵部作動性Ca²⁺流入阻害剤YM58483およびTRPC3阻害剤Pyr3に抵抗性を示した。逆転写PCR解析によりA7r5細胞にはCa²⁺チャネルとしてα1c、Orai1, 2, 3の発現を認めたが、TRPC3の発現は認めなかった。RNA干涉法によりα1c、Orai1, 2, 3のmRNA発現を抑制したところ、FXIaによるCa²⁺流入はα1cの発現抑制により抑制され、Orai1, 2, 3の発現抑制には抵抗性を示した。FXIが引き起こす血管平滑筋細胞Ca²⁺シグナルの発生には、L型Ca²⁺チャネルを介したCa²⁺流入が主要な役割を果たすことが明らかとなった。
(16) 加圧による心臓血管系組織の再生

石川義弘，斎藤純一，横山詩子（横浜市立大学大学院医学研究科 循環制御医学）

iPS細胞や幹細胞をもちいた組織再生研究では，複数の遺伝子操作と共に，薬品処理や生物学的製剤を用いることにより，細胞の分化と再生を促す技術が進んでいる。しかるに薬品処理に関しては薬剤による変性・副作用や，生物学的製剤においては製品の安全性および安定性が問題となる。我々は極めて単純な物理学的な刺激によって，この再生過程を加速あるいは変容できないかの検討を重ねてきた。とりわけ血管組織の再生においては，動脈特有的弾性組織の構築を再現することが極めて困難であった。血管系には，恒常的に血圧がかかり，血圧とは周期変動する圧力である。また系統発生的には，古代生物が生存していた時代には，大気圧は現在の数倍であったという話もある。現在の地球上で，弾性線維を最も豊富に含むのは深海に生息する魚類である。そこで我々は周期的に変動する血圧以上の圧力を，培養血管平滑筋細胞に適用することによって，生体血管に酷似する弾性組織をもつ血管壁（細胞シート）の再生に成功した。同血管壁の伸展性は，生体血管に匹敵した。さらに血管壁はラット大動脈に生体移植可能であり，優れた開存性を示したことから，本技術は血管組織の再生に有用であることが推測された。

(17) 肺高血圧発症における血管平滑筋NCX1の関与

田頭秀章 1，永田 旭 1,2，喜多紗斗美 1,3，鈴木沙理 1，阿部弘太郎 4，岩崎昭憲 2，岩本隆宏 3
（1福岡大学医学部 薬理学，2福岡大学医学部 呼吸器外科学
3徳島文理大学薬学部 薬理学，4九州大学病院 循環器内科）

肺高血圧症は異常な肺血管収縮と肺血管リモデリングによる肺動脈圧の上昇と，それに引き続く右心不全を引き起こす予後不良な疾患群である。近年，Ca²⁺制御異常による肺動脈平滑筋細胞の収縮・増生の亢進が肺高血圧発症に関与することが示唆されているが，その分子機序は未だ不明な点が多い。本研究では，重要なCa²⁺輸送体である1型Na⁺/Ca²⁺交換体（NCX1）に着目し，血管平滑筋特異的NCX1発現マウス（smNCX1-Tg）, 全身性NCX1ヘテロ欠損マウス（NCX1-KO）, 血管平滑筋特異的NCX1欠損マウス（smNCX1-KO）および野生型マウス（WT）を用いて，低酸素誘発肺高血圧症モデル（10％窒素，4週間）を作製し，右室収縮期圧，肺組織の血管筋性化率などを測定した。低酸素飼育により，smNCX1-Tgの右室収縮期圧の上昇および血管筋性化は，WTに比較して顕著な増悪が認められた。一方，NCX1-KOおよびsmNCX1-KOではWTに比較して，右室収縮期圧の上昇および血管筋性化が有意に抑制された。また，ヒト肺高血圧症に類似した肺高血圧症ラットモデルの病理組織を用いてNCX1の発現分布を検討したところ，特徴的な囊状変性部（plexiform lesion）においてNCX1が高発現していることを見出した。これらの結果より，肺高血圧症の発症・増悪に血管平滑筋NCX1が関与することが示唆された。

(18) 肺高血圧症で機能亢進するCa²⁺感受性受容体の発現制御機構の解明

山村 彩，高橋理恵，Abdullah Al Mamun，林 寿来，佐藤元彦（愛知医科大学医学部 生理学）

肺高血圧症は，肺血管の収縮や肺血管壁の肥厚による血管内腔の狭小化，血栓形成による肺血管抵抗の上昇に

336
よって、持続的に肺動脈圧が上昇する致死性疾患である。最も典型的な臨床像を示す肺動脈性肺高血圧症（難病指定）の主な原因は、肺動脈平滑筋の収縮と肺血管リモデリングの亢進である。最近、CaSR感受性受容体（CaSR）が、特発性肺動脈性高血圧症（IPAH）患者由来の肺動脈平滑筋細胞に高発現し、その機能増強が肺高血圧症の病態に関与していることを明らかにした。しかし、CaSRの発現増加に関与する分子機構は、依然として不明である。本研究では、CaSRの発現を制御する因子や経路の解明を目指した。正常ヒト肺動脈平滑筋細胞を血小板由来成長因子（PDGF）で刺激すると、細胞増殖や細胞遊走の亢進が認められた。また、PDGFの暴露は、正常ヒト肺動脈平滑筋細胞におけるCaSRの発現増加を誘導した。一方、IPAH患者由来の肺動脈平滑筋細胞においては、PDGFβ受容体が高発現し、その下流シグナルの活性化が認められた。以上の結果、肺血管リモデリングを亢進させるCaSRの発現調節機構にPDGFシグナルが関与していることが示唆された。

（19）早発性難聴モデルマウスの遺伝要因の解析

鈴木沙理1,2, 松岡邦枝2, 関 優太2, 安田俊平2, 吉川欣亮2
（1福岡大学医学部薬理学、2東京都医学総合研究所哺乳類遺伝プロジェクト）

DBA/2J近交系マウスを早発性難聴モデルとして使用し、順遺伝学的解析により遺伝要因の同定を試みた。DBA/2Jマウスの難聴に対して感受性効果を持つ遺伝的要因を特定するため、（DBA/2J×C57BL/6J）F1にDBA/2Jマウスを交配した90個体の戻し交配分離個体を作製し、中・高・超音波周波数領域（8, 16, 32kHz）の音刺激に対する聴性脳幹反応（ABR）閾値を測定した。次に、マウス全染色体上に設置した103種のマーカーの遺伝子型をSSLP法により判定し、さらにQTL連鎖解析を行った。戻し交配個体のABR閾値を測定した結果、8, 16kHzのABR閾値は正規分布に近く、32kHzにおいてはすべての個体が高度および重度難聴を発症していた。この結果から、DBA/2Jマウスの8, 16kHzにおける早発性難聴はQTLによって支配されており、32kHzにおいては優性のQTLの効果が示された。また、QTL連鎖解析から、16kHzの聴力において第5番染色体上の3領域に統計学的に有意な2.80～3.91のLODスコアが検出され、高周波特異的な聴力に作用する新規QTLの存在が示された。以上より、DBA/2Jマウスの早発性難聴は、その遺伝的背景に存在する多波数特異的な聴力機能に作用する遺伝子群、また、それら遺伝子における系統特異的な変異によって支配されていることが示唆された。

（20）細胞外マトリクス分子リモデリングによる運動ニューロン変性の抑制機構

田中智弘1, Lisa Nadeau2, Sudheer Tungtur2, Barbara Fogley2, Clark Bloomer2, Jeffrey Miner3 and Hiroshi Nishimune2
（1岡崎統合バイオサイエンス心循環シグナル研究部門、2Division of neuroanatomy, Kansas University Medical Center、3Division of Nephrology, Washington University School of Medicine in St. Louis）

筋萎縮性側索硬化症（ALS）の進行に伴い、脊髄に存在する運動ニューロンは変性し、標的骨格筋の麻痺を引き起こす。その変性過程において、運動ニューロンは細胞死に先立ち、軸索末端が標的骨格筋から退縮する「除神経（denervation）」と呼ばれる現象がALS患者、モデルマウスにおいて認められ、運動機能低下の直接的な原因と考えられている。しかし除神経をターゲットとしたALS治療アプローチには未解明の点が多く残されていた。今回私たちは、除神経・インターフェースに存在する細胞外マトリクス分子が除神経を抑制する可能性を検討し、
1) 細胞外マトリクス分子のリモデリングを引き起こす緩徐な運動によってALSモデルマウスの除神経が抑制されること。
2）運動により細胞外マトリクス分子であるラミニンβ2がシナプス領域特異的に集積し、アクティブゾーンなどシナプス前末梢の構造体を安定化することで除神経を遅延させる役割があることを明らかにした。
今後、このような細胞外マトリクス分子を中心とした除神経を抑制・遅延させるメカニズムを解析していくことで、ALSなど除神経による運動機能低下を抑えるような新たな治療ターゲットの解明が期待される。

（21）線虫自動追尾装置による神経活動の可視化

中井淳一1, 大倉正道1, 橋本浩一2, 安藤恵子1
（1 埼玉大学理工学研究科, 2 東北大学大学院情報科学研究科）

動物は内部および外部環境に対応した多様な行動を示すが、神経可塑性と行動発現の神経メカニズムはよくわかっていない。我々はシンプルな脳を持つ線虫Caenorhabditis elegansをモデル動物に用いて行動の神経回路機構の解明を目指している。行動発現の脳機能を明らかにするためには、行動と対応した神経活動を測定する必要があるが、動く動物の神経活動を高倍率で可視化することは今まで困難であった。今回、高速レーザー走査顕微鏡に線虫自動追尾装置を統合したイメージングシステムIcaST（東北大・橋本浩一教授との共同研究）を開発した1。線虫は体が透明で、蛍光カルシウムセンサーを用いたカルシウムイメージングやオプトジェネティクスによる神経機能解析に用いられる。我々が開発した高機能カルシウムセンサーG-CaMP7を線虫神経系に導入し、行動中の神経回路活動を単一部類レベルで長期間可視化することに成功した。このシステムを用いることにより、行動と神経回路活動の体系的な解析が可能であると考えられる。

（22）NK活性の動態が明らかにする炎症性サイトカインの発現制御機構

山口君空, 豊田太一郎, 伊藤雅方, 村上慎吾, 三上義礼, 赤羽悟美
（東邦大学医学部生理学講座統合生理学分野）

JNK（c-jun N-terminal kinase）は細胞普遍的に存在し、炎症を制御する。心血管系において、JNK依存的な炎症性サイトカインの発現が組織の線維化や異常な細胞死を引き起こして病態形成に関与する。しかしながら、細胞内でのJNK活性制御の実態は明らかではなく、JNK活性がどのように下流の遺伝子発現と対応するかは明確ではない。従来、JNKの活性化が一過的な場合や細胞の生存を、持続的な場合はアポトーシスを誘導することが示されており、JNKの時間動態が遺伝子発現と対応する可能性が考えられる。そこで本研究では、単一部類レベルのJNK活性をFRETイメージングで定量できる実験系を構築し、下流の遺伝子発現との対応を明らかにすることを目的とした。

新規に作成したJNK活性レポーターをHeLa細胞に発現させIL-1β刺激を行ったところ、JNKは一過的に強く活性化した後、刺激を与え続けた場合にはJNK活性は低いレベルで持続することが1細胞観察から明らかになった。このとき、JNKが抑制されるタイミングでMAPKホスファターゼであるMKP-1が発現しており、MKP-1がJNK活性を負制御していることを免疫化学的解析によっ

JNK下流で誘導される炎症性サイトカインの発現に対するJNK阻害剤の作用を調べたところ、特に、
IL-6 と IL-8 は弱い持続的な JNK 活性に依存的に発現が誘導されており、最初の強い JNK 活性だけでは十分な遺伝子発現を生じないことが明らかになった。病態における JNK 動態とサイトカインの発現との対応は今後の課題である。

（23）静水圧による力学的負荷と心臓線維芽細胞に関する検討

田中 遼，梅村将就，成川雅俊，石川義弘（横浜市立大学大学院医学研究科 循環制御医学教室）

心臓の代償機能には、神経体液因子に加え血行力学的負荷が重要な因子であると考えられている。横行大動脈縮窄術による圧負荷モデルや、培養細胞伸展モデルによる伸展力の検討は広く用いられているが、心臓が収縮する際に発生する圧縮力や心筋内圧の上昇に関する検討は少なかった。今回我々は圧縮力を近似モデルである静水圧を用いて、心臓線維芽細胞に対しての影響を in vitro の実験系で検討した。

静水圧負荷群では大気圧下培養群に比して、筋線維芽細胞への分化・活性化が抑制された。さらに、IL-6 や TNF-α などの炎症性サイトカインや、I・III型コラーゲンの mRNA の転写が抑制された。また 3 次元培養を行うと、静水圧負荷細胞群ではコラーゲン・マトリックスの収縮能の低下を認めた。以上から一定条件下において、静水圧刺激は心臓の線維化を不活化することが示唆された。また、心臓線維芽細胞において静水圧がプロテイン・キナーゼなどのリン酸化シグナルに対して及ぼす影響をマイクロアレイにて網羅的に解析した。その結果、Akt-GSK3α/β-CREB 経路が刺激圧力および時間に依存して変化していることを確認した。これらの結果は、心臓の線維化に関連した心疾患の病態解明の一助になるものと考えられた。

（24）肺動脈高血圧血管リモデリングにおけるチロシンキナーゼ FYN の役割

倉原 瑠1, 平石敬三1, 張 影2, 山村 彩3, 岸 博子2,
小林 誠2, 古賀佳織4, 鬼塚美樹4, 阿部弘太郎5, 井上隆司1
1福岡大学医学部 生理学, 2山口大学大学院医学系研究科 分子細胞生理学, 3愛知医科大学医学部 生理学, 4福岡大学医学部 病理学, 5九州大学大学院医学研究院 循環器内科)

「背景・目的」：肺動脈性肺高血圧症（PAH）は、血管収縮、血管リモデリング、血栓形成などに起因する疾患である。一方、非受容体型チロシンキナーゼ Src ファミリーは種々の組織リモデリングにおいて重要な役割を果たしていることが知られている。本研究では、PAH 時の血管リモデリングにおけるチロシンキナーゼ FYN の潜在的重要性や FYN 阻害作用を有する n-3 系脂肪酸（EPA）が肺高血圧を治療する可能性について in vitro 及び in vivo で検討した。

「結果」：不活性型 FYN の導入や EPA の添加は肺動脈内皮細胞（HPAEC）におけるストレスファイバーの形成を抑制した。また、IL-6 刺激における STAT3 のリン酸化は不活性型 FYN や EPA の添加によって抑制された。肺動脈平滑筋細胞（HPASMC）における FYN の自己リン酸化は EPA または RvE1 によって制御された。肺高血圧モデルクロタリン（MCT）ラットに EPA を投与することにより、PAH に伴う所見、すなわち、右室流出路径の増大、肺動脈血流速度ピーク到達時間の減少、肺動脈肥厚、右心肥大、室間溝の線維化の亢進が抑制された。同時に、MCT ラットの生存期間が有意に延長した。PAH 患者由来肺動脈平滑筋細胞の異常増殖に対して EPA が有意な抑制効果を示した。
「結論」:
以上の結果は、肺動脈に発現するチロシンキナーゼ FYN が、PAH 時の肺血管リモデリングの進行や増悪に関与することを示唆している。EPA による FYN の活性抑制が、新たな PAH 治療法の開発に繋がることが期待される。

（25）血管平滑筋細胞における Src チロシンキナーゼによる L 型 Ca²⁺チャネル活性化の分子機構の解析

柏原俊英、郭 暁光、中田 勉、山田光彦（信州大学医学部 分子薬理学教室）

アテローム性動脈硬化では、病巣で産生される血小板由来増殖因子（PDGF）が血管平滑筋細胞に作用して動脈硬化の進展や異常収縮を生じることがある。しかし、その機序の解明は十分でない。我々はこれまでに、ラット大動脈由来細胞株 A7r5 において PDGF が Src-family チロシンキナーゼ介して CaV1.2L 型 Ca²⁺チャネル（LTCC）を活性化させることを見出した。本研究では、リコンピニント平滑筋型 LTCC を用いて、c-Src が LTCC を活性化させる分子機構を解析した。平滑筋細胞の CaV1.2 と同様に①全長タイプ CaV1.2、②CaV1.2 の 1763 番目以降の遠位 C 末端（DCT）を欠失させた CaV1.2Δ1763、③CaV1.2Δ1763 に DCT を加えたものをヒト胎児由来腎細胞株 tsA201 に発現させ、c-Src による LTCC の活性化をパッチクランプ法で調べた。その結果、c-Src は、①の活性を有意に増加させたが、②や③の活性には影響しなかった。次に①の C 末端にある 12 個のチロシン残基のリン酸化について検討したところ、c-Src による①の活性化は、近位 C 末端上の Y1709F と Y1758F 変異体ではなく完全に消失した。これより、c-Src は全長タイプの平滑筋型 CaV1.2 の C 末端にある Y1709 や Y1758 を介して、LTCC を活性化させることが示唆された。

（26）ヒト Kv1.5 チャネルに対する SKF-96365 およびエホニジピンの抑制作用の相違

上田梨加、丁 維光、松浦 博（滋賀医科大学 生理学講座細胞機能生理学部門）

Kv1.5 チャネルはヒトにおいて心房筋で密に発現する一方、心室筋においてはほとんど機能的発現がないことから、リエントリー機序を背景とする心房細動治療の標的チャネルとして有望視されている。本研究では、ヒト Kv1.5（hKv1.5）チャネルに対して抑制作用を持つ SKF-96365（TRPC チャネルブロッカー）およびエホニジピン（L 型 T 型デュアルカルシウムチャネルブロッカー）について、それぞれのブロック作用の相違について解析した。

全細胞型パッチクランプ法による解析では、SKF-96365 は hKv1.5 電流を濃度依存的に抑制し、50%阻害濃度は 2.5 µM であった。エホニジピンでは 50%阻害濃度は 0.83 µM で SKF-96365 よりも低かった。一方、チャネルブロック時定数は保持電位-80 mV から+30 mV への脱分極パルスを与えた際、SKF-96365 は 7.8 ms であるのに対し、エホニジピンは 92 ms であった。さらに部位特異的点変異導入法やコンピューターシミュレーション法を用いて Kv1.5 チャネルと SKF-96365 およびエホニジピンとの結合状態を調べたところ、相互作用があると考えられるアミノ酸残基およびドッキングポーズに相違があった。これらの結果より、Kv1.5 チャネルは低分子化合物と相互作用するアミノ酸残基の相違が抑制作用の相違に関与すると示された。
（27）高血糖誘発性心不全におけるTRPC6チャネルの役割

小田紗矢香1,2, 富田拓郎1,2, 西村明幸1,2, 西田基宏1,2,3,4
（1岡崎統合バイオサイエンスセンター 心循環シグナル研究部門, 2総合研究大学院大学, 3九州大学大学院薬学研究院 創薬育薬研究施設統括室, 4JSTさきがけ）

高血糖による心臓での過剰な活性酸素（ROS）産生が、心不全のリスク因子になることが知られている。我々は最近、心線維化を惹起する過剰なROS産生に、非選択的カチオンチャネルtransient receptor potential canonical（TRPC）3とNADPH oxidase 2（Nox2）の複合体によるNox2タンパク質の安定化に関与することを明らかにした。TRPC6はTRPC3と類似した構造・活性化機構をもつが、TRPC3-Nox2機能連関にどのように関与するかは不明であった。

1型糖尿病を発症したTRPC6欠損マウスでは、野生型と比較し心機能の顕著な低下および尿・心臓における酸化ストレスの増加が観察された。高血糖状態のマウス心臓および高グルコース（HG）条件で培養した初代ラット心筋細胞ではTRPC6の発現量は上昇し、Nox2の発現量は低下していた。HEK293細胞の過剰発現系において、TRPC6はNox2と物理的に相互作用したが、Nox2発現を増加させなかった。また、TRPC3/6両者をNox2と共発現させるとTRPC3/6-Nox2三者複合体が形成されたものの、TRPC3によるNox2安定化作用は消失した。以上から、高血糖による心筋TRPC6発現増加によりTRPC3-Nox2複合体形成が阻害され、高血糖時のかん不全リスク軽減に働くことが示唆された。

（28）糖尿病性心筋症における心筋Ca2+シグナル異常と左室拡張障害

三上義礼1, 伊藤雅方1, 杉本結衣1, 濱口正悟2, 富田太一郎1,
村上慎吾1, 行方衣由紀2, 田中 光2, 赤羽悟美1
（1東邦大学医学部 生理学講座統合生理学分野, 2東邦大学薬学部 薬物学教室）

糖尿病患者において心不全発症リスクが高いことが知られている。糖尿病性心筋症の特徴的所見である左室拡張障害は心筋Ca2+シグナル制御破綻に起因すると考えられるが、その機序は不明である。そこで我々は、糖尿病性心筋症に関わるCa2+シグナル制御破綻の分子メカニズム解明を目的として、ストレプトゾトシン(STZ)投与により1型糖尿病モデルマウスを作製し、細胞内Ca2+シグナル関連分子の発現と機能について解析を行った。

STZ投与マウスでは、体重および骨格筋重量が低下し、心室筋の収縮張力低下と弛緩時間延長が観察され、心室筋細胞内Ca2+トランジェントのピーク値の低下、ベース値の上昇、減衰速度の低下が認められた。STZ投与マウスでは心室筋においてホスホランバン（PLN）Ser16の基底状態におけるリン酸化レベルが低下していた。しかし心筋のβAR応答は低下しておらず、PLN-Ser16のリン酸化酵素として知られるPKA上流のβAR/ACの発現量に変化はなかった。また、PLNのS-ニトロシル化やPP1との複合体形成も認められなかった。一方、STZ投与マウスにインスリンを持続投与したところ、血糖値の回復と共にPLN-Ser16リン酸化レベルも回復した。以上の結果は、糖尿病性心筋症における左室拡張障害に、インスリン欠乏による基底状態におけるPLN-Ser16リン酸化低下が関与していることを示すものである。
（29）新規 COPD モデルマウスの詳細な肺病態解析とメトホルミン投与の影響

中嶋竜之介 1, 野原寛文 1,2, 龜井雄輔 1,2, 藤川春花 1,2, 丸田かすみ 1, 川上太聖 1, 江藤結花 1, Mary Ann Suico 1, 甲斐広文 1, 首藤 剛 1
（1）熊本大学薬学部 遺伝子機能応用学, (2) 熊本大学博士課程リーディングプログラム「グローカルな健栄生命科学バイオニア養成プログラム HIGO」

慢性閉塞性肺疾患 (COPD) は、炎症、老化、肺気腫、粘液貯留を主徴とする難治性の呼吸器疾患である。現在、患者は増加の一途をたどるが未だ根治療法がなく、分子機序に基づいた新規治療薬が望まれる。AMP-activated protein kinase (AMPK) は、生体のエネルギー代謝調節に重要な分子であり、その機能異常は、様々な疾患に関連する。事実、AMPK を活性化する抗糖尿病薬メトホルミンは、既存の COPD モデルマウスの肺病態を保護する報告もある。しかし、既存の COPD モデルマウスは閉塞性の粘液貯留症状を認めない。本研究では、近年開発した粘液貯留や各種肺病態を呈する COPD モデルマウス (C57/B6J-βENaC-Tg マウス) (Sci Rep. 2016) を用い、既存モデルマウス (Elastase 誘導モデル) との病態比較および本マウスに対するメトホルミン投与の影響を検討した。その結果、本マウスにおける炎症・老化関連遺伝子発現は、既存モデルマウスと同様に有意に上昇し、さらに本マウスは、広範かつ均等なびまん性肺気腫、粘液貯留、呼吸機能低下を呈した。一方、本マウスに対するメトホルミン投与は、肺気腫・呼吸機能低下に全く影響を与えてなかったことから、本結果は、メトホルミン投与は COPD 肺病態を改善しないという前向き臨床試験報告 (Thorax. 2016) に合致した。

（30）腎障害に伴う消化管運動変調のメカニズムの解析

西山和宏 1, 東 泰孝 2, 中嶋秀満 2, 西田基宏 1,3, 竹内正吉 2
（1）九州大学大学院薬学研究院 創薬育薬研究施設統括室, (2) 大阪府立大学生命環境科学研究科 獣医学専攻 応用薬理学教室, (3) 岡崎統合バイオサイエンスセンター (生理学研究所) 心循環シグナル研究部門

慢性腎不全では、腎から排出される有機物が蓄積し尿毒症となり腎以外の器症に悪影響を与える。実際、腎不全患者では消化管運動変調がおこり、症状として吐気、嘔吐、下痢、便秘などが認められる。しかしながら、腎不全に伴う消化管運動変調に係わる機序については不明な点が多い。そこで、本研究では、腎不全モデルマウスを用いて消化管運動変調のメカニズムの解析を行った。腎不全モデルとして右腎を全摘出、および左腎を 2/3 摘出し作製した 5/6 腎摘出マウスおよび左腎を 2/3 摘出し作製した 5/6 腎摘出マウスを用いた。Ope (5/6 腎摘出マウス) 群では sham（偽手術マウス）群と比較して消化管運動変調に腸内細菌叢の変化や消化管炎症が関与する可能性が示された。
9. TRP チャネル～オルガネラ Ca²⁺シグナルの重要な媒介分子～

2017年6月22日～6月23日
代表・世話人：白川久志（京都大学 大学院薬学研究科 生体機能解析学）
所内対応者：西田基宏（岡崎統合バイオサイエンスセンター 心循環シグナル研究部門）

（1）網膜剥離後の視細胞死に関与するミュラーグリア浮腫に伴う TRPV4 活性化
杉尾翔太，David Krizaj，石崎泰樹，秋山英雄，松本英孝，柴崎貢志
（1群馬大学 医学研究科 分子細胞，2ユタ大学 医学部 眼科，3群馬大学 医学部 眼科）

（2）Functional interaction between thermosensitive TRPV4 and TMEM16A/anoctamin 1 contributes to stimulated saliva and tear secretion
Sandra Derouiche，Yasunori Takayama，Masataka Murakami，Makoto Tominaga
(1Division of Cell Signaling, Okazaki Institute for Integrative Bioscience
2National Institute for Physiological Sciences)

（3）(-) englerin A は TRPC1/TRPC4 ヘテロマを分子標的としてがん細胞の細胞死を誘導する
大西薫理，鈴木裕可，村木由起子，波多野紀行，村木克彦（愛知学院大学 薬学部 細胞薬理学）

（4）環境ストレスに対する心臓リモデリングにおける TRPC3/6 チャネルの役割
富田（沼賀）拓郎，塚内司，小田紗矢香，西村明幸，西田基宏
(1岡崎統合バイオサイエンスセンター 心循環シグナル研究部門，
2総合研究大学院大学 生命科学研究科，3九州大学 薬学研究院
4九州大学病院 手術部 麻酔科蘇生科)

（5）TRPC チャネル阻害剤による肺高血圧抑制効果の検討
森内健史，木下秀之，桑原宏一郎，中川靖章，森泰生，錦見俊雄
(1京都大学 医学研究科 循環器内科，2信州大学 医学研究科 循環器内科，
3京都大学 工学研究科 合成・生物化学，
4京都大学 医学研究科 メディカルイノベーションセンター)

（6）TRPC6 チャネル Ca²⁺依存的不活性化における Calmodulin による制御と FSGS の関係
森誠之（京都大学 工学研究科 合成・生物化学）

（7）酵母液胞 TRP の機能と役割とオルガネラ輸送体の大腸菌を用いた解析
鱼住信之，浜本晋（東北大学 工学研究科 バイオ工学専攻 応用生物物理化学）

（8）人工再構成系を用いた温度感受性 TRP チャネルの機能解析
内田邦敏，富永真琴
(1福岡歯科大学 細胞分子生物学講座 分子機能制御学，2岡崎統合バイオサイエンスセンター 細胞生理)

（9）プラズマ生成短寿命活性種による TRP チャネル活性化と細胞膜輸送促進
金子俊郎，佐々木通太，立川正憲，神崎憲
(1東北大学 工学研究科 電子工学専攻，2東北大学 薬学研究科 薬物送達学，
3東北大学 医工学研究科 病態ナノシステム医工学)

（10）小胞体に存在する K⁺チャネルによる小胞体 Ca²⁺ストアの増加
村田喜理（東北大学 医学研究科 細胞生理学）

343
（11）マウス慢性脳低血流モデルにおける TRPM2 の病態生理学的役割
　宫之原遵1, 抱 将史1, 永安一樹1, 森 泰生2, 白川久志1, 金子周司1
　(1 京都大学 薬学研究科 生体機能解析学, 2 京都大学 工学研究科 合成・生物化学)

（12）TNBS 誘起小腸痛覚過敏、術後麻痺性イレウスの病態における TRPM2 の機能解析
　松本健次郎1, 堀 正敏2, 堀江俊治3, 天ヶ瀬紀久子1, 尾崎 博2, 森 泰生4, 加藤伸一1
　(1 京都薬科大学 病態薬科学系 薬物治療学, 2 東京大学 農学生命科学研究科 動物薬理学,
　3 城西国際大学 薬学部 薬理学, 4 京都大学 工学研究科 合成・生物化学)

（13）辛み感受性と TRPV1 チャネル
　城戸瑞穂1, 吉住潤子2, 高尾知佳3, 吉本怜子4, 大山順子5, 合島怜央奈1, 高福 明7
　(1 佐賀大学 医学部 神経解剖, 2 福岡歯科大学 口腔・顎顔面外科, 3 慶應義塾大学 医学部 産婦人科,
　4 九州大学 医学部 口腔外科, 5 神戸大学 医学研究科医療情報学, 7 東京医科歯科大学 薬学研究科 薬科心身医学)

（14）TRPA1 の酸素検出における役割
　桑木共之1, 陈 思充1, 高橋重成2, 森泰生2
　(1 鹿児島大学 医歯学総合研究科 統合分子生理学, 2 京都大学 工学研究科 合成生物化学)

（15）ラット脊髄節BoneのTRPA1 チャネルの植物由来物質による活性化の構造活性関連
　余 婷, 藤田亜美, 王 猿, 福岡里佳, 神部信弥, 杨 帆, 熊本京一
　(佐賀大学 医学部 生体構造機能学講座・神経生理学分野)

（16）Extracellular Ca²⁺ binding to specific amino acids is required for heat-evoked activation of TRPA1
　Erkin Kurganov1,2, Shigeru Saito1,2, Claire T. Saito1, Makoto Tominaga1,2
　(1Division of Cell Signaling, Okazaki Institute for Integrative Bioscience,
　2SOKENDAI (The Graduate University for Advanced Studies))

（17）昆虫種選択的殺虫剤フルベンジアミドによるリアノジン受容体活性化機構の解明
　内山 誠, 黒川竜紀, 木村 祐, 森恵美子, 清中茂樹, 森 泰生
　(京都大学 工学研究科 合成・生物化学)

（18）Receptor-selective analgesic 剤クロタミトンの分子標的としての TRPV4 とその bimodal effects
　山野井遊1,2,3, 橋本裕貴1, 富永真琴1,2,4
　(1岡崎統合バイオサイエンスセンター 細胞生理, 2 総合研究大学院大学 生理科学,
　3 濱田模範堂, 4 順天堂大学 環境医学研究所)

（19）鎮痒剤クロタミトンの分子標的としての TRPV4 とその bimodal effects
　小田紗矢香1, 冨田拓郎1, 北島直幸2, 外山健士1,2,3, 原田英里4, 島内 司1,2,3,
　西村明幸1, 石川達也2,4, 熊谷嘉人3, Lutz Birnbaumer5,6, 西田基宏1,2,7
　(1 岡崎統合バイオサイエンスセンター 心循環シグナル研究部門,
　2 九州大学 薬学研究院薬学薬理学研究施設統括室, 3 筑波大学 医学研究科 環境生物化学,
　4 京都産業創造研究機構 生命科学研究所, 5 水産生物資源研究所, 6 京都大学 薬学部 薬理学,
　7 京都大学 北海道大学 神経科学系)
(23) TRPM2を介したケモカインCXCL2産生が多発性硬化症の増悪に関与する
筒井真人1, 平瀬僚1, 宮村咲映1, 永安一樹1, 森泰生2, 白川久志1, 金子周司1
(1) 京都大学薬学研究科 生体機能解析, 2) 京都大学工学研究科 合成・生物化学

(24) PreS-1 segment in TRPC6 is essential for PI(4,5)P2-dependent gating
Onur Kerem Polat, Hideharu Hase, Masayuki X Mori, Yasuo Mori
(Laboratory of Molecular Biology, Department of Synthetic and Biological Chemistry, Kyoto University)

(25) TRPC3-Nox2相互作用のドキソルビシン心筋症における役割
島内司1,2,3, 富田拓郎1, 小田紗矢香1, 西村明幸1, 西田基宏1,2,4
(1) 自然科学研究院滑川統合バイオサイエンスセンター 心循環シグナル研究部門, 2) 九州大学薬学研究院 薬効薬理研究施設統括室, 3) 九州大学病院 手術部, 4) JSTさきがけ)

(26) X線1分子追跡法 (Diffracted X-ray Tracking) で行ったTRPV1のカプサイシン応答分子運動解析
三尾和弘1, 倉持昌弘2, 池崎圭吾2, 関口博史3, 久保泰1, 佐々木裕次2
(1) 産総研先端オペラード計測OIL, 2) 東京大学新領域創成科学研究科, 3) 高輝度光科学研究センター SPring-8)

【参加者名】
金子俊郎(東北大学工学研究科電子工学専攻), 村田喜理(東北大学医学研究科細胞生理学分野), 魚住信之(東北大学医学研究科バイオ工学専攻), 赤司壮一郎(東北大学工学研究科環境保健医学分野), 高井章, 宮沢基(新川医科大学医学総合研究科), 桑村司(九州大学病院), 松本健次郎(京都大学医学部), 内田邦敏(福岡大学医学部), 萩野哲也(京都大学農学研究科), 柴崎貞志(筑駒大学医学系研究科), 村木克彦, 鈴木裕可(京都大学大学院薬学研究科), 三尾和弘(産業技術総合研究所), 金子周司, 白川久志, 宮之原 達, 大橋佳奈, 藤田沙也香, 宮村咲映, 池崎圭吾, 関口博史, 久保泰, 佐々木裕次

【概要】
2017年6月22日及び23日に研究会が行われた。26題の発表があり、そのうち18題は口頭発表形式で、8題はポスター発表形式で行った。特別講演の4題はラセリンCa2+シグナルに関する内容であり、一般講演についてはTRPCチャネルについて8題、TRPVチャネルについて5題、TRPMチャネルについて3題、TRPAチャネルについて5題、リアノジン受容体チャネルについて1題であった。毎年、新しいTRPチャネル研究者が集うことから、
このチャネル研究の広さをあらためて実感するとともに、さらに本年はオルガネラ研究に関するスペシャリストを招きご講演いただくことで、お互いの研究内容についての有意義な討論・情報交換が行われた。具体的には、初日は群馬大の柴崎（以下敬称略）が網膜剥離におけるTRPV4、岡崎統合バイオのDerouicheが涙や唾液の分泌におけるTRPV4、愛知学院大的村木ががん細胞に細胞死を誘導する(-) engerin Aの標的としてのTRPC1/C4の意義を発表した。続いて、岡崎統合バイオの冨田が心臓リモデリングにおけるTRPC3/C6、京都大の森内が肺動脈性肺高血圧症におけるTRPC3/C6、京都大の森が常染色体優性腎疾患FSGSにおけるTRPC6の重要性を発表した。特別講演では、東北大の魚住は酵母液胞TRPの機能と役割について、福岡歯科大学の内田は人工再構成系におけるTRPチャネル解析について、東北大学の金子はプラズマ生成短寿命活性種によるTRPチャネル活性化について、東北大の村田は小胞体の膜電位感受性機構について概説した。翌日は、京都大の宮之原が脳低血流傷害におけるTRPM2、京都薬科大の松本が内臓痛覚過敏、術後腸麻痺におけるTRPM2、佐賀大の城戸が辛み感受におけるTRPV1の生理学的または病態生理学的役割について発表し、旭川医大の高井が毛様体平滑筋の収縮調節機構における非選択性陽イオンチャネルの分子実体に関する知見を発表した。

昨年我々は、網膜剥離後の視細胞死に関与するミュラーグリア浮腫に関与するTRPV4特性を報告した。この研究をさらに進め、網膜剥離によりTRPV4活性化の機序、TRPV4活性化に伴う視細胞死惹起の分子メカニズムを同定したので報告する。

マウス網膜下にヒアルロン酸注射して網膜剥離を惹起した。その後の24時間後（視細胞死が起こるピーク）にミュラーグリアの形態変化を解析した結果、正常網膜と比較し、網膜剥離群で有意なミュラーグリアの浮腫を認めた。その24時間後（視細胞死が起こるピーク）にミュラーグリアの形態変化を解析した結果、正常網膜と比較し、網膜剥離群で有意なミュラーグリアの浮腫を認めた。TRPV4は細胞膜上の伸展刺激を感知するカプサイシン応答分子運動解析について発表した。
(2) Functional interaction between thermosensitive TRPV4 and TMEM16A/anoctamin 1 contributes to stimulated saliva and tear secretion

Sandra Derouiche¹, Yasunori Takayama¹, Masataka Murakami², Makoto Tominaga¹
¹Division of Cell Signaling, Okazaki Institute for Integrative Bioscience,
²National Institute for Physiological Sciences

Anoctamin 1 (ANO1) constitutes the apical Ca²⁺-activated Cl⁻ channel (CaCC) efflux pathway required for Ca²⁺-dependent fluid secretion. The understanding of the mechanisms of activation and molecular interactions of ANO1 could offer new leads for the treatment of exocrine gland diseases. Our recent work has led to the characterization of a functional interaction between ANO1 and some members of the transient receptor potential (TRP) channels superfamily, exposing new regulators of the ANO1-mediated functions. One of them is TRP vanilloid 4 (TRPV4), a thermosensitive calcium-permeable channel that is reported to be highly expressed in the membrane of secretory acinar cells. Here, we report a functional interaction between TRPV4 and ANO1 in salivary and lacrimal gland acinar cells isolated from mice. TRPV4 activation induced chloride currents and cell shrinkage by increasing intracellular calcium concentrations. The chloride currents evoked by the specific activation of TRPV4 were identified as ANO1-mediated currents by using its specific antagonist. Furthermore, we showed that TRPV4 was activated through IP₃ receptors and thus enhanced the muscarinic stimulation of saliva and tear secretion as this mechanism was down regulated by the blocking of TRPV4 and also in TRPV4-deficient mice. Our work suggests that TRPV4 contributes to the muscarinic pathway of salivation and tear secretion through its interaction with ANO1.

(3) (-) englerin A は TRPC1/TRPC4 ヘテロマを分子標的としてがん細胞の細胞死を誘導する

大西薰理, 鈴木裕可, 村木由起子, 波多野紀行, 村木克彦
(愛知学院大学薬学部細胞薬理学)

(-) englerin A (EA)はTRPC4（C4）やTRPC5の各ホモ、TRPC1/TRPC4（C1/C4）やTRPC1/TRPC5の各ヘテロのアゴニストとして、一部のがん細胞において細胞死を誘導することを報告した。しかしEA が脂質関連シグナルを修飾する可能性も示唆された。そこでC1/C4が発現するがん細胞を用いて、EA の分子標的について検討した。9 種の培養ヒト細胞株で、EA による細胞内 Ca²⁺濃度変化を検討したところ、synovial sarcoma SW982 細胞（SW）が EA 高感受性であった。そこでSWにおけるTRPC1, TRPC4, TRPC5遺伝子の発現を比較したところ、その発現はTRPC1 と TRPC4 が主であった。C4 および C1/C4 発現 HEK293 細胞（HEK）に EA を投与したところ、C4 および C1/C4 発現 HEKにおいて、それぞれ chair 型 C4 電流および ladle 型 C1/C4 電流が惹起された。また SW への EA 投与は ladle 型 C1/C4 電流を惹起した。さらに EA は強力に SW の細胞死を誘導した。SW で TRPC1 および TRPC4 の発現を抑制したところ、C1 抑制 SW では EA は chair 型 C4 電流を惹起したが、C4 抑制 SW では EA 誘発電流は消失した。さらに C4 抑制 SW では EA 誘導の細胞死が消失した。SW における EA の分子標的は C1/C4 であると示唆された。
(4) 環境ストレスに対する心臓リモデリングにおける TRPC3/6 チャネルの役割

富田（沼賀）拓郎 1,2, 島内 司 1,4, 小田紗矢香 1,2, 西村明幸 1,2, 西田基宏 1,2,3
(1 岡崎統合バイオサイエンスセンター 心循環シグナル研究部門, 2 総合研究大学院大学 生命科学研究科,
3 九州大学 薬学研究院, 4 九州大学病院 手術部 麻酔科蘇生科)

心臓は、一過的な環境ストレスに対しては、可逆的な構造変化により適応するが、ストレスが慢性化すると、線維化に代表される不可逆的な構造変化を起こし、機能不全に陥る。この不可逆的心臓リモデリングには、異常なCa²⁺シグナルと過剰な活性酸素種産生が重要だが、それらを仲介する分子機構は不明であった。我々は、最近、機械的ストレスにより惹起される心臓リモデリングにおいて、transient receptor potential canonical 3 (TRPC3) と NADPH oxidase 2 (Nox2) の機能連関が重要であることを明らかにした。

TRPC3 と Nox2 の相互作用には、TRPC3 の C 末端が重要であり、TRPC3 の C 末端断片 (C3-C 断片) の過剰発現は TRPC3 と Nox2 の相互作用を阻害した。さらに C3-C 断片を導入した心筋細胞では、機械的伸展刺激による Nox2 の活性化が抑制された。この TRPC3-Nox2 の機能連関を阻害は、抗ガン剤ドキソルビシオンの投与による心不全に対しても保護効果を示した。以上から、TRPC3-Nox2 の機能連関を負に制御する役割を担うことも明らかにした。

(5) TRPC チャネル阻害剤による肺高血圧抑制効果の検討

森内健史 1, 木下秀之 1, 桑原宏一郎 2, 中川靖章 1, 森 泰生 3,
錦見俊雄 1, 南 太也 1, 藤住英明 1, 柳澤 洋 1, 中尾一和 4, 木村 剛 1
(1 京都大学 医学研究科 循環器内科, 2 信州大学 医学研究科 循環器内科,
3 京都大学 工学研究科 合成・生物化学, 4 京都大学 医学研究科 メディカルイノベーションセンター)

近年、肺高血圧症患者で TRPC3, TRPC6 発現が増加し、肺高血圧発症進展にこれらの TRP チャネルが関与するものが報告されているが、TRPC3, TRPC6 を薬剤により選択性に阻害することで肺高血圧モデル動物を治療した報告はない。そこで我々は TRPC3 を選択性に阻害する pyrazole3 (pyr3) と TRPC3, TRPC6, TRPC7 を阻害する pyrazole4 (pyr4)の肺高血圧症に対する効果を、モノクロタリン (MCT) 誘発肺高血圧モデルラットを用いて検討した。MCT 投与ラットでは心エコー上有意な肺動脈圧の上昇や右室拡大を認め、また右室重量、肺重量の増加、生存率の悪化を認めた。一方で MCT 投与日より pyr3 または pyr4 の経口投与を行った群ではこれらの変化を有意に改善させ、薬剤の薬効に有意な差は認めなかった。また、pyr3 及び pyr4 による肺高血圧改善効果が TRPC3 あるいは TRPC3/6 の抑制に因る確認するため、TRPC3 ノックアウトマウス及び TRPC3/TPC6 ダブルノックアウトマウスを用いてモノクロタリンピロール(MCT-p)誘発肺高血圧モデルマウスを作成して検討したところ、両群ともに MCT-p による右室圧上昇及び右室重量増加が抑制され、これらの結果から、薬剤の遺伝的な TRPC3 単独阻害あるいは TRPC3/TPC6 の両阻害は肺高血圧症を改善することが示された。
（6）TRPC6 チャネル Ca²⁺依存的不活性化における Calmodulin による制御と FSGS の関係

森 誠之（京都大学 工学研究科 合成・生物化学）

細胞内 Ca²⁺センサーである Calmodulin（CaM）は様々な分子を制御する。この分子は N-、C-lobe の二つのドメインをもち、両方もしくは単独のlobe ドメインで制御機能を示す。一方 TRPC6 蛋白質は 4 量体を形成し PLC 共役型受容体への刺激に伴い活性化する受容体作動型のイオンチャネルである。今回 TRPC6 チャネルにおいて Ca²⁺依存的不活性化に対する CaM の寄与とその作用機構について、分子構造学的観点を踏まえた研究を行った。

電気生理学的な手法から CaM の N-、C-lobe 両方が Ca²⁺依存的不活性化に重要であることを見出した。次に 2D-NMR 等を用い CaM と TRPC6 の部分(calmodulin binding domain, CBD)複合体構造を解析した。その結果 Ca²⁺CaM の両lobe がそれぞれ単独で TRPC6-CBD と結合し、両lobe による Dimerization（catch and close）機構が TRPC6 チャネルの不活性化に重要であることが考えられた。更に CaM による dimer 形成を支える分子機構として TRPC6 C-末端領域にある Coiled-coil ドメインの重要性を明らかにした。以前から Coiled-coil 欠損 TRPC6 変異体(K874X)が常染色体優性腎疾患 FSGS において報告されているが、K874X 変異体も同様に Ca²⁺依存的不活性化が消失していた。FSGS の病態発生において CaM の「catch and close」機構を介した Ca²⁺依存的不活性化の重要性が明らかとなった。

（7）酵母液胞 TRP の機能と役割とオルガネラ輸送体の大腸菌を用いた解析

魚住信之,浜本 晋（東北大学 工学研究科 バイオ工学専攻 応用生物物理化学）

酵母(Saccharomyces cerevisiae)のゲノム中には、TRP ホモログ遺伝子が 1 つコードされている。この TRPY1(YVC1)は、液胞膜で機能している。Ca のほか、K や Na の透過性が報告されている。trpy1 変異株は、通常の培地では野生株との増殖の差は見られず、生存には必須でなく、TRPY1 の役割は不明であった。最近、私たちは TRPY1 の性質、調節因子や生理的役割について、酵母液胞膜を巨大化して patch clamp 測定を中心に検討した。その結果、TRPY1 は細胞内カルシウムシグナリングに関与することが示唆された。

真核細胞のオルガネラ輸送体は、動物細胞や酵母に発現されることでオルガネラに移行することが多く、原形質膜を用いた解析は一般に難しい。私たちは、大腸菌に植物の輸送体を機能発現することを見出して以来、構造や機能をバックグラウンド輸送活性を抑制した大腸菌変異株を用いて検討してきた。さらに、上記の酵母の trpy1 変異株の液胞膜のイオン電流活性は極めて小さい。この液胞膜に、他の真核細胞のオルガネラのイオンチャネルを発現させ、電流特性を検討した。大腸菌変異株と酵母の trpy1 変異株を用いて解析した植物・動物輸送体、葉緑体やラン藻のチラコイド膜の輸送体について紹介する。

（8）人工再構成系を用いた温度感受性 TRP チャネルの機能解析

内田邦敏1、2、富永真琴2、山﨑 純1
1福岡歯科大学 細胞分子生物学講座 分子機能制御学
2岡崎統合バイオサイエンスセンター（生理学研究所）細胞生理研究部門

脂質平面膜法などの人工再構成系を用いたイオンチャネル解析法は、生体膜の代わりに人工的に形成した脂質
二重膜にイオンチャネルタンパク質を埋め込み、その機能を電気生理学的に解析する手法である。このような人工再構成系の大きな特徴は、1) 水、イオン、目的タンパク質並びに脂質のみで構成される単純な実験系であること、2) 培養細胞等を用いた検討では困難な膜脂質も自由にコントロール可能であること、3) パッチクランプ法などが適用できない細胞内小器官に発現するチャネルの解析も可能であること、が挙げられる。

私は、温度や機械刺激などの物理的刺激によって活性化される温度感受性 TRP チャネルがこれら刺激によって開口するメカニズムを明らかにするため研究目的としている。温度はすべての分子に影響を与えることから、構成要素が単純でコントロール可能な人工再構成系を用いることが必要であると考え、この実験系の構築並びに温度感受性 TRP チャネルの解析を行ってきた。

本発表では、熱によって活性化される TRPM3 チャネル並びに細胞内カルシウム存在下で温かい温度で活性化される TRPM5 チャネルについて、脂質平面膜法を用いて解析した結果を示しながら人工再構成系の実験方法について紹介し、この実験系の利点・欠点、さらには応用の可能性について議論した。

(9) プラズマ生成短寿命活性種による TRP チャネル活性化と細胞膜輸送促進

金子俊郎1, 佐々木渉太1, 立川正憲2, 神崎 展3

(1) 東北大学 工学研究科 電子工学専攻, (2) 東北大学 薬学研究科 薬物送達学, (3) 東北大学 医学研究科 病態ナノシステム医工学)

気体・液体・固体に続く第4の状態であるプラズマは、特有の高エネルギー反応場を提供でき、半導体超微細加工をはじめとして、現代社会に必要不可欠なツールとなっている。近年開発された触れても火傷しない大気圧非平衡プラズマ（ガス温度 ≈ 室温、電子温度 > 1万度）の革新的な治療効果が報告されて以来、世界中で“プラズマ医療”分野が急速に進展してきている。その作用機序はほとんど不明であった。そこで本研究では、プラズマの生物に対する作用機序解明へと、プラズマを培養細胞に照射するin vitro実験を行った。その結果、プラズマ非平衡反応場周辺大気を原料として液中に作りだした不安定な（数分で失活する）化学的活性種（群）が、一過性の細胞内 Ca2+濃度 ([Ca2+]i) 上昇と非膜透過性蛍光物質 YOYO-1 (分子量 1300 程度) の膜輸送促進を惹起することを示した。

またそれら細胞応答は、広範な TRP チャネルの非特異的阻害剤ルテニウムレッドによってほとんど完全に抑制されたことから、TRP チャネル介在性の細胞膜輸送であることが示唆された。さらに、特定の TRP チャネル発現がこのプラズマ感受性を増大させる結果を得た。これら結果は、プラズマの作用機序解明や新たなドラッグデリバリーシステムの開発に向けて、大きく貢献すると考えられる。

(10) 小胞体に存在する K+チャネルによる小胞体 Ca2+ストアの増加

村田喜理 (東北大学 医学研究科 細胞生理学)

イオンチャネルは、最終的な到達場所である形質膜における性質、役割は広く研究が行われているが、それらが合成される小胞体 (ER) で活性 (イオン透過性、電位依存性など)、生理的役割を持っているかどうかは、ほとんど調べられていない。

我々の研究室では、単離した核周辺小胞体 (nuclear envelope) 標本を用いて ER 膜に存在するイオンチャネルの電気生理学的解析を行ってきた。その中で、BK チャネル (Ca2+依存性電位依存性 K+チャネル) が ER 膜でもチャネル活性をもつことが明らかとなった。
ER膜内でBKチャネルが果たす役割を調べる端緒として、BKの発現の有無により、HEK293細胞のERにおけ るCa²⁺ハンドリングに変化があるかどうか、タンパク質性の蛍光Ca²⁺センサーG-CEPIA（Suzukiら、2014）を 用いて解析を行った。その結果、BKを発現したHEK293細胞では、WTのHEK293細胞に比べて、ER内のCa²⁺濃 度が増加していることが示唆された。この現象は、Kv1.2チャネルでも同様の結果が得られたが、SK1、IK1、 IRK1などの電位依存性を持たないチャネルを発現したHEK293細胞のERはWTと同等の[Ca²⁺]ERレベルを示し た。

(1)マウス慢性脳低血流モデルにおけるTRPM2の病態生理学的役割

宮之原遵1, 抱将史1, 永安一樹1, 森泰生2, 白川久志1, 金子周司1
(1)京都大学薬学研究科 生体機能解析学, (2)京都大学工学研究科合成・生物化学

脳の低血流状態、すなわち脳循環不全は、加齢や動脈硬化、心不全、極度のストレスなどにより生じ、そのような酸素/栄養供給不全が慢性的、あるいは急激に認知機能障害を伴う中枢神経疾患の発症リスクが高まっていることが知られているが、その病態マネジメントには不明な点が多い。そこで本研究では、脳や免疫担当細胞に豊富に発現するTRPM2に着目し、その病態生理学的役割について検討を行った。マウス慢性脳低血流モデルは、微小金属コイル装置による両側総頚動脈狭窄（BCAS）処置を行うことにより作成した。BCAS処置28日後において、野生型マウスでは白質傷害および認知機能障害が惹起されたが、TRPM2遺伝子欠損マウスでは顕著に抑制されていた。さらに、白質脳梁部におけるIba1陽性細胞も減少していた。そこでミクログリアおよびマクロファージの阻害薬であるミノサイクリンを投与したところ、対照群と比較して認知機能障害は抑制された。また、末梢骨髄をGFP標識したキメラマウスにおいてBCAS処置を行ったところ、脳梁部に集積したIba1領域はGFPを共発現しなかったことから、Iba1陽性細胞は脳常在性のミクログリアであることが示唆された。以上の結果から、ミクログリアに発現するTRPM2が慢性脳低血流に伴う認知機能障害の病態に関与することが明らかとなった。

(12)TNBS誘起内臓痛覚過敏、術後麻痺性イレウスの病態におけるTRPM2の機能解析

松本健次郎1, 堀正敏2, 堀江俊治3, 天ヶ瀬紀久子1, 尾崎博2, 森泰生4, 加藤伸一1
(1)京都薬科大学病態薬科学系薬物治療学, (2)東京大学農学生命科学研究科獣医薬理学, (3)城西国際大学薬学部薬理学, (4)京都大学工学研究科合成・生物化学

Transient Receptor Potential Melastatin 2 (TRPM2)チャネルは活性酸素種によって活性化されるTRPチャネルの1つである。腸管の免疫細胞に発現し、消化管炎症の進行に重要な役割を果たしていることが報告されている。本研究ではTNBS誘起ラット大腸炎モデルにおける内臓痛覚過敏、術後腸麻痺（POI）モデルにおける消化管運動障害へのTRPM2の関与について検討を行った。免疫組織学的検討から、ラット大腸においてTRPM2は内在性、外来性の知覚神経、マクロファージ（Mφ）に局在してい ることが観察された。さらに脊髄後根神経節においてもTRPM2が発現していることが明らかとなった。TNBS誘起大腸炎モデルにおいてTRPM2発現数は正常動物と比べ有意に増加した。パロスタット法による内臓痛覚閾値の評価から、TRPM2は生理的条件下の有害刺激の感知および大腸炎の内臓痛覚過敏の発現に関与していることが示唆された。次に外科的侵襲刺激（IM）によるPOIモデルマウスを作製し検討を行った。IM処置による腸管輸送能の低下は、TRPM2KOでは野生型（WT）と比べ改
善した。IM処置によるMφと好中球の筋層への浸潤はTRPM2KOでは軽度であった。さらに筋層ならびに脇腔Mφにおけるサイトカイン、誘導型NOS、ケモカインmRNA発現の増大、そしてErk1/2とp38のリン酸化は、WTと比べTRPM2KOでは有意に減少していた。TRPM2は常在型および誘導型Mφの両者に発現しサイトカイン／ケモカイン産生を促進することで、POIの病態発現に関与することが示唆された。

（13）辛み感受性とTRPV1チャネル

城戸瑞穂1, 吉住潤子2, 高尾知佳3, 吉本怜子4, 大山順子5, 合島怜央奈1, 高岡裕6, 豊福明7

1佐賀大医学部組織神経解剖, 2福岡歯科大口腔・顎顔面外科, 3慶應義塾大医学部産婦人科, 4九州大学歯学研究科口腔病理, 5九州大学医学部顎面口腔外科, 6神戸大医学研究科医療情報, 7東京医科歯科大学歯学研究科歯科心身医学

唐辛子は身近な香辛料として古くから親しまれている。唐辛子を食すと口腔内に灼熱感やひりひりぴりぴりと表される感覚、さらには発汗や顔面の紅潮など人により多様な作用を導く。またその嗜好は人により多様で、習慣的に食す人がいる一方で忌避する人もいる。唐辛子の辛さは辛み成分のカプサイシンの受容体として知られるTRPV1 (transient receptor potential channel vanilloid 1)によって受容されていると考えられている。私たちのヒトの辛み感受の多様な表現型はTRPV1のSNP (single nucleotide polymorphism)に因るとの仮説を立て、461名の正常被験者を対象として辛み感受性との関係を調べた。

実験は各施設の臨床研究およびヒトゲノム遺伝子研究にかかる倫理委員会の審査および承認を受けて実施した。まず、ヒト口腔粘膜におけるTRPV1の発現をRT-PCR法および免疫組織化学により確認した。

TRPV1のSNPは数多く報告されている。そのなかからTRPV1のチャネル開口部に近く、痛み症候との関連が報告されているSNPを3つ選出し、頻度を比較した。さらに、被験者の舌に異なる濃度のカプサイシン液で湿らせた濾紙を置きその感受性をvisual analogue scaleに記載してもらうことで、辛みの感受性を評価した。TRPV1のSNPの頻度は、人種間に差が認められる。HapMapデータベース掲載のn数よりも私たちの数が多かったが、統計的な有意差は認められなかった。TRPV1のSNPとカプサイシンの感受性および電気味覚の一部に有意な差が認められた。以上から、TRPV1がヒトにおいてもカプサイシン辛みの感受性に与える働きを示唆している。これにより痛みとの関連も示唆された。

（14）毛様体平滑筋の収縮調節に関与する非選択性陽イオンチャネルの分子実体

宮津基, 高井章

（旭川医科大学生理学講座自律機能分野）

毛様体平滑筋は典型的な副交感神経支配の平滑筋組織の一つである。この筋には、膜表面のM3型ムスカリン受容体刺激に応じて開口する、単位コンダクタンスが100 fSと50 pSと大きく異なる2種類の非選択性陽イオンチャネル(NSCCSとNSCCL)が存在する。そのうち、いわゆるstore-operated Ca2+channel(SOC)様の性質を示すNSCCSについては、安定的視覚焦点維持に重要な筋収縮持続相の維持に必要な細胞外からのCa2+の流入経路として機能することが予想されていた。しかし、生理学的実験に供し得る十分な数の健常な単離
毛様体筋細胞を得ることが難しいことが制約となり、NSCCSの分子実体の解明はなかなか進まなかった。われわれはコラゲナーゼ処理とPercoll密度勾配遠心分離によりウシ毛様体筋組織から平滑筋細胞を高純度に取り出す方法を開発した。それにより調整した単離筋細胞を用いてsiRNA法などによる実験をおこなったところ、SOCの本体として注目されているSTIM1/Orai1とNSCCSとの関連を示唆する知見が得られた。

(15) TRPA1の酸素検出における役割

桑木共之1, 陳思充1, 高橋重成2, 森泰生2
(1鹿児島大学 医歯学総合研究科 統合分子生理学, 2京都大学 工学研究科 合成生物化学)

無麻酔自由行動下のマウスの呼吸を体プレチスログラフィーで測定し、装置内の酸素濃度を変化させることによって酸素濃度-呼吸出力関係を調べたところ、TRPA1ノックアウトマウス(KO)では高酸素呼吸抑制と軽度低酸素による呼吸増強が減弱していた。野生型マウスにTRPA1の阻害剤であるAP18をエアロゾルとして投与すると、KOと同様の異常が観察された。さらにKOでは低酸素飼育による肺高血圧ならびに高酸素飼育による炎症性の肺障害が増悪していた。

以上の結果から、気道(たぶん下気道)の知覚神経に存在するTRPA1は酸素濃度変化による呼吸調節に深く関与しており、肺や心臓の低酸素・高酸素障害の進展に防御的役割を果たしていると結論された。

(16) ラット脊髄膠様質のTRPA1チャネルの植物由来物質による活性化の構造活性連関

余婷, 藤田亜美, 王輝, 鈴木里佳, 馬郡信弥, 杨帆, 熊本栄一
(佐賀大学 医学部 生体構造機能学講座)

脊髄後角第II層(膠様質)の1次感覚ニューロンの中枢端に存在するTRPA1チャネルは痛み伝達の修飾に働くことが知られている。このTRPA1チャネルはin vitroの脊髄薄切片標本において多くの植物由来物質により活性化される。例えば、アリルイソチオシアネート、シネオール、オイゲノール、ジンゲロン、カルバクロール、チモール、カルボンである。そのTRPA1チャネルの活性化は神経終末から膠様質ニューロンへ起こるグルタミン酸の自発放出を増加させる。今回、成熟ラット脊髄横断標本の膠様質ニューロンにパッチクランプ法を適用し、それらの植物由来物質に関連したグアイアコール、パニリン、パニリン酸およびp-シメンが自発性の興奮性シナプス伝達に及ぼす作用を調べた。今回得られた実験結果と以前報告した植物由来物質の作用の実験結果から、1次感覚ニューロン中枢端のTRPA1チャネルの活性化に必要な植物由来物質の化学構造を考察した。その結果、(1) TRPA1チャネルは1,8-シネオールや(+)-カルボンにより活性化される一方、1,4-シネオールや(-)-カルボンにより活性化されないこと、(2) カルバクロールやチモールという構造異性体間でTRPA1チャネルの活性化効率が異なること、(3) TRPA1チャネル活性化のためには植物由来物質のベンゼン環に結合した特定の官能基が必要であることなどが明らかになった。
（17）クローン病における腸狭帯線維化の抑制機序：筋線維芽細胞 TRPA1 チャネルの役割

倉原 琳 1, 平石 敬三 1, 胡 耀鵬 1, 古賀 佳織 2, 鬼塚 美樹 2, 竹田 津英稔 3, 小島 大望 4, 井上 隆司 1
（福岡大学 医学部 1 生理学, 2 病理学, 3 消化器内科, 4 消化器外科）

＜背景・目的＞マウスでは TRPA1 のノックアウトによって消化管炎症が増悪することが知られているが、その機序については不明である。本研究では、消化管筋線維芽細胞に高発現している TRPA1 チャネルの潜在的な役割を探索する目的で、その消化管炎症や線維化過程に果たす役割について詳細な検討を行った。

＜結果＞①クローン病患者大腸・小腸の生検標本では、粘膜固有層の線維芽細胞・筋線維芽細胞に限局した TRPA1 チャネルの発現が見られ、炎症部位で有意に発現上昇していた。②TGF-β1 で惹起した培養筋線維芽細胞における線維化マーカーの増加は、TRPA1 を活性化する AITC、プレドニソロン、メチルプレドニソロン、グルチルリチン、グルチルレチン酸などステロイド系薬物や抗線維化薬ピルフェニドンによって抑制された。③siRNA 処置で TRPA1 の発現を抑制すると、TGF-β1 受容体下流の線維化シグナルが増強した。④TRPA1-/−マウスでは、WT マウスに比し、TNBS 投与によってより多くの炎症細胞の粘膜下層浸潤や局所の単核球の集簇巣を認めた。WT マウスの TNBS 投与群では、膠原線維が粘膜固有層に増生しているのに対し、TRPA1-/−の TNBS 投与群では粘膜固有層を粘膜下層に広く膠原線維が増生していた。

＜考察＞筋線維芽細胞 TRPA1 チャネルの活性化は、消化管の炎症やそれに伴う線維化に対して抑制的に働いている可能性が示唆された。本研究の知見はステロイドやピルフェニドンの抗線維化作用を理解する上で重要な鍵となる可能性がある。

（18）Extracellular Ca²⁺ binding to specific amino acids is required for heat-evoked activation of TRPA1

Erkin Kurganov1,2, Shigeru Saito1,2, Claire T. Saito1, Makoto Tominaga1,2

1Division of Cell Signaling, Okazaki Institute for Integrative Bioscience
2SOKENDAI (The Graduate University for Advanced Studies)

Transient receptor potential ankyrin 1 (TRPA1) is a homotetrameric nonselective cation-permeable channel that has six transmembrane domains and cytoplasmic N- and C-termini. The N-terminus is characterized by an unusually large number of ankyrin repeats. Although the 3-dimensional structure of human TRPA1 has been determined and TRPA1 channels from insects to birds are known to be activated by heat stimulus, the mechanism for temperature-dependent TRPA1 activation is unclear. We previously reported that extracellular Ca²⁺, but not intracellular Ca²⁺, plays an important role in heat-evoked activation of green anole lizards TRPA1 (gaTRPA1). Here we focus on extracellular Ca²⁺-dependent heat sensitivity of gaTRPA1 by comparing gaTRPA1 with heat-activated TRPA1 channels from rat snake (rsTRPA1) and chicken (chTRPA1). In the absence of extracellular Ca²⁺, rsTRPA1 and chTRPA1 are activated by heat and generate small inward currents. A comparison of extracellular amino acids in TRPA1 identified three negatively charged amino acid residues (glutamate and aspartate) near the outer pore vestibule that are involved in heat-evoked TRPA1 activation in the presence of extracellular Ca²⁺. These results suggest that neutralization of acidic amino acids by extracellular Ca²⁺ is important for heat-evoked activation of gaTRPA1, chTRPA1, and rsTRPA1, which could lead to the clarification of mechanisms for heat-evoked channel activation.
（19）鎮痛剤クロタミトンの分子標的としてのTRPV4とそのbimodal effects

山野井 遊 1,2,3, 橘高裕貴 1, 富永真琴 1,2,4
(1 岡崎統合バイオサイエンスセンター 細胞生理, 2 総合研究大学院大学 生理科学, 3 麗 池田模型堂, 4 順天堂大学 環境医学研究所)

クロタミトンはかゆみ止め成分として約70年間使用されているが、その作用メカニズムは明らかとなっていない。そこで我々はクロタミトンが末梢神経や皮膚に存在するTRPチャネルに作用している可能性を検討した。まず、patch-clamp法により痒みに関連があるとされる各種TRPチャネルへの作用を確認したところ、クロタミトンはTRPV4チャネルの活性化電流を強く抑制することが示された。また、TRPV4リガンドにより引き起こされるマウスの掻き動作は、クロタミトンの経皮適用により顕著に抑制された。一方、patch-clamp法による測定においてクロタミトンのwashout直後に通常の活性化電流を超える大きな電流が確認された。このwashout電流を更に解析したところ、チャネル開口確率と単一チャネル電流が共に増大していた。この単一チャネル電流の増大はチャネルのポアサイズの増大を示唆している。そこで、サイズの異なる陽イオンを用い測定を行ったところ、washout時はよりサイズの大きいイオンの透過が観察され、TRPV4チャネルのポアサイズ増大を支持する結果となった。以上の結果より、我々はクロタミトンの分子標的としてTRPV4チャネルを同定し、またwashout時のTRPV4チャネルのポアサイズ増大を示した。これらの知見はクロタミトンの痒み抑制における機序を明確化する上で有用なものであると考えられる。

（20）昆虫種選択的殺虫剤フルベンジアミドによるリアノジン受容体活性化機構の解明

内山 誠, 黒川竜紀, 木村 祐, 森恵美子, 清中茂樹, 森 泰生
(京都大学 工学研究科 合成・生物化学)

ジアミド型化合物であるフルベンジアミドは、チョウ目昆虫選択的に強い殺虫活性を示し、作用された昆虫は持続的な筋収縮を引き起こしに死に至る。リアノジン受容体 (RyR)が標的分子である事が分かっているが、種選択的生物活性の詳細な分子メカニズムは未解明である。本研究では、チョウ目のモデル生物であるカイコ RyR (sRyR)を用いて、フルベンジアミドにおける昆虫種選択的活性化機械の解明を目指した。フルベンジアミド由来の新規ラベル化剤によりラベル化したsRyRをLC-MS/MSで解析したところ、生物種間でアミノ酸配列の保存性が低い領域Disrtent region 1 (DR1)周辺に結合していた。さらに、sRyRのDR1をフルベンジアミド非感受性であるウサギのRyRのDR1に置換したキメラを作製し、細胞内Ca2⁺濃度測定法で評価したところ、フルベンジアミド感受性が有意に低下した。以上より、DR1が結合に重要である事が示唆された。また、ジアミド剤抵抗性コナガRyRのS4に変異(G4946E)と同じ位置に変異を導入したsRyR G4866Eに対して、細胞内Ca2⁺濃度測定法で評価したところ、フルベンジアミド感受性の喪失が確認された。以上の結果より、フルベンジアミドはDR1に結合し、その情報がS4を介してポア領域に作用する事で、RyRを活性化すると考えられる。
(21) 工業用硫黄含有化合物による侵害受容性 TRP チャネルの活性化

嶌田嵩久1, 高橋賢次1, 富永真琴2, 太田利男1
(1鳥取大学 農学部 獣医薬理, 2岡崎統合バイオサイエンスセンター 細胞生理)

過硫酸塩を含む種々の硫黄含有化合物は、漂白剤や洗浄剤の用途で工業用物質として広く用いられている。これらの硫黄含有化合物は吸入により、喘息や鼻炎などの呼吸器障害が生じることが知られているが、その作用メカニズムは明らかにされていない。そこで本研究では、工業用硫黄含有化合物による TRP チャネル活性に与える影響について検討した。野生型マウス DRG において、過硫酸塩は [Ca2+]i 増加反応を引き起こしたが、亜ジチオニン酸塩ではその反応は弱く、チオ硫酸塩では生じなかった。過硫酸塩による反応は TRPA1 阻害薬によって抑制され、また TRPA1 チャネル欠損マウス DRG では消失していた。TRPA1 遺伝子欠損細胞において、過硫酸塩は Ca2+ 増加反応及び内向き電流反応を引き起こした。求電子性 TRPA1 アゴニストの作用部位である cysteine 残基を変異させた TRPA1 遺伝子変異体では過硫酸塩による反応が消失していた。加えて、高濃度の過硫酸塩では TRPV1 チャネルも活性化させた。以上の成績により、工業用硫黄含有化合物の幾つかは、その暴露により侵害受容性 TRP チャネルの活性化を介して、呼吸器障害を引き起こすことが示唆された。

(22) 高血糖誘発性心不全の改善メカニズムにおける TRPC6 チャネルの役割

小田紗矢香1, 富田拓郎1, 北島直幸1, 新川達也2, 原田英里4, 島内司12, 冨田拓郎1, 北島直幸1, 外山乔士12,3, 原田英里4, 島内司12, Lutz Birnbaumer5,6, 宮崎基宏1,2,7
(1岡崎統合バイオサイエンスセンター 心循環シグナル研究部門
2九州大学 薬学研究院 創薬薬学研究施設統括室 3筑波大学 医学医療系 環境生物学
4味の素㈱, 5Laboratory of Neuroscience, NIEHS, NIH, 6Institute for Biomedical Research (BIOMED), 7JST さきがけ)

高血糖に伴う心不全において、過剰な活性酸素の産生が主たる原因として知られている。我々は最近、心線維化を惹起する過剰な活性酸素産生に、非選択的カチオンチャネル transient receptor potentialal canonical (TRPC) 3 と NADPH oxidase 2 (Nox2) の複合体形成による Nox2 タンパク質の安定化が関与することを明らかにした。TRPC3 と類似した構造・活性化機能を有する TRPC6 は、TRPC3 との 4 量体形成により機能的なチャネルを構成し得ることが報告されているが、心臓における酸化ストレス蓄積への関与は明らかにされていなかった。我々は、ストレプトゾトシン誘発性 1 型糖尿病を発症した TRPC6 欠損マウスは野生型マウス、TRPC3 欠損マウスと比較して心機能が低下し、尿・心臓における酸化ストレスが上昇することを見出した。高血糖状態のマウス心臓、高グルコース条件下で培養した初代ラット心筋細胞において TRPC6 発現量は上昇し、Nox2 発現量は低下していた。高グルコース培養条件下の心筋細胞における TRPC6 発現低下により、酸化ストレス、炎症性マーカーの発現が上昇した。以上の結果から、高血糖時の TRPC6 発現上昇は、TRPC3-Nox2 複合体形成を阻害し Nox2 の安定性を消失させることで、高血糖誘発性の心不全において心保護作用を示すことが示唆された。
（23）TRPM2を介したケモカインCXCL2産生が多発性硬化症の増悪に関与する

筒井真人1, 平瀬僚1, 宮村咲映1, 永安一樹1, 森泰生2, 白川久志1, 金子周司1
（1 京都大学 薬学研究科 生体機能解析, 2 京都大学 工学研究科 合成生物・化学）

慢性的な炎症応答を伴う中枢性脱髄疾患である多発性硬化症（MS）は、末梢リンパ球の中枢への浸潤を抑制する薬剤が一定の効果を発揮するものの、新たな作用機序に基づく創薬が強く望まれている。

TRPM2は脳や免疫系細胞に広く分布する活性酸素感受性TRPチャンネルであり、数々の炎症性疾患の病態に寄与することが明らかになっている。そこで本研究では、MSにおけるTRPM2の病態生理学的役割を検討した。野生型EAEマウスにおける臨床スコアの増悪は、TRPM2欠損マウスでは顕著に抑制された。

TRPM2阻害作用を有するミコナゾールの発症後投与によってもEAE臨床スコアの増悪は顕著に抑制された。

T細胞の浸潤や特徴的転写因子の増大はTRPM2欠損により影響を受けなかったのに対し、病態早期である免疫惹起14日目のEAEマウス脊髄における各種炎症性サイトカインやケモカインのうちCXCL2産生・遊離がTRPM2欠損により特異的に減弱し、Gr1陽性好中球の浸潤もTRPM2欠損により減弱していた。また、マクロファージ/ミクログリアの標的であるIba1免疫活性の上昇もTRPM2欠損により抑制された。骨髄キメラマウスも用いた結果を併せて、TRPM2はEAE病態の悪化に関与し、その病態形成メカニズムにはマクロファージに発現するTRPM2によるケモカインCXCL2の産生・遊離、および好中球の局所浸潤が寄与すると考えられる。

（24）PreS-1 segment in TRPC6 is essential for PI(4,5)P2-dependent gating

Onur Kerem Polat, Hideharu Hase, Masayuki X Mori, Yasuo Mori
（Laboratory of Molecular Biology, Department of Synthetic and Biological Chemistry, Kyoto University）

In the present study, we determined a structural domain critical for the inhibition by PI(4,5)P2 depletion upon VSP (voltage-sensing PI phosphatase) activation using extensive mutagenesis studies on TRPC6 channel at positive amino acid residues localized in the inner leaflet/cytoplasmic side. The kinetical assay of the entry to the inhibition (t onset) and recovery (t rec) from its status followed by VSP activation demonstrated that the several positive residues proximal to the transmembrane S1 segment (Pre-S1) are critical to control the gating by PI(4,5)P2. Moreover, mutants on C-terminal of TRPC6 showed clear potentiation to the activation of VSP, which indicates existence of polarity switch. We hypothesized that the C-terminal region is essential for determining the polarity of the response to PI(4,5)P2. Drosophila TRP-like channels (TRPL) and human TRPV4 has differential residues in this region which may explain that the depletion of PI(4,5)P2 lead to robust potentiation. As a conclusion of this study, we have found that the PreS-1 segment in TRPC6 is essential for PI(4,5)P2-dependent gating and that the residues on C-terminal region determine the polarity switch.
（25）TRPC3-Nox2 相互作用のドキソルビシン心筋症における役割

島内 司 1,2,3, 富田拓郎 1, 小田紗矢香 1, 西村明幸 1, 西田基宏 1,2,4

1 産総研先端オペランド計測 OIL, 2 東京大学 新領域創成科学研究科, 3 高輝度光科学研究センター SPring-8

【背景】ドキソルビシン（DOX）は様々な悪性腫瘍に有効な抗腫瘍薬である一方で、用量依存性の重篤な心毒性が副作用として問題視されている。DOX 誘発性心筋症には NADPH oxidase 2（Nox2）を介した活性酸素生成の関与が示唆されているが、その詳細な制御機構はわかっていなかった。我々は近年、TRPC3 チャネルが Nox2 を相互作用依存的に安定化し、positive regulator of reactive oxygen species（PRROS）として働く可能性を見いだしている。我々は TRPC3 チャネルの PRROS 作用が DOX 心筋症の進展に関与するか検討した。

【方法】TRPC3 欠損マウスまたは TRPC3-NOX2 複合体形成阻害剤投与マウスに DOX (15mg/kg, i.p.) を単回投与し、2 週間後の左心室機能および形態構造変化（リモデリング）を野生型マウスのそれと比較評価した。

【結果】DOX 投与により野生型マウスで見られた心機能低下は、TRPC3 欠損および TRPC3-NOX2 複合体阻害により有意に抑制された。DOX 投与心臓では TRPC3 と Nox2 の発現量が増加しており、Nox2 発現増加率と心収縮能低下率は相関していた。DOX 投与心臓では低酸素シグナルの活性化が見られ、TRPC3-Nox2 発現上昇への低酸素刺激の関与が示唆された。ラット新生児心筋細胞において低酸素刺激・DOX 投与による Nox2 発現および活性酸素量増加は、TRPC3-Nox2 複合体阻害により顕著に抑制された。

【まとめ】DOX 心筋症の進展には低酸素ストレスを介した TRPC3 と NOX2 の発現上昇および TRPC3-NOX2 複合体形成を介した PRROS 作用が関与すること、TRPC3-NOX2 複合体阻害が DOX 副作用軽減につながることが強く示唆された。

（26）X 線 1 分子追跡法（Diffracted X-ray Tracking）を用いた TRPV1 のカプサイシン応答分子運動解析

三尾和弘 1, 倉持昌弘 2, 池崎圭吾 3, 関口博史 3, 佐保 泰 1, 佐々木裕次 2

1 産総研先端オペランド計測 OIL, 2 東京大学 新領域創成科学研究科, 3 高輝度光科学研究センター SPring-8

TRPV1 はカプサイシンなどの化学物質のみならず、温度、酸基 pK 等条件など様々なシグナルに応答する非選択性カチオンチャネルである。クライオ電子顕微鏡と単粒子解析技術の最近の進歩により、原子分解能レベルの解析が可能になった。しかしゲーティングに伴う分子内部の運動については中間状態の構造や、それらを繰り返す時間軸を伴う運動情報が得られていないため、十分には理解されていない。TRPV1 に伴うダイナミクスを理解するために、我々は個々のタンパク質を金ナノ結晶で標識し、X 線回折スポットの運動をリアルタイムに追跡する X 線 1 分子追跡法（DXT: Diffracted X-ray Tracking）を用いて観察を行った。金ナノ結晶を結合させる位置にメチオニンクラスター "Met tag" を導入し、タンパク質を基盤に結合させたタンパク質を Ni-NTA 被覆ポリイミド基材に固定化した。データは 3 次元（傾斜θ、回転φ、および時間t）に関して分析を行った。外側ヘリックスの χ 軸ブラウン運動は、カプサイシン用量依存的に増強され、回転方向については異方性回転運動として検出された。また高温条件を与えた TRPV1 分子においても、同様に回転運動の活性化が観察された。
10. オルガネラダイナミクスの新規制御機構とその病態生理

2017年5月31日－6月1日

代表・世話人：富澤一仁（熊本大学大学院生命科学研究部・分子生理学分野）
所内対応者：西田基宏（岡崎統合バイオサイエンスセンター（生理学研究所）
心循環シグナル研究部門）

(1)【特別講演】光合成における光エネルギーの利用と散逸の制御機構
○皆川 純（基礎生物学研究所 環境光生物学研究部門）

(2)オルガネラの動態変化の役割と機序に迫る3次元微細構造観察
○大野伸彦（自然科学研究機構 生理学研究所 分子神経生理研究部門）

(3)tRNA修飾によるオルガネラ間タンパク質恒常性の制御機能
○魏 范穎（熊本大学大学院生命科学研究部 分子生理学分野）

(4)酸素センサーチャネルTRPA1によるミトコンドリア機能制御の機構解明
○黒川竜紀（京都大学大学院工学研究科合成 生物化学専攻）

(5)Dp1-細胞骨格の相互作用による心筋ミトコンドリアの品質管理
○西村明幸（岡崎統合バイオサイエンスセンター（生理学研究所）

(6)レドックス制御による小胞体恒常性維持機構の解明
○潮田 亮（京都産業大学 総合生命科学部）

(7)ポリスルフィド化によるアルコール脱水素酵素5の酵素活性制御
○本橋ほづみ（東北大学加齢医学研究所・遺伝子発現制御分野）

(8)イオウ呼吸とイオウストレス：ほ乳類における新しいエネルギー代謝とレドックス病態
○赤池孝章（東北大学大学院医学研究科・環境保健医学分野）

(9)老化耐性・がん化齧歯類ハダカデバネズミの耐性機構の探求
○三浦恭子（北海道大学遺伝子病制御研究所）

(10)NADPH oxidaseによる活性酸素種の積極的生成を介した植物の発生・ストレス応答の制御
○橋本研志（東京理科大学理工学部応用生物科学科）

(11)植物における「発生シグナル」を介したレドックス調節 -トランスオミクスによるアプローチ -
○川出健介（自然科学研究機構岡崎統合バイオサイエンスセンター植物発生生理研究部門）

(12)細胞外ATPによるグルタチオン放出誘導を介したレドックス調節機構
○澤 智裕（熊本大学大学院生命科学研究部・微生物学分野）

(13)新しいシステインパースルフィド産生酵素の同定と機能解析
○井田智章, 守田匡伸, 魏 研范, 松永哲郎, 西村 明, Jun Minkyung, 赤池孝章
居原 秀, 潤 智裕, 藤井重元, 熊谷嘉人, 富澤一仁, 本橋ほづみ, 赤池孝章
（東北大学大学院医学系研究科・環境保健医学分野）

(14)種横断的システインパースルフィド産生酵素：Cysteinyl-tRNA synthetase
○西村 明, 井田智章, 赤池孝章, 守田匡伸, 松永哲郎, 笠松真吾, 藤井重元, 赤池孝章
（東北大学大学院医学系研究科・環境保健医学分野）

(15)レンオ型pH感受性蛻光プローブの開発とその応用
○花岡健二郎, 鏡野 優, 高橋翔大, 清野泰照（東京大学大学院薬学系研究科）

359
(16) マクロファージ細胞膜およびオルガネラ膜に発現する脂肪酸輸送タンパク質の免疫学的役割の新たな可能性

○西山和宏, 東泰孝, 中嶋秀満, 竹内正吉
(大阪府立大学大学院生命環境科学研究科機能医学専攻応用薬理学教室)

(17) 8-ニトロ-cGMP とタンパク質 poly-S-グアニル化を介した親電子シグナル制御

○赤松社一郎, 笠松真吾, ジョンミンギョン, 松永哲郎, 井田智章,
藤井重元, 澤智裕, 熊谷嘉人, 本橋ほづみ, 赤池孝章
(東北大学大学院医学系研究科・環境保健医学分野)

(18) カペラ-筋小胞体間のシグナル伝達を効率化させる平滑筋 Ca²⁺マイクロドメイン機構の解明

○佐藤尚紀, 鈴木良明, 山村壽男, 竹島浩, 今泉祐治
(名古屋市立大学大学院薬学研究科・細胞分子薬効解析学分野)

(19) Sulfide Quinone reductase (SQR) 欠損マウスの作製とイオウ代謝解析

○守田匡伸, 松永哲郎, 井田智章, 西村明, 笠松真吾, 藤井重元, 赤池孝章
(東北大学大学院医学系研究科・環境保健医学分野)

(20) プリン作動性受容体 P2Y6R の機能多様性とその病態生理学的意義

○下田翔, 西村明幸, Caroline Sunggip, 富田拓郎, 西田基宏
(岡崎統合バイオサイエンスセンター(生理学研究所)・心循環シグナル研究部門)

(21) 高血糖誘発性心不全の改善メカニズムにおける TRPC6 チャネルの役割

○小田紗矢香, 富田拓郎, 北島直幸, 外山喬士, 原田英里, 島内司
(岡崎統合バイオサイエンスセンター(生理学研究所)・心循環シグナル研究部門)

【参加者名】
赤池孝章(東北大学大学院) 赤松社一郎(東北大学) 有本博一(東北大学)
家田直弥(名古屋市立大学) 井田智章(東北大学大学院) 阪本正彦(大阪府立大学) 篠崎潤(京都産業大学) 内田浩二(東京大学)
江藤大介(名古屋市立大学) 川出健介(岡崎統合バイオサイエンスセンター)
黒川竜紀(京都大学大学院) 野崎守(名古屋市立大学)

【概要】
細胞小器官（オルガネラ）は、細胞内部で特に分化した形態や機能をもつ構造の総称であり、その高度に発達した機能によって、生命の素因子である細胞の恒常性が維持されている。核、ミトコンドリア、小胞体、ゴルジ体、エンドソーム、リソソーム、ペプトレオキシソームなどで多くのオルガネラは生体膜で固まれた構造体を有し
（1）光合成における光エネルギーの利用と散逸の制御機構

○皆川 純（基礎生物学研究所 環境光生物学研究部門）

光合成のしくみの最も基本的な部分（光エネルギーを電気化学エネルギーに変換する光化学反応）は、今から30億年近く前にはすでに完成されていた。その後の光合成生物の進化は、おもにその環境適応機構に見ることができる。光合成反応は、駆動に光エネルギーを必要とする一方、その光エネルギーを消化しきれない場合には反応の場に傷害をもたらす（光阻害）というトレードオフを内包している。そのため、光阻害に備える防御機構は特に重要であり、光合成生物に広く保存されるに至った。しかし、現在の栽培環境の作物などは必ずしも光合成と光防御のバランスが最適化された状態にあるとは限らない。すなわち、現存する植物の光合成機能を向上させようとする場合、その環境ごとの光エネルギーの「利用」と「散逸」を再調節し、光合成と光防護のバランスを再最適化することが重要である。

昨年度より、新学術領域「新光合成・光エネルギー変換システムの再最適化」が発足した。この新学術領域は、植物生理学、生化学、遺伝学、構造生物学、電気生理学などの専門家が、光合成を再最適化するために力をあわせ、葉緑体チラコイド膜を介したプロトン駆動力（膜電位およびプロトン濃度勾配）がいかに制御されているか、そしてその制御によって、光エネルギーの「利用」と「散逸」のバランスがいかに最適化されるのか解明に取り組んでいる。本講演では、新学術領域「新光合成」の理念とともに、我々が近年明らかにしつつある光エネルギー散逸の仕組み、特に緑藻における光エネルギー散逸に必要なLHCSR3タンパク質の発現誘導機構と、LHCSR3タンパク質が実際にエネルギー散逸を引き起こす分子メカニズムについて詳しく解説した。

（2）オルガネラの動態変化の役割と機序に迫る3次元微細構造観察

○大野伸彦（自然科学研究機構 生理学研究所 分子神経生理研究部門）

Serial block-face scanning electron microscopy (SBF-SEM)をはじめとする走査型電子顕微鏡による連続断面観察法の発展によって、数nm〜数十nm程度の解像度で細胞や組織の3次元的な微細構造を、簡便・迅速に解析することが可能になった。細胞膜を明瞭に観察できるようになった電子顕微鏡アプローチは、正常な組織や様々な病態、遺伝子変異動物における細胞やオルガネラの立体制例を詳細に解析する上で強力な手法である。こうした手法をマウス中枢神経系の脱髄モデルに応用することで、軸索内のミトコンドリアの数や体積、長さが脱髄に
伴って増加することが明らかになった。さらにノックアウトマウスを用いた解析から、このミトコンドリアの増加はミトコンドリアと微小管の結合を担うSNPHに依存しており、SNPH欠損マウスの脱髄病変では野生型に比較して軸索変性が増加することから、ミトコンドリアと細胞骨格との相互作用が脱髄軸索の生存に必要であることがわかった。また免疫染色法との併用によるマウス炎症性脱髄モデルの解析から、脱髄病変における血中の単球由来するマクロファージは、ミクログリアに由来するマクロファージよりも複雑な形態の核と断片化したミトコンドリアを有しており、SNPH欠損マウスの脱髄病変では野生型に比較して軸索変性が増加することが明らかになった。これらの結果から、3次元微細構造観察によるオルガネラの詳細な解析が、その病理学的な機能だけでなく、中枢神経系の病態生理を理解する上で有用であると考えられた。

（3）tRNA修飾によるオルガネラ間タンパク質恒常性的制御機構

○魏 范研,富澤一仁 (熊本大学大学院生命科学研究部 分子生理学分野)

トランスファーRNA(tRNA)はDNAの遺伝情報をタンパク質へと翻訳する中心的な小分子RNAである。最近、tRNAに多彩な化学修飾が見つかり、従来の開始/伸張因子のリン酸化を中心とする機構と異なる新たなタンパク質翻訳の制御機構が明らかになってきた。我々は、ミトコンドリアtRNAに特異的なタウリン修飾やチオール修飾を発見した。これらの修飾を行う酵素を同定し、ノックアウトマウスを作製したところ、ノックアウトマウスの胚は、著しい成長の遅れによりE8よりも早い時期に発生が停止していた。ノックアウト細胞や組織特異的ノックアウトマウスの解析により、これらのtRNA修飾を欠損すると、ミトコンドリアでのタンパク質翻訳が著しく低下し、ミトコンドリアの膜構造が破壊されていた。興味深いことに、tRNA修飾欠損による著しいミトコンドリア形態異常は、ミトコンドリアへのタンパク質輸送を低下させていた。その結果、これらのミトコンドリアタンパク質は、細胞質側で異常に蓄積し、激しい小胞体ストレスを誘発していた。さらに、異常タンパクの蓄積を抑制すると、小胞体ストレスが緩和され、ミトコンドリアの形態も順調に改善された。これらの結果から、ミトコンドリアのtRNA修飾はミトコンドリアタンパク質翻訳に必須であることが明らかになった。さらに、ミトコンドリアにおけるタンパク質恒常性は、細胞質側のタンパク質恒常性と密接にリンクすることで、細胞機能に重要であることが示唆された。

（4）酸素センサーチャネルTRPA1によるミトコンドリア機能制御の機構解明

○黒川竜紀,白石拓也,浜野 智,高橋重成, Maximillian Ebert, 坂口怜子, 森 泰生 (京都大学大学院工学研究科合成・生物化学専攻)

ミトコンドリアは、細胞内のCa²⁺貯蔵庫としても働くとともに、取り込んだCa²⁺はミトコンドリアの機能制御に重要である。ミトコンドリアへのCa²⁺の取り込み・放出機構として近年いくつかの分子が同定されたが、Ca²⁺の取り込み・放出を担う分子やその機構など、未だ完全に解明されていない。当研究室では、Transient Receptor Potential Cation A1（TRPA1）チャネルがCa²⁺流入を介して生体内の酸素濃度感知に重要な働きをすることを明らかにした。そこで我々は、酸素センサーであるTRPA1がミトコンドリア機能制御に関与する可能性を示唆する仮説を検証した。本研究では、免疫染色法や様々なプローブ、細胞外フランシュアナイザーなどを用いることによって、TRPA1がミトコンドリア局在タンパク質と相互作用することで、ミトコンドリアのCa²⁺取り込み・放出を担う分子として働き、活性酸素種の産生やエネルギー
ミトコンドリアはエネルギー産生に関わる細胞内小器官であり、細胞内において分裂と融合を繰り返しながらその形態をダイナミックに変化させている。この動的形態変化はミトコンドリアの品質管理に重要であり、またミトコンドリアの品質管理異常と様々な疾患との関連が示唆されていることから、ミトコンドリア形態を制御する分子メカニズムの重要性に繋がると期待される。

（5）Drp1-細胞骨格の相互作用による心筋ミトコンドリアの品質管理

○西村明幸1，島内 司1,2，富田拓郎1，西田基宏1,2,3
1（岡崎統合バイオサイエンスセンター（生理学研究所）心循環シグナル研究部門、九州大学大学院薬学研究院創薬育薬研究施策統括室、3JSTさきがけ「疾患代謝」）

ミトコンドリアはエネルギープートに関わる細胞内小器官であり、細胞内において分裂と融合を繰り返しながらその形態をダイナミックに変化させている。この動的形態変化はミトコンドリアの品質管理に重要であり、またミトコンドリアの品質管理異常と様々な疾患との関連が示唆されていることから、ミトコンドリア形態を制御する分子メカニズムの重要性に繋がると期待される。

（6）レドックス制御による小胞体恒常性維持機構の解明

○潮田 亮1,2
1（京都産業大学 総合生命科学部、2京都産業大学 タンパク質動態研究所）
（7）ポリスルフィド化によるアルコール脱水素酵素5の酵素活性制御

○本橋ほづみ1, 西村 明2, 守田匡伸2, Md. Morshedul Alam1, 井田智章2, 赤池孝章2

(1) 東北大・加齢医学・遺伝子発現制御, (2) 東北大院・医・環境保健医学

アルコール脱水素酵素5（ADH5）は、大腸菌からヒトまで幅広く保存された酵素であり、ニトロソグルタチオン（GSNO）を還元するGSNOR活性によりNOシグナルを終結させる一方、ホルムアルデヒド（HCHO）とグルタチオンから生成するヒドロキシメチルグルタチオンを酸化するFDH活性によりHCHOを解毒する。本研究では、ADH5の2つの酵素活性の相互関係を明らかにするためにADH5変異体を作成し、in vitroでそれらのGSNOR活性とFDH活性を測定した。その結果、Cys174をセリンに置換すると、FDH活性に大きな影響がないにかかわらず、GSNOR活性はほとんど消失することがわかった。また、野生型ADH5で認められるシステイン残基のポリスルフィド化が、ADH5C174S変異体では大きく低下していた。さらに、GSNO還元の触媒反応に伴いADH5のCys174がグルタチオン修飾を受けてタンパク質全体のポリスルフィド化レベルもGSNOR活性も低下し、これらはFDH反応により回復した。とおりわけ、FDH反応の際にNa2S2を用いて過剰なイオウを供給すると、GSNOR活性もポリスルフィド化も良好な回復を示した。以上のことから、ADH5はGSNORとFDHの酵素反応をサイクルさせて自身のポリスルフィド化を動的に制御することで、バイファンクショナルな酵素活性を維持していると考えられる。

（8）イオウ呼吸とイオウストレス：哺乳類における新しいエネルギー代謝とレドックス病態

○赤池孝章1, 西村 明1, 井田智章1, 松永哲郎1, 守田匡伸1, 本橋ほづみ2

(1) 東北大院・医・環境保健医学, (2) 東北大・加齢医学・遺伝子発現制御

硫化水素（H2S）やパースルフィドなどの活性イオウ分子種を用いた電子伝達系は、原核細胞ではイオウ呼吸（sulfide respiration）として知られており、生物進化におけるエネルギー代謝の起源である。我々は、翻訳酵素であるcysteinyl-tRNA synthetase（CARS）が、システインを基質にシステインパースルフィド（cysteine persulfide, CysSSH）を合成していることを発見した。さらに、ミトコンドリア型CARS2の変異細胞・マウスの作製に成功し、これによりCARS2遺伝子変換モデルの解析により、ミトコンドリアにおいてCARS2により多量に産生されるCysSSHが、電子受容体としてミトコンドリア呼吸鎖に機能的連携し共役していることを見出した。一方、ミトコンドリアには、硫化水素の解毒酵素であるsulfide:quinone reductase（SQR）が発現されていることが知られている。そこで、SQR欠損マウスを作製して、CysSSHの代謝連鎖を検討したところ、イオウ呼吸によってCysSSHから還元的に放出される硫化水素をSQRが酸化的に分解し、硫化水素のプロトンと電子を呼吸鎖のQサイクルを介して電子伝達系に供与していることが分かった。すなわち生体は、イオウ呼吸を利用した無酸素呼吸により嫌気的なエネルギー代謝を営んでいる。しかしながら、SQRから一部エスケープした硫化水素は、逆に呼吸鎖を抑制し生体内因性のイオウストレスをもたらす。以上より、イオウ呼吸が、真核細胞、哺乳類・ヒトにおいて、重要なエネルギー代謝経路として進化論的に良く保存され活発に機能しており、一方で、その代謝制御の破綻がイオウストレスという、極めてユニークなレドックス病態をもたらすことが示唆された。
（9）老化耐性・がん化効果類ハダカデバネズミの耐性機構の探求

○三浦恭子（北海道大学遺伝子病制御研究所）

ハダカデバネズミ（Naked mole-rat）は、エジオピア・ケニア・ソマリアの地下に集団で生息する小型齧歯類である。「真社会性」と呼ばれる分業制のカースト社会を持ち（Queen, King：繁殖，Soldier：巢の防衛，Worker：巢の拡張，収集，子育て等）、地下にトンネルからなるコロニーを形成して集団生活を営む。ハダカデバネズミはマウスと同等の大きさながら約10倍の寿命を有し（約30年）、これまでに自発的な腫瘍形成がほとんど認められていないがん化耐性の特徴をもつ。さらに、ハダカデバネズミは地下の約7%の低酸素環境に適応しており、哺乳類でありながら、低体温（32度）かつ外温性（外気温に体内温を依存）という珍しい特徴を有する。

我々は、日本の研究機関で唯一のハダカデバネズミ飼育室を維持しており、これまでに、iPS細胞の樹立・各種組織の遺伝子発現情報の取得・3D MRI脳アトラスの構築など、基礎的な研究基盤を整備してきた。樹立したNMR-iPS細胞の解析を進めた結果、がん化耐性齧歯類ハダカデバネズミから樹立したiPS細胞は、多能性を持ちながら腫瘍化耐性である（奇形腫を形成しない）ことが判明し、その分子制御機構を明らかにした。現在は、ハダカデバネズミ特異的な老化耐性・がん化耐性の制御機構について、研究を進めている。

本研究会では、ハダカデバネズミの生態と我々のこれまでの研究内容を紹介した。

（10）NADPH oxidaseによる活性酸素種の積極的生成を介した植物の発生・ストレス応答の制御

○橋本研志1, 枥津和幸2
（1 東京理科大学理工学部応用生物科学科, 2 東京理科大学イメージングフロンティアセンター）

積極的な活性酸素種（ROS）の生成を担うNADPH oxidase（NOX）は、真核生物に広く保存されている。陸上植物のNOXは、N末端側細胞質領域に二つのCa2+結合性EF-handを含む高度に保存された活性制御ドメインを持ち、Ca2+結合とリン酸化により相乗的に活性化される（Ogasawara et al. 2008）。ストレス応答など陸上植物のさまざまな細胞内・細胞間シグナル伝達系においてROSとCa2+が重要な役割を担っており、植物NOXはそのクロストークポイントに位置づけられる。動物、真菌のNOXにも類似の活性制御機構を持つものは存在するが、分子進化系統解析の結果に基づいて考えると、陸上植物のCa2+結合ドメインは、藻類から陸上植物に至る進化の過程で独立に獲得されたものである可能性が高いため、我々は植物NOXの活性制御機構やそれによるROSの積極的生成の多様な生理的意義を見明らかにすることを目指し、シロイヌナズナやゼニゴケをモデルとした研究を進めて来た。その結果、シグナルとしての働きに加えて、NOX由来のROSが細胞表層構造の力学的性質の調節を介して、細胞分裂を伴わない先端成長（Kaya et al. 2014他）や発生・形態形成・生殖等の過程で不可欠な役割を担うことが明らかになりつつある。
(11) 植物における「発生シグナル」を介したレドックス調節
- トランスオミクスによるアプローチ -

○川出 健介 1,2,3,4
(1 自然科学研究機構 岡崎統合バイオサイエンスセンター・植物発生生理研究部門、
2 自然科学研究機構 基礎生物学研究所・植物発生生理研究室、
3 総合研究大学院大学生命科学研究科・基礎生物学専攻、
4 理化学研究所 環境資源科学研究センター・代謝システム研究チーム)

多細胞生物の発生は、体内の代謝生理状態と連関している。近年、アミノ酸代謝や TCA 回路といった一次代謝は細胞機能を支えるのみならず、転写調節を介して発生運命を決めていることが分かってきた。このような進展がありながらも、一次代謝システムが特定の発生プロセスを制御する仕組みはまだ十分に分かっていない。私たちは、モデル植物シロイヌナズナの葉の発生において、細胞増殖を活性化させる「発生シグナル」因子として、転写調節因子 ANGUSTIFOLIA3 (AN3) を同定してきた。この AN3 がどのような遺伝子発現制御に関与しているのか明らかにするために RNA-seq 解析を行ったところ、レドックス調節に関わる一連の遺伝子群が候補として挙がってきた。また、メタボロミクスにより an3 変異株の代謝生理状態を調べたところ、TCA 回路に代謝異常が起こっていることが分かった。TCA 回路はレドックス状態の制御に関わることが知られている。まだまだ検証すべき点が多く残されているが、トランスオミクス解析による網羅的なアプローチから浮かび上がってきた、AN3 シグナルが細胞増殖を制御しつつ、体内のレドックス状態を調節しているという仮説は興味深いと考えられた。

(12) 細胞外 ATP によるグルタチオン放出誘導を介したレドックス調節機構

○澤 智裕 1, 張 田力 1
(1 熊本大学大学院生命科学研究部・微生物学分野)

細胞死により放出される細胞内成分（例えばアデノシン 3 リン酸 [ATP] など）は、マクロファージをはじめとする炎症細胞を活性化し、自然免疫、獲得免疫、または炎症応答の制御に関わることから damage-associated molecular pattern molecules (DAMPS) と呼ばれる。これまでに、ATP 刺激によりマクロファージ内でインフラマソームの活性化がもたらされることや、その過程において活性酸素の生成を介したレドックス制御が関わることがわかってきただが、ATP 刺激がどのように細胞内レドックスを調節するのかについてはほとんど分かっていなかった。我々は、マクロファージ（マウス J774.1 細胞など）を ATP 刺激すると、細胞内抗酸化分子であるグルタチオンが速やかに細胞外へ放出されることを見出した（未発表データ）。さらに強力な抗酸化活性を持つグルタチオンパースルフィドも放出されていた。いくつかの検討から、このグルタチオン放出は、ATP の P2X7 レセプターへの結合が必須であること、また、少なくともこのグルタチオン放出の一部は、インフラマソームの活性化を介した炎症性サイトカインであるインターロイキン-1β の成熟化に関わることが分かった。細胞外環境の sensing と adaptation の制御においてグルタチオン放出がどのように関わっているのか今後さらに検討を進めるたい。
新しいシステインパースルフィド産生酵素の同定と機能解析

○井田智章1, 守田匡伸1, 魏 研範2, 松永哲郎1, 西村 明1, Jun Minkyung1, 赤司壮一郎1, 居原 秀3, 澤 智裕4, 藤井重元1, 熊谷佳人1, 富澤一仁2, 本橋ほづみ6, 赤池孝章1

(1) 東北大院・医・環境保健医学, (2) 熊本大院・生命科学(医)・分子生理学, (3) 大阪府大院・理・生物科学, (4) 熊本大院・生命科学(医)・微生物学, (5) 筑波大学・医学医療系・環境生物学分野, (6) 東北大・加齢研・遺伝発現制御

我々は、システインパースルフィド(CysSSH)などの活性イオウ分子種が生体内で大量に合成され、強力な抗酸化活性を発揮していることを明らかにした。最近、新しいCysSSH合成酵素を同定したので、CysSHH合成機構と機能について報告する。

ポリスルフィド化タンパク質合成機構を解析するなかで、翻訳のマスター酵素の1つであるシステインtRNA合成酵素(CARS)に注目して解析したところ、大腸菌由来のCARSが、システインを基質にCysSSH-tRNAを合成し、翻訳に共役してポリスルフィド化タンパク質を合成することが示された。そこで、酵素反応機構を解析した結果、システインを基質にpyridoxal phosphate(PLP)依存的にCysSSHを合成することがわかった。また、哺乳類細胞のCARSホモログであるCARS1/2のPLP依存的CysSSH合成を明らかにした。さらに、CRISPR/Cas9システムにより哺乳類細胞のミトコンドリアに局在するCARS2を欠損させたHEK293T細胞のCysSSH生成量は3割弱まで減少し、CARS2をadd-backすることで回復した。一方、CARS2のPLP結合サイトのリジン変異体をadd-backしても、その後回復はみられなかった。最近、CARS2欠損マウスを樹立し、個体においてもCysSSH生成レベルが有意に減少することが示された。これらの結果より、CARSは主要なCysSSH合成酵素であることが同定され、ポリスルフィド化タンパク質合成や生体内の抗酸化活性を制御していることが示された。

種横断的システインパースルフィド産生酵素：Cysteinyl-tRNA synthetase

○西村 明, 井田智章, 赤司壮一郎, 守田匡伸, 松永哲郎, 笠松真吾, 藤井重元, 赤池孝章

(東北大院医・環境保健医学分野)

システインパースルフィドに代表される一連の活性イオウ分子種は親分子であるシステインよりレドックス活性が高く、強力な抗酸化能を有することが示してきた。また、タンパク質チオールのパースルフィド合成酵素(CARS)は注目して解析したところ、大腸菌由来のCARSが、システインを基質にCysSSH-tRNAを合成し、翻訳に共役してパースルフィド化タンパク質を合成することが示された。そこで、酵素反応機構を解析した結果、システインを基質にpyridoxal phosphate(PLP)依存的にCysSSHを合成することがわかった。また、哺乳類細胞のCARSはパースルフィド合成酵素であるCARS1/2のPLP依存的CysSSH合成を明らかにした。さらに、CRISPR/Cas9システムにより哺乳類細胞のミトコンドリアに局在するCARS2を欠損させたHEK293T細胞のCysSSH生成量は3割弱まで減少し、CARS2をadd-backすることで回復した。一方、CARS2のPLP結合サイトのリジン変異体をadd-backしても、その後回復はみられなかった。最近、CARS2欠損マウスを樹立し、個体においてもCysSSH生成レベルが有意に減少することが示された。これらの結果より、CARSは主要なCysSSH合成酵素であることが同定され、ポリスルフィド化タンパク質合成や生体内の抗酸化活性を制御していることが示された。
細胞内の各オルガネラは固有の pH を持つことで種々の化学反応を制御している。そのため、オルガネラ固有の pH を測定することは細胞内で起きている生命現象の理解のために重要である。また、組織内の pH も厳密に制御されており、骨代謝、がん細胞の浸調など様々な生命現象に関わっている。そこで、細胞内オルガネラおよび生体組織での pH 測定のための新たなレシオ型 pH 蛍光プローブの開発を行った。開発した深赤色蛍光プローブを用いて、特定のオルガネラに局在する高分子であるデキストランまたは鉄輸送タンパク質トラシスフェリンに蛍光プローブを標識することで、リソゾーム、初期エンドソーム、リサイクリングエンドソーム等のオルガネラの pH を定量的に測定することに成功した。近赤外蛍光 pH プローブを用いては、がんにおける pH 6.5-7.0 程度の弱酸性環境を蛍光イメージングすることに成功した。

マクロファージ細胞膜およびオルガネラ膜に発現する脂肪酸輸送タンパク質の免疫学的役割の新たな可能性

脂肪酸輸送タンパク質（FATP）は細胞膜やミトコンドリア、小胞体およびペルオキシソームなどのオルガネラの膜に発現しており、長鎖脂肪酸を輸送するトランスポーターである。脂肪酸取り込みを介して膜合成およびエネルギー保存、ミトコンドリアの酸化反応などに関与する。しかしながら、FATP を介したマクロファージの機能調節については全く未解明である。本研究ではマクロファージにおける FATP の役割を解析した。マウス骨髄由来マクロファージを作製し、FATP の発現量を解析したところ、存在する 6 種サブタイプの内、FATP1 の発現量が最も高かった。そこで、マクロファージ細胞株である RAW264.7 に FATP1 を過剰発現させ、機能を解析した。FATP1 過剰発現により脂肪酸取り込みの増加、セラミド産生の増加、JNKリン酸化の増加および LPS 处置による IL-6 および TNFα 産生の増加が認められた。また、FATP1 阻害薬を介したマクロファージの機能調節については全く未解明である。本研究ではマクロファージにおける FATP の役割を解析した。マウス骨髄由来マクロファージを作製し、FATP の発現量を解析したところ、存在する 6 種サブタイプの内、FATP1 の発現量が最も高かった。そこで、マクロファージ細胞株である RAW264.7 に FATP1 を過剰発現させ、機能を解析した。
（17）8-ニトロ-cGMP とタンパク質 poly-S-グアニル化を介した親電子シグナル制御

○赤司壮一郎1，笠松真吾1，ジョン・ミンギョン1，松永哲郎1，井田智章1，藤井重元1，澤・智裕2，熊谷嘉人3，本橋ほづみ4，赤池孝章1

(1) 東北大学大学院医学系研究科・環境保健医学分野，(2) 熊本大学大学院生命科学研究部（医学系）・微生物学分野，(3) 筑波大学医学医療系・環境生物学研究室，(4) 東北大学加齢医学研究所・遺伝子発現制御分野)

活性酸素と一酸化窒素に依存して生成する 8-ニトロ-cGMP は、親電子性を有する二次シグナル分子であり、シスチネン残基の翻訳後修飾（タンパク質 S-グアニル化）を介して、多様な生理機能を発揮する。最近我々は、チオール基に過剰にイオウ原子が付加した生体内ポリスルフィド分子が 8-ニトロ-cGMP のシグナル活性を制御すること、また、ポリスルフィドがタンパク質中に豊富に存在すること（タンパク質ポリスルフィド化）を明らかにした。そこで今回、8-ニトロ-cGMP のシグナル伝達機構を解明するために、タンパク質ポリスルフィド化が S-グアニル化に与える影響について解析を行った。

ポリスルフィド特異的ゲルシフトアッセイ（PMSA 法）および質量分析法により各種組換えタンパク質のポリスルフィド化を解析した結果、様々なタンパク質が高度にポリスルフィド化していることが示された。これらのタンパク質を 8-ニトロ-cGMP で処理すると著明な S-グアニル化が観察されたが、この S-グアニル化は 2-mercaptopethanol などの還元剤の後処理により著しく減少した。以上より、ポリスルフィド化タンパク質における S-グアニル化は通常のアルキル化構造ではなく、複数のイオウ原子を含むユニークな構造を有すること（タンパク質 poly-S-グアニル化）が推察され、可逆的修飾として親電子シグナル伝達に関わることが示唆された。

（18）カベオラ-筋小胞体間のシグナル伝達を効率化させる平滑筋 Ca²⁺マイクロドメイン機構の解明

○佐伯尚紀1，鈴木良明1，山村寿男1，竹島浩2，今泉祐治1

(1) 名古屋市立大学大学院薬学研究科・細胞分子薬効解析学分野，(2) 京都大学大学院薬学研究科・生体機分子認識学分野)

筋小胞体（SR）は、筋細胞内の Ca²⁺貯蔵庫として知られる。平滑筋細胞では、SR 膜上のリノンミジン受容体（RyR）を介した自発 Ca²⁺放出（Ca²⁺スパーク）が、近傍の細胞膜（PM）上の BKCa チャネルを活性化させることが自発-過吸収電流（STOCs）を惹起して膜電位を過分極させ、筋緊張を負に制御する。我々は、脂質ラフトの一種のカベオラが、この機構を効率化する中心的構造として機能する可能性を報告してきた。本研究では、SR とカベオラを結び付ける因子として、平滑筋での機能が未解明な構造タンパク質・ジャンクトフィリン 2（JP2）に着目した。JP2 は、横紋筋では横行小管（T 管；PM の陥入構造）と SR 膜間を架橋する。そこで、T 管がない平滑筋では JP2 はカベオラと SR 膜間を架橋すると仮定し、PM と SR 間の物理的・機能的相互作用における JP2 機能の解明を目指した。まず、Co-IP により JP2 と cav1（カベオラ構成因子、カベオリン 1）の分子間相互作用が示された。さらに、JP2 をノックダウンすると cav1 と RyR の共局在率は対照群より有意に低下した。この時、Ca²⁺スパークや BKCa チャネル活性は低下しなかったが、STOCs の電流値は有意に減少した。以上より、JP2 は PM-オルガネラ間のシグナル伝達を効率化する Ca²⁺マイクロドメインの形成において重要な架橋分子であることが示唆された。
（19）Sulfide Quinone reductase (SQR)欠損マウスの作製とイオウ代謝解析
○守田匡伸,松永哲郎,井田智章,西村明,笠松真吾,藤井重元,赤池孝章
（东北大学大学院医学系研究科・環境保健医学分野）

硫化水素は細菌において、イオウ呼吸の過程でガス状の物質として産生され、菌体外に放出される。また高等生物においても生体内で酵素的に生成され、様々な薬理作用を引き起こす生物活性物質として働くことが明らかになりつつある。硫化水素の解毒代謝には sulfide quinone reductase (SQR)が関与しているが、その詳細な分子メカニズムや生理的機能は不明である。

本研究では SQR の哺乳類ホモログである sulfide quinone reductase-like (Sqrdl)について、CRISPR/Cas システムを用いて遺伝子破壊マウスを作製した。Sqrdl 遺伝子破壊マウスは短命で、生後2ヶ月以内に死亡した。これらの結果から、Sqrdlは発生や幼若時には必須ではないが、成長および生体の恒常性維持に重要な役割を果たしていると考えられる。この知見は、マウスを始めとする哺乳類において SQRが硫化水素代謝を始めとする主要なイオウ代謝酵素として機能していることを示している。

（20）P2Y6Rの機能多様性とその病態生理学的意義
○下田翔,西村明幸,Caroline Sunggip,冨田拓郎,西田基宏
（1岡崎統合バイオサイエンスセンター（生理学研究所）・心循環シグナル研究部門,
2総合研究大学院大学・生命科学研究科・生理科学専攻,
3九州大学大学院薬学研究院・創薬育薬研究施設統括室, 4JSTさきがけ「疾患代謝」）

P2Y6 受容体（P2Y6R）は細胞外ヌクレオチドである UDP を主なリガンドとする G 蛋白質共役型受容体（GPCR）である。今回、我々は P2Y6R 欠損マウスを用いて、心血管リモデリングにおける P2Y6R の役割について解析を行った。

P2Y6R 欠損マウスでは野生型マウスに比べアンジェイシン II (Ang II)による血圧上昇及び血管中膜の肥厚が抑制された。P2Y6R は細胞膜上で Ang II 受容体(AT1R)と複合体を形成した。P2Y6R 阻害剤により、AT1R-P2Y6R 複合体形成およびAng IIによる血圧上昇が抑制された。一方、P2Y6R 欠損マウスは圧負荷刺激により心機能が著しく低下した。また、P2Y6R は機械伸展刺激により活性化されることを明らかにした。機械伸展刺激による P2Y6R の活性化には細胞外領域に存在する RGD（インテグリン結合）モチーフが必須であることが分かった。

本研究から P2Y6R は、従来のスクレオチドリガンドに依存したシグナル伝達だけでなく、細胞膜タンパク質間相互作用（ヘテロ二量体化や機械受容応答）を介して心血管リモデリングに寄与することが示唆された。
高血糖に伴う心不全において、過剰な活性酸素の産生が主たる原因として知られている。我々は最近、心線維を惹起する過剰な活性酸素産生に、非選択性カチオンチャネル transient receptor potential canonical (TRPC) 3 と NADPH oxidase 2 (Nox2) の複合体形成による Nox2 タンパク質の安定化が関与することを明らかにした。TRPC3 と類似した構造・活性化機能を有する TRPC6 は、TRPC3 との 4 量体形成により機能的なチャネルを構成し得ることが報告されているが、心臓における酸化ストレス蓄積への関与は明らかにされていなかった。我々は、ストレプトゾトシン誘発性1型糖尿病を発症した TRPC6 欠損マウスは野生型マウス、TRPC3 欠損マウスと比較して心機能が低下し、尿・心臓における酸化ストレスが上昇することを見出した。高血糖状態のマウス心臓、高グルコース培養条件下で培養した初代ラット心筋細胞において TRPC6 発現量は上昇し、Nox2 発現量は低下していた。高グルコース培養条件下の心筋細胞における TRPC6 発現低下により、酸化ストレス、炎症性マーカーの発現が上昇した。以上の結果から、高血糖時の TRPC6 発現上昇は、TRPC3-Nox2 複合体形成を阻害し Nox2 の安定性を消失させることで、高血糖誘発性の心不全において心保護作用を示すことが示唆された。
11. 食欲・食嗜好の分子・神経基盤研究会（食欲・食嗜好研究会）

2017 年 6 月 10 日－6 月 11 日

代表・世話人：佐々木 努（群馬大学生体調節研究所）
所内対応者：箕越靖彦（生殖・内分泌系発達機構研究部門）

（1）受容体型プロテインチロシンホスファターゼによる摂食制御
新谷隆史（基礎生物学研究所）

（2）腸－脳連関による新しい視床下部レプチン抵抗性発症機序の解明
金子賢太朗（京都大学）

（3）ウイルストレーサーを用いた PVH CRH ニューロンの上流の神経細胞の網羅的解析
近藤邦生（理学研究所）

（4）視覚情報を摂食中枢へ伝えるゼブラフィッシュ神経回路の同定
武藤 彩（遺伝学研究所）

（5）食嗜好の学習に関わる嗅覚神経回路
山口正洋（高知大学）

（6）食品情報処理における感覚間相互作用－ヒト心理・生理学的研究
岡本雅子（東京大学）

（7）嗜好性の異なる味溶液を混合した場合にその識別性と嗜好性はどのように変化するか？
片川吉尚（朝日大学）

（8）摂食を誘引する視床下部の活動が味覚感受性に与える影響の解析
傅 欧（東京大学）

（9）キイロショウジョウバエを用いた、味覚系と摂食／報酬系をつなぐ神経回路の同定
宮崎隆明（遺伝学研究所）

（10）味と匂いの学習における連合構造の行動学的検討
大沼卓也（東北大学）

（11）視床下部外側野に投射する嗅覚領域の発見
村田航志（福井大学）

（12）マウスにおける島皮質を介したオレキシン摂食促進機構
楠本 吉田 郁恵（鹿児島大学）

（13）エストロゲンの摂食抑制作用におけるオレキシンの役割
鷹股 亮（奈良女子大学）

（14）オピオイド受容体は GABA 神経を介して摂食行動を調節する
米持奈央美（星薬科大学）

（15）視床下部室傍核 CRF ニューロンを脳内投射部位によりタイプ分けしその機能を調べる
堀尾修平（徳島大学）

（16）油脂のおいしさとストレスホルモンが過食を引き起こす
松村成暢（京都大学）

（17）新規視床下部分泌性小タンパク質 NPGL はマウスにおいてエネルギーホメオスタシスに関与する
齋藤聡也（広島大学）
【参加者名】

青谷大介（京都大学）、天野剛介（岡崎市民病院）、五十嵐美樹（理化学研究所）、池田弘子（星薬科大学）、石塚典子（静岡県立大学）、伊藤禎浩（名古屋大学）、岩崎有作（自治医科大学）、上田修平（名古屋大学）、植田大暉（星薬科大学）、宇野健（熊本県立大学）、浦田明美（東北大学病院）、大栗開美（サントリー食品インターナショナル株）、小笠原安之（北海道大学）、岡本士毅（琉球大学）、中村雅子（東京大学）、山崎信（サントリー食品インターナショナル株）、末武綾子（東京海洋大学）、杉山摩利子（名古屋大学）、鈴木未宇（八千代病院）、髙木博史（名古屋大学）、鷹股亮（奈良女子大学）、滝啓吾（名古屋大学）、立部誠（松谷化学工業株）、田中輝（名古屋市立大学）、田中都（名古屋大学）、谷口徹（群馬大学）、中尾玲子（徳島大学）、中村文哉（アサヒグループホールディングス株）、成川真隆（東京大学）、西村友里（奈良女子大学）、沼野利佳（豊橋技術科学大学）、野木康子（味の素株）、野尻健介（長谷川香料株）、酒井充（名古屋市立大学）、田中弘寛（北海道大学）、福島篤（聖マリアンナ医科大学）、藤井徹（八千代病院）、藤原万桜（名古屋大学）、近藤邦生（生理学研究所）、近藤高史（味の素株）、齋藤雄也（広島大学）、齋藤弘貴（サッポロホールディングス株）、坂井信之（東北大学）、坂井勇介（久留米大学）、苗 哲崇（朝日大学）、佐々木 努（群馬大学）、佐藤貴弘（久留米大学）、佐藤真梨萌（東京大学）、志念哲也（徳島大学）、柴田誠祐（日本製粉株）、清水彬礼（京都大学）、上満得史（日本たばこ産業株）、新谷隆史（基礎生物学研究所）、末武雄（東京海洋大学）、杉山摩利子（名古屋大学）、鈴木栄（八千代病院）、高木博史（名古屋大学）、鷹股 亮（奈良女子大学）、渡 哲也（名古屋大学）、松井義（松谷化学工業株）、田中輝（名古屋市立大学）、田中都（名古屋大学）、谷口徹（群馬大学）、中村 毅（小山田記念温泉病院）、中村千華（大阪市立大学）、中村文哉（アサヒグループホールディングス株）、成川真隆（東京大学）、西村友里（奈良女子大学）、沼野利佳（豊橋技術科学大学）、野木康子（味の素株）、野尻健介（長谷川香料株）、酒井充（名古屋市立大学）、田中弘寛（北海道大学）、福島篤（聖マリアンナ医科大学）、藤井徹（八千代病院）、藤原万桜（名古屋大学）、坂井勇介（久留米大学）、苗 哲崇（朝日大学）、佐々木 努（群馬大学）、佐藤貴弘（久留米大学）、佐藤真梨萌（東京大学）、志念哲也（徳島大学）、柴田誠祐（日本製粉株）、清水彬礼（京都大学）、上満得史（日本たばこ産業株）、新谷隆史（基礎生物学研究所）、末武雄（東京海洋大学）、杉山摩利子（名古屋大学）、鈴木栄（八千代病院）、高木博史（名古屋大学）、鷹股 亮（奈良女子大学）、渡 哲也（名古屋大学）、松井義（松谷化学工業株）、田中輝（名古屋市立大学）、田中都（名古屋大学）、谷口徹（群馬大学）、中村 毅（小山田記念温泉病院）、中村千華（大阪市立大学）、中村文哉（アサヒグループホールディングス株）、成川真隆（東京大学）、西村友里（奈良女子大学）、沼野利佳（豊橋技術科学大学）、野木康子（味の素株）、野尻健介（長谷川香料株）、酒井充（名古屋市立大学）、田中弘寛（北海道大学）、福島篤（聖マリアンナ医科大学）、藤井徹（八千代病院）、藤原万桜（名古屋大学）、坂井勇介（久留米大学）、苗 哲崇（朝日大学）、佐々木 努（群馬大学）、佐藤貴弘（久留米大学）、佐藤真梨萌（東京大学）、志念哲也（徳島大学）、柴田誠祐（日本製粉株）、清水彬礼（京都大学）、上満得史（日本たばこ産業株）、新谷隆史（基礎生物学研究所）、末武雄（東京海洋大学）、杉山摩利子（名古屋大学）、鈴木栄（八千代病院）、高木博史（名古屋大学）、鷹股 亮（奈良女子大学）、渡 哲也（名古屋大学）、松井義（松谷化学工業株）、田中輝（名古屋市立大学）、田中都（名古屋大学）、谷口徹（群馬大学）、中村 毅（小山田記念温泉病院）、中村千華（大阪市立大学）、中村文哉（アサヒグループホールディングス株）、成川真隆（東京大学）、西村友里（奈良女子大学）、沼野利佳（豊橋技術科学大学）、野木康子（味の素株）、野尻健介（長谷川香料株）、酒井充（名古屋市立大学）、田中弘寛（北海道大学）、福島篤（聖マリアンナ医科大学）、藤井徹（八千代病院）、藤原万桜（名古屋大学）、坂井勇介（久留米大学）、苗 哲崇（朝日大学）、佐々木 努（群馬大学）、佐藤貴弘（久留米大学）、佐藤真梨萌（東京大学）、志念哲也（徳島大学）、柴田誠祐（日本製粉株）、清水彬礼（京都大学）、上満得史（日本たばこ産業株）、新谷隆史（基礎生物学研究所）
【概要】
「食欲・食嗜好」をテーマに，多分野からの研究者を集めた学際的な研究会として，第2回食欲・食嗜好の分子・神経基盤研究会が6/10-11に開催された。

分野横断的に集まった参加者（合計100名。アカデミア76名，産業界18名，その他6名）が，unpublished dataを中心とした26演題（12の口頭発表と14のポスター発表）に対して様々な観点から議論を行った。十分に討論時間を確保し，通常の学会よりも多くの質疑応答が活発になされた。また，参加者全員にプロフィールを作成してもらい，事前配布を行った。その結果，発表者以外の強みとニーズのマッチングが可能となり，休憩時間も参加者間の情報交換に活用された。

参加者に対する事後アンケート（有効返答数80，参加者の80%）の結果，「研究会の充実度」は「高い（5）」と「やや高い（4）」が93%を占めた。また，「来年も参加したい？」，「知り合いの研究者に薦めたい？」という質問にも，「すごく思う（5）」と「やや思う（4）」の合計84%と92%であり，昨年の反省点が活かされ，前回より改善した。

口頭・ポスター発表の質に関しても，「高い（5）」と「やや高い（4）」が73%と59%であった。ポスター発表の数と質の向上が今後の課題と思われる。また，「もう少しヒトを対象とした研究も聞きたい」や，「学際的な会なので，総説的な教育講演もあってもよいので」，という意見もあり，これまでの研究会の講演は全て公開したが，招待講演を取り入れるか今後検討が必要である。

「学術領域の派閥を感じない，自由で，若い研究者が生き生きと発表できる環境はとても良い」とか，「産学の壁を越え，フラットに最先端の研究者と気軽に話ができる会は他にはなく貴重」といった意見が寄せられていた。来年度さらに研究会を発展させるべく，改善策を準備したい。
（2）腸—脳連関による新しい視床下部レプチン抵抗性発症機序の解明

金子賢太朗 1,2, 田中智洋 1,2, 中尾一和 1, 福田真 2
(1 京都大学大学院医学研究科メディカルイノベーションセンター
2 ベイラー医科大学小児科チルドレンズニュートリションリサーチセンター
3 名古屋市立大学大学院医学研究科消化器・代謝内科学)

過栄養では視床下部レプチン抵抗性が惹起され肥満の原因となるが、レプチンシグナル障害の分子実体は未解明である。

我々は最近、細胞増殖等に関わる Ras ファミリー低分子量 G タンパク質 Rap1 がマウス視床下部に高発現を示し、高脂肪食給餌は脳の活性型 Rap1 を増加させることを見出した。そこで高脂肪食による Rap1 活性化が肥満発症の原因となると仮定し、視床下部を含む脳特異的 Rap1 欠損マウス (Rap1fl/fl/CaMK2Cre) を作製した。欠損マウスでは高脂肪食下でのレプチンによる STAT3 リン酸化の改善や高脂肪食による体重増加の抑制を認めたことから、脳の Rap1 が肥満の発症に重要な役割を持つことが証明された (Cell Reports 2016)。

Rap1 は GPCR/Gs/cAMP 経路により活性化される。そこで内因性 GPCR リガンドが Rap1 活性化を介してレプチン抵抗性を誘導する可能性を考え、独自の視床下部器官培養系を用いて Rap1 活性化因子を探索した。結果、Rap1 を活性化する消化管ホルモン X を発見し、X がレプチンによる STAT3 リン酸化を阻害すること、X のマウス脳室内投与がレプチンの体重減少作用を阻害することを突き止めた。本研究により、腸—脳連関に基づく GPCR を介したレプチン抵抗性の誘導、という新しいメカニズムを証明した（Manuscript in revision 2017）。

（3）ウイルストレーサーを用いた PVH CRH ニューロンの上流の神経細胞の網羅的解析

近藤邦生 1,2, Zhonghua Lu2, Xiaolan Ye2, David P. Olson3, Bradford B. Lowell3, Linda B. Buck2
(1 生理学研究所 生殖・内分泌系発達機構研究部門
2 Basic Science Division, Fred Hutchinson Cancer Research Center
3 Beth Israel Deaconess Medical Center, Harvard Medical School)

食欲や摂食行動はストレスによって影響を受ける。脳の視床下部室傍核(PVH)に存在する CRH ニューロンは、下流のストレスホルモンの分泌を制御することによりストレス応答において中心的な役割を担っている。この PVH CRH ニューロンの活性を調節する上流の神経回路を明らかにするために、新たな経シナプス性ウイルストレーサーを用いて解析を行った。仮性狂犬病ウイルスは神経細胞に感染すると増殖し、シナプスを介して上流の神経細胞に逆行的に輸送される。我々は Cre リコンビナーゼ発現細胞に直接接続している上流の神経細胞ののみに感染する「単シナプス性ウイルス」と、間接的に接続している神経細胞にも感染する「多シナプス性ウイルス」の 2 つの組換えウイルスを作製した。これらのウイルスを用いて、PVH CRH ニューロンに直接あるいは間接的にシグナルを伝える神経細胞を解析したところ、ウイルス感染細胞が弓状核や外側核などを含む多くの脳の領域に観察された。このことから、CRH ニューロンは多岐にわたる脳の領域から調節を受けていていることが明らかになった。単シナプス性と多シナプス性のウイルストレーサーを用いた我々の神経回路の同定法は、特定の神経細胞の上流の神経細胞の解析に有用であると考えられる。
(4) 視覚情報を摂食中枢へ伝えるゼブラフィッシュ神経回路の同定

武藤 彩（国立遺伝学研究所 初期発生研究部門）

ゼブラフィッシュは受精後4～5日目に泳ぎ始め、直ちに摂食行動を開始する。側の認識に視覚系が重要な役割を担うことは知られているが、視覚による側の認識から摂食行動の誘起へと至る神経回路は不明である。我々は、捕獲行動中に活動する神経回路をカルシウム (Ca) イメージングにより同定することを目標に、ゼブラフィッシュ脳内の様々な領域にタンパク質性蛍光 Caプローブ GCaMP を発現させ、ゼブラフィッシュ稚魚の捕獲行動を蛍光イメージングにより観察した。その結果、ゾウリムシを見ただけで稚魚の視床下部下葉で神経活動が生じること、また、視覚系においては前視蓋の特定の神経核で神経活動が生じることを見出した。さらに、前視蓋神経核から視床下部下葉への直接の投射を観察し、この回路を破壊した場合、捕獲活動が抑制されることを明らかにした。実験に用いたゼブラフィッシュ稚魚は、それ以前の摂食経験がないことから、前視蓋一視床下部下葉回路は、本能行動を担う摂食回路として働くと考えられる。

(5) 食嗜好の学習に関わる嗅覚神経回路

山口正洋（高知大学医学部・統合生理学）

食行動において嗅覚は大きな役割を担っている。食べ物の匂いは食欲を促進し、食べ物の味わいに匂いが大きく関与している。食嗜好は「好き、食べたい」という情動に支えられているが、多くの場合、それぞれの経験、学習によって形成される。もともと嗅覚神経回路は情動や学習記憶を担う脳領域と密接な神経連絡を作っていることから、食べ物の匂いが情動を喚起して好き嫌いの学習に至る神経回路を明らかにすることは食嗜好の理解に重要である。

匂い情報を処理する嗅皮質は解剖学的に様々な領域に区分されている。個々の機能はほとんど不明だが、「嗅結節」は中脳から豊富なドーパミン入力を受けており、匂いを報酬（食べ物）と結びつける重要な役割を担っていると想定される。マウスにある匂いを報酬（砂糖）と結びつけて学習させると、その匂いに引き寄せられる際に嗅結節の特定の場所（前内側ドメイン）が活性化した。このドメインは学習させるマウスでは活性化せず、匂いに誘引される際には匂いの種類によらず活性化するため、匂いを報酬行動に変換する機能ドメインと考えられた。またこのドメインは生直後のマウスでは未発達であったが、ちょうど離乳する時期に構造的機能的に発達し、匂いに応じて活性化するようになった。以上のことから嗅結節の機能ドメインは、食の嗜好性を新たに学習、獲得する上で重要な役割を担っていると考えられる。

(6) 食品情報処理における感覚間相互作用—ヒト心理・生理学的研究

岡本雅子、東原和成
（東京大学大学院農学生命科学研究科応用生命化学専攻生物化学研究室、JST 創造科学技術推進事業（ERATO）東原化学感覚シグナルプロジェクト）

五感で味わうという言葉にみられるように、食品のおいしさは、味、香り、舌触りなど口に入れてから感じる情報のみならず、見た目や、調理の音など、五感すべての感覚情報の影響を受けて変化する。さらにヒトにおいては、おいしさは、パッケージやラベルなど、食品に付随する情報にも影響を受ける。発表者らは、食品情報処
理における感覚間相互作用について、官能評価などヒトの主観的報告に依存する評価法と共に、脳波など生理計測を用いて調べている。本発表では官能評価法によって明らかになった、視覚、味覚、喫覚の相互作用を紹介する。また、喫覚と視覚の感覚間相互作用を対象とした脳波研究の結果を報告する。これらを基に、心理学・生理計測を用いたヒトの食嗜好の研究の可能性について議論する。

（7）嗜好性の異なる味溶液を混合した場合にその識別性と嗜好性はどのように変化するか？

川吉尚 1,2, 山村知暉 1, 山田茂貴 2, 安尾敏明 1, 諏訪部武 2, 砂 哲崇 1
（1朝日大・歯・口腔生理, 2朝日大・歯・障がい者歯科）

我々ヒトを初めとした雑食性の動物が通常摂取しているのは、単純な単一味溶液ではなく、複数の化学物質が混在した複合物であり、かつ、それらは、硬さ、温度、テクスチャーといった物理的性質をも兼ね備えた複合刺激物である。しかしながら、従来のこの分野の研究は、あくまでも単一の味溶液を対象とした嗜好性や神経機構を調べたものがほとんどであり、この手法を続ける限り、本来の雑食性動物の摂食行動を解明するという趣旨からは遠いものと我々は危惧する。

本発表では、本来の食物は、複合刺激物であるという観点に立ち、嗜好性の異なる複数の味溶液を混合した液（以下、混合味溶液）を呈示された時、その嗜好性が、単体味溶液が呈示された場合と比べて、どのように変化するかを調べるとともに、そもそもその混合味溶液中の内容物をどの程度まで識別することができるのかを、ヒト（心理学的手法による）とラット（近年、我々が開発したある行動学的研究法による）の両方で検討した。その結果、混合味溶液の識別と嗜好性の発現に対して、ヒトとラットで共通した法則の存在を見出したので報告したい。

（8）摂食を誘引する視床下部の活動が味覚感受性に与える影響の解析

傅 欧, 岩井 優, 中島健一朗
（東京大学農学生命科学研究科応用生命化学専攻）

味覚は食物の価値の判断基準として機能する。例えば、甘味は高栄養価の糖質の呈する味であり多く摂取される一方、苦味は毒物や腐敗物の呈する味で忌避される。一方、味の感じ方は空腹や満腹など生理状態に応じて変化することが報告されている。例えば、空腹になると甘味に対して敏感になることが経験的に知られている。しかし、空腹時の脳における味覚感受性の調節のメカニズムは依然不明である。

近年の研究により、視床下部弓状核に局在するアグーゼ関連ペプチド産生神経（以下 AgRP 神経と表記）は、絶食時に脳内で最初に興奮し、脳内の様々な部位に投射することで摂食亢進に必要な神経ネットワークの活動を引き起こすことが分かった。

本研究では、光遺伝学を用いて AgRP 神経を活性化することで、いわば人工的に空腹状態を再現し、空腹を引き起こす神経回路の活動が味覚感受性に及ぼす影響を探索した。

AgRP 神経特異的に Cre リコンビナーゼを発現する遺伝子変異マウスの視床下部に光応答性イオンチャネルであるチャネルロドプシン 2 をアデノ随伴ウイルスにより導入した。このマウスは、光ファイバーを挿入し青色光で照射すると AgRP 神経が選択的に興奮し、摂食行動が誘引される。また光ファイバー挿入部位を AgRP 神経の投射先ごとに変化させ、各投射部位を選択的に活性化し、AgRP 神経の活動が味覚感受性に与える影響を Brief Access Taste Test で評価した。

その結果、AgRP 神経の細胞体が局在する視床下部弓状核を光刺激すると甘味溶液に対する感度が上昇するこ
とが明らかになった。重要な事にこの変化は生理的に空腹状態のマウスでも観察された。一方、苦味や酸味など忌避される味に対する感度はAgRP神経の活動に応じて低下した。また、AgRP神経の各投射先を光刺激したところ、多くの部位で摂食亢進が見られたのに対し、味に対する感度の変化は生じる部位と生じない部位があることから、AgRP神経の投射先のうち一部経路が選択的に味覚感受性に影響を与えることが示唆された。

(9) キイロショウジョウバエを用いた、味覚系と摂食/報酬系をつなぐ神経回路の同定

宮崎隆明1,2,3, 林 子暘1, 李 奇宏1, マーク ストッファー1, 伊藤 啓2, 鈴木えみ子3（米国 NIH-NICHD, 2東大・分生研, 3遺伝研）

味覚感受系からの入力を処理し、摂食系や報酬系とつながる一連の神経回路がどのようになるものであるのか明らかでない。本研究では、このような神経回路を同定するため、豊富な分子遺伝学的手法が利用可能で、比較的単純な神経系を持っているながら味刺激に対して状況に応じて様々な行動を示すことができるキイロショウジョウバエ（以下、ハエ）をモデルとして用いた。ハエでは、口で感じた味情報を脳に送る味覚感覚神経が既に同定されているが、その下流にある神経回路についてはほとんど知られていない。そこで、味覚感受神経につながっている二次神経細胞を同定した。

ハエでは、遺伝学的手法を用いて、系統ごとに固有の種類の神経細胞で遺伝子発現を誘導できる。約5000系統から、味覚感覚神経の投射先付近にある神経線維を標識するものを選び出し、それぞれについて甘味感受性の感覚神経末端とシナプスを作っているか否かを解析したところ、約16系統が15種類の味覚二次神経細胞を標識していた。これらのうち1系統は一連の摂食行動を駆動する運動司令神経細胞とつながっていた。この結果により、味覚系と摂食系・報酬系をつなぐ神経回路を遺伝学的に操作しながらラヴィプライニングや行動実験をすることが可能となったので、今後、これらの神経回路の役割を解析する予定である。

(10) 味と匂いの学習における連合構造の行動学的検討

大沼卓也1,2, 坂井信之1（1東北大学大学院文学研究科, 2東北大学学際高等研究教育院）

本研究では、ラットにおける味と匂いの学習の連合構造および神経基盤を行動学的に明らかにするため、高次条件づけパラダイムを用いた検討をおこなった。ラットは二次条件づけ(SOC)群および感性予備条件づけ(SPC)群のいずれかに割り当てられた。Phase 1においてSOC群は匂いAが添加されたサッカリン溶液と、匂いCが添加されたキニーネ溶液をそれぞれ提示された。その後のPhase 2では、匂いAと匂いBが混合添加された水と、匂いCと匂いDが混合添加された水をそれぞれ提示された。一方でSPC群は、SOC群と逆の順序でこれらの刺激を提示された。その後のテストでは、両群ともに匂いBが添加された水と、匂いDが添加された水を同時に提示された。その結果、SOC群は匂いBが添加された水を匂いDが添加された水よりも多く飲むが（学習の成立）、SPC群は両者を同程度に飲むことがわかった（学習の不成立）。これまでの学習心理学的研究により、SOCでは刺激による情動が中心として連合され、SPCでは刺激の感覚情報が中心として連合されることがわかった。そのため、味と匂いの学習がSOCでは成立し、SPCでは不成立であったことから、味による快不快の情動が
優先的に匂いと連合され,味の持つ「甘い/苦い」の感覚的情報は匂いと連合されにくかった。同時に,この学習の獲得には,情動の処理に関わる扁桃体などの領域が主に関与している可能性が行動学的に示唆された。

（11）視床下部外側野に投射する嗅皮質領域の発現

村田航志（福井大学医学部脳形態機能学分野）
小林憲太（生理学研究所ウイルスベクター開発室）
深澤有吾（福井大学医学部脳形態機能学分野）
山口正洋（高知大学医学部生理学講座）
森 憲作（東京大学）

嗅覚は摂食行動をはじめ様々な行動を誘起する。嗅覚中枢神経回路が摂食行動をいかに制御するかを調べるために,我々は摂食中枢領域である視床下部外側野からの逆行性トレース実験を行った。逆行性標識された細胞はolfactory peduncleの後腹側領域にも分布した。以降この領域をarea Xと仮称する。area Xはventral tenia tectaと前梨状皮質の間,嗅結節と側坐核の前側に位置していた。またarea Xは抗DARPP-32抗体染色に対して陰性であり,腹側線条体とは区別された。area Xからの順行性標識を行うと,視床下部外側野のオレキシンニューロンがいる

脳で作り出され認識される空腹感は,腸管,血中,その他の末梢組織や,外界からの情報を統合することで生み出される。以前より,視床下部にあるオレキシン含有神経細胞は,摂食促進作用を持つことが報告されてきたが,オレキシン神経が作用する神経回路については,まだ不明な点が残されていた。私たちは,マウスを用いてオプトジェネティクス技術を活用することで,オレキシン神経活動を亢進させ,摂食行動にどのような影響が見られるのかを観察する実験を行った。オレキシン神経の内在的な活動レベルが低いと考えられる

（12）マウスにおける島皮質を介したオレキシン摂食促進機構

楠本-吉田 郁恵,山口 蘭,桑木共之
（鹿児島大学大学院医歯学総合研究科統合分子生理学分野）

脳で作り出され認識される空腹感は,腸管,血中,その他の末梢組織や,外界からの情報を統合することで生み出される。以前より,視床下部にあるオレキシン含有神経細胞は,摂食促進作用を持つことが報告されてきたが,オレキシン神経が作用する神経回路については,まだ不明な点が残されていた。私たちは,マウスを用いてオプトジェネティクス技術を活用することで,オレキシン神経活動を亢進させ,摂食行動にどのような影響が見られるのかを観察する実験を行った。オレキシン神経の内在的な活動レベルが低いと考えられ

恩の実際
（13）エストロゲンの摂食抑制作用におけるオレキシンの役割

鷹股 亮（奈良女子大生活環境科学系）
西村友里, 金森好美, 近藤沙也加（奈良女子大大学院人間文化研究科）

エストロゲンには、摂食抑制・抗肥満作用があることが知られている。本研究室のこれまでの研究より、卵巣摘出ラットへのエストロゲン補充は主に明期の摂食量を減少させることを明らかにしてきた。本研究では、エストロゲンの摂食抑制作用におけるオレキシンニューロンの役割を明らかにすることを目的とし、糖利用低下時の摂食行動とオレキシンニューロン活動に及ぼすエストラジオール補充の影響について卵巣摘出ラットを用いて検討した。7週齢のWistarメスラットの卵巣を摘出し、エストラジオール(E2)を補充したE2群とコレステロール(Veh)を補充したVeh群に分けた。2週間後に静脈内にカテーテル留置手術を行い、回復後に静脈内に2-deoxy-D-glucose (2DG)を投与し、その後の摂食量を測定した。同様の実験を行ない、オレキシンニューロンにおけるc-Fos発現の割合を測定した。その結果、エストロゲンは糖利用低下時の摂食量とオレキシンニューロン活動を明期に特異的に抑制することが明らかになった。

（14）オピオイド受容体はGABA神経を介して摂食行動を調節する

米持奈央美, 植田大暉, 池田弘子, 亀井淳三（星薬科大学薬物治療学教室）

オピオイド神経は、嗜好性食品の報酬において重要な役割を果たすことが知られ、腹側被蓋野や側坐核のオピオイド受容体がその報酬に関与することが明らかになっている。一方、これまでに演者らは視床下部外側野のオピオイド受容体が摂食調節に関与することを明らかにしてきた。例えば、視床下部外側野にオピオイド受容体拮抗薬を投与すると摂食行動は抑制され、このオピオイド受容体による摂食調節がGABA神経を介することを報告した。視床下部外側野のGABA神経による摂食調節機構については、摂食により視床下部外側野のGABA神経が活性化し、この活性化がGABAA受容体を介して摂食行動を終結させる可能性を示す結果を得た。これらの結果から、オピオイド受容体は視床下部において摂食調節に重要な役割を果たし、その調節は同部位のGABA神経を調節することによって発現することが示唆される。オピオイド神経は食の嗜好性や報酬を司るものとして知られておりが、本研究から、報酬のみならず視床下部を介した摂食調節においても重要な役割を果たすことが示された。

（15）視床下部室傍核CRFニューロンを脳内投射部位によりタイプ分けしその機能を調べる

堀尾修平（徳島大学大学院医歯薬学研究部）

視床下部室傍核のCRFニューロンは、元来神経内分泌ニューロンと考えられてきたが、最近では、脳内のごく多くの部位にも神経線維を送っていることが分かってきた。CRFニューロンは摂食調節においても、このような神経回路を介して関わっていると考えられる。室傍核のCRFニューロンと一口に言っても、実は様々なタイプのニューロンが存在し、それぞれ別々の機能を担うと考えられる。従来の研究方法では、それらのタイプを区別し、同
定することは容易ではなかった。本研究会では、室傍核のCRFニューロンをその脳内投射部位によってタイプ分けするという新しい試みについて発表する。第1に、CRF-Creマウスの室傍核に、Cre依存性にGFPとWGAを発現するウイルスベクターを注入し、投射2次ニューロンをWGA発現により明らかにする。第2に、それらの投射部位にCre依存性にGFPを発現する逆行性ウイルスベクターを注入し、室傍核でのGFP発現ニューロンを調べる。このニューロンは、特定の脳部位に投射するCRFニューロンと考えられる。第3に、投射部位にCre依存性に機能分子を発現する逆行性ウイルスベクターを注入する。その結果、特定のCRFニューロンのみの機能分子が発現するため、そのニューロンの生理機能を調べることが可能になる。このような方法を用いて、摂食調節に関与するニューロンとその経路を正確に追ることが可能である。

（16）油脂のおいしさとストレスホルモンが過食を引き起こす

松村成暢（京都大学大学院農学研究科食品生物科学専攻）

マウスに高脂肪食を与えると過食を招き、肥満を誘導することが一般的に知られているが、まだに未解明な部分が多いように思われる。マウスや人間において、実際油脂含量の多いものを摂取していても肥満にならないケースも多々あるからである。そもそも油脂は消化吸収の過程で消化管ホルモンなどを介して強力に食欲を抑制する。現代の過食の懸念要素の一つとしてストレスがあげられる。しかしながら、ヒトはストレスを受けると過食にもなるケースがあり、やはり不明な点が多い。そこで今回、油脂摂取とストレスがいかに肥満を招くのか、そのメカニズムの解明を行った。本実験においてはマウスにストレスを与えるかわりにストレスホルモンを投与して実験を行った。コルチコステロンを高濃度で投与すると、投与していない群と比較してゆるやかな体重増加が観察された。次に、マウスに標準飼料と同時にコーンオイルを与え、体重変化を観察した。マウスは標準飼料とコーンオイルをほぼ等量摂取した。このとき総エネルギー摂取量の増加はみられたが、エネルギー消費の増加も同時に起こり、結果として体重増加はほとんどみられなかった。コルチコステロンを投与し、さらにコーンオイルを与えたマウスにおいて著しい体重増加がみられた。コルチコステロン投与により摂食量の増加、安静時エネルギー消費の低下がみられた。この結果より、血中コルチコステロン濃度の上昇と油脂の摂取が、エネルギー収支を正に傾かせることにより肥満を招くことが明らかとなった。これはストレスにより血中で増加したコルチコステロンが動物の摂食調節機能を狂わせる可能性を示唆している。

（17）新規視床下部分泌性小タンパク質NPGLはマウスにおいてエネルギーホメオスタシスに関与する

齋藤鷹也、鹿野健史朗、松浦大智、岩越栄子、古満芽久美、越智祐太、浮穴和義
（広島大学大学院総合科学研究科）

我々は最近、鳥類の視床下部から新規遺伝子を発見した。この新規遺伝子から産出される成熟小タンパク質をNeurosecretory protein GL（NPGL）と命名している。また、データベース検索により、NPGLは脊椎動物に広く保存され、ヒトやマウスにも存在することを明らかにしてい る。ニワトリヒナにおいては体重増加に関与することを明らかにしているが、哺乳類におけるNPGLの分布や機能は未だ明らかになっていない。そこで本研究ではC57BL/6マウスを用いてNPGLの生理機能の解明を試みた。

まず、マウスの視床下部からNPGLをコードする前駆体遺伝子配列を明らかにし、リアルタイムRT-PCR法と
形態学的解析を用いて NPGL の局在を調べた。その結果、NPGL 産生細胞は弓状核後外側部に局在し、神経線維は POMC ニューロンに投射していることが明らかになった。次に栄養状態により NPGL の発現が変化するか調べたところ、24 時間絶食により NPGL の発現量が増加し、高脂肪食を給餌させると発現量が減少した。さらに、NPGL を脳室内に投与し摂食行動への影響を調べた結果、摂食量の増加が認められた。以上の解析から、NPGL はマウスにおいて POMC ニューロン活動の抑制を介し、摂食行動を促進させる視床下部因子であることが示唆された。

（18）食性変化に伴う消化管の栄養素吸収機構の変化の検討

石塚典子, 長橋美奈, 持田唯愛, 林 久由
（静岡県立大学）

両生類では幼生の水棲から、成体では陸棲へ生活圏を拡大させ、この変化に適応するために変態を行う。生活圏の拡大は、食性的変化を伴い、これに対応して両生類の消化器系は変態に伴い大きく再構築されることが知られている。カエルでは幼生のオタマジャクシは、長い小腸を有しており、変態に伴い小腸の著しい短縮と上皮組織の再構築、結合組織、筋組織の発達が起こることが知られている。しかし、この消化管の形態変化の際に消化管機能がどのように変化しているかは明らかにされていない。草食から肉食への食性変化は Na\(^{+}\)、グルコースの摂取量の増加が予想される。このため、本実験では幼生のオタマジャクシと成体のカエルの腸管の Na\(^{+}\)代謝並並に Na\(^{+}\)依存性グルコース吸収機構に着目し検討を行った。

飼料中の Na\(^{+}\)含有量は低いが、オタマジャクシの腸管管腔内 Na\(^{+}\)濃度は、最も高い部位では約 60mM とカエルと同程度の濃度が維持されていた。また、オタマジャクシ、カエルともに、Na\(^{+}\)依存性の SGLT1 によるグルコース吸収機構が観察された。食性変化に伴い腸管管腔内 Na\(^{+}\)濃度 Na\(^{+}\)を維持する機構並びに Na\(^{+}\)依存性グルコース吸収機構は大きく変化しており、別の機構が食性変化に適応していることが示唆された。

（19）摂食と生殖を制御するエネルギーセンサーとしての後脳上衣細胞の役割

美辺詩織 1,2, 出浦慎哉 1,2, 鈴木 1,2, 高橋哲平 1,3, 三宝 誠 3, 平林真澄 3, 井上直子 4, 上野山賀久 1, 佐藤真梨萌 1,2, 松田二子 2, 池上花奈 1,2, 前多敬一郎 2,3
（1名古屋大学大学院生命農学研究科, 2東京大学大学院農学生命科学研究科, 3生理学研究所）

哺乳類の生殖は、光やストレス、エネルギーレベルなど、さまざまな外的環境因子によって制御されている。ラット第 4 脳室にグルコース代謝阻害剤を投与すると摂食行動が誘起され、性腺刺激ホルモン（LH）の分泌が抑制される。このことからわれわれは、後脳上衣細胞は摂食と生殖に関わるエネルギーセンサー細胞であると考えた。

脳室を裏打ちする上衣細胞には、グルコースセンシングの鍵分子であるグルコキナーゼと SGLT1 が発現しており、in vitro で細胞外グルコース濃度変化に応答し細胞内 Ca\(^{2+}\)濃度が上昇する。ラット後脳の第 4 脳室に AMPK 活性化剤（AICAR）を投与すると、パルス状 LH 分泌が抑制された。また、免疫組織化学により第 4 脳室に接している上衣細胞の繊毛に AMPK の局在が確認された。このことから、繊毛に AMPK を発現している上衣細胞はエネルギー感知を行っているセンサー器官だと考えられる。さらに、上衣細胞を in vitro で解析するために、上衣細胞を緑色蛍光タンパク質で可視化した遺伝子改変マウスを作製し、遺伝子変換マウスの後脳から発光を指標に単離した上衣細胞に AICAR を作用させ
たところ、細胞内Ca^{2+}濃度が上昇し、上衣細胞が活性化されることが示された。以上から、後脳上衣細胞は細胞子レベルAMPKを介してグルコースレベルを感知し、LH分泌を調節していると考えられる。

(20) カルシウム単回経口投与による短期的な食欲抑制およびその作用機序の検討

小笠原奨之, 比良徹, 原博
(北海道大学大学院農学研究院, 北海道大学大学院農学研究院)

【背景】カルシウムを補足した食事の摂取による食欲抑制、および腸管のカルシウム感知受容体の活性化による、食欲抑制に関与する消化管ホルモン分泌促進が明らかとなっている。しかしながら、カルシウムそのものの食欲への影響については知られていない。本研究では、カルシウムの単回経口投与がラットの食欲に与える影響を検討した。またこのときの血中カルシウム濃度および消化管ホルモン濃度、胃排出速度の影響も検討した。

【方法】一晩絶食させたSD系雄性ラットに試験溶液を経口投与し、直後に飼料を自由摂取させた。<実験1>様々な用量のカルシウム(10 ml/kg BW)を経口投与し、経時的に摂食量を測定した。<実験2>胃排出速度評価のためにアセトアミノフェンを含むカルシウム溶液を経口投与し、飼料を摂取させた後、麻酔下にて採血し、門脈血中アセトアミノフェン濃度、カルシウム濃度、消化管ホルモン濃度を測定した。

【結果と考察】実験1において、50 mg/kg BWのカルシウム投与により、有意に摂食量が減少した。実験2において、血中アセトアミノフェン濃度ならびにカルシウム濃度に群間差は確認されず、食欲抑制に関与する消化管ホルモンPYYの血中濃度に有意な増加が確認できた。以上より、50 mg/kg BWのカルシウムの単回経口投与は摂食量減少をもたらすことが明らかとなった。この作用への血中カルシウム濃度の変動や胃排出抑制作用の寄与は低く、PYYが関与している可能性が示唆された。

(21) 高脂肪食性摂食リズム障害とミクログリアのギャップ結合

佐々木努1, 橋本博美1, 松居翔1, 竹内英之2, 北村忠弘1
(1)群馬大学生体調節研究所・代謝シグナル解析分野
(2)横浜市立大学医学部神経内科・脳卒中医学)

【背景】高脂肪食は、摂食リズムの障害を引き起こし、食事性肥満を誘導する。他方、摂食リズムの是正は、高脂肪食による食事性肥満を抑制する。食事性肥満発症における高脂肪食性摂食リズム障害の重要性が示唆されるが、その発症メカニズムは未解明である。飽和脂肪酸は、視床下部弓状核近傍でミクログリアを活性化し、視床下部の炎症を引き起こす。ミクログリアの活性化による炎症波及の経路としては、炎症性サイトカイン誘導だけではなく、ギャップ結合の解離を介した細胞間隙への低分子の放出による二次性のグリア炎症の経路もある。前者はレプチン抵抗性を惹起して食事性肥満を誘導することが知られているが、後者の食事性肥満の発症過程における役割は未解明である。そこで、後者の過程を選択的に阻害する中枢作用性ギャップ結合阻害剤INI-0602(INI)を用いて以下の検討を行った。

【方法】B6雄マウスを用い、1) INI長期投与の肥満抑制効果、2) 飽和脂肪酸含量の摂食リズム障害への影響、3)INI短期投与の高脂肪食性摂食リズム障害の抑制効果を検討した。

【結果】1)INIは高脂肪食開始初期の過食と食事性肥満を抑制した。2)飽和脂肪酸含量依存性により早くかつ顕著に明記の摂食量が増え、摂食リズム障害が発症した。3)INIは高脂肪食性摂食リズム障害の発症は抑制したが、既に表出している障害は回復しなかった。
【結論】ミクログリアのギャップ結合を介したシグナル伝播が、摂食リズム障害の発症早期に重要である。他方、視床下部での炎症の増幅・持続には、炎症性サイトカインの経路が重要である可能性が示唆された。

(22) Estradiol の食欲調節メカニズムにおける中枢時計の関与

西村友里（奈良女子大学大学院，日本学術振興会特別研究員(DC1)）
鷹股 亮（奈良女子大学大学院）

女性は閉経後、肥満発症リスクが増大する。これは閉経により、卵巣由来のestradiolが不足するためである。estradiolは視床下部において食欲を制御する神経集団に作用し、摂食行動の調節に深い関与する。閉経後肥満の予防・改善策を見出すために、中枢神経系におけるestradiolの作用機序解明が必要である。

我々はこれまでに、卵巣摘出ラットを用いた研究によって、estradiolの摂食抑制作用が概日リズムの制御と密接に関連することを示してきた。すなわち、estradiolは1日のうちの特定の時刻帯；明期の後半に摂食行動を抑制するが、暗期には影響しなかった。また、概日リズムを形成する中枢である視交叉上核（SCN）において、c-Fos陽性細胞数は、明期にのみestradiolによって増加した。

これらの結果は、estradiolの摂食抑制作用が、SCNの神経活動と何らかの関わりを持つことを示唆する。

一方、最近の研究では、estradiolの中枢神経系における機能はセロトニンニューロンを仲介する可能性が示唆されている。我々は選択的セロトニン再取り込み阻害薬の一種であるfluoxetineを用いた実験により、この仮説を支持する結果を得た。さらに、fluoxetineによる食欲調節作用にも概日リズムの要素が含まれており、estradiolの摂食抑制作用がセロトニンニューロンを仲介する可能性を示している。本演題では、その研究過程や今後の方針について報告する。

(23) 食物の嗅覚手がかりへの学習と日内摂食パターンの変調

八十島安伸，山田ゆりか，尾関かさね
（大阪大学大学院人間科学研究所行動生理学研究分野）

ヒトは昼行性動物であり、通常は明期に摂食を行う。一方、マウスは夜行性動物であり、暗期に主要な摂食行動を行う場合が多い。これらの動物種ごとの基本的な日内摂食パターンは、遺伝的もしくは生得的な行動として生理学的に制御されている。一方、ヒトや動物においては、食物が呈する味覚刺激や嗅覚刺激が誘因刺激となることで摂食行動が誘発されることもある。このような摂食は外発的摂食と呼ばれ、それは代謝的欲求や利用可能エネルギーの低下に基づく空腹感などの内的な動因が無くても生じることがある。生得的な日内摂食パターンは、外発的摂食が生じることがあるが、その行動学的な背景要因や脳基盤には不明な点が多い。本発表では、自由給餌条件下的マウスが明期に高嗜好性食物を自発的に摂取するようになる極めて簡便な行動モデル系において、マウスが示す摂食パターンの変容と、その変容への嗅覚手がかり刺激が果たす役割を調べた結果を示したい。その結果から、本モデル系では、嗅覚手がかり刺激と味覚報酬性との連合学習がマウスの摂食行動パターンの変容の一因であると考えられたため、その学習に関わる脳内機序を探るために脳内局所破壊実験を行ったので、その結果についても紹介したい。
（24）老化による食嗜好性変化における口腔内味覚機構の関与

成川真隆, 黒川あずさ, 幸田理恵, 河江真宏, 三坂 巧
（東京大学大学院農学生命科学研究科）

先進国では高齢化が急速に進み、特にわが国においては超高齢社会に突入した。社会保障費の増大とともに人的財産の確保という面においても高齢者の健康維持は社会的な関心事となっている。おいしい食べ物を食べることは、人生の楽しみの一つである。味覚に障害が起これば、食欲を失い、健康を維持することが難しくなる。年を取ると味覚が衰え、食事が細くなる。そのため、味覚機能の維持は健康な生活を送るために重要であると言える。一般に加齢とともに食嗜好性が変化することが知られているが、そのメカニズムはまだ明らかでない。本研究では、加齢により導かれる食嗜好性変化的要因を明らかにするため、老齢マウスと若齢マウスの味感受性を比較し、食嗜好性変化における末梢の味システムの関与を検討した。高齢マウスにおいて、一部の味蕾に対する嗜好性が変化するように観察された。しかし、味蕾における味覚関連分子の発現や味蕾細胞の代謝速度に顕著な差は認められなかった。したがって、加齢によって導かれた食嗜好性の変化は末梢の味受容機構の劣化により導かれたのではなくことが示唆された。一方で、味覚応答を修飾するような血清因子の濃度が高齢マウスで変化していることが観察された。したがって、血清因子のような味覚修飾因子などの作用が一因となり、食嗜好性を変化させる可能性が考えられた。

（25）希少糖 Allulose による GLP-1・求心性迷走神経を介した摂食抑制と投与時間依存的な過食・肥満改善

岩﨑有作1, 仙度光麻1, 比良 徹1, 佐藤雄大3, Chayon Goswami1, 原 博4, 山田祐一郎3, 徳田雅明4, 矢田俊彦1
(1) 自治医科大学 総合医学研究部
(2) 北海道大学大学院農学研究院 基盤研究部門生物機能化学分野
(3) 秋田大学大学院医学系研究科 内分泌・代謝・老年内科
(4) 香川大学医学部 細胞情報生理学講座)

【目的】希少糖 D-Allulose (Allu)は抗肥満・抗糖尿病改善作用を有するゼロカロリー甘味料として注目されているが、その機序は明らかでない。本研究では、Alluの摂食に対する作用、及び、GLP-1と求心性迷走神経の役割の解明を目指す。

【方法・結果】Alluの単回経口投与はGLP-1分泌を促進する。健常マウスへのAllu経口投与は摂食量を有意に抑制し、この作用はGLP-1受容体の阻害剤投与及びノックアウトマウスで、また迷走神経切断によって消失した。高脂肪食負荷マウスは早期過食を呈し、肥満の一因となっている。早期開始時にAlluを連日経口投与（10日間）すると、早期及び1日摂食量を継続的に低下させ、肥満を改善させた。一方、早期開始時にAlluを連日経口投与すると、投与2日までは摂食量を低下させ体重を減少させたが、その後摂食抑制効果が減弱し、体重はリバウンドした。このように、Alluは投与タイミング依存的に、継続的に摂食行動を抑制した。

【結論】本研究で新規 GLP-1分泌刺激成分としてゼロカロリー甘味料のAlluを同定し、過食・肥満改善への有効性を明らかとしました。
（26）SIRT1 は FGF21-OXT axis を介してショ糖嗜好性を制御する

松居 翔, 佐々木 努, 河野大輔, 橋本博美, 小林雅樹, 北村忠弘
(群馬大学 生体調節研究所 代謝シグナル解析分野)

【背景】これまでに、神経特異的 SIRT1 遺伝子改変マウスを用いた解析から、中枢の SIRT1 は高ショ糖（HSD）嗜好性を抑制すること、HSD 嗜好性抑制効果を有することが知られる視床下部オキシトシン (Oxt) の発現が増加することを報告している。そこで次に、OXT ニューロンにおける SIRT1 の HSD 嗜好性抑制効果を検討した。

【方法】OXT ニューロン特異的 SIRT1 過剰発現 (OS-OE) およびノックアウト (OS-KO) マウスを作製し、HSD 嗜好性試験を行った。さらに、OS-OE マウスへの Oxt 受容体アンタゴニスト (OXTR-A) を ip 投与し、HSD 嗜好性への影響を検討した。また、視床下部細胞株で SIRT1 の過剰発現・ノックダウンを行い Oxt の発現、およびプロモーター活性を測定した。加えて、視床下部細胞株への mFGF21 添加実験も行った。

【結果】HSD の嗜好性は、OS-OE マウスで抑制され、OS-KO マウスで増加した。また、OS-OE マウスで減少し、HSD 摂食量が、OXTR-A 投与により抑制された。細胞株では、SIRT1 過剰発現により Oxt の発現が増加し、ノックダウンでは減少した。さらに、SIRT1 の過剰発現は Oxt プロモーターの活性を増加した。また、細胞への mFGF21 添加は、Oxt の発現を増加させた。

【結論】Sirt1 は、FGF21-Oxt axis を介して HSD 嗜好性を抑制する。
12. 臓器相関による生体制御システムとその変容の仕組み

2017年9月23日－9月24日

研究会報告

代表・世話人：山内敏正（東京大学大学院医学系研究科糖尿病・代謝内科）
所内対応者：箕越靖彦（生理学研究所生殖・内分泌系発達機構研究部門）

（1）アディポネクチンによるエクソソーム制御
喜多俊文（大阪大学）

（2）糖・脂質代謝制御におけるアディポネクチン受容体の構造と機能解析
岩部美紀（東京大学）

（3）関節リウマチでの筋肉量減少に対する栄養摂取の影響とその分子基盤の解明
瀬部真由（徳島大学）

（4）骨格筋の糖取り込みにおける性ステロイドホルモンの役割
稲田明理（先端医療センター）

（5）短鎖脂肪酸受容体とエネルギー代謝
木村郁夫（東京農工大学）

（6）モデル生物における新規生理活性ペプチドの発見と臓器相関
児島将康（久留米大学）

（7）肥満における食糧好性変容の脳内メカニズム
岡本士毅（琉球大学）

（8）糖尿病による不快情動反応の変化
池田弘子（星薬科大学）

（9）摂食中枢による味覚の制御—絶食に伴う感覚の変化
中島健一朗（生理学研究所）

（10）肥満・2型糖尿病モデルにおける肝臓糖取り込み障害のメカニズム
渡邉一史（金沢大学）

（11）絶食応答性キナーゼDYRK1Bによる肝代謝調節機構
満島 勝（国立国際医療研究センター研究所）

（12）インスリン受容体を肝臓骨格筋いずれで欠損させても全身におけるグルコース酸化はむしろ亢進する
高橋 幸（東北大学）

（13）末梢シグナル分子を介した運動モチベーション活性化への挑戦
志倉哲也（徳島大学）

（14）香辛料成分により活性化される求心性迷走神経新規サブグループと摂食亢進作用
岩崎有作（自治医科大学）

（15）糖尿病における循環恒常性ロバスト破綻のシステム解析 ～圧反射開ループ解析で見えてきたもの～
岸 拓弥（九州大学）

【参加者名】
池田弘子, 米持奈央美, 植田大暉（星薬科大学）, 稲田明理（先端医療センター）, 井上 明, 稲葉有香, 渡邉 一史（金沢大学）, 岩崎有作（自治医科大学）, 山内敏正, 岩部美紀, 岡本士毅（琉球大学）, 岸 拓弥（九州大学），喜多俊文, 田中紀実, 中村勇斗（大阪大学）, 木村郁夫（東京農工大学）, 児

387
【概要】
個体の糖・脂質・エネルギー代謝の恒常性維持は生命の存続に必須であり、そのメカニズムの正しい理解は健康で豊かな生活を送る上で不可欠である。糖・脂質・エネルギー代謝の制御は、多様な生体制御システムによる臓器相関により成り立っており、そのメカニズムの解には様々な研究分野を横断した学際研究によるアプローチが求められる。本研究会では、神経系、内分泌系、炎症・免疫系、循環系、腸内環境系の専門家が、一堂に関し、最新の知見を提示することで、臓器相関のメカニズムの統合的理解を共有し、今後チャレンジすべき課題を議論することを目指した。また、細胞から臓器・個体を対象として、ゲノム・エピゲノム、転写・タンパク・代謝産物、神経制御から個体表現型までにおよぶ最新の解析技術を紹介することで、今後の共同研究の取り組みの推進・加速に取り組んだ。臓器相関に関わる若手・女性研究者の教育と人材育成にも取り組み、9名の若手研究者、4名の女性研究者に発表をお願いした。具体的な発表は、脂肪組織からの代謝制御（喜多・岩部等）、骨格筋からの代謝制御（渡邉・満島等）、肝臓からの代謝制御（渡邉・満島等）、腸管での代謝センサーと代謝調節（木村等）、中枢神経および自律神経による代謝制御（児島・岡本・池田・中島等）、循環器から自律神経を介した代謝制御（岸等）、末梢から中枢神経へ作用する代謝調節（高橋・志内・岩崎等）について行った。本研究会は、若手研究者を加え、研究分野を超えた参画者の活発な議論を行い、知見・研究技術・人的交流を深めることで、臓器相関による糖・脂質・エネルギー代謝研究の推進に繋がるものとなった。

（1）アディポネクチンによるエクソソーム制御

喜多俊文（大阪大学内分泌・代謝内科学）

GWAS解析の進展によって、ヒトT-カドヘリン(T-cad)遺伝子近傍SNPsは血中アディポネクチン（APN）値や冠動脈疾患リスクを極めて強く関連することが示されている。私たちはこれまでに、APNはGPI-アンカー型蛋白T-cadを介して細胞内に集積し心血管保護作用を発揮することを示してきたが、その分子メカニズムは未解明であった。

今回、多量体APNは、血中の特異的かつ主要なT-cadリガンド蛋白であり、KD=1 nMの高親和性に結合し、T-cad特有のプロドメインがAPNとの結合を強化していることを明らかにした。

また、T-cadキラムを用いて精製した多量体APNを用いて、APNは細胞表面のT-cadに結合することで、大動脈内皮細胞の内部にも取り込まれ、エクソソーム（Exo）成分として再分泌されるのみならず、T-cad依存的にExo産生を促進し、その作用は血中Exoレベルをも規定することを見出した。

さらに、APNによるExo産生促進作用は、Exoに拡散することで内皮細胞や大動脈血管のセラミドを低下するのを見出した。Exoは細胞内不要物の排出・除去を通じて、細胞の恒常性維持や保護に働くことが知られている。本研究で明らかにしたAPN作用機構の新しい分子メカニズムは、APNの多種多彩な臓器保護作用をも説明し得る可能性がある。
（2）糖・脂質代謝制御におけるアディポネクチン受容体の構造と機能解析

岩部美紀（東京大学大学院医学系研究科糖尿病・代謝内科）

我が国の死因の上位を占める心血管疾患（心筋梗塞、脳梗塞等）の主要な原因は、肥満に伴うメタボリックシンドローム・糖尿病と考えられており、これらの生活習慣病は増加の一途をたどっている。

肥満の病態においては、アディポネクチン作用が低下し、生活習慣病の主因となっていることより、アディポネクチン/AdipoRシグナルの活性化がこれらの根本的な治療法になりうることが期待され、AdipoRアゴニストの取得を試みた。さらに、AdipoRの立体構造情報を利用した創薬を目指した。

取得したAdipoRアゴニストは、マウスに経口投与で、AdipoRを介して、高脂肪食負荷によるインスリン抵抗性、耐糖能障害を改善することを示した。さらに、高脂肪食による肥満・糖尿病マウスの持つ糖分を回復させ、肥満で短くなった寿命を延長した。さらに、AdipoRアゴニストの最適化に向けて、AdipoR1及びAdipoR2の結晶構造を決定した。AdipoR1は、7回膜貫通型であり、7本のヘリックスは、Gタンパク質共役受容体のものとは構造的に異なり、さらに、それらの内側に空洞を形成し、中に亜鉛イオンを配位する新規の構造であった。

AdipoRの立体構造の解明は、AdipoRに関わるシグナル伝達機構の解明に繋がると共に、AdipoRアゴニストの最適化及び2型糖尿病等の肥満でリスクが高まる生活習慣病の治療薬の開発を加速すると期待される。

（3）関節リウマチでの筋肉量減少に対する栄養摂取の影響とその分子基盤の解明

瀬部真由（徳島大学大学院栄養生命科学研究部代謝栄養学分野）

【目的】関節リウマチ（RA）患者の約30％はサルコペニアに該当し、高頻度に筋肉の減少が認められるが、これに対する有効な食事介予法は確立されていない。本研究では、RA患者における疾患性サルコペニアと栄養摂取との関係を明らかにするため、臨床的・基礎的検討を行なった。【方法】徳島大学病院または木下病院に外来通院中の女性RA患者45名を対象とした。生体インピークダンス法による体組成の測定、食物摂取頻度調査を実施し、栄養摂取量と骨格筋指数との相関関係を解析した。また、関節炎モデルマウス（SKGマウス）に標準飼料、高脂肪飼料、高スクロース飼料を給食し、RA発症までの日数、関節炎スコアの増悪、腓腹筋量の減少が認められた（p<0.05）。【結論】エネルギー（特に脂質）の過剰摂取は、関節炎の悪化・骨格筋量の低下をもたらすことが示唆された。

（4）骨格筋の糖取り込みにおける性ステロイドホルモンの役割

稲田明理（先端医療センター）

Diabetes develops predominantly in males in experimental models, and extensive evidence suggests that 17β-estradiol
(E2) modulates progression of diabetes in humans. We previously developed a severely diabetic transgenic (Tg) mouse model by β-cell-specific overexpression of inducible cAMP early repressor (ICER) and found that male ICER-Tg mice exhibit sustained severe hyperglycemia, but female ICER-Tg mice gradually became normoglycemic with aging. This implies that differences in circulating androgen and E2 levels might influence skeletal muscle glucose uptake and glycemic status. Here we examined whether a decrease of androgen or E2 excess can improve muscle glucose uptake in hyperglycemic male ICER-Tg mice and, conversely, whether a decrease of E2 or androgen excess can elevate blood glucose levels and impair muscle glucose uptake in normoglycemic female ICER-Tg mice. We treated hyperglycemic male ICER-Tg mice with orchietomy (ORX) or ORX+E2 pellet implantation and normoglycemic female ICER-Tg mice with orchiectomy (OVX) or OVX+5α-DHT pellet implantation to alter the androgen to E2 ratio. ORX+E2 treatment of male ICER-Tg mice caused a rapid drop in blood glucose via both a dramatic increase of β-cells and significantly improved muscle glucose uptake due to the induction of glucose transporter type 4 (GLUT4) expression and translocation of GLUT4 to the cell membrane. In contrast, OVX+5α-DHT-treated female ICER-Tg mice showed an elevation of blood glucose without any decrease of β-cells; instead, they showed decreased muscle glucose uptake due to decreased activation of serine/threonine-specific protein kinase AKT and GLUT4 expression. These findings suggest that androgen (5α-DHT) promotes insulin resistance in females, whereas E2 improves insulin sensitivity in severely diabetic male mice.

(5) 短鎖脂肪酸受容体とエネルギー代謝

木村郁夫（東京農工大学大学院農学研究院応用生命化学専攻代謝機能制御学分野）

近年、食変化による腸内細菌の変化が宿主のエネルギー調節や栄養の摂取、免疫機能等に関与し、その結果、肥満や糖尿病などの病態に影響することが明らかとなっている。そこで、我々は新たに見つかった「食」由来の腸内細菌による代謝産物としての栄養である短鎖脂肪酸を認識する新規脂肪酸受容体に着目した。この短鎖脂肪酸受容体の生体における生理的役割を明らかにすることによって、食-腸内細菌-短鎖脂肪酸による宿主エネルギー恒常性維持機構の解明と、その結果として食と医を結びつけることによる新たな生活習慣病の治療薬開発への糸口の解明を試みた。

短鎖脂肪酸受容体GPR41とGPR43は、ヒトを含む宿主にとって重要なエネルギー源となる酢酸、酪酸、プロピオン酸等の短鎖脂肪酸をリガンドとする。これらの短鎖脂肪酸は、食物繊維に代表される難消化性多糖の腸内細菌による発酵により生成され宿主に供給される。腸内細菌がその宿主のエネルギー調節や栄養の摂取等のエネルギー恒常性維持に深く関与し、その結果、肥満や糖尿病などの病態に影響するという多くの報告から、我々は独自に腸内細菌による短鎖脂肪酸生成を介したGPR41とGPR43制御による宿主エネルギー調節への介入を予測し、短鎖脂肪酸受容体遺伝子変異マウスを用いた個体レベルでの検討を行った。

我々の報告も含め、近年、腸内細菌がその代謝産物を介して腸管における作用だけでなく宿主の全身性の作用へも影響することが明らかになりつつある。食-腸内細菌-短鎖脂肪酸-宿主エネルギー制御軸に基づいて、短鎖脂肪酸受容体による新たなエネルギー代謝制御機構と、宿主糖代謝-腸内細菌糖代謝の密接な連関について、我々の最近の知見を報告する。
（6）モデル生物における新規生理活性ペプチドの発見と臓器相関

児島将康1, 井田隆徳2, 佐藤貴弘1, 大野速雄1, 飯野雄一3
1久留米大学分子生命科学研究科遺伝情報研究部門
2宮崎大学フロンティア科学研究総合センター生理活性物質研究部門生理活性ペプチド探索分野
3東京大学

食欲は生命維持に必要なエネルギー摂取のためのもと基本的な生活活動であり、食欲制御中枢と末梢組織の臓器間クロストークにより複雑かつ微妙に調節されている。脊椎、無脊椎問わず動物において食欲は本能行動の中でも特に重要であり、その調節メカニズムを解明しコントロールすることが出来れば、人での創薬はもちろん、家畜、養殖魚類や有用昆虫の効率的育成、害虫の駆除などに応用でき非常に意義深い。食欲を調節する因子としては様々な物が存在しているが、生理活性ペプチドであるニューロペプチドY (NPY) ファミリーペプチドはホ乳類において摂食行動を強く促進・抑制するので食欲調節のキーレギュレーターとして長く研究されている。

私たちは最近、モデル生物であるショウジョウバエにおいて dRYamide を、C.elegans において CeRYamide を発見した。dRYamide、CeRYamide は NPY ファミリーペプチドと同じ C 末端 RY アミド構造を有していること、またその受容体は NPY 受容体に類似していること、さらにショウジョウバエ、C.elegans において摂食行動を調節すること、などから dRYamide、CeRYamide はモデル生物における NPY ファミリーペプチドと考えられた。

ホ乳類などの高等生物は複雑な身体構造を有し遺伝学的解析が困難であることから、分子・細胞レベルでの未知のメカニズムを発見することが難しい。一方、モデル生物として汎用されるショウジョウバエやC.elegans は、シンプルな構造を有し、細胞系の適用が可能である。今回、モデル生物とホ乳類におけるオーファンGPCR に対する新規生理活性ペプチドの発見をどのようにフィードバックし、応用展開していくのか考察したい。

（7）肥満における食嗜好性変容の脳内メカニズム

岡本士毅1, 與那嶺正人1, Jasmine Millman1, 植田 玲1, 砂川澄人1, 難波豊隆1, 益崎裕章1, 箕越靖彦2
1琉球大学大学院医学研究科内分泌代謝・血液・膠原病 内科学講座（第二内科）
2生理学研究所 生殖・内分泌系発達機構研究部門

肥満の制御は血糖コントロールの質を左右する鍵である。我々は、視床下部室傍核 AMP キナーゼ反応性 CRH ニューロンが絶食後の炭水化物嗜好性の増強を担うメカニズムに深く関与することを明らかにしてきた。マウスを絶食後に再摂食させると、高脂肪食ではなく高炭水化物食を多く選択し、摂取する。この変化は、室傍核 CRH ニューロン選択的に AMPK に対する shRNA を CRH ニューロン特異的に発現させると消失した。絶食後の再摂食において炭水化物食を選択する行動は、マウス個体、あるいは脳の糖代謝を速やかに改善するための恒常性維持機構の一つと考えられる。一方、食餌性肥満モデルマウスでは絶食後に再摂食させると大量の高脂肪食を摂取し、炭水化物増加メカニズムの破壊が示唆された。そこで減量により肥満を解消させると高脂肪調好性が改善する可能性を検討した。食餌性肥満モデルマウスを普通食のみで自由摂食飼育すると体重は速やかに減少した。体重変動が安定した後では絶食後の再摂食における炭水化物嗜好性が回復した。しかし再摂食後の数日間は嗜好性が安定期、総摂取カロリー量は亢進したまま維持された。この講演では、肥満時と減量時における食嗜好性の脳内制御メカニズムについて紹介したい。
（8）糖尿病による不快情動反応の変化

池田弘子，米持奈央美，亀井淳三（星薬科大学薬物治療学教室）

糖尿病は，慢性的な高血糖状態が原因となり，網膜症や腎症，末梢神経障害をはじめ様々な合併症をひき起こすことが知られている。一方，最近になって，糖尿病患者では精神疾患の罹患率が高いことが報告され，糖尿病は中枢神経にも影響を及ぼす可能性が指摘されている。

演者の所属する研究室ではこれまでに，1型糖尿病モデルのstreptozotocin（STZ）誘発糖尿病マウスでは，うつ様行動や不安関連行動の増加を示すことを明らかにしている。演者らは最近，STZ誘発糖尿病マウスでは恐怖条件付け試験において恐怖記憶の増強を示すことを明らかにした。恐怖記憶において，扁桃体や海馬のグルタミン酸神経が重要な役割を果たすことが報告されていることから，STZ誘発糖尿病マウスの扁桃体や海馬のグルタミン酸神経機能が亢進し，これが恐怖記憶の増強に関与することが示唆される。これらの結果から，STZ誘発糖尿病マウスにおけるグルタミン酸神経機能の亢進がどのような機序で発現するか研究を進めており，本発表にてその内容を紹介したいと考えている。

摂食中枢による味覚の制御—絶食に伴う感覚の変化

中島健一朗 1,2, 傅 欧 1,2
（1 生理学研究所生殖・内分泌系発達機構研究部門，2 東京大学大学院農学生命科学研究科）

摂食は生存や繁殖のために最も重要な行動の1つである。また，過食は肥満や糖尿病などをメタボリックシンドロームの原因であり，食欲の適切な制御は予防上も必須である。

食物は栄養と感覚（味覚や嗅覚）の両方の機能を併せ持つが，各因子はこれまでに独立に研究されてきた。このため，個々の受容メカニズムは明らかになってきたものの，これらを統合しなければ分からない課題一例えば，味の感じる感覚によって変化する原因—は未だ不明である。

本研究では，マウスの視床下部で絶食時に活性化し摂食行動を誘引する神経（AgRP神経）の活動を人工的にコントロールすることで，中枢神経系が味の感じ方におけるプロセスを観察した。AgRP神経特異的にCreリコンビナーゼを発現する遺伝子変異マウスの視床下部に光応答性イオンチャネルであるチャネルロドプシン2をアデノン随伴ウイルスにより導入し，AgRP神経を光刺激した際とそうでない時での摂食量および味覚感受性の評価を行った。

その結果，AgRP神経の細胞体が局在する視床下部弓状核を光刺激すると摂食亢進効果が見られたうえ，甘味溶液に対する感度が高まることが明らかになった。重要なことにこの変化は生理的に空腹状態のマウスでも観察された。一方，興味深いことに，苦味や酸味など忌避される味に対する感受度はAgRP神経の活動に応じて低下した。栄養状態に応じて視床下部の活動が変化することで，味覚の調節がなされ摂食行動が効率化されると考えられる。
（10）肥満・2型糖尿病モデルにおける肝臓糖取り込み障害のメカニズム
渡邉一史, 井上啓（金沢大学新学術創成研究機構）

肥満・2型糖尿病における食後高血糖・耐糖能異常の誘因の一つとして肝糖取り込みの障害が指摘されているが、その詳細なメカニズムは明らかにされていない。
今回我々は、肥満モデルにおけるNAD⁺-SIRT2作用の低下が、肝糖取り込み障害に関与することを明らかにした。
高脂肪食負荷マウスでは、肝NAD⁺量の減少、SIRT2活性の低下とともに耐糖能の低下が示唆される。
高脂肪食負荷マウスへのNAD⁺の前駆物質であるNMN投与やNAD⁺に由来活性化されるSIRT2の肝特異的過剰発現は、肝糖取り込みを増加させ、耐糖能異常を改善した。一方で、野生型マウスへの肝特異的SIRT2ノックダウン（KD）は、肝糖取り込みを減少させ、耐糖能異常を誘導した。
肝糖取り込みにおいて主な役割を担うグルコキナーゼ（GK）は、グルコース依存的にGK調節タンパク質（GKRP）から解離して活性化される。野生型肝細胞でははグルコース依存的にGKとGKRPは解離するが、SIRT2-KD肝細胞ではGKとGKRPの解離が障害されていた。一方で、db/dbマウス由来肝細胞ではグルコース依存的なGKとGKRPの解離が障害されていたが、これはSIRT2過剰発現に回復した。これらの結果より、肥満・2型糖尿病における肝糖取り込みを障害は、SIRT2機能低下によるGK-GKRP解離阻害によって誘導されることが示唆された。

（11）絶食応答性キナーゼDYRK1Bによる肝代謝調節機構
満島勝, 松本道宏（国立国際医療研究センター研究所・糖尿病研究センター・分子代謝制御研究部）

肝臓からの糖新生は、絶食に際しては血糖値の維持に不可欠である一方、糖尿病ではインスリン作用不全により亢進し高血糖に大きく寄与する。糖新生は糖新生系酵素の遺伝子発現により制御されており、我々はこれまでに、転写調節分子CITED2が絶食時にアセチル化酵素GCN5・PKAと共にモジュールを形成し、PGC-1αを転写共役因子とし、GCN5をヒストンアセチル化酵素（HAT）として活性化することを報告した（Nat. Med. 2012, Nat. Commun. 2016）。今回CITED2相互作用分子の探索からDYRK1Bを同定した。DYRK1Bは絶食時に発現が高く、インスリンにより発現が調節されていた。また、DYRK1Bは、①PGC-1αをリン酸化し転写共役因子として活性化させる、②GCN5-CITED2-PKAモジュールの形成を促進する、③本モジュール内でGCN5をリン酸化、PKAによるリン酸化・HATとしての活性化を促進する、という3つの作用機序により糖新生を促進することを目指した。本研究より、DYRK1Bはインスリン制御性の新規糖新生調節分子であり、PGC-1αとGCN5に対しPriming kinaseとして作用することで、肝糖新生のGate keeperとして機能していることが示唆された。

（12）インスリン受容体を肝臓/骨格筋いずれで欠損させても全身におけるグルコース酸化はむしろ亢進する
高橋圭, 山田哲也, 杉澤貴志, 片桐秀樹（東北大学大学院医学系研究科糖尿病代謝内科学分野）

¹³C-glucose呼気試験（¹³C-GBT）は、¹³Cで標識されたグルコース（¹³C-glucose）を経口投与後に呼気へと排出される¹³CO₂を測定する試験であり、測定結果は全身におけるグルコース酸化の程度を総合的に反映する。耐
糖能悪化の経過に伴う個体レベルでのグルコース酸化の変化を検討するために、Zucker ratおよびZDF ratに経時的に\(^{13}\)C-GBTを行った。興味深いことに、ZDF ratでは加齢に随伴するインスリン抵抗性の獲得に従い\(^{13}\)CO\(_2\)の排出量が増加した。ZDF ratでは\(^{13}\)C-glucoseの肝クリアランスが減少しており、肝臓のインスリン抵抗性が全身におけるグルコース酸化亢進の要因である可能性を想起した。そこで、後天的に肝臓単独でインスリン受容体（IR）をノックアウト（KO）させたiLIRKOマウスに\(^{13}\)C-GBTを施行したところ、iLIRKOマウスでは血中\(^{13}\)C-glucoseが上昇しており、呼気\(^{13}\)CO\(_2\)排出量も増加していた。この現象は、後天的に骨格筋単独でIRをKOさせたiMIRKOマウスでも観察された。さらに、肝臓と骨格筋の両方で同時にIRをKOさせたiLMIRKOマウスでは呼気\(^{13}\)CO\(_2\)排出が相加的に増加していた。以上より、肝臓/骨格筋いずれにおいてもインスリン作用の低下は個体レベルでのグルコース酸化を亢進させることが示唆された。

（13）末梢シグナル分子を介した運動モチベーション活性化への挑戦

志内哲也\(^1\), 大塚愛理\(^1,2\), 橋本啓祐\(^1,3\), 橋本横佳\(^1,3\), 宮武由実子\(^4\), 前田幸子\(^1\), 阪上浩\(^4\), 勢井宏義\(^1\)

（1）徳島大学大学院医歯薬学研究部統合生理学分野
（2）日本学術振興会特別研究員 DC
（3）徳島大学医学部 Student lab
（4）徳島大学大学院医歯薬学研究部代謝栄養学分野

ロコモティブシンドロームやサルコペニアなど、運動不足が原因となる症状が注目されている。適度な運動が身心に対して良い影響があることは周知の事実であり、近年ではその分子メカニズムも明らかになりつつある。我々もマウスの研究において、トレッドミル走運動による視床下部におけるレプチン感受性が増強することや、ストレスにより低下した社会性行動が自発的な輪廻し運動をできる環境で増強することなど、運動の効用を確認している。しかしながら、運動を自発的に運動することは難しく、とりわけ運動の実施を推奨されるべき人ほど自発的に運動しない傾向が強い。また、運動へのモチベーションを高めるためには、一過性ではなく継続的に高める手段が必要になる。これまでの研究では、運動をさせる直接的な手段としては、脳内へのペプチドや薬物の投与が一般的である。しかし、ヒトへの応用を考えるとき、脳内への直接投与は危険であり、末梢からの投与でも末梢における副作用を考慮しなければならない。本研究では、マウスを用いた運動評価系として、自発的運動を増加させる末梢刺激の探索およびそのメカニズムの解明を試みた。その結果、脂肪摂取後に消化管のシグナル分子から中枢へ伝達される神経が、運動継続性に関与する可能性を見出した。

（14）香辛料成分により活性化される求心性迷走神経新規サブグループと摂食亢進作用

岩崎有作、仙度光麻、矢田俊彦（自治医科大学医学部生理学講座統合生理学部門）

ストレス、がん悪液質、高齢者の食欲不振は大きな健康問題であるが、有効な治療薬は無い。古くから香辛料の摂食亢進作用が示唆されているが、その科学的根拠は乏しい。求心性迷走神経を介した摂食抑制系はよく知られているが、摂食亢進系については不明な点が多い。本研究では、多くの香辛料の共通の辛味成分であるTransient Receptor Potential A1（TRPA1）アゴニストに着目し、求心性迷走神経を介した摂食亢進作用をマウスで検討した。ニンニク辛味成分でTRPA1アゴニストであるジアリ
ルトリルスルフィド (DATS) の経口投与は、求心性迷走神経内の pERK1/2（活性化マーカー）発現を上昇させ、摂食を亢進させた。この摂食亢進はカプサイシンや外科手術による求心性迷走神経遮断により消失した。さらに、DATS は単離した求心性迷走神経ニューロンの一群に細胞内 Ca^{2+} 増加を惹起し、この群は、満腹ホルモンのコレシストキニンやオキシトシンに対して細胞内 Ca^{2+} 増加応答を示すニューロン群と重複せず、新規の神経サブクラスを形成した。求心性迷走神経には新規の食欲亢進系サブクラスが存在し、香辛料辛味成分の TRPA1 アゴニストはそのサブクラスの活性化を介して摂食を亢進させる。

(15) 糖尿病における循環恒常性ロバスト破綻のシステム解析 ～圧反射開ループ解析で見えてきたもの～

岸 拓弥（九州大学循環器病未来医療研究センター循環器疾患リスク予測研究部門）

【背景】重要なリスクであるにも関わらず糖尿病治療による心血管イベント予防は不十分である。我々は、心不全予後改善が注目されている SGLT2 阻害薬が糖尿病モデルラットの圧受容器反射機能を改善することを発表した（Hypertens Res 2017）。そこで本研究では、2型糖尿病モデルラットにおける圧受容器反射機能を開ループ解析し、容量負荷による血行動態的評価も行った。

【方法・結果】2型糖尿病モデルラット (ZDF-Fatty, n=5) および対照群 (ZDF-Lean, n=5) を用いた。中枢弓 (頚動脈洞圧 (CSP) - 交感神経 (SNA) 関係), 末梢弓 (SNA-動脈圧 (AP) 関係) および total loop (CSP-AP 関係) の静特性を解析し、ZDF-Fatty の中枢弓及び total loop 最大ゲインは ZDF-Lean と比べ高値だが末梢弓の傾きは低値で、動作点の total loop ゲインは低下していた。容量負荷に対する左房圧・左室拡張末期圧の上昇は ZDF-Fatty で ZDF-Lean に比べ急峻だが心拍出量増加は同程度であり、バイオニック圧受容器反射で回復した。

【結論】2型糖尿病モデルラットは圧受容器反射動作点で著明なゲイン低下を呈し、容量耐性は悪化していた。糖尿病において脳による血圧－交感神経関係が制御不全となっており、容量負荷に対するロバスト性悪化の原因となっている可能性がある。
13. 大脳皮質回路の機能原理を探る

2017年9月7日－9月8日

代表・世話人：礒村宜和（玉川大学脳科学研究所）
所内対応者：川口泰雄（生理学研究所大脳神経回路論研究部門）

（1）生後発達期の大脳皮質回路リモデリング
岩里琢治（国立遺伝学研究所／総合研究大学院大学遺伝学専攻）

（2）マウス外側膝状体から一次視覚野への方位選択性の入力
根東覚（東京大学医学部・大学院医学系研究科）

（3）高次視覚野の顔ニューロンの反応特性を説明する混合スパース符号化モデル
細谷晴夫（ATR脳情報通信総合研究所）

（4）脳小体の価値判断の制御による情動回路マッピング：生理学と計算論のつながり
雨森賢一（京都大学脳情報貯器／脳長類研究所）

（5）大脳皮質と海馬の神経集団活動から読み解く回路機能
深井朋樹（理化学研究所脳科学総合研究センター）

【参加者名】
倉本恵梨子（鹿児島大学大学院医歯学総合研究科），宋文杰（熊本大学医学部），福田孝一（熊本大学大学院生命科学研究所），加藤武志（広島大学大学院国際協力研究所），細谷晴夫（ATR脳情報通信総合研究所），青柳富くなって生（京都大学情報学研究科），日置寛之，福田孝一，加藤荘志（京都大学大学院国際協力研究所），細谷晴夫（理化学研究所脳科学総合研究センター），森田賢治（東京大学大学院医学系研究科），小島久幸（東京医科歯科大学脳科学総合研究科），植田禎史（東京女子医科大学医学部），水井雅子（株式エクソス・リサーチ），檜山武史，山下映（基礎生物学研究所），吉村由美子，石川理子，木村秀和，宮下俊雄，鳴鳥隆，植木義彦，山本真理子，則武厚，川口泰雄，窪田芳之，大塚岳，石井美恵子，孫在隣，Agahari Fransiscus Adrian，任翔峰（生理学研究所）

【概要】
本研究会は、大脳皮質を中心に大脳基底核や視床や扁桃体などを含めた機能的な神経回路の作動原理の解明に迫ることを目指している。神経解剖学や神経生理学などの実験系研究者だけでなく、コンピュータ解析やモデル化を得意とする理論系研究者も参加して、最新の研究成果と将来展望をわかりやすく発表してもらい、時間をかけて建設的に討論することを目指すことを心がけてプログラムを企画した。第1日目、まず岩里琢治先生（国立遺伝学研究科）がマウスの生後発達期における体性感覚野の第4層細胞の樹状突起形成の研究を発表し、根東覚先生（東京大学）はマウスの視覚野のニューロンのマイクロコラム・マウス脳に相当する細胞配列における方位選択性の分布などの知見を発表した。いずれも2光子レーザー顕微鏡を駆使した最先端の研究結果である。理論系の細谷晴夫先生（ATR脳情報通信総合研究所）は、混合スパース符号化モデルを使って多数の自然画像を学習させることで顔
と物体の画像を精度よく識別することに成功し、サルのIT野の活動データとも整合することを示した。第2日目、長らく米国で研究生活を送った雨森賢一先生（京都大学）が、葛藤を伴う意思決定課題を遂行するマカクザルの前帯状皮質や尾状核などで価値判断やモチベーションの情報を表現する神経細胞の詳細な解析結果を紹介した。最後に理論系の深井朋樹先生（理化学研究所脳科学総合研究センター）は、編集距離に基づいて多細胞のスパイク列から時系列発火パターンを検出する新しい解析方法（時間圧縮も対応）を海馬への適用例とともに紹介した。いずれの講演も1時間の枠を超過するほど議論が盛り上がり、大脳皮質回路の機能原理の解明を目指す若い世代の研究者が自由な発想を醸成する有意義な機会になったと考えている。

（1）生後発達期の大脳皮質回路リモデリング
岩里琢治（国立遺伝学研究所／総合研究大学院大学遺伝学専攻）

大脳皮質の神経回路は、生後の一周期間に神経活動依存的にリモデリングされることにより成熟する。我々は“バレル”とよばれる特徴的な神経回路構造をもつマウス体性感覚野をモデルとして、尖端的マウス遺伝学の手法を開発・駆使することによって生後発達期の神経回路リモデリングの分子・細胞機構の解明に取り組んできた（Iwasato et al., Neuron 1997, Nature 2000, JNS 2008）。さらに最近では、さまざまな関連技術の開発を伴行することにより、二光子顕微鏡イメージングを導入することに取り組んでいる。これまでにin vivoで大脳皮質のニューロンを鮮明に蛍光標識する技術（Supernova法）と視床皮質軸索を鮮明に蛍光標識するトランスジェニックマウスを開発し、それらを組み合わせることにより体感覚野第4層における視床皮質シナプスのプレ側（視床皮質軸索の終末）とポスト側（第4層ニューロンの樹状突起）の位置で鮮明に蛍光標識することに成功した。そして、二光子顕微鏡を用いて新生仔マウスの脳の18時間にわたりin vivoタイムラプスイメージングを行い、大脳皮質ニューロンの樹状突起リモデリングのダイナミクスの一端を解明することに成功した（Mizuno et al., Neuron 2014）。本研究会では、これまでの研究の流れを簡単に紹介し、その後、未発表データを中心に現在の取り組みについて紹介したい。

（2）マウス外側膝状体から一次視覚野への方位選択性の入力
根束 覚（東京大学医学部・大学院医学系研究科）

高等哺乳類では、方位選択性を持たない外側膝状体の入力から一次視覚野の神経細胞に方位選択性が生じるメカニズムは、受容野の配列により説明され支持されている。一方マウスでは、いくつかのモデルが提示されているが未解明で、この理解には外側膝状体から一次視覚野4層に入力する情報に方位選択性があるかどうかを知ることが不可欠と考えられた。

このことを明らかにするために、外側膝状体から一次視覚野への入力の脳を一次視覚野の各層で直接イメージングを行い、それぞれの層に入力する情報を分けて調べる実験を行った。その結果、4層には方位選択性を持つ軸索はほとんど入力せず、1層などの皮質表面に近い層には方位選択性を持つ入力が多くみられた。また、4層の神経細胞の比較を行うと、外側膝状体からの入力にはカーディナルバイアスが顕著に見られた一方で、4層の神経細胞にはカーディナルバイアスがほとんどなかった。最適空間周波数の分布が外側膝状体からの入力と4層の神経細胞との間で異なっていた。これらの結果は,
外側膝状体の入力がそのまま一次視覚野の神経細胞に伝えられているのではなく、大脳皮質の神経回路の中でなんらかの計算が行われていることを示唆し、また方位選択性、高等哺乳類と同様に、大脳皮質内の回路によって形成されていることが示唆された。

（3）高次視覚野の顔ニューロンの反応特性を説明する混合スパース符号化モデル

細谷晴夫（ATR 脳情報通信総合研究所）

霊長類の視覚系は、物体や顔の刺激をどう表現しているのだろうか？古典的には、部品の組み合わせで表現するパーツベース仮説と、全体で表現するホリスティック仮説があるが、どちらについても支持する心理学・生理学実験事実がある。ここで、一見相反するこれらの表現方式が、どうやって一つのシステムの中で共存できるのかが、理論的疑問として、次に示される。その疑問に応えるため、我々は「混合スパース符号化モデル」という新しい理論を導入した。この理論では2つのニューロン集団を仮定し、片方を自然な顔画像で、もう片方を自然な物体画像でスパース符号学習した。そして、入力刺激をより正確に解釈できたニューロン集団が、もう一方の集団を抑制するという、一種の競合計算を考える。このようなモデルにより、Freiwald, Tsao, Livingstonが発見した、マカクザルIT野のface middle patchと呼ばれる顔類性における反応特性（2009）を、ニューロン集団の定量データも含めて説明することができた。特に、スパース符号化は部品表現に対応し、様々な顔特徴に対するチューニング特性に寄与しているのに対し、競合計算は全体表現に対応し、顔刺激に対する強い選択性に寄与していることも分かった。これらから、当該領域では、混合スパース符号化モデルに類似した計算が行われているとする仮説を提案する。

参考文献

（4）霊長類の価値判断の制御による情動回路マッピング：生理学と計算論のつながり

雨森賢一（京都大学白眉センター／霊長類研究所）

日常の意思決定では、コストと利益のバランスを考えなければならないことがよく起こる。これを接近回避の葛藤といい、不安は葛藤を伴う意思決定に影響することが知られている。我々は、葛藤を伴う意思決定課題をマカクザルに訓練し、課題遂行中にニューロン活動と局所電場電位を、大脳皮質－基底核の様々な領域から同時記録した。まず、経済学の数理モデルを用い、効用や価値などを定量化し、相関する神経活動を様々な領域で同定した。しかし、こうした神経表現は、多くの領域に分散し、意思決定に必須な領域を特定することは難しかった。次に、微小電気刺激法を用い、意思決定への影響を調べた。面白いいことに、刺激効果は帯状回皮質前部に限局した。この領域は、解剖学的に線条体ストリオソーム構造に優位に投射することが知られている。ストリオソーム構造の機能を同定するため、我々のグループが光遺伝学を用いて取り組んだ。すると、実際にラットPL皮質がストリオソーム構造に選択的な投射を行っている。その結果、経路の選択的制御によって不安がコントロールされていることがわかった。大脳皮質－基底核には、意思決定にかかわる神経基盤が分散して備わっているが、価値判断に因果的にかかわる領域はそれぞれ結びついている。
脳は人工知能が未だ実現できていない、様々な学習や計算のための原理を備えている。脳の計算原理を解明するためには、神経回路が情報を処理するメカニズムを読む解かねばならない。本講演では記憶や意思決定に関わる海馬や大脳皮質の神経集団活動から情報を読み取る試みと、背景にある回路メカニズムをモデル化する試みについて議論する。

1. 「編集距離」に基づく神経集団活動の新しい解析手法
我々は多大な不規則性を含む多細胞のスパイク列から、刺激や行動などに関する事前知識なしに、セルアセンブリの時系列発火パターンを検出する手法を開発した。鍵は計算機科学で知られていた「編集距離」の概念を神経データ解析に持ち込んだことである。この方法を人工データおよび海馬や前頭葉皮質から記録した多細胞スパイク活動に適用した例を紹介する。また光計測により記録された海馬の活動データからセルアセンブリを検出する手法（非負行列因子分解）についても簡単に紹介し、神経集団活動の解析に於ける新しい流れと、セルアセンブリによる情報表現の可能性について議論する。

2. 意思決定における個体差と内側前頭野の神経活動
意思決定には個体に依らないさまざまな共通原理が知られているが、一方で不確実な状況下での選択行動には個々にして大きな個体差が見られる。我々はラットの内側前頭皮質から記録した神経集団活動の軌道を解析し、回路モデルを構築することにより、軌道に隠された不安定性（covert instability）が個体毎の行動の傾向を決定している可能性を見出した。この結果について紹介する。
14. 記憶・学習の統合的理解に向けたアプローチ

2017年10月11日−10月12日

代表・世話人：松尾直毅（大阪大学大学院医学系研究科）
所内対応者：鍋倉淳一（生理学研究所 生体恒常性発達研究部門）

（1）新しい活性化神経細胞標識システムを用いた遠隔記憶海馬内痕跡の解析
 奥野浩行（京都大学大学院医学研究科）

（2）Manipulation of memory during sleep
 坂口昌徳（筑波大学・国際統合睡眠医科学研究機構）

（3）海馬リップル波の発生機構と生理的意義の解析
 佐々木拓哉（東京大学大学院・薬学系研究科）

（4）連合学習課題の習得に伴うマウス大脳皮質一次感覚野の変化
 山下貴之（名古屋大学・環境医学研究所）

（5）行動発現を制御する大脳皮質回路
 礒村宜和（玉川大学・脳科学研究所）

（6）黒質−線条体ドーパミン神経路が行動抑制に果たす役割
 松本正幸（筑波大学・医学医療系）

（7）個体間相互作用による熱逃避行動の亢進
 黒見 坦（東京都医学総合研究所・学習記憶プロジェクト）

（8）ショウジョウバエにおける光による長期記憶維持システム
 坂井貴臣（首都大学東京・理工学研究科）

（9）時計遺伝子による記憶想起制御の分子機構
 喜田 聡（東京農業大学・応用生物科学）

（10）海馬場所細胞の活動からエピソード的記憶の神経基盤を探る
 高橋 晋（同志社大学大学院・脳科学研究科）

【参加者名】
松尾直毅（大阪大学大学院医学系研究科分子行動神経科学）、坂口昌徳（筑波大学国際統合睡眠医科学研究機構・坂口研究室）、佐々木拓哉（東京大学大学院薬学系研究科薬品作用学教室）、奥野浩行（京都大学医学研究科メディカルイノベーションセンター）、山下貴之（名古屋大学環境医学研究所神経系分野）、礒村宜和（玉川大学脳科学研究所）、黑見 坦（東京都医学総合研究所・学習記憶プロジェクト）、上野耕平（東京農業大学・応用生物科学）、齊藤 実（公益財団法人東京都医学総合研究所認知症・高次脳機能研究分野）、髙橋 晋（同志社大学大学院・脳科学研究科）
門鉄倉研究室、岡田 桜（東京大学大学院薬学系研究科薬品作用学教室）、小林晃司（大阪大学大学院医学系研究科分子行動神経科学講座）、伊澤俊太郎（名古屋大学環境医学研究所神経系分野）、目原 健（九州大学理学研究院生物科学部門分子遺伝学研究室）、坂井貴臣（首都大学東京理工学研究科細胞遺伝学研究室）、佐藤翔馬（首都大学東京理工学研究科細胞遺伝学研究室）、石原 健（九州大学理学研究院生物科学部門分子遺伝学研究室）、瀧 鎌輝（東京農業大学農学研究科バイオサイエンス専攻動物分子生物学研究室）、植木彰彦（生理学研究所システム脳科学研究領域認知行動発達機構研究部門）、加藤 圭（生理学研究所生体恒常性発達）、揚妻正和（生理学研究所生体恒常性発達）、江藤 圭（生理学研究所生体恒常性発達）、戸田拓哉（生理学研究所生体恒常性発達）、植木彰彦（生理学研究所生体恒常性発達）、加藤 圭（生理学研究所生体恒常性発達）。

【概要】
記憶・学習はヒトを含む動物が刻々と変化する自然界に適応し、生存していくうえで不可欠な生命機能の一つであり、認知・精神機能や社会性行動などにも大きく関与する。1990年代初頭に遺伝子改変マウスが記憶学習の研究に導入されて以降、特定の遺伝子に着目した分子と記憶学習行動をつなぐ研究が精力的に進められてきた。これらの研究は、記憶・学習の基盤となる分子機構の解明に大きく貢献してきた一方で、個々の記憶情報が脳内でどのように表現され発現されるのかという記憶の実体については半世紀以上前にカナダの心理学者ヘッブにより提唱されたセルアッセンブリー仮説を実証する研究が出現してこなかった。しかし、近年の高度な発生生物学、分子生物学の発展により脳の機能を含む神経回路遺伝学や巧妙な行動心理学、各種のin vivoイメージング、神経活動記録、数理解析などを複合的に組み合わせた研究により、記憶の実体が明らかになりつつある黎明期であると言える。

そこで本研究会では、様々な実験手法・システム・動物種（線虫・ショウジョウバエなどの無脊椎動物からマウス・ラットなどの齧歯類、サルなどの霊長類）を用いる幅広い世代の第一線で活躍する研究者が一堂に集まり、10名の講演者には一人当たり45分の持ち時間という十分な時間をかけて研究の背景から詳しく話して頂き、さらに聴衆を交えて深い議論を行うことが出来た。また、ポスターセッションの時間を設けることにより、大学院生やポストドクなどの若手研究者にも発表と議論の場を与え、シニアな研究者との交流を深める良い機会となった。全参加者にとって本研究会は、記憶研究の共通理解・認識を深め、さらに今後の記憶学習及び関連分野の新展開を拓くための良い機会であったと考えている。

（1）新しい活性化神経細胞標識システムを用いた遠隔記憶海馬内痕跡の解析

奥野浩行（京都大学大学院医学研究科メディカルイノベーションセンター）

げっ歯類において空間記憶や文脈記憶の情報は獲得から数週間は海馬内に保持されるが、数週間後には海馬以外の大脳領域において維持されるようになる。という考え方が現在広く受け入れられている。この考え方の основеで、数週間以降の遠隔記憶情報の想起過程においては、海馬の神経活動は必要であるという海馬破壊や活動阻害
薬理による実験結果から支持されているが、自然な状態での遠隔記憶の想起過程において海馬の活動が関与するのか否かについては長らく議論が続いている。この問題を再検討するため、我々は神経活動分子マーカーであるArc遺伝子のプロモーターを利用した新しいトランスジェニックマウスによる活性化細胞標識系を開発し、文脈依存的恐怖記憶の獲得から数日後（近時）および1か月後（遠隔）の2時点における記憶想起時の活性化細胞を標識し、それぞれの集団の重なり解析した。その結果、この2時点での海馬歯状回における活性化神経細胞は偶然レベルよりも有意に高くオーバーラップしていた。また、遠隔記憶想起時の活性化歯状回細胞をチャネルロドプシンで標識し青色光刺激したところ、光刺激依存的な恐怖応答を誘起することができた。これらの結果は、記憶獲得後1か月後においても海馬の活動は文脈依存的恐怖記憶の想起過程に関わっている可能性を強く示唆する。

（2）Manipulation of memory during sleep

Masanori Sakaguchi 1, Iyo Koyanagi 1, Sakthivel Srinivasan 1, Tzong-Shiue Yu 2, Kaspar Vogt 1, Masafumi Muratani 3, Pimpimon Nondhalee 1, Sima Singh 1, Hirota Obo 1, Toshie Naoi 1, Steven G Kernie 2, Takeshi Sakurai 1, Masashi Yanagisawa 1, Deependra Kumar 1,

1 筑波大学・国際統合睡眠医科学研究機構
2 Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
3 筑波大学・医学医療系

睡眠と記憶は強い相互作用を及ぼす。たとえば、睡眠期間中に記憶が想起され、それにより記憶が固定化させるとされている。また逆に、強い情動刺激を受けると、場合によっては生涯に渡り睡眠に影響が出る。また、睡眠中に記憶の洞察が深まるとする実験結果もある。これは、覚醒中の様々な刺激を睡眠中に処理し、同じ刺激が与えられても過剰に対応防ぐ（そしてそれにより、その刺激に対してもより良い対処を促す）メカニズムとして働く可能性がある。一方で、トラウマ記憶によってこのメカニズムが破綻すると心的外傷後ストレス障害（PTSD）なる可能性がある。実際、PTSDの患者ではトラウマ記憶を想起させるようなあるくられる刺激によって、それを受けたときの精神的衝撃が鮮明に蘇る。我々は、マウスの記憶課題を用いてPTSDの症状をモデル化し、学習直後に記憶の修飾が起こりやすい時期を見出した。さらに、この期間の睡眠中に、学習に関連した音刺激を用いることで、マウスの恐怖記憶反応を減弱させることに成功した。現在、光遺伝子技術を用いてこの回路メカニズムの精査を行っている。

（3）海馬リップル波の発生機構と生理的意義の解析

佐々木拓哉（東京大学大学院薬学系研究科薬品作用学教室）

海馬において神経細胞の同期活動を反映するシャープウェーブリップル波は、記憶の固定や将来の行動設計などにおいて重要な役割を果たすことが知られている。本研究では、シャープウェーブリップル波の発生機構と、同期活動中に内包される神経細胞群の発火パターンを解析した。放射状方迷路において、歯状回依存的な空間作業記憶課題遂行中のラットの歯状回および海馬CA3野から神経活動記録を行ったところ、報酬獲得時における歯状回神経活動の増加、およびシャープウェーブリップル波の発生頻度の増加が観察された。歯状回破壊ラットにおいて、歯状回顆粒細胞の投射線維である苔状線維の密度が少ないCA3野の部位では、報酬時のシャープウェーブリップル波の頻度減少が観察された。このことから、CA3野でのシャープウェーブリップル波生成には、歯状回顆粒細胞からの報酬獲得時における投射に起因していることが示唆される。
（4）連合学習課題の習得に伴うマウス大脳皮質一次感覚野の変化

山下貴之（名古屋大学 環境医学研究所）

動物は食べ物などの報酬を得るために必要な行動パターンを素早く学習することが出来る。最近、覚醒行動中のマウスを用いた膜電位計測や広域イメージングなどを用いた多細胞活動解析が進められているが、ごく簡単な目標指向行動（特定の報酬を連合させる課題など）の学習に伴う脳神経回路変化ですが、その全貌はまだ明らかになっていない。私たちは、マウスの一次体性感覚野（S1）バレル領域第2-3層から一次運動野に投射する細胞（M1-p）と二次体性感覚野に投射する細胞（S2-p）に着目し、それら細胞群の覚醒行動中の膜電位活動を詳細に記録・解析してきた。これまでに、M1-p と S2-p は有意に異なる膜興奮特性を有する独立した細胞群であり、異なる性質のシナプス入力を受けるために時間経過の異なる感覚応答を示すことなども明らかにしてきた（Yamashita et al., 2013）。また、連合学習に伴う M1-p と S2-p の活動変化をとらえるため、マウスを訓練し、洞毛の触覚と飲水行動を連合させ、学習前後の M1-p および S2-p の膜電位を記録したところ、課題学習に伴い、S1 から M1 への情報の流れが抑制され、S1 から S2 への情報の流れが亢進することが明らかとなった（Yamashita & Petersen, 2016）。本研究会では、これまでの研究の流れと、脳内シグナルフローの学習変化のメカニズム解明に向けた現在の取り組みについて紹介したい。

（5）行動発現を制御する大脳皮質回路

礒村宜和（玉川大学 脳科学研究所）

動物が行動を発現するとき、脳の内部ではどのような信号処理が行われているのだろうか？この疑問を解明するために、頭部を固定したラットに前肢でレバーを適切に操作する行動課題を効率良く学習させる行動実験系を確立した。マルチニューロン記録法や傍細胞記録法と組み合わせて、この行動の発現に関与する大脳皮質（一次・二次運動皮質、前頭頂皮質、眼窩前頭皮質など）、大脳基底核（背側線条体）、海馬などの神経細胞の機能的発火活動を調べる研究を進めてきた。例えば、運動皮質では、興奮性の雛細胞は多様な機能的活動を示し、前肢の保持に関与する細胞は浅層より深層に多いこと、浅層と深層の細胞は集団的活動の異なる位相で発火すること、主要な抑制性の介在細胞は前肢の動作時に非特異的に発火すること、運動情報は発火同期性よりも発火頻度そのものに表現されること、などを示してきた。最近、脳領域間を取り交すスパイク信号を計測する新技術「マルチリンク法」を確立しつつある。まずは実証実験として、運動皮質の終脳内投射型と終脳外投射型の雛細胞を同法により同定し、それらの発火特性の違いを明らかにするとともに（Saiki, 2017），これらの雛細胞は左右前肢に対する支配性が異なることも見出した（Soma, 改訂投稿中）。

将来、同法の効率化を進めて、動物の行動発現を担う大脳皮質の多領域間スパイク・コミュニケーションの解明を目指したい。
（6）黒質-線条体ドーパミン神経路が行動抑制に果たす役割

松本正幸（筑波大学医学医療系）

行動抑制は不適切な行動を意識的に抑止する脳機能である。その神経基盤として前頭連合野の重要性が知られている。一方、前頭連合野とループ回路を形成する大脳基底核には体運動を促進的に制御する「直接路」の他に、抑制的に制御する「間接路」が存在し、行動抑制への関与が推測される。我々は特に直接路と間接路の重要な構成要素である線条体へのドーパミン神経投射に注目し、この神経路が行動抑制に果たす役割を解析した。まず、saccadic countermanding taskをおこなっているサルの尾状核（線条体の一部）と、黒質緻密部・腹側被蓋野に分布するドーパミンニューロンから神経活動を記録した。このtaskでは、眼前に置かれたモニターに眼球運動のターゲットが呈示され、サルはこのターゲットに眼球運動することが求められる。ただし、全体の30%の試行では "stop signal" と呼ばれる視覚刺激が呈示され、サルは眼球運動をキャンセルしなければならない。我々が記録したドーパミンニューロンと尾状核ニューロンの多くは、眼球運動のキャンセルを求める stop signal に興奮性応答を示した。興奮性応答を示したドーパミンニューロンの多くは尾状核に投射する黒質緻密部に分布し、腹側被蓋野ではごく少数であった。また、尾状核へのドーパミン入力を薬理学的に遮断すると、眼球運動をキャンセルするサルの能力が低下した。以上の結果から、黒質-線条体ドーパミン神経路は行動抑制の実行に必要な神経シグナルを伝達していると考えられる。

（7）個体間相互作用による热逃避行動の亢進

黒見 坦, 上野耕平, 長野慎太郎, 齊藤 実
（東京都医学総合研究所 学習記憶プロジェクト）

動物のある種の行動は他個体の行動によって影響をうける。この行動の変化は、動物が社会で生活していくうえで必要となる社会脳による。この社会脳の機能は学習機能に依存するのか、現在のところは例らない。社会脳と学習記憶機能の関係を明らかにするには、社会脳の神経基盤を明らかにし、学習記憶のそれと比較する必要がある。

本研究では、ショウジョウバエ（以下ハエ）の熱逃避行動に注目し、この点を検証した。1）熱逃避行動は、群（集団）で測定すると個別に測定した時より有意に高い値を示した（group-induced enhancement: GIE）。このことは、ハエの個体間相互作用が熱逃避行動を亢進するこ

とを示す。2）熱逃避 GIE は、視覚情報に依存することを見出した。匂い、聴覚、機械感覚、炭酸ガス感覚は関与しない。3）他個体の逃避行動そのものは熱逃避 GIE に必要でなく、熱に対するそれ以外の行動が関与している。4）熱逃避 GIE はセロトニン伝達が仲介する。5）熱逃避 GIE は神経細胞発生の後期に生まれた神経細胞によって行われる。6）ハエの記憶中枢であるキノコ体が熱逃避 GIEに関与する。しかし、記憶変異体の rutabaga では熱逃避 GIE は正常であり、通常の記憶学習機構とは異った機構が個体間相互作用発現に関与する可能性が示唆された。

（8）ショウジョウバエにおける光による長期記憶維持システム

坂井貴臣（首都大学東京・理工学研究科・細胞遺伝学研究室）

動物にとって光は、色や形などの視覚情報を得るばかりでなく、概日リズムや睡眠・覚醒の制御など脳機能に働きかけて行動パターンの変容を生み出す重要な環境刺激である。興味深いことに、光は動物の記憶獲得にも影響を与えるが、一度獲得した記憶を長期間維持する機構において、光がどのような影響を与えるのかよく分
かっていない。我々はこれまでに、学習後に恒暗条件下で飼育したショウジョウバエ（以下、ハエ）では記憶を長期間維持できないことを見出した。これらの結果は、昼行性的ハエが記憶を維持するために地球の自転により作り出される明暗サイクルを利用していることを意味している。ハエで見られた「光による長期記憶維持システム」のメカニズム解明を目指して、PDF

発現ニューロンに注目してこれまで研究を進めてきた。

PDFは概日行動リズムに必須な神経ペプチドとして同定されたが、記憶への関与は明らかにされていなかった。本セミナーでは、これまでに得られた結果を紹介しつつ、PDFシグナルを介した光による長期記憶維持システムについて議論する。

（9）時計遺伝子による記憶想起制御の分子機構

喜田 聡、長谷川俊介
（東京農業大学生命科学部）

Ebbinghaus により記憶に対するサーカディアン制御機構の存在が提唱されている。しかし、どの記憶プロセスがサーカディアン制御を受けるかは解明されておらず、記憶とサーカディアンリズムの接点は不明である。我々は、時計遺伝子の中心である BMAL1 に着目し、記憶に対する時計機能の役割の解明を試みてきた。サーカディアンリズム産生の中枢である視交叉上核の時計機能は正常であるものの、前脳の時計機能に障害を示す、ドミナント・ネガティブ型 BMAL1 変異体（dnBMAL1）を発現するマウスを解析した結果、この dnBMAL1 発現マウスはどの時間帯でも海馬依存的記憶を形成できるが、ZT10（明期開始10時間後）付近において、想起に障害を示すことが明らかとなり、海馬時計機能により記憶想起が制御されることが明らかとなった。トランスクリプトーム解析から、この変異型マウス海馬では ZT10 においてドーパミン-cAMP 情報伝達経路の不活性化が認められた。一方、dnBMAL1 発現マウスのドーパミン-cAMP 情報伝達を薬理学的に活性化させると想起障害が改善されることも明らかとなった。さらに、ドーパミン-cAMP 情報伝達経路の標的として AMPA 型グルタミン酸受容体のリン酸化が同定され、海馬時計機能がドーパミン-cAMP 情報伝達経路を介してグルタミン酸受容体を制御することで記憶想起効率を上昇させる分子機構の存在が示唆された。

（10）海馬場所細胞の活動からエピソード的記憶の神経基盤を探る

髙橋 晋（同志社大学大学院脳科学研究科 認知行動神経機構部門）

「いつ、どこで、どのようにした」という一連の出来事、すなわちエピソードの記憶が、脳内でどのように処理されているのか、その詳細は未だ不明である。本研究では、この問いに答えるため、視覚弁別課題、遅延の無い交代反応課題、遅延のある交代反応課題を連続的に遂行させる複合課題を考案し、ラットに訓練した。そして、マルチニューロン活動記録法を活用することで、課題遂行中のラット海馬 CA1 野から総計約千個の錐体細胞の活動を記録した。その結果、個々の場所細胞が持つ場所受容野は、(1) どこから来て、どこへ行くのかという道程（「いつ、どこで」)に合わせて、その迷路内での活動位置を変化させ、(2) どの課題を遂行しているか（「どのように」）に合わせて、活動頻度を変化させた（Takahashi, eLife, 2013）。課題遂行中に、ラットは迷路上で迷い立ち止まることもある。先行研究により、その際の場所細胞群の活動は、あたかも迷路上を走っているかのように、10 倍速の早送りモードでリプレイしていることが報告されている。本課題遂行中のリプレイを検証したところ、場所細胞群の活動リプレイが将来の移動行動を計画していることが示唆された。また、リプレイ中の場所細胞群の発火頻度にも、移動中と同様に、
課題の違いに関する情報が表現されていることが示唆された（Takahashi, eLife, 2015）。これらの結果から、場所細胞群の活動は、エピソードの記憶に関与し、そのリプレイは、記憶したエピソードを想起し、将来の行動を計画する心的時間旅行を支える神経基盤であると推察された。
15. 先天的と後天的なメカニズムの融合による情動・行動の理解と制御

2017年10月10日-10月11日

代表・世話人：小早川 高（関西医科大学生命医学研究所）
所内対応者：鈴倉淳一（生理学研究所 生体恒常性発達研究部門）

（1）先天的と後天的な嗅覚情報の意味判断と統合処理メカニズム
小早川 高（関西医科大学附属生命学研究所）

（2）ゼブラフィッシュの情動行動を司る嗅覚神経回路メカニズム。
吉原良浩（理化学研究所・脳科学総合研究センター）

（3）レム睡眠の意義とメカニズム～遺伝学・発生学からのアプローチ～
林 悠（筑波大学・国際統合睡眠医科学研究機構）

（4）知覚記憶の定着に関わる皮質間回路活動
村山正宜（理化学研究所・脳科学総合研究センター）

（5）情動（ヒトが呼ぶ機能）の生物学的な意義とその起源
加藤総夫（東京慈恵会医科大学・神経科学研究部）

（6）意思決定行動の神経メカニズムの解析における情動の計測の試み
中村加枝（関西医科大学・医学部）

（7）ストレス抵抗性とその破綻を司る内側前頭皮質神経回路の再編成
古屋敷智之（神戸大学・医学部）

（8）化学走性行動の先天的な機能と後天的な変化
飯野雄一（東京大学・理学系研究科生物科学専攻）

（9）自由行動するショウジョウバエにおける発光イメージングが拓く個体間コミュニケーションの神経機構の研究
風間北斗（理化学研究所・脳科学総合研究センター）

（10）高脂肪食摂取による不安レベル上昇を抑制する生体機構
関口正幸（国立精神・神経医療研究センター）

（11）意思決定のための（線虫の）感覚情報処理メカニズム
木村幸太郎（大阪大学・理学部・生物科学科）

（12）線虫における嗅覚記憶の忘却とその制御
石原 健（九州大学・理学研究院・生科科学専攻）

（13）Early auditory experiences shape neuronal circuit to form auditory memory in zebra finch song learning
杉山陽子（沖縄科学技術大学院大学）

（14）情動行動における大脳基底核神経回路機構とその破綻
矢田貴俊（大阪大学・蛋白質研究所）

（15）情動と覚醒系の相互作用におけるオレキシン系の役割
桜井 武（筑波大学・国際統合睡眠医科学研究機構）

【参加者名】
村山正宜（理化学研究所脳科学総合研究センター行動神経生理学研究チーム）、竹内絵理（国立精神・神経医療研究センター神経科学研究部疾病研究第四部）、國石 洋（国立精神・神経医療センター精神保健研究所精神薬理研究部）
松尾直毅（大阪大学大学院医学系研究科分子行動神経科学）、関口正幸（国立精神・神経医療研究センター神経研究所疾病研究第四部、農薬）、中村加枝（鹿児島大学大学院医学研究科神経発達科学研究部）、山田大輔（国立精神・神経医療研究センター神経発達科学研究部）、林悠（筑波大学国際統合睡眠医科学研究所）、南雅文（関西医科大学）、佐藤伊佐（東京慈恵会医科大学総合医科学研究センター神経科学研究所）、藤原学（九州大学医学研究所分子遺伝学研究室）、杉山陽子（沖縄科学技術大学院大学臨床系神経科学研究所）、疋田貴俊（大阪大学蛋白質研究所）、木村幸太郎（大阪大学大学院理学研究科生物科学専攻）、桜井武（筑波大学医学医療系研究科）、小早川高（関西医科大学附属生命医療研究所）、植松明子（生理学研究所システム神経科学研究所）、植木彰彦（生理学研究所視覚情報処理）、吉村由美子（生理学研究所感覚情報）、郷田直一（統合バイオサイエンスセンター）、戸田拓哉（生理学研究所神経科学研究所）、加藤圭（生理学研究所神経科学研究所）

【概要】
ヒトや動物の情動・行動は先天的と後天的な側面に分類できる。両者の制御メカニズムが融合した結果、個体の情動・行動が決定される。先天的メカニズムを解明することは、生物学、遺伝学、神経科学、行動科学、心理学など、様々な分野に跨る重要な課題である。

ヒトの情動・行動は、先天的メカニズムと後天的メカニズムの融合によって制御される。先天的メカニズムは、遺伝子の影響を受けて形成されるものである。一方、後天的メカニズムは、環境や学習によって形成されるものである。両者は密接に連携して働き、個体の情動・行動に影響を及ぼす。情動・行動は、個体の社会生活において重要な役割を果たしている。

動物種が進化の過程で獲得した生存や種の保存に適した情動・行動は遺伝子に書き込まれ先天的メカニズムとし、動物の生活に欠かせない。一方、個体が経験や学習によって獲得した情動・行動は後天的メカニズムとし、個体の社会生活において重要な役割を果たしている。
（1）先天的と後天的な嗅覚情報の意味判断と統合処理メカニズム

小早川 高（関西医科大学・附属生命医学研究所）

嗅覚行動は先天的と後天的なメカニズムで制御される。私たちは、鼻腔内において先天的と後天的な嗅覚情報が分離して脳へ伝達され、その後何らかの経路を経由して伝達された扁桃体中心核のセロトニン2A受容体発現細胞において両者の情報は拮抗的に統合され、その結果、先天的な行動が後天的な行動に優先されるという回想的な制御を受けるという「先天的と後天的な嗅覚情報の分離伝達と統合処理モデル」を提唱している（Kobayakawa et al., Nature 2007, Matsuo et al., PNAS 2015, Isosaka et al., Cell 2015）。このモデルは嗅覚情報の入力部から情報の統合処理による行動制御に向かう一連の情報の流れと、その間での情報処理の一端を含み、感覚受容から行動制御までの全体解明に向け残された多くの未解明問題に取り組む枠組みの一つとなる。

この枠組みの中で私たちが現在取り組んでいる問題の一つは、特定の匂い分子を恐怖刺激であると認識する感覚判断メカニズムである。この問題を解明するためには、私たちが開発した、マウスに極めて強力な恐怖応答を誘発する「チゾリン類恐怖臭」などの人工匂い分子ライブラリーが利用できる。一般的に、一種類の匂い分子は数十種から100種類以上の受容体を活性化する性質がある。マウスにおいて単一の嗅覚受容体の欠損や人為的な活性化により行動が制御できることは報告されている。多様な恐怖臭に対する恐怖行動の誘発は単一受容体の責任受容体により説明できるのか、あるいは、複数の受容体のコンピネーションを考える必要があるのだろうか？この問題の解明に向けて私たちが実施している複数の大規模クリーニングの結果などを紹介する。

（2）ゼブラフィッシュの情動行動を司る嗅覚神経回路メカニズム

吉原良浩（理化学研究所・脳科学総合研究センター）

嗅覚系は物体から発せられる匂い分子を受容し、その情報を鼻から脳へと伝え、匂いのイメージを脳内に創造する神経システムである。また嗅覚系は「快・不快」あるいは「好き・嫌い」と表現される情動、さらには「記憶」と密接に関連した感覚システムでもある。私たちは、神経行動学・遺伝学・発生工学・神経解剖学・神経活動イメージングなど多様な実験手法を駆使できるモデル脊椎動物としてのゼブラフィッシュの利点を最大限に活用し、匂い入力から行動出力へと至る「好き・嫌い」の嗅覚神経回路メカニズムの解明へ向けた統合的研究を行っている。本講演では当研究室で得られた最新の知見を中心に、ゼブラフィッシュの情動行動を司る嗅覚神経回路の機能構築について解説する。特に、魚の警報フェロモンの実体解明と、忌避行動発現を惹起する嗅覚神経回路メカニズムについて紹介する。

（3）レム睡眠の意義とメカニズム　〜遺伝学・発生学からのアプローチ〜

林 悠（筑波大学国際統合睡眠医科学研究機構（WPI-IIIS））

哺乳類の睡眠は、レム睡眠とノンレム睡眠という2つのステージから成る。
夢をおぼえるレム睡眠は、その役割が脳科学における大きな謎であった。レム睡眠は生まれた直後に多く、加齢とともに減少することから、脳の発達や学習過程に密接に関わることが期待される。私たちはマウスの胎生期において、特定の細胞系譜を遺伝学的に標識し、後後にその神経活動を操作するという新規のアプローチにより、
レム睡眠とノンレム睡眠の切り替えを担うニューロンを同定した。これにより、任意のタイミングでレム睡眠を操作できる方法を確立した。その結果、レム睡眠には記憶学習やシナプス可塑性に重要な神経活動である徐波を促進する効果があることを明らかにした（Hayashi et al., Science 350, 957-961, 2015）。さらに最近では、レム睡眠を数週間に亘って阻害できるマウスの樹立にも成功した。この新規なマウスモデルを活用することで今後、レム睡眠が脳の発達過程や老化において担う役割を個体レベルで解明できると期待される。

（4）知覚記憶の定着に関わる神経活動

村山正宜（理化学研究所 脳科学総合研究センター 行動神経生理学研究チーム）

睡眠には、起きている間の知覚体験を記憶として定着させる機能がある。

これまでの仮説では、感覚情報など、外部からのボトムアップ情報が少ない睡眠時の脳内において、トップダウン情報により知覚記憶が定着すると考えられてきた。しかし、具体的にどの脳回路が知覚記憶の定着に関与するかは不明であった。この理由として、記憶に関連するトップダウン回路が不明であったこと、これを操作する技術が無かったからである。そこで我々は、独自に発見した「触覚覚覚の関わるトップダウン回路」（Neuron 2015）をモデルとし、この仮説の検証を試みた。マウスにおいて、触覚覚覚学習直後のノンレム睡眠時に光遺伝学的手法を用いてトップダウン入力を選択的に抑制すると、知覚記憶の定着が妨げられた。興味深いことに、逆にトップダウン回路を刺激すると、マウスは知覚記憶をより長く保持した。ヒトや実験動物において、睡眠を行うと、記憶の定着が阻害されることも知られている。ところが、学習後のマウスを断眠させながらトップダウン回路を刺激した場合では、通常の睡眠をとったマウスと比べても、より長い間知覚記憶を保持した（Science 2016）。本研究では、これまでの結果を概説するとともに、最近我々が記録している記憶定着に関わる神経活動について議論したい。

（5）情動（とヒトが呼ぶ機能）の生物学的な意義とその起源

加藤総夫（東京慈恵会医科大学・神経科学研究部、同・痛み脳科学センター）

「情動」は、ヒトの視点からトップダウン的な内省的認知に基づいて記述されている。その暗黙の理解は、言語を用いるヒトだけでなく共有されており、動物はそれを「情動」троしていないうち、「情動」なしに生物が進化した星もあるかもしれない。ここから来た宇宙人は「情動研究会」って何を研究しているのか理解できない。排尿とか生理とか消化とか呼吸なら理解できるのに。

扁桃体はさまざまな情動に関わっている。とされている。持続的な炎症や感染は脊髄（三叉神経脊髄路核）－脳幹核－扁桃体路を介して扁桃体中心核の活性化とシナプス増強をひきおこす（Sugimura et al., 2016; Shinohara et al., 2017）。これらは、「侵害受容情報が扁桃体を活性化して痛みの情動成分を生じる」過程の一部と解釈されてきた。このとき、扁桃体中心核ニューロンの活動を化学伝達物質に抑制すると、痛覚過敏が抑制され、一方、健常動物で扁桃体中心核ニューロンを刺激させるとそれだけで痛覚過敏が生じることを見出した（杉本，高橋ほか）。扁桃体はむしろ「身体の状態をモニターし、それに応じて感覚・行動・内環境を最適化する脳機構の一部」ととらえているが、この期間の生物的起源と考えるべきではないか（参考：LeDoux, J. "The amygdala is not the brain's fear center", 2016）。
（6）意思決定行動の神経メカニズムの解明における情動の計測の試み

中村加枝，上田康雅，安田正治
（関西医科大学生理学第二講座）

報酬・嫌悪などの情動は我々の行動の動機づけの原動力であり，これらにより運動や意思決定，知覚さえも変化しうる。これまでの神経生理学実験では，この報酬・嫌悪刺激やそれらと関連させた条件刺激を用いた行動課題のパフォーマンスの変化とその神経メカニズムを明らかにしていた。しかし，例えば心理的ストレスなどの情動の変化があってもそれに打ち勝つメカニズムがあれば個体の行動は有意に変化しない可能性もある。その個体が，意識的または無意識的にどのような情動をどの程度受け止めていているかを明らかにするために，我々は，霊長類において，情動を計測するシステムを開発した。サルに，あらかじめ特定の視覚刺激と報酬（ジュース）・嫌悪（エアパフ）を関連させておく。その後，これらの視覚刺激を用いて眼球運動課題を行わせ。サルが行動課題を行っている間，心拍・瞳孔径・顔面の温度を計測した。これらは自律神経反応の変化を反映するが，嫌悪刺激を呈示した場合に交感神経優位の反応を示した。このシステムを用いて，我々は報酬情報により意思決定に関わるような大脳基底核線条体細胞の行動課題関連活動の解析を行なった。自律神経反応と行動のパラメータと併用することにより，特定の集団の線条体細胞が報酬・嫌悪・または両方を情報処理していることが明らかになったので，本研究会で発表したい。

（7）ストレス抵抗性とその破綻を司る内側前頭前皮質神経回路の再編成

古屋敷智之（神戸大学大学院医学研究科薬理学分野）

社会や環境から受けるストレスは心身に多様な影響を与える。過度で長期的なストレスは心身を疲憊させ，抑うつや不安亢進，認知機能低下を引き起こし，心身の様々な疾患のリスクを増大させる。一方，短期的なストレスは自律神経系や内分泌系を介して心身の適応的な変化をもたらすとともに，ストレスへの耐性やストレス抵抗性を増強するとされる。しかし，このようなストレスの多様性を担うメカニズムには不明な点が多い。我々はマウスの社会挫折ストレスを用い，単回ストレスが内側前頭前皮質の興奮性神経細胞のドパミンD1受容体を活性化し，浅層の興奮性神経細胞の尖端樹状突起を選択的につなぎに成長させるとともに，ストレス抵抗性を増強することを明らかにした。一方，反復ストレスはうつ様行動の程度を増大させるが，この変化には自然免疫受容体TLRを介してミクログリア活性化が関与することを示唆した。本講演では，ストレス抵抗性とその破綻を司る内側前頭前皮質神経回路の再編成とその分子機序について，我々の研究から得られた最新の知見を紹介する。

（8）化学走性行動の先天的な機構と後天的な変化

飯野雄一（東京大学大学院理学系研究科生物科学専攻）

動物の行動は発生の過程で構築された神経系の構造に依存しているが，生後の環境や経験に依存した構造的・機能的変化が起こることによって行動が多様化し適応的になる。このような先天的行動と後天的行動の創出機構の進化的起源を探るため，線虫C.elegansの化学走性行動をモデルとして用いている。線虫では全神経回路が明
それらにされているが、その回路の個体差は非常に小さいことが知られ、事実その個体も同じ環境下では同様な化学走性を示す。化学走性の機構を調べた結果、進行方向の転換の制御を軸とした行動機構が明らかになり、方向転換を起動するコマンド神経の存在も明らかになっている。

一方、経験に依存して化学走性は大きく変化する。特に、餌の有無と化学物質 NaCl の濃度との関係で学習により NaCl への走性は負に変化する。この現象は、経験に依存して特定の NaCl 濃度に「好ましい」「避けるべき」という価値が付与されることにより生存確率を最大化する極めて素朴な機構であると考えられ、情動の進化の起源とも想像される。この行動変化の基盤を調べた結果、感覚神経と一次介在神経のレベルでの神経活動変化が捉えられた。また、ホスホリパーゼ C ～ジアシルグリセロール～プロテインキナーゼ C の制御軸が濃度依存性の制御に、インスリン経路が飢餓の情報伝達と神経制御に働くことが明らかになった。これらを含め最近の見解を紹介する。

(9) 自由行動するショウジョウバエにおける発光イメージングが拓く個体間コミュニケーションの神経機構の研究

風間北斗（理化学研究所脳科学総合研究センター）

食物や個体から発せられる匂いを検出し、それがもたらされる報酬や危険性を正しく評価することは動物が適切な行動を選択する上で必要不可欠であるが、その神経機構は未知の部分が多い。我々は、ショウジョウバエ成虫の嗅覚回路を対象にしてこの問いに取り組んでいる。これまでに、仮想空間内で固定された状態で飛行するハエの匂い応答と、嗅覚二次細胞の応答を網羅的に計測し、それらの関係性を解析することで、匂い嗜好を定量的に解読するモデルを作成してきた。

一方、仮想空間内で与えられる人工的な刺激に対してではなく、個体が発する自然的な刺激に対する行動選択とそれを司る神経機構を調べる為には、完全に自由に行動する個体内の特定神経細胞から活動を計測するアプローチが有用である。我々は、発光イメージングを用いてこれに成功した。カルシウムイオン感受性発光プローブを cVA という雄のフェロモンを受容する細胞に発現させてイメージングと行動解析を行ったところ、ハエはマーキングを介して能動的に cVA を提示することと、提示されたランドマークは個体表皮よりも格段に強く cVA 受容細胞を興奮させることを見出した。これは cVA は主に体表から提示されるという定説を覆す結果である。また、ランドマークは雌雄双方を強く誘引した。従って、雄は誘引性の cVA をランドマークとして特定のタイミングで局所的に提示することで、個体間コミュニケーションの場を作り出すことが示唆された。

(10) 高脂肪食摂取による不安レベル上昇を抑制する生体機構

関口正幸（国立研究開発法人国立精神・神経医療研究センター神経研究所）

慢性肝疾患の患者においては、一般よりもうつ病（主に major depressive disorder）の発生頻度が高いとする疫学的調査があるので、そのメカニズムは不明である。慢性肝疾患患者を対象に、変動肝症状と脂肪肝が知られているが、マウスを高脂肪食で飼育すると肝への脂肪蓄積が誘発されるとともに、不安レベルが上昇することともに良好知られている。この高脂肪食摂取マウスに転写因子 PPAR(peroxisome proliferator-activated receptor) γ のアゴニストである糖尿病薬を経口投与すると、マウスの不安レベルは通常レベルに回復した。同様な不安レベルの回復は、高脂肪食摂取マウスに PPARγ を過剰発現させることが示唆された。これら PPARγ 活性増強による
不安レベル回復は迷走神経共通肝枝の切除またはそのカプサイシン処理で完全に消失した。上記PPARγ過剰発現＋高脂肪食摂取マウスの延髄孤束核においては、特定の領域でのΔFosB陽性細胞数が増加しており、この増加は迷走神経共通肝枝のカプサイシン処理で完全に消失した。以上の結果から、高脂質食摂取による不安情動上昇に対して、これを抑制することができる生体機構があり、それには迷走神経共通肝枝県路-PPARγ軸が関与することが示唆された。

（11）意思決定のための（線虫の）感覚情報演算メカニズム

木村幸太郎（大阪大学大学院理学研究科）

脳は感覚情報を処理し、反射・意思決定・睡眠周期などを適切なタイミングで制御する。しかし、脳がどのように時間を計りタイミングを制御しているのかは、ほとんど不明である。今回我々は、線虫の「意思決定」のタイミングのための細胞および分子メカニズムを明らかにした。まず我々は、忌避匂い濃度のわずかな変化に基づいて、線虫が忌避方向を正確に選択する事を見出した。さらに、ロボット顕微鏡を用いたカルシウムイメージング、光遺伝学、数理モデル化、遺伝学などを組み合わせた統合的解析により、線虫は匂い情報を時間積分する事により、忌避方向を選択する事を見いだした。さらに、この匂い情報の時間積分は、単一細胞で生じている事、またL型膜電位依存性カルシウムチャネルが主要な役割を果たす事を明らかにした。感覚情報の時間積分（「証拠蓄積」）による行動の選択は、延髄類やげっ歯類の「意思決定」の中心的機能として知られているが、そのメカニズムは明らかにされていなかった。今回の我々の発見は、シンプルな「意思決定」のための分子メカニズムが線虫から霊長類まで保存されている可能性を示唆している。

（12）線虫における嗅覚記憶の忘却とその制御

石原 健（九州大学理学研究院）

動物にとって、記憶の保持時間の制御は、刻々と変化する環境に適応して生存するために重要である。我々は、線虫C. elegansの嗅覚学習をモデルとして、忘却とその制御機構の解析を進めている。線虫は、AWA嗅覚ニューロンで受容するジアセチルやAWC嗅覚ニューロンで受容するイソアミルアルコールなどの匂い物質に曝されると、その匂い物質に対する応答が弱くなる嗅覚順応を示す。この嗅覚順応の記憶は、餌の上で数時間飼育すると失われる。そこで、嗅覚順応の記憶が保持される変異体の単離と解析を通じるとともに、嗅覚ニューロンの下流の介在ニューロンの働きを解析したところ、AWC嗅覚ニューロンからの忘却シグナルが、AIA介在神経を介して、AWC,AWA嗅覚神経細胞における嗅覚順応の忘却を制御していること、これらの制御には高等動物まで保存されているシグナル分子が働いていることが明らかになった。また、嗅覚順応の忘却は、記憶を忘れるときの餌の有無によって制御されていることが変異体の解析から明らかになった。そこで、餌による忘却の促進に異常がある変異体の解析を通じたところ、餌シグナルとしてセロトニンが働いていること、ジアシルグリセロールが忘却を制御していることが分かった。今後、体内外の環境によって、どのように忘却が制御されているかを明らかにしていきたいと考えている。
Early auditory experiences shape neuronal circuit to form auditory memory in zebra finch song learning

Yoko Yazaki-Sugiyama
(Neuronal Mechanism of Critical Period Unit, Okinawa Institute of Science and Technology (OIST) Graduate University)

Sensory experiences during early life intensively shape neuronal circuits during well-timed windows of brain development, which would contribute to higher cognitive function, such as learning. Experience-dependent inhibitory circuit maturation and its controlling of plasticity in mammalian visual and auditory cortex has been well studied. Similar to human speech acquisition, vocal learning in songbirds depends on early auditory experiences. During early development, juvenile songbirds listen to and form auditory memories of the adult tutor song, then they vocally match them to shape their own song in later sensorimotor learning. We have investigated whether early auditory experiences with tutor songs in the sensory learning phase can shape auditory cortical circuits in the juvenile zebra finch brain, presumably to form a memory of the song. We then identified the neuronal substrate for tutor song memory by recording single-neuron activity in the higher-level auditory cortex, called the NCM. After tutor song experience, a small subset of NCM neurons exhibit highly selective auditory responses to the tutor song. Moreover, blockade of GABAergic inhibition decreased the selectivity. Taken together, it suggests that similar to mammalian cortex, recruitment of GABA-mediated inhibitions shapes auditory cortical circuits to form a tutor song memory in zebra finch song learning during early development.

（14）情動行動における大脳基底核神経回路機構とその破綻

正田貴俊（大阪大学蛋白質研究所高次脳機能学研究室）

正ならびに負の報酬刺激に対する情動行動は動物にとって生存に必須であり、神経回路レベルにおいても先天的なメカニズムと学習による後天的なメカニズムの融合により制御される。大脳基底核は、報酬・忌避刺激に基づく行動選択に重要な脳部位であり、薬物依存障害や統合失調症などの精神神経疾患を含む深く関与している。私たちは報酬・忌避行動における大脳基底核神経回路制御機構を解析し、直接路は報酬行動に、間接路は忌避行動にそれぞれ重要であることを示してきた。また、ドーパミン制御による回路の可塑性変化が情動記憶・行動変化に関与していることを示した。精神疾患では情動記憶の障害が認知・社会行動障害に結びついている。そこで、遺伝要因と環境要因の組み合わせで異常を呈する精神疾患モデルマウスの情動行動の解析をすすめている。本モデルマウスが示す報酬行動の異常としての薬物依存行動と忌避行動障害のメカニズムから、情動行動障害をもたらす先天的と後天的な分子・回路メカニズムを議論したい。

（15）情動と覚醒系の相互作用におけるオレキシン系の役割

桜井 武（筑波大学医学医療系/国際統合睡眠医科学研究機構）

情動は、行動および自律神経系に影響をあたえるが同時に睡眠覚醒状態に大きな影響を与える。視床下部外側野およびその近傍に局在するニューロン群によって特異的に産生される神経ペプチド、オレキシンは行動を支え
ために覚醒を維持する機能を持っている。これらのニューロンの軸索は、脳幹の睡眠・覚醒制御に関わるモノアミン作動性神経の起始核などに投射する。オレキシンは視床下部に集約されたさまざまな情報をもとに脳幹に存在するこれらのモノアミン・コリン作動性神経を制御することによって睡眠・覚醒に影響をおよぼしていると考えられる。ウィルベクターを用いた入力系の解析によりオレキシン産生ニューロンは、扁桃体、分界条床核などの大脳辺縁系や側坐核、視索前野のGABA作動性神経、視床下部室傍核などからの入力をうけていることが明らかになっている。このような入力系により、オレキシン産生ニューロンは顕著な情動的状況やストレス下、報酬系が発動する状況など、覚醒が必要なときに興奮し、脳幹のモノアミン神経やコリン作動性ニューロンの適切な活動を支えていると考えられる。一方、オレキシン系の下流におけるモノアミン系は扁桃体を介して、情動や行動に大きな影響を与えていることが明らかになってきた。大脳辺縁系がオレキシン系に与える影響および逆にオレキシン系がモノアミン系の制御を介して情動表出にあたりえる影響及生理的役割について議論する。
16. シナプス・神経回路機能の時空間制御

2017年10月30日−10月31日
代表・世話人：久場博司（名古屋大学）
所内対応者：吉村由美子（視覚情報処理研究部門）

（1）副腎髄質細胞におけるムスカリン受容体を介したシナプス伝達：TASK チャネルの役割
井上真澄（産業医科大学）

（2）ユビキチン E3 リガーゼ Nedd4-2 による神経回路活性の制御機構
川辺浩志（先端医療センター研究所）

（3）Cav チャネル-Ryanodine 受容体-BK チャネルから成る Ca2+ダブルナノドメインは burst firing を調節する
入江智彦（国立薬品食品衛生研究所）

（4）海馬前線細ナトリウムチャネルの活動電位制御に対する寄与
大浦峻介（北海道大学）

（5）CAST/ELKS deletion from photoreceptor causes blindness by synaptic and neural remodeling
萩原 明（山梨大学）

（6）Expression of plasma membrane calcium ATPases confers Ca2+/H+ exchange in rodent synaptic vesicles
大野孔靖（同志社大学）

（7）Prenatal stress on Gad1- heterozygotes affects inhibitory synaptic transmission
Adya Saran Sinha（浜松医科大学）

（8）シナプス前終末におけるタウタンパク質によるシナプス伝達阻害
堀 哲也（同志社大学）

（9）下丘脳核への興奮性シナプス伝達における短期可塑性
北川真子（同志社大学）

（10）Balanced inhibition controls the output of neurons tuned to low-frequency sound at avian cochlear nucleus
Mohammed Al-Yaari（名古屋大学）

（11）Roles of synaptic activity in climbing fiber to Purkinje cell synapse elimination in the developing cerebellum
高 至輝（東京大学）

（12）マウスヒゲ領域から下オリーブ核に至る感覚経路の解析
久保伶香（広島大学）

（13）ウィスカーエレクトリン条件下の cross-modal reorganization −光遺伝学を用いた解析−
阿部健太（東北大学）

【参加者名】
神谷温之（北海道大学），大浦峻介（北海道大学），八尾 寛（東北大学），阿部健太（東北大学），丸山 泰（東北大学），西尾 奈々（新潟大学脳研究所），高 至輝（東京大学），持田澄子（東京医科大学），入江智彦（国立薬品食品衛生研究所），萩原 明（山梨大学），福田敦夫（浜松医科大学），Adya Saran Sinha（浜松医科大学），久場博司（名古屋大学），Mohammed Al-Yaari（名古屋大学）
【概要】
脳の神経回路は、神経細胞がシナプスを介して情報をやりとりすることで、その機能が実現される。さらに、このシナプスにおける情報伝達は、様々な時空間レベルでの機能形態制御を受けている。従って、脳の神経回路機能を理解するためには、これらシナプスの伝達や制御のしくみを幅広い時空間レベルで解析することが重要である。近年、新たな分子遺伝技術やイメージング技術の登場により、このような解析が現実のものとなり、シナプス研究は新たな展開を迎えている。従って、本研究会は、研究手法の枠を超えた最先端のシナプス研究者が一堂に会して情報交換を行う場を提供し、この新たなシナプス研究の流れを加速させることを目的として企画された。研究会は、2017年10月30日、31日に生理学研究所で開催された。国内研究者40名が参加し、公募による一般演題の口頭発表13題が行われ、最新の研究に関する議論が行われた。発表は若手の研究者を中心とし、古典的な電気生理技術を用いたシナプス伝達および可塑性制御の研究、超解像顕微鏡や二光子顕微鏡によるイメージング技術を用いたシナプス・神経細胞機能の研究、体性感覚や聴覚などの感覚系におけるシナプス・神経回路の成熟機構や動作機構の研究など、研究手法や研究対象が多岐にわたっており、日本のシナプス研究あるいは神経科学研究が多彩な広がりを見せていると感じた。発表後の質疑応答では熱のこもった議論が行われ、時間が延長する場面もみられた。さらに、懇親会では、シニアの研究者と若手研究者との交流が行われ、活発な意見交換が行われていた。また、今後も研究会を継続するために世話人会を組織すること、また今回は学会とは異なる方向性を持つべく若手を中心とした発表としたが、来年度以降も修正を加えつつ同様の方向にすることとなった。

（1）副腎髄質細胞におけるムスカリン受容体を介したシナプス伝達：TASKチャネルの役割

副腎髄質(AM)細胞は、交感神経節前線維の神経支配を受けている。神経終末から放出されたAChは、ニコチン受容体及びムスカリン受容体を介して神経伝達をおこなう。ラットAM細胞においては、M1ムスカリン受容体の活性化はエンドサイトシスによるTASK1チャネルの抑制を引き起こす。このエンドサイトシスは、phospholipase C (PLC), protein kinase C (PKC), そしてnon-receptor tyrosine kinaseのSrcのそれぞれの抑制薬により、抑制された。これらの結果は、PLC-PKC-Srcシグナル系が関与することを示唆する。興味あることに、M1受容体刺激が短期の場合、刺激を止めるとTASK1チャネルは速やかに細胞膜にrecycleされたが、10分間の長期刺激では、刺激を止めた後もチャネルは脱酸化される際にも関わらず、長期に細胞内にとどまった。この結果は、AM細胞においてM1受容体の長期活性化の事実は、チャネル自体でなく、チャネルが存在する細胞内器官の種類による記憶されている可能性があることを示唆する。
（2）ユビキチン E3 リガーゼ Nedd4-2 による神経回路活性の制御機構

川辺浩志（先端医療センター研究所）

ユビキチン化はタンパク質のホメオスタシスに重要な翻訳後修飾で、その特異性は E3 リガーゼによって決定される。ヒトゲノムには約 600 種類の E3 リガーゼがコードされているが、その中でも Nedd4-2 は遺伝性てんかんの原因遺伝子として報告されており、神経回路活性の制御因子であると考えられてきた。最近、私共は Nedd4-2 ノックアウトマウスを使い、比較定量的質量分析で Nedd4-2 の基質タンパク質として Kir4.1 と Connexin43 を同定した。さらに、Nedd4-2 が今回同定された基質タンパク質のユビキチン化を介して、神経回路の同調性を維持することが明らかになった。遺伝性てんかん患者に見つかった突然変異をもつ Nedd4-2 タンパク質を使い、生化学的に酵素活性を検討したところ、Nedd4-2 変異体は野生型 Nedd4-2 に比べて酵素活性が亢進していることが分かった。これらの結果から、Nedd4-2 に変異を持つてんかん患者の脳内では Kir4.1 と Connexin43 の発現量が低下し、それがてんかんの発症につながる可能性が考えられた。

（3）Cav チャネル-Ryanodine 受容体-BK チャネルから成る Ca2+ダブルナノドメインは burst firing を調節する

入江智彦（国立医薬品食品衛生研究所）

今回の研究会では、「Cav チャネル-Ryanodine 受容体-BK チャネルから成る Ca2+ダブルナノドメインは burst firing を調節する」というタイトルで、私が米国・オレゴン健康科学大学・Trussell 研究室において 2 年の間で行った内容を発表した。発表内容の概略は以下の通りである。burst firing は様々な脳部位で観察される普遍的現象であり、シナプス可塑性、睡眠覚醒、運動学習などにおいて重要な役割を果たすが、その調節機構に関しては未だ不明な点が多い。本研究では背側蝸牛神経核に存在する Cartwheel インターニューロンにおいて、burst firing の発生確率と持続時間は、リアノジン受容体を介した Ca2+ 誘発性 Ca2+ 放出（CICR）による BK チャネル活性化によりコントロールされており、CICR は P/Q-type Ca チャネルの活性化によりトリガーされる事を見つかった。更に、P/Q Ca チャネル、リアノジン受容体、BK チャネルの 3 者は 100 nm 以下の距離（=Ca2+ ナノドメイン）に存在している事を明らかにした。質疑応答では、この神経細胞における Burst 発火に必要なチャネル流の種類や、BK チャネルと Ca チャネルのタイナニーが形成されるメカニズムについてなど、私が想像していなかった質問を多く受けることができ、今後の研究を発展させる上でも貴重なコメントであった。最後に、今回の研究会で貴重な口頭発表の機会と共に、他の研究者との交流の場を下さった久場博司先生と吉村由美子先生に礼を申し上げたい。参考文献: Irie T, Trussell LO. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing. Neuron. 2017;96(4): 856-70

（4）海馬苔状線維ナトリウムチャネルの活動電位制御に対する寄与

大浦峻介、神谷温之（北海道大学）

中枢神経は、活動電位を細胞体から終末部まで確実に伝播することをもつ。加えて、先行する神経活動や周囲の細胞からの影響を活性電位に修飾を加える機構が報告されているが、その機序については十分解明され
二発刺激抑圧の機序の一つとして, 電位依存性ナトリウムチャネルにおける不活化の蓄積が考えられる。一方で, その不活化からの回復は 10 数ミリ秒程度で完了することが報告されており, 本実験で見られた二発刺激抑圧の持続時間を説明するには不十分である。この不活化の蓄積に加え, ホールセル法にて記録された活動電位発生後生じる軽度脱分極応答の持続は, 二発刺激抑圧に付加的な作用を加えることが示唆された。

(5) CAST/ELKS deletion from photoreceptor causes blindness by synaptic and neural remodeling

萩原明（山梨大学）

神経回路網において情報伝達の要となる神経伝達物質は, シナプス前終末から放出されシナプス後部の受容体に結合する。シナプス前終末から放出される頻度や量は, 開口放出部（Active zone, AZ）に局在するタンパク質群によって制御されていると考えられているが, その詳細はまだよくわからていない。本研究では, AZ に局在する CAST/ELKS ファミリーに着目し, シナプスの構造基盤や放出制御における機能を形態学的に解析した。

目に入力した光情報は, 網膜・視細胞によって神経情報へと変換され, 双極・水平細胞での修飾を経て神経節細胞によって脳の視覚中枢へと伝達される。先行研究において, CAST 欠損マウスでは視細胞シナプスのサイズ並びに視機能の低下を報告しており, 本解析では, ELKS の欠損マウスを作製し, ELKS 並びに CAST/ELKS の機能解析を行った。その結果, ELKS の欠損はシナプスの構造及び情報伝達機構への影響はほとんどみられなかった。一方, CAST/ELKS の両遺伝子を欠損させると, サイズの低下は CAST 欠損と同程度だったが, 神経伝達が顕著に減少することが分かった。また興味深いことに, 成熟した網膜において視細胞特異的な ELKS 欠損を誘導したところ, 視細胞の減少を伴う網膜変性が起きることが分かった。これらのことから, CAST/ELKS は視細胞シナプスの形成や伝達, 並びに維持に統合的な役割を果たしていることが分かった。

(6) Expression of plasma membrane calcium ATPases confers Ca²⁺/H⁺ exchange in rodent synaptic vesicles

大野孔靖（同志社大学）

Ca²⁺ transport into synaptic vesicles (SVs) at the presynaptic terminals has been proposed to be an important process for regulating presynaptic [Ca²⁺] during stimulation as well as at rest. However, molecular identity of the transport system has been elusive, and previous studies have demonstrated that there are two distinct systems depending on external pH; one is mediated by high affinity Ca²⁺ transporter which is active at neutral pH and the other is mediated by a low affinity Ca²⁺/H⁺ antiporter which is maximally active at alkaline pH of 8.5. Here, we show that the plasma membrane Ca²⁺ ATPases (PMCas) are responsible for both Ca²⁺ transport and Ca²⁺/H⁺ exchange in SVs at physiological pH. The Ca²⁺/H⁺ exchange activity monitored by acidification assays exhibited high affinity (Km ~ 400 nM) for Ca²⁺, and characteristic divalent cation selectivity. Ca²⁺ transport activity was remarkably reduced by PMCA blockers (eosin Y and vanadate), but not by a SERCA blocker (cyclapiazonic acid). Furthermore, we ruled out a contribution of SV2s, putative Ca²⁺ transporters on SVs, since Ca²⁺/H⁺
exchange activity was not affected in SV2A/2B-deficient SVs. Taken altogether, our results imply that PMCs which reside on SVs during SV recycling might play pivotal roles both in presynaptic Ca$^{2+}$ homeostasis and in the regulation of H$^-$ gradient in SVs.

(7) Prenatal stress on Gad1- heterozygotes affects inhibitory synaptic transmission

Tianying Wang, Adya Saran Sinha, Tenpei Akita (浜松医科大学)
Yuchio Yanagawa（群馬大学）, Atsuo Fukuda (浜松医科大学)

Exposure to prenatal stress and mutations in Gad1, which encodes the GABA synthesizing enzyme glutamate decarboxylase (GAD) 67, are among the primary risk factors identified for psychiatric disorders. One of the principal morphological feature well characterized in patients is a reduction of parvalbumin (PV)-positive GABAergic interneurons in the medial prefrontal cortex (mPFC). In addition, decreased expression of the extracellular matrix (ECM) composed of glycoproteins and proteoglycans have been described in subjects with psychiatric disorders, raising the possibility that ECM abnormalities may play a role in the pathogenesis of this disease. In this study we investigated the interaction of a genetic risk factor i.e. mutation in Gad1 with an environmental stressor in the form of prenatal stress (PS) exposure. We examined GAD67-GFP knock-in mice (GAD67$^{+/GFP}$) that underwent PS from embryonic day 15.0 to 17.5. We found decreases in the density of PV neurons along with the perineuronal nets, a specialized ECM enwrapping the PV neurons as they mature and play a critical role in synaptic stabilization and plasticity during development, in the mPFC of postnatal GAD67$^{+/GFP}$ mice with PS. We also found a decrease in specific glycosylation of α-dystroglycan, another component of ECM associated with maintenance of cholecystokinin(CCK)-positive inhibitory synapses. To ascertain the effect of these changes on the inhibitory synapses we performed whole cell recordings in layer V prefrontal pyramidal neurons at postnatal day 21 ± 2, using brain slice preparations. Our results indicate a decrease in the frequency of miniature inhibitory postsynaptic current reflecting the reduction of PV-positive interneurons. Also detailed analysis of evoked inhibitory postsynaptic currents (eIPSC), revealed significant prolongation of decay kinetics in GAD67$^{+/GFP}$ mice with PS. Furthermore, stimulus response relationship characterization indicate altered threshold for eliciting an evoked response coupled with probable changes in postsynaptic GABAAR receptor function as evidenced by increased amplitude of responses without affecting the paired pulse ratio(PPR). Sustained inhibitory activity simulated by synaptic fatigue and recovery protocol indicates an effect on the vesicular recycling and GABA reuptake by the transporters. Together these observations indicate inhibitory synaptic transmission may be affected by PS on Gad1- heterozygotes.

(8) シナプス前終末におけるタウタンパク質によるシナプス伝達阻害

堀 哲也 (同志社大学)

アルツハイマー病の原因分子の一つであるタウタンパク質のシナプス伝達への影響の分子基盤を解明する目的で、細胞質中への高分子注入技術を行いタウタンパク質のシナプス伝達障害効果を解明する実験についての報告を行った。発表は①マウス脳幹幹神経体側核の神経細胞において、シナプス前末段を直接注入することで、シナプス伝達障害の効果を観察した実験手法の解説を含む。
②タウ分子注入によるグルタミン酸作動性の興奮性シナプス応答への影響の経時変化と、シナプス前終末膜容量測定による、開口放出と形質膜からのシナプス小胞回収の様子の観察結果。③シナプス前終末へのタウタンパク質の注入によるシナプス阻害効果の作用機序に関する考察の順で行われた。参加者からはアルツハイマー病所見の病変から発症までの時間経過と電気生理学的手法を用いたタウ分子阻害効果の時間経過の差異に関しての指摘と質問、また発表者が使用したタウ分子の細胞への注入濃度と、通常時や病変事における細胞内濃度との比較、実験に使用した濃度の妥当性への質問等、活発な議論がなされた。

（9）下丘中心核への興奮性シナプス伝達と短期可塑性

北川真子、坂場武史（同志社大学）

聴覚神経系は、蜗牛で活動電位に変換され大脳皮質へ至るまで、脳幹・下丘に存在する複数の神経核を通じる。脳幹より上位の中脳にある下丘中心核は、下丘より下位の全ての神経核からの入力が収束され上位へと送る聴覚神経系の中継核である。下位脳幹の神経線維では、聴覚機能の獲得期を境に発達に伴った配線・機能変化が起こることが知られている。しかし、下丘中心核へ入力するシナプスの性質とその発達による変化については多くはわかっていない。そこで、本研究では下丘中心核へのシナプス入力の生理学的特性を明らかにするため、下丘中心核へ入力する求心性線維を電気刺激して、下丘中心核の神経細胞から興奮性シナプス入力をパッチクランプ法によって記録した。聴覚獲得前（生後9-11日）と獲得後（生後15-18日）の下丘中心核ラット急性脳スライスを作成し、興奮性シナプス伝達の性質を比較するとともに、短期シナプス可塑性を調べた。生後9-11日では、刺激した経路によって短期可塑性の傾向が異なっていた。生後15-18日では、刺激した経路によって短期可塑性の傾向に有意差はなかった。以上の結果から、発達に伴い、入力経路によって興奮性シナプス伝達の特性が変化する可能性が考えられる。

（10）Balanced inhibition controls the output of neurons tuned to low-frequency sound at avian cochlear nucleus

Mohammed AL-Yaari, Rei Yamada, Hiroshi Kuba（名古屋大学）

Avian nucleus magnocellularis (NM) receives excitatory inputs from auditory nerve fibers (ANFs) and transmits phase information of sound bilaterally to coincident detectors in nucleus laminaris (NL), where interaural time difference is first computed for sound localization. The NM is arranged tonotopically, and each NM neuron is tuned to a specific frequency of sound (characteristic frequency (CF)). In NM, the highest density of inhibitory terminals is formed on low-CF neurons. Furthermore, an in-vivo study revealed that lesion of superior olivary nucleus, the source of inhibition to NM and NL, reduced binaural responsiveness in low-CF NL neurons, suggesting the importance of GABAergic inhibition in regulating the output of NM neurons at low-CF. However, the role of inhibition in low-CF NM neurons is not well understood. To investigate this issue, we made thick slice preparation (2mm) of chick brainstem that preserved both excitatory and inhibitory circuits to NM, and performed cell-attached and whole-cell recordings by using blind patch clamp technique. We recorded extracellular spikes from a single low-CF neuron while stimulating ANFs, and found that the stimulus-intensity dependence of spike generation became steeper and shifted toward lower intensities after application
of GABAA receptor blocker (SR-95531), suggesting a critical role of GABAergic inhibition in increasing the firing threshold and expanding the dynamic range of inputs. In fact, whole-cell recording revealed that inhibitory inputs are generated at low stimulus intensity and comparable in size to excitatory inputs throughout stimulus intensity. Thus, GABAergic inhibition adjusts the output of low-CF NM, which may ensure the binaural computation of NL neurons for a wide range of sound intensity.

(11) Roles of synaptic activity in climbing fiber to Purkinje cell synapse elimination in the developing cerebellum

Tzu-Huei Kao, Kyouko Matsuyama, Naofumi Uesaka, Masanobu Kano (東京大学)

In the nervous system, synapse elimination is a key process that selectively strengthens some neural connections and removes the other redundant ones. Previous studies suggest that synaptic input is a decisive factor underlying synapse elimination. Projections conveying larger synaptic inputs than the others will be strengthened and maintained while the other weaker projections are destabilized and eventually removed. Here, through eliminating glutamate release from a subset of CFs, we examine whether and how CF synaptic activity contributes to the selection of a single winner CF, its dendritic translocation, and elimination of the loser CFs.

(12) マウスのヒゲ領域から下オリーブ核を介して小脳に至る感覚経路の解析

久保怜香, 橋本浩一（広島大学）

げっ歯類の口辺ヒゲ領域の体性感覚は眼窩下神経（Infraorbital nerve, ION）を介して三叉神経核に伝わる。小脳プルキンエ細胞はこの体性感覚情報を下オリーブ核（inferior olive, IO）から登上線維を介して受け取ることが知られているが、三叉神経核から IO まで体性感覚情報がどのような経路で伝達されているかは明らかになっていない。本研究では ION から IO を介して小脳に至る感覚情報経路を明らかにするため、電気生理学的、形態学的手法を用いて解析を行った。

右側小脳 Crus II のプルキンエ細胞から single unit recording を行い、両側の ION を露出後に刺激用電極を設置し、電気刺激により誘発される、登上線維の活性化を反映する Complex spike (CS) の計測を行った。過去の研究から、ION は視床－中脳領域（area parafascicularis prerubralis (PPr)）から強い投射を受けていることが分かっている。この経路の関与を解析するため、GABAA 受容体のアゴニストである muscimol の局所注入を行った。すると、同側 ION 刺激による CS 応答がほぼ消失した。対側 ION 刺激で誘発される CS に対する効果領域は PPr の尾側部に限局していた。PPr に順行性・逆行性トレーサーを注入して投射パターンを解析した所、PPr は三叉神経脊髄路核吻側亜核から投射を受け、下オリーブ核へ投射することが分かった。また、PPr への muscimol 投与により、Air-puff によるヒゲ刺激で誘発される CS の発生も阻害された。これらの結果は、ION からの感覚信号は三叉神経脊髄路核吻側亜核に伝達され、PPr を中継核として IO に伝えられていることを示唆している。
外界からの刺激は感覚モダリティを介して検出されているが、脳内での大きな特徴の一つは個々のモダリティが独立して機能しているわけではなく、状況に応じてお互いに影響し合っているという事である。それによる現象の一つが“知覚の閾値”的シフトである。これは刺激の強さを弱くしていた際に、知覚が形成されなくなる境界のことであり、特定のモダリティ欠損が別モダリティの“知覚の閾値”をシフトさせていると考えられている。しかし、視覚割奪を介した体性感覚での“知覚の閾値”に関する研究は、刺激時間や刺激強度などのパラメーター操作が技術的に困難なことから行動実験スケールでの研究はほとんど進んでいない。

今回私たちは、げっ歯類のウィスカ-バレル野に対して光遺伝学（オプトジェネティクス）をベースにした新規の知覚学習実験システムを導入して、この問題にアプローチした。その結果、視覚割奪がウィスカでの“知覚の閾値”を減少させるという事を発見した。

今後はこれらの実験系を用いることにより、特定のモダリティ欠損が別モダリティの知覚機能にどのような影響を与えているのかに関する生理学的なメカニズムに関する研究が促進されていくことが期待できる。
17. 視知覚の総合的解釈を目指して －生理学，心理物理学，計算論－

2017年6月8日－6月9日

代表・世話人：本吉 勇（東京大学大学院総合文化研究科
所内対応者：小松英彦（生理学研究所）

（1）密度順応が引き起こす物体間の距離知覚の縮小
久方瑠美（東京工業大学工学院）

（2）側頭葉における顔画像の情報処理
菅生康子（産業技術総合研究所人間情報研究部門）

（3）刺激輪郭へのマスクが誘発する周辺視野への広範囲なテクスチャ充填
田谷修一郎（慶應義塾大学法学部）

（4）チョウの複雑な複眼はどうできるか？
蜷川謙太郎（総合研究大学院大学先導科学研究科）

（5）課題依存的なIT野神経集団アトラクタ
田嶋達裕（ジュネープ大学·JST）

（6）生得的な脅威（ヘビ）検出機構
川合伸幸（名古屋大学大学院情報学研究科）

（7）視覚野の興奮・抑制バランスによって操作される知覚学習の安定性
柴田和久（名古屋大学大学院情報学研究科）

（8）ブーリングとステレオ立体視の高精度化
大澤五住（大阪大学大学院生命機能研究科）

（9）Gaze is attracted to good object－価値記憶に基づく物体識別の神経機構
安田正治（関西医科大学医学部）

（10）行為と認知
佐々木恭志郎（早稲田大学理工学術院基幹理工学部）

（11）低次画像特徴に基づいて知覚される質感属性とは何か
永井岳大（山形大学大学院理工学研究科）

（12）柔軟な知覚的構えの設定と注意資源・注意捕捉
河原純一郎（北海道大学大学院文学研究科）

（13）半側空間無視の動物モデルにおける皮質注意経路の機能的结合
吉田正俊（生理学研究所認知行動発達機構研究部門）

【参加者名】
菅生康子（産業技術総合研究所），蜷川謙太郎（総合研究大学院大学），柴田和久（名古屋大学），大澤五住（大阪大学），安田正治（関西医科大学），川合伸幸（名古屋大学），佐々木恭志郎（早稲田大学），久方瑠美（東京工業大学），田谷修一郎（慶應義塾大学），河原純一郎（北海道大学），永井岳大（山形大学），田嶋達裕（ジュネープ大学·JST），本吉 勇（東京大学），平松千尋（九州大学），内川恵二（神奈川大学），福島邦彦（ファジィシステム研究所），金子氷水（東北大学），篠森敏三（高知工科大学），鰹田孝和（豊橋技術科学大学），湯浅健一（情報通信研究機構），伊藤嘉房（藤田保健衛生大学），須賀雅子（東京大学），田村 弘（大阪大学），塚 浩之（豊田中央研究所），高橋啓介（愛知淑徳大学），鬼頭宗平（東京大学），若山曉美（近畿大学）,
梅原郁美（近畿大学）、本居快（愛知淑徳大学）、西田眞也（NTTコミュニケーション科学基礎研究所）、小野朋（近畿大学）、佐藤多加之（理化学研究所）、塩沢創（日本女子大学）、鈴木優子（理化学研究所）、西田眞也（NTTコミュニケーション科学基礎研究所）、高橋伸子（近畿大学）、行松慎二（中京大学）、高井隆太（近畿大学）、松本英太（近畿大学）、近藤敏之（オメガテクノロジー）、吹野美和（パナソニック電気通信研究所）、三好清文（名古屋大学）、栗本一郎（東北大学）、上野大暉（京都大学）、倉田美和（大阪大学）、川村麻衣子（資生堂）、清川宏暁（山形大学）、宮島那耶（近畿大学）、岡崎正俊、近添淳一、小林恵、則武厚、吉本隆明、戸川森雄、小松英彦、郷田直一、横井功、西尾亜希子、馬場美香

【概要】
2017年度生理学研究所研究会「視知覚の総合的理解を目指して：生理学・心理物理学・計算論」は、2017年6月8,9日に岡崎コンファレンスセンター中会議室において開催された。生理学・脳計測6件、心理物理学・心理学6件、計算論1件の合計13件の講演があり、参加者は100名であった。まず久方氏が新規な残効現象に基づき刺激の密度と距離の内部表現の間の関係について論じた。次に菅生氏が側頭葉神経集団における顔情報の符号化ダイナミクスを報告した。田谷氏は視覚中心から周辺に広がる新たな知覚充填現象を紹介した。戸川氏は蝶の複眼構造を決定づける遺伝情報に関する包括的研究を報告した。田島氏はIT野神経集団におけるカテゴリー符号化を説明する複雑系ラジオモデルを論じた。川合氏は所謂ヘビ恐怖に関連した情報処理に関する一連の実験結果を紹介した。柴田氏は知覚学習の定着に興奮性・抑制性の神経活動のバランスが深く関与することを明らかにした研究を紹介した。大澤氏はV1野における多次元的なプーリングが両眼視差に対する選択性をもたらすことを数理的・実験的に示唆した。安田氏は学習された刺激の価値に基づく物体識別の神経機構を論じた。佐々氏は日常における行為や感情と視覚判断の間のメタフォリックな関係を論じた。永井氏は質感知覚における画像統計量の役割を定量化する多様な心理学的手法を紹介した。河原氏は知覚的構えと注意の時間的特性に関する逆説的な効果を報告した。吉田氏は半側空間無視の動物モデルを用いて、空間無視や注意の背景にある神経機構を明らかにする研究を紹介した。多様な研究トピックやアプローチが紹介され、異分野間で活発な質問や議論の展開される非常に有意義な研究会であった。なお、今回で最後になることが告知されたが、足かけ19年間にわたり多様な分野の視覚研究者を結びつけた本研究会の終了を惜しむとともに、別の形での続行を願う声が多く聞かれたことも追記しておく。
（1）密度順応が引き起こす物体間の距離知覚の縮小

久方瑠美（東京工業大学工学院）

離れた物体間の距離を、視覚系はどのように推定しているのだろうか？
これまでの研究では、物体位置の検出器から距離を算出するような距離検出器モデルが提案されていた（Morgan & Regan, 1987）。しかし視野内を散らばる物体間の距離を推定するのに、特定の位置検出器の組み合わせでできる距離検出器をすべての距離に対して持つことは、視覚系にとって現実的でない。

視野内の離れた物体間の距離推定について、我々は新たな視覚システムを示唆する順応現象を発見した。それは高密度テクスチャに順応すると、その後呈示される2つのドット間の距離が実際より短く知覚される現象だった。

実験1では、順応するテクスチャ密度を操作し基本的な現象を確認した。その結果、順応する密度が高いほどテスト刺激のドット間距離が短く推定され、ある程度の密度で効果量が飽和することが明らかになった。実験2では、テスト刺激を円に変え、密度順応が知覚される円のサイズにも影響するかどうかを確かめた。結果は実験1と同様で、高密度に順応するとテスト刺激の円が縮小して知覚されることがあることが明らかになった。

この現象は従来知られている密度順応ではない深い密度順応である。密度順応は、高密度順応するとテスト刺激のテクスチャが低密度に知覚される現象である。刺激を構成する要素間の距離という観点では、低密度になるということは要素間の距離が広がるということであり、我々が発見した現象とは逆になる。

我々は、視覚系が内部の密度情報を基に物体間の距離を推定しているという仮説を提案した。この仮説では、視覚系は2次元に広がる密度情報を空間的指標とし、物体間でどれくらいの密度情報があるかによって距離を推定する。密度順応により内部の密度情報が粗になると物体間の密度情報も減少し、推定される距離も減るとなる。この考えは、古くから知られるオッペルクント錯視（空間に分割線があると距離が長くみえる）もよく説明できるだろう。

（2）側頭葉における顔画像の情報処理

菅生康子（産業技術総合研究所）

顔から個人を同定し、また、表情から気持ちを推しはかるることは脳の重要な機能の一つである。そのメカニズムを明らかにするために、顔の倒立効果、すなわち、顔が上下逆さまに提示されるときその顔を見分けるのが心理学的な現象に着目した。この効果は、主に、顔の造作要素、目鼻口の配置の違いから個々の顔を識別する能力の阻害にとどまると考えられている。近年、マカク属のサル（以下、サル）にも顔倒立効果が起きることが報告されている。

顔画像は、形態視に関与する腹側視覚路で処理される。腹側視覚路の最終段階の処理を担うとされるサル脳の側頭葉の視覚連合野には、顔を視覚流を増加させる部位（顔パッチ）が複数あり、反部、前額部、前頭部へと処理がすすむことが報告されている。顔の造作要素間の配置の違いを視覚連合野（TE野）のニューロンがコードすること、および、TE野前部のニューロンは顔の向きに関わらず個体の違いを表現することから、前部で個体の識別に重要であることが示唆されていた。さらに最近、顔パッチへの電気刺激が顔の個体識別能力を低下させることを報告した。一方ニューロンの情報処理の時間的ダイナミクスについて、顔と単純図形を区別する情報は早いタイミングでニューロンの発火頻度にコードされていることがわかった。

我々は、顔を倒立提示して、サルTE野の顔に応答するニューロンを記録・解析した。情報量を解析した結果、顔の正立提示ではまずヒトしかサルから図形かについての大きな分類情報を、それに続いて個体・表情の情報を処理していることを確認した。倒立提示した場合、個体や表情
の情報量のみが減少することが分かった。大まかな分類情報量の量は正立でも逆さでも差がなかった。これらの結果は、顔倒立効果として知られる現象の神経基盤がTE野にあることを示唆している。

（3）刺激輪郭へのマスクが誘発する周辺視野への広範囲なテクスチャ充填

田中修一郎（慶應義塾大学医学部）

中心視野に低コントラストのテクスチャ面を示す直前に、その面の輪郭を高コントラストの刺激で短時間マスクすると、実際にはテクスチャの呈示されていない周辺視野にもテクスチャが広がり、視野全体を覆うように知覚される。筆者の最近発見したこの充填現象について、複数の刺激変数を操作した心理実験の結果を報告する。

実験では、27インチの液晶画面上に、注視点に続けて半径視角約12度の輪郭円（マスク）を約0.1秒〜2秒間呈示し、その直後に（1）マスクと同じ大きさの円形テクスチャ面か（2）実際に全体がテクスチャで覆われた画面のいずれかを0.05秒〜1.2秒間呈示した。観察者はマスクに続いて呈示された刺激が上記（1）（2）のどちらであったかをキー押しで回答し、この際の誤答を充填生起の指標とした。十名弱の成人男女が参加した実験の結果、0.5秒のマスク呈示で平均して7割程度の試行に充填が生じ、かつ0.5秒より長くマスクを呈示してもその生起頻度は上がらないこと、およびテクスチャの呈示時間が極めて短い（0.05秒）場合にも充填は生じ、周辺視野に外挿されたテクスチャの見えは短くとも1.2秒程度持続し続けることが示唆された。

さらに数名を対象とした観察結果から、充填は常に視野中心から周辺に向かって生じる（たとえば視野中心に呈示するテクスチャ円の面積が刺激を呈示する画面全体の面積の50％を下回ってもテクスチャは周辺視野へ外挿され、周辺視野にテクスチャを呈示しても視野中心への内向きの充填は生じない）こと、マスクの半径がテクスチャ円の半径より数％大きく、輪郭を直接マスクしない場合にも充填は生じること、マスクとテクスチャを両眼分離提示した場合には充填が生じないといったことが示唆されている。

先行研究で報告されている充填現象との類似点と相違点を示すとともに、周辺視野の主観的な見え方に対する視覚的充填の関わりについて議論する。

（4）チョウの複雑な複眼はどうできるか？

蟹川謙太郎（総合研究大学院大学）

昆虫の複眼には性質の異なる個眼がランダムに混ざり合っている。ハエやバッタなどでは個眼タイプはつくだが、チョウやハチなどの訪花性の昆虫ではこれが3に増えており、視細胞の分光感度も概して多様である。これは、花の色をよく識別するための適応と考えられる。この問題について考えるため、ショウジョウバエとチョウ類で複眼の発生過程を比較した。

ハエとチョウとは、1個眼中の視細胞数も異なる。前者は8個（R1-8）後者は9個（R1-9）である。ショウジョウバエではR7になる細胞が、全ての個眼で、複眼形成の早い時期にProspero（Pros）という調節因子を発現する。Prosの分布をアゲハで調べたところ、1個眼あたり2個の細胞が陽性だった。アゲハではハエのR7にあたる細胞が2つあるということである。一方、ハエではPros陽性細胞の約半分が別の調節因子Spineless（Ss）も発現、これが成虫での個眼タイプに対応している。アゲハでのSsの発現を調べたところ、1個眼に2つずつあるPros陽性細胞の半数がSsも発現しており、個眼毎の発現パターンはon-on、on-off、off-offの3通りだった。

Spの発現パターンと個眼タイプの対応を調べるために、CRISPR-Cas9法でspineless遺伝子をノックアウトしたアゲハを作った。野生型の複眼ではSs陽性細胞には青視物
質、陰性細胞には紫外視物質が発現していた。実際、spinelessノックアウト個体からは個眼多様性が消失、予想通り、全個眼に2個ずつ、紫外視物質の発現細胞が見つかっただ。
以上の結果は、チョウ類複眼の複雑なモザイクも、基本的にはハエと同じ分子メカニズムで形成されていることを示す。また、チョウ類複眼における視細胞分光感度の多様性は、視細胞がひとつ増えたことに関係するようだ。

(5) 課題依存的なIT野神経集団アトラクタ

田嶋達裕（ジュネーブ大学・JST）

ヒトや動物は、課題文脈に依存して柔軟に感覚入力と行動の対応関係を切り替える能力を備えている。そうした柔軟な認知能力は、これまで前頭皮質など感覚皮質外の神経活動が持つ文脈依存的なアトラクタダイナミクス（神経活動の時間変化）に関連づけられてきた。一方、感覚皮質が課題文脈依存的な認知能力にどう関われるかは未だに議論が続いている。

本講演では、マカクザルIT野の神経応答データ（Koida & Komatsu, 2007）の再解析とモデル化を通じて、課題の切り替えに対応して柔軟に変化する神経集団アトラクタが、前頭皮質のみならず高次視覚野に既に存在するという一連の根拠を報告する。

第一に、非線形モデルによるデコーディングを用いて抽出される神経集団応答の特定の側面が、課題文脈に依存した双安定アトラクタ構造を明瞭に反映することを示す。一方、そうした課題依存的な特徴は、PCAのような標準的な教師なし次元削減では見過ごされる可能性がある。

第二に、試行ごとの神経活動のばらつきが被験者の行動を予測することから、ここで見いただされたアトラクタ動態が実際に行動選択に関わる次元を反映していることが示唆される。

第三に、アトラクタ構造の変調が課題要求に関する情報を選択的に増加させることから、この変調が適応的機能を反映していることが示唆される。

第四に、同様の観察結果は非線形の再帰的相互作用を持つ神経回路モデルのアトラクタ分岐によって定量的に行われるが、古典的なフィードフォワード型のパーション変調モデルでは現れない。

これらの結果は、感覚皮質を含む再帰的回路とそのアトラクタ構造の動的変調が、文脈に依存した柔軟な認知能力の基礎となっている可能性を示唆する。

（6）生得的な脅威（ヘビ）検出機構

川合伸幸（名古屋大学情報学研究科心理・認知科学専攻認知科学講座）

ヒトはさまざまな対象を怖れるが、落語以外では鶏頭やコンピュータなどの無生物を怖がる人はほとんどいない。その対象は、ほとんどがヒトを含む生物や、特定の状況（広場や公衆の面前）である。多くの条件づけを用いた心理学の研究から、ヘビやクモは進化の過程で脅威の対象であったために、ヒトは生得的に恐怖を感じると考えられていた（Öhman & Mineka, 2001）。しかし近年の人類学の研究から、霊長類の脳が身体に比して大きいのは古霊長類にとっての唯一の捕食者であったヘビを検出するためであるとの蛇検出理論（Isbell, 2006）が提唱された。本発表では、視覚探索課題において成人がヘビの動物に比べてヘビを見やすく見つけること、またすばやい検出は3歳児でも示されること、さらには飼育下で育ち、ヘビを見たことのないサルでも示されることを紹介する。また、脅威情報やコントラストをほぼ保ったまま元画像にさまざまな割合でノイズをまぜあわせると、ヘビはほかの動物よりも効率的に検出されることを
示す。これら効率的な検出はクモでは示されなかった。さらに脳波を指標とした実験で、初期視覚的注意を反映するEPN（Early Posterior Negativity）の振幅が、ヘビはトリよりも大きいが、クモはほかの昆虫に比べて大きな振幅を誘発しなかった。これらのことから、従来の心理学理論が仮定するようにヘビとクモが進化的に関連した脅威刺激ではなく、ヘビ検出理論が支えるように、ヘビだけがヒトの祖先の霊長類から続く脅威の対象であり、生得的に効率的な検出が行われることを示す。ヘビの鱗を画像処理によって消したところ、ヒトとサルもとにヘビに対するすばやい検出が消失し、EPNの振幅も鱗のあるヘビとトリの中間になったことから、ヘビの検出を担う特徴は鱗であることを示す。

（7）視覚野の興奮・抑制バランスによって操作される知覚学習の安定性

柴田和久（名古屋大学大学院情報学研究科）

脳が直面する重要な問題のひとつに、可塑性と安定性のジレンマがある。環境に適応するための可塑性と既存の情報処理機能を保持するための安定性をいかに両立させるか、という問題である。本研究では、視覚における学習（知覚学習）を題材に、脳における興奮性および抑制性神経修飾物質のバランス（興奮・抑制バランス）が可塑性と安定性を操作するという仮説の実験的検証を行った。第一に、過剰学習と学習干渉というふたつの現象を利用し、知覚学習の安定性を操作する心理物理実験系を確立した。特定の視覚課題を被験者の成績向上が飽和するまで行ったのち、よく似た別の視覚課題に対する訓練を行うと、最初に訓練した課題に対する学習が失われ、二番目の課題に対してのみ有意な学習が見られた（逆向干渉）。この逆向干渉は、最初の課題に対する学習が不安定であることを示す。一方、被験者の成績情報が飽和してもしばらく課題訓練を続けた場合（過剰学習）、続けて別の課題に対する訓練を行っても、最初の課題に対し有意な学習が起こり、逆に二番目の課題に対する学習が失われた（順向干渉）。この順向干渉は、最初の課題に対する学習が非常に安定的であることを示す。第二に、過剰学習による知覚学習の安定化を支える神経基盤を明らかにするため、磁気共鳴分光法（MRS）を用いて低次視覚野における興奮性神経修飾物質（グルタミン酸）と抑制性神経修飾物質（ガンマアミノ酪酸）の濃度を計測し、興奮・抑制バランスを計算した。過剰学習なしの通常の訓練の場合、すなわち逆向干渉が起こる条件では、課題訓練直後の興奮・抑制バランスは訓練前に比べて有意に増加した。一方、過剰学習の直後、すなわち順向干渉が起こる条件では、興奮・抑制バランスは訓練前に比べて有意に低下した。これらの結果は、視覚野における興奮・抑制バランス変化が視覚における可塑性と安定性を制御していることを示唆する。

（8）プーリングとステレオ立体視の高精度化

大澤五住（大阪大学大学院生命機能研究科／CiNet）

ステレオ立体視において、両眼の間で比較される特徴は何だろうか？従来の定説では、両眼に写る画像特徴の「位置ずれ」である両眼視差を正確に検出することが、その基本の原理であると考えられてきた。しかし、脳の最初の視覚領域である一次視覚野（VI）では、神経細胞の発火により表現されるのは、物体の位置情報だけでなくはない。VI は、画像を小さな多数の「波の破片」（wavelet）の重ね合わせとして表現しており、個々の神経細胞は 1 個のある特定の wavelet が、視野内の特定の場所に存在するかどうかだけを表現している。Wavelet は点ではない広がりを持つので、VI 神経細胞は、大まかな位置（X, Y）、波の細かさ（空間周波数；SF）、波の傾き角度（方位；OR）という視覚刺激のパラメータに選択的に反応することになる。このような VI の情報表現の性質を総合
的に取り入れた立体視の理論と実験的研究はこれまでなかった。加藤ら（Kato et al. Phil. Trans. Roy. Soc. 2016）は、立体視のメカニズムは左右画像の位置ずれに関する情報のみを比較するのではなく、左右の画像をwaveletに分解した時のパラメータである位置、空間周波数、方位のすべてについて、両眼間比較が行われるという仮説を提唱した。さらにニューラルネットの一種であるCNNの基本要素であるプーリングを取り入れた考察を行い、プーリングがステレオ立体視に関する視覚野細胞の反応特性と対応する影響について、理論と生理学実験の側面から検証を行った。プーリングの効果の理論的解析で予測された通り、位置、空間周波数、方位のすべてについて、精密にマッチングがとれている刺激を両眼から受けた時にのみ反応する細胞がV1に存在することを確認した。

（9）Gaze is attracted to good object—価値記憶に基づく物体識別の神経機構

安田正治1,2, 山本慎也3, 彦坂興秀2

1 関西医科大学生理学第二講座,
2 Laboratory of Sensorymotor Research, National Eye Institute, National Institute of Health,
3 産業技術総合研究所ヒューマンライフテクノロジー研究部門システム脳科学研究グループ)

我々は、しばしば価値の高い物体に意図せず目を向けてしまう。外界には膨大な物体が存在するにも関わらず、なぜ素早く重要な物体を見つけ出すことができるのだろうか？

我々は、サルに大量のフラクタル図形を見せ、それぞれの価値を報酬量によって学習させた。学習につれ、サルは報酬が無くとも自発的に高価値な図形を見始めるようになり、最終的に約300個もの図形の価値を区別できるようになった。

こうした物体識別は、一体脳内のどのような神経機構によって実現されるのだろうか？大脳基底核は、尾状核尾部を介して物体の情報を受け取り、またドーパミン系による価値学習の神経機構を有する。さらにその出力核の一つである黒質網様部（SNr）は、強い抑制性の出力を上丘に送ることで、眼球運動を制御している。そこで我々は、サルSNrの上丘投射ニューロンを同定し、学習した図形への視覚応答を調べた。その結果、黒質網様部の後外側部に局在するニューロン群が、大量の物体の価値を識別し、またその情報を、長期に渡って安定して保持することを見出した。

大量の物体価値に基づいた素早い物体識別に対し、我々はしばしば、状況に応じて変化する物体価値に適合するため、より意識的に物体を探索する。そこで我々は、2つの図形を用いた逆転学習課題をサルに行わせ、SNrにおける価値表現を調べた。その結果、SNr前内側部に局在するニューロン群が、頻繁に変化する物体の価値を識別した。さらに電気生理学的な解析により、頻繁に変化する物体価値を表現するSNr前内側部ニューロン群は、尾状核頭部から、安定した物体価値を表現するSNr後外側部ニューロン群は尾状核頭部から選択的に入力を受け取っていることを見出した。

これらの結果は、反射的な物体識別と意識的な物体の探索行動が、大脳基底核を並行して走る二つの神経回路によって別々に行われている可能性を示唆している。
行為と認知

佐々木恭志郎（早稲田大学理工学術院基幹理工学部）

我々の身体を取り巻く空間と感情の快不快は結びついている。具体的には、上側の空間は快感情、下側の空間は不快感情と連合している（e.g., Meier & Robinson, 2004）。これまでの研究で、これらの連合と一致した形で、感覚運動体験が感情処理に影響を与えることが明らかにされてきた。例えば、上方向への視覚誘導性自己運動感覚を体験後では、ポジティブな感情が喚起される（Seno et al., 2013）。また、上下方向の運動行為中は、ポジティブ（ネガティブ）な記憶が想起されやすい（Casasanto & Dijkstra, 2010）。このように、上下の感覚運動体験は体験後や体験中の感情処理を変容させる。それでは、感覚運動体験が体験直前の感情処理への影響をあたえるのであろうか。先行研究で、物理的に後に入力された情報が、時間的に逆向きに刺激の刺激の感覚に影響を与えることが報告されている（e.g., Shimojo, 2014）。このような遡及的な変容が知覚処理だけでなく感情処理においても観察され、上方向の運動行為は直接的に影響をあたえるのだろうか。我々の研究ではこの予測について検討を行う。また、イベント間の時間間隔が長い場合は遡及的な変容が起こらないと考えられる。実験では、感情を喚起する画像がタッチスクリーン上に呈示された。参加者の課題は、画像消失直後に画面中央に呈示されたドットを指で画面の上部あるいは下部に移動させた後に、画像の感情価を7件法で評定することであった。実験の結果、画像の感情価は、上部にドットを動かした場合はポジティブ、下部に動かした場合にはネガティブに評価されると報告された。また、画像消失と動作の間の時間間隔を2秒開けると、この動作の影響は消失した。これらの結果は、感情と連合している上方向への動作情報が直前の感情情報と遡及的に統合され、画像に対する感情評価を変調したことを示唆している。

低次画像特徴に基づいて知覚される質感属性とは何か

永井岳大（山形大学大学院理工学研究科）

我々ヒトは物体を見た時に多彩な質感を知覚する。それらの多彩な質感に関わる視覚情報は物体表面の反射特性に基づく複雑な光沢的要因により生じるが、それに規模ずもし比較的単純な画像特徴（ここでは低次画像特徴と呼ぶことにする）に依存するだけで知覚できる質感属性が存在するならば、視覚情報によるヒューリシクスの使用という科学的観点だけでなく、画像処理への応用可能性という点からも興味深い。そこで本研究では、視覚系による高次画像特徴の抽出を阻害するような短時間呈示される物体画像を用いた心理物理実験を行い、様々な質感属性と低次画像特徴との関連性を検討することを目的とした。

検討する質感属性として光沢感、透明感、硬度感、柔軟感など7種類を用いた。実験では、様々な素材でできた物体の写真に対して各質感属性に対する知覚量を計測した。この際、刺激表示時間を実験変数とし、刺激表示時間の短縮による質感知覚精度の劣化の大きさを定量化した。その結果、光沢感や温度感の知覚では他の質感属性と比較して刺激表示時間の影響が小さかった。特に温度知覚では刺激表示時間が影響を著しく、その知覚は低次画像特徴に強く依存する可能性が示唆された。

続いて、温度知覚と低次画像特徴の関連性をさらに明らかにするため、温度知覚と画像統計量の相関解析との解析を行った。温度感の知覚量は画像の平均色度と強く相関した一方で、平均色度だけでなく輝度コントラストなど他のいくつかの画像統計量とも相関した。これらのうち、どの画像特徴が温度感に寄与していたかを検
討するため、さらに特定の低次画像特徴を欠落させた画
像に対する温度感覚の測定を行った。その結果、温度
感覚は物体の平均色度と強く相関するにもかかわら
ず、色情報を除去した場合でも他の情報に基づき安定し
て知覚可能であることが明らかとなった。これらの結果
は、複数の低次画像特徴を手がかりとして相補的に用い
ることで温度感覚が安定して知覚される可能性を示して
いる。

（12）柔軟な知覚的構えの設定と注意資源・注意捕捉

河原純一郎（北海道大学文学研究科）

人は適応的に行動する中で、顕著な特徴に注意が引き
つけられることがある一方で、意図的に注意を制御でき
るとも言われている。さらに、経験や価値が注意を誘導
することも強調されるようになってきた。講演では、ま
ずトップダウンの注意の準備状態の時間的推移と作業
記憶との関わりについて報告する。ある構えを作ったと
しても、最適な注意の準備状態になるまでに数百ミリか
ら 1 秒程度の時間を要する（注意の目覚め現象）。この現
象の発生機序は時間の経過とともに注意資源の配分が
効率的になるためだとされている。本研究では、作業記
憶負荷が注意の目覚め現象に及ぼす影響を調べた。もし
この現象が時間かけた注意資源配分を反映している
ならば、作業記憶負荷を増やすと持続時間の検出成績は低下する
と考えられる。そこで被験者に記憶負荷を操作しつつ、
高速呈示される文字列から色の異なる文字（標的）の
検出を求めた。その結果、記憶負荷が低いときのほうが
連続する早期に標的の検出が可能であった。しかし、探
索表象とは共通しない（空間的）作業記憶課題ではこう
した促進が見られなかった。したがってこの結果は時間
をかけた注意資源配分というよりも、標的の表象形成過
程を反映しているといえる。次に、社会的に価値のある
情報である顔による注意捕捉について報告する。従来の
研究とは異なり、完全に構えの外にある妨害刺激（顔）
が注意捕捉したとき、妨害刺激への気づきの気づきの程度を測定
するとともに、注意捕捉の大きさとの関係を調べた。構
えた色特徴への頑健な注意捕捉が生じていたが、被験者
は妨害刺激的存在に気づくため、気づきと注意捕捉の大き
さに相関はなかった。従来、高速逐次呈示事態での注意
の瞬断や注意捕捉を説明してきた 2 段階モデルでは、第
2 段階で妨害刺激は標的と競合し、勝ったものに気づ
きが生じるとされてきた。しかしこの結果は、競合には勝
者がおらず、第 2 段階に到達しなかった刺激でも標的同
定に干渉することを示している。

（13）半側空間無視の動物モデルにおける皮質注意経路の機能的結合

吉田正俊（生理学研究所システム脳科学研究領域認知行動発達機構研究部門）

[目的] 半側空間無視は（主に右側の）脳損傷によって反
対側の空間にある感覚刺激に反応できなくなる症状で
ある。半側空間無視は低次の感覚障害や運動障害では説
明できない高次脳機能障害の一種である。半側空間無視
には大脳皮質の背側注意経路 (DAN) と腹側注意経路
(VAN) が関与していることがヒト患者を対象とした研
究から提唱されているが、実験による検証は充分され
ていない。そこで本研究では (1) マカクザルを用いた半
側空間無視の動物モデルを確立させたうえで (2) この
動物モデルにおいて安静時 fMRI を用いることで半側空
間無視の神経メカニズムを解明することを目指した。
[結果 1: 行動評価] 4 頭のニホンザルでヒト VAN の一部
と相同な脳部位である右上側頭回 (STG) に損傷を加え
た。視覚刺激への反応を評価する行動課題において、損
傷後 3 ヶ月以上にわたって左側にある視覚刺激を無視す
る傾向が見られることを見出した。この症状は到達運動と眼
球運動のどちらかを指標とした場合にも見られたため、運
動障害のみでは説明することはできない。また行動課題
は頭部無拘束条件で行ったことから、網膜座標依存的な視覚障害のみで説明することもできない。以上のことから本研究ではサルの半側空間無視モデルを確立することができたといえる。

【結果2: 機能イメージング】同じ動物を対象として、麻酔下での安静時 fMRI を用いて DAN の機能的結合を評価した。マカクザルにおける DAN の相同部位である前頭眼野 (FEF) と頭頂連合野の一部である LIP 野での MR シグナルの時間的変動の相関を機能的結合として計算した。損傷直後 (1-2 週) には、損傷同側 DAN の機能的結合の低下と損傷対側 DAN の機能的結合の上昇という左右の不均衡が起きたことを示唆する結果を得た。また損傷後 3 週以降では、DAN の半球間の相互作用が低下したことを見唆する結果を得た。

以上のことと半側空間無視の神経メカニズムとして、VAN と DAN の相互作用が急性期と慢性期において異なる影響を及ぼしていることを示唆している。
18. 脳の階層的理解を目指して

2017年11月24日－11月25日
代表・世話人：虫明 元（東北大学）
所内対応者：磯田昌岐（生理学研究所・認知行動発達）

（1）ヒトのコミュニケーション能力の神経基盤：イメージング手法によるアプローチ
定藤規弘（生理学研究所）

（2）サルを用いた社会的認知機能のシステム生理学的理解
磯田昌岐（生理学研究所）

（3）霊長類の脳における個体アイデンティティの情報表現
永福智志（福島県立医科大学）

（4）脳の多階層をまたがる信号の光遺伝学的解析
松井 広（東北大学）

（5）マウス大脳皮質の in vivo オール光機能解析
小泉 協、八尾 寛（東北大学）

（6）経路選択的回路操作技術の応用：行動制御機構の解明に迫る
加藤成樹（福島県立医科大学）

（7）レム睡眠中の自律神経系変動を引き起こすメカニズムについて
小山純正（福島大学）

（8）ショウジョウバエ求愛行動の神経基盤
山元大輔（東北大学）

（9）機能分担と階層性による一体型システムとしての運動前野腹側部
蔵田 潔（弘前大学）

（10）Transformation from sensory information to behavioral tactics and action by primate medial prefrontal cortex during a trained arm reaching task
松坂義哉（東北医科薬科大学）、Ali Heider Awan（東北大学）

（11）大脳皮質−大脳基底核ループとパーキンソン病
知見聡美、南部 篤（生理学研究所）

（12）内側前頭皮質と気分・情動の調節
筒井健一郎（東北大学）

（13）fMRI 知見に見るヒト自己概念の階層性
杉浦元亮（加齢医学研究所）

（14）視覚性対象認知の神経基盤
鈴木匠子（山形大学）

（15）Decoding distinct memories in the mushroom body of the fly brain
市之瀬敏晴（東北大学）

（16）鳴禽類における世代を超えた情報の口承に関わる神経機構
安部健太郎（東北大学）
【参加者名】
高田昌彦（京都大学霊長類研究所）、礫田昌岐（生理学研究所）、土持裕胤（国立循環器病研究センター）、近添淳一（生理学研究所）、二宮太平（生理学研究所）、則武厚（生理学研究所）、長谷川拓（生理学研究所）、小笠原宇弥（京都大学霊長類研究所）、小林誠（生理学研究所）、鈴木迪諒（都医研/総研）、蔵田潔（弘前大学）、山元大輔（東北大学）、定藤規弘（生理学研究所）、鈴木信子（山形大学）、松井広（東北大学）、常松友美（東北大学）、東野秀珍（東北大学）、松坂義哉（東北医科薬科大学）、吉本隆明（生理学研究所）、小川顕太郎（東北大学）、小野寺麻理子（東北大学）、小山純正（福島大学）、虫明元（東北大学）、杉浦元亮（東北大学）、阿部光一（東北大学）、樋村裕貴（東北大学）、渡辺秀典（東北大学）、成竹（福島大学）、大場健太郎（東北大学）、梅沢昭（東北大学）、永福悟志（福島県立医科大学）、坂本一寛（東北医科薬科大学）、尾葉（東北大学）、鈴木幸（岩手医科大学）、中村晋也（東北大学）、細川貴之（東北大学）、鈴木祐（東北大学）、綱谷大輔（生理学研究所）、Polyakova Zlata

【概要】
脳は階層的に組織化されている。分子、シナプス、細胞、局所回路、大域回路など、各階層レベルでの知見は集積されつつあるが、各階層間でどのような機能連関がなされているかについては、依然として不明の点が多い。脳科学が専門分化するなかで、異なる階層の研究者と情報を共有したり議論したりする場が少ないことが原因の一つと考えられる。この問題を克服して、階層化された脳機能の統合的理解を目指すことを目的として、複数の階層の連関性をテーマとする研究者や、システムとしての脳機構に関心を持つ研究者らによる研究会を組織した。中堅からシニアを中心とした講演者16名、若手を中心としたポスター発表者22名、それ以外の参加者40名（合計78名）の参加を得て、活発な議論が展開された。本研究会は、これまで所内で開催されてきた研究会を所外にも展開していこうという新たな試みとして企画されたものである。東北地区の各研究機関と生理研との今後の研究・人的交流の大きな礎となったはずである。

(1) ヒトのコミュニケーション能力の神経基盤 イメージング手法によるアプローチ

定藤規弘（生理学研究所）

科学技術の加速的な発展による社会環境の劇的な変化を特徴とする現代社会において、社会性を含むヒト高次脳機能の神経基盤を明らかにすることは、その問題の多くが関連する人間の精神や社会的行動の解明に必要かつ緊急の研究であり、MRIを始めとするヒト生体イメージングが重要な役割を果たす。MRIは、精神活動と脳構造を非侵襲的に対応付ける有力な手法であり、脳という場を制限条件として与えることにより、高次脳機能の心理モデルの構成と検証に寄与する。実際に、様々な社会的行動特性の脳内基盤は、機能的・統合的な研究が展開される。
開によって急速に明らかになりつつある。しかしそちらの研究の多くは、個人が単独で特定の課題を行っている時の活動を計測するものであり（I-mode）、コミュニケーションの特徴である「双方向性」（We-mode）の神経活動を計測するものではなかった。生理学研究所では、2台のMRIを用いて、コミュニケーションをとっている2名の神経活動を同時に計測することを進めてきた。従来の1名を対象とする機能的MRIではわからなかった、「私たち」の脳科学（We-mode neuroscience）を紹介する。

(2) サルを用いた社会的認知機能のシステム生理学的理解

自己理解や他者理解を含むさまざまな社会的認知機能の発達や制御のプロセスは、これまで発達科学や比較認知科学によって明らかにされてきた。近年は脳機能画像研究との連携が飛躍的に進み、社会的な心理過程と脳領域との非侵襲的な対応づけに成功しつつある。しかし、ヒトの脳機能画像研究で同定される脳活動の実態解明をさらに進めるためには、神経活動を高い時間・空間解像度で計測できる、霊長類動物を用いたシステム生理学研究が必要である。霊長類動物、特にマカクサルでは、単に社会的な動物であるだけでなく、進化的にヒトと近縁であるうえ、ゲノム構造、脳の機能構造、脳による認知活動においてヒトと共通する仕組を多くのもつ。我々は、マカクサル2個体を同時に用いて社会的認知機能を評価する、統合的な新しい実験パラダイムを世界に先駆けて開発し、自己と他人の行動情報処理の神経機構を明らかにする実験研究を展開してきた。また、そのような実験系を利用して、ヒトの自閉スペクトラム症とよく似たサルの自然発生例を世界で初めて報告し、その遺伝子変異、神経活動特性、および行動特性を明らかにした。本研究会では、こうした新たな実験研究のストラテジーを紹介しながら、マカクサルを用いて社会的認知機能の神経基盤を明らかにする研究の重要性を示したい。

(3) 霊長類の脳における個体アイデンティティの脳内表現

永福智志（福島県立医科大学）

個体アイデンティティの視覚的認知（「誰なのか」の認知）には2種の異なる一般化（generalization）が関係する。一つは様々な視覚的な見え方を跨ぐ一般化（generalization across different visual appearance）である。たとえば、われわれは様々な角度から示された様々な顔から個体アイデンティティを容易に特定できる。このような様々な視覚的な見え方を跨いで一般化される個体アイデンティティを知覚的アイデンティティ（perceptual identity）という。一方、視覚的な見え方を超えた一般化（generalization that transcends visual appearance）もあろう。たとえば、われわれは文字情報（名前）やトレードマークなど個体と意味的に結びついた様々なシンボルから個体を特定することも可能である。文字情報やトレードマークは顔ではなく異なる視覚情報を有している。このような視覚的な見え方を超えた個体アイデンティティを意味的アイデンティティ（semantic identity）という。

本研究では個体の知覚的および意味的アイデンティティの脳内表現を明らかにするために、一つの図形と一人の個人の5方向の顔との間の意味的対応を要求するような非対称的な対応課題（APA課題）遂行中のサル脳側頭前部下側頭皮質（AITv野）から単一ニューロン活動記録・解析を行った。サルは4通りの図形と個人の連合対を学習する。APA課題では最初に連合対の片方（顔または図形）が見本刺激として呈示され、遅延期間を挟んで複数回呈示されるテスト刺激（図形または顔）の中から連合対に属するものを特定することが求められる。

データ解析の結果、多くのニューロンが顔だけでなく図形の呈示に対しても応答を示し、大半が特定の図形と
顔の連合対に対して選択的に応答することが示された。さらに、AITv 野のニューロン集団の情報表現の解析のため、多変量刺激空間での多変量解析を行った。解析の結果、AITv 野のニューロン集団によって、APA 課題で使用された、見え方に対応不変的な、顔の知覚的アイデンティティだけでなく、APA 課題にあたって学習された、図形と個人との意味的関係も含む、正確に表現することが明らかになった。ある数の図形の位置関係は、各人の顔の重心の位置関係と位相的対応があった。したがって、AITv 野のニューロン集団は個体の知覚的アイデンティティと意味的アイデンティティの両方を表現することが明らかになった。

（4）脳の多階層をまたがる信号の光伝造学的解析

松井 広（東北大学）

脳の細胞のうち、神経細胞は、電極を刺すと活発な電気的活動を示す一方、グリア細胞は、ほとんどの電気活動を示さない。そのせいか、このグリア細胞は、脳内情報処理には関与しない細胞と考えられてきた。しかし、細胞の挙動は、何も電気的な活動だけとは限らない。例えば、カルシウムや水素イオンといった細胞内イオン濃度の変動、細胞活動のひとつであり、イオン濃度が変われば、様々な細胞機能が影響を受ける。細胞内イオン濃度は、代謝産物の蓄積、細胞膜を横切るイオン、細胞内小器官からのイオンの放出などにより、時々刻々と変化する。従来、細胞の電気活動ばかりが注目されてきたが、種々のイオンもそれぞれ、細胞の機能を左右する何らかの信号を符号化していると考え直せば、細胞の担い得る情報の次元は、飛躍的に増大する。

オプトジェネティクスというのは、特定の細胞に光に反応する分子を発現させ、この細胞に光をあてて、細胞の活動を自在に操作する技術である。従来、細胞の電位を操作するツールとして活用されてきたが、細胞内イオン濃度を操作するツールとしても活用することが可能である。この画期的な新技術は、神経科学を越えて、グリア細胞を含む、あらゆる細胞の機能解析に革命をもたらすと考えられる。私たちの研究室は、この技術をグリア細胞に応用して、グリア細胞内イオン濃度を変化させ、神経細胞の機能を変化させ、神経細胞間のシナプス伝達特性がどのように変化するのかを調べている。研究の結果、グリア細胞から放出される伝達物質によって、神経細胞間のシナプス伝達特性が影響を受けることが明らかになった。したがって、神経細胞の接続の存在は、グリア細胞の細胞内イオン濃度バランス状態に左右されるため、脳の異種細胞をまたがる多階層性の信号処理機能が存在することが示された。

（5）マウス大脳皮質の in vivo オール光機能解析

小泉 協、八尾 寛（東北大学）

哺乳類の大脳皮質は層構造をなしており、各層の細胞が固有の様式で他の層や領域の細胞と結合し、入力信号の統合、伝達、拡散を行うネットワークを構築している。特に 5 層は他の皮質領域や視床などの脳領域への出力層として知られている。私たちは、生体内の皮質において起こる感覚入力統合に関するメソニン回路の特性を解明する目的で、皮質の任意の部位を刺激しつつ層横断的にニューロン応答を計測するオール光システムを開発した。本研究においては上記のシステムを用いて得られた結果について紹介する。

野生型マウス（C57BL/6）の第 1 次体感覚野に AAV を用いてチャネルロドプシン（C1V1）とカルシウムセンサー（R-CaMP2）を発現させ、皮質に挿入されたマイクロプリズムを介して、層の 2 光子励起顕微鏡イメージングを行った。また、青色 LED 光を視野に結像する対物レンズを用いた照射システムを新たに開発した。両者を組み合わせ
せることにより、視野内の同定されたターゲットに照射し、様々な時空間的パターン光刺激に対する各細胞のカルシウム応答を計測した。

単一ターゲット光刺激に連関した活動の上昇は、照射部位とその近傍の細胞にのみ確認された。また、複数のターゲットを同時刺激すると、相反抑制（reciprocal inhibition）が認められた。相反抑制は、光刺激の時間差に依存し、0~2 msの先行入力において、最大の抑制効果が得られた。

すなわち、本研究は、マウス大脳皮質深層において生体内でのパターン刺激を行い、その応答を多次元的に計測することにより、世界に先駆けて成功したものである。その結果、5層の一部への入力により、カラム状の機能構築が創発することが示唆された。インターニューロンを介した相反抑制が5層ニューロン間に形成され、背後に対しコントラスト増強された出力信号を形作っていると考えられる。

(6) 経路選択的な回路操作技術の応用：行動制御機構の解明に迫る

加藤成樹（福島県立医科大学）

われわれの脳は、学習や経験に依存して行動を獲得し、環境に応じて適切な行動を実行する。その環境に変化がある場合、既存の行動は新しい行動に変換される。学習の獲得や切り替えには、大脳皮質→基底核→視床を結ぶ神経ネットワークが重要な役割を果たす。複雑な神経回路が行動制御をどのように媒介し、回路のどのような変化が発現に結びつくのかを解明することが重要な課題である。これらの機構の解明において、神経回路を構成する特定の細胞種や経路の役割を操作した動物モデルは、有益な実験系を提供する。我々の研究グループは、独自の遺伝子改変技術を利用して、行動制御を媒介する脳神経回路の仕組みを明らかにするための研究を進めてきた。特に、背側線条体を中心とする脳神経回路に対する刺激を介して、脳神経回路を選択する、あるいは、環境の変化に対応して行動を柔軟に切り替えられる神経ネットワークの仕組みの研究を行ってきた。本研究会では、経路選択的な回路の技術として視床線条体路の機能の解明に取り組んだ研究と、細胞種特異的な機能をある細胞選択的に抑制するとも考えられる。

(7) レム睡眠中の自律神経系変動を引き起こすメカニズムについて

小山純正（福島大学）

レム睡眠中には、脳波の速波化や筋弛緩、急速眼球運動に加え、自律神経系の大きな変動が起こる。特に、血圧は、覚醒時より大きな変動が、不規則に起こる。レム睡眠の発現は、橋被蓋領域の外側被蓋核(LDT) / 腳部被盖核(PPT)に分布するアセチルコリン作動性ニューロンの活動がリズミックな動きをしています。これらのニューロンは、レム睡眠の開始前から活動が上昇し、レム睡眠中が高い活動を維持することにより、レム睡眠の開始とその維持に関与している。アセチルコリン作動性ニューロンの別の一群は、レム睡眠中に一過性の活動上昇を示す。その発火様式は、急速眼球運動や陰茎勃起といった、レム睡眠中の相動的現象の発現に関連している。

LDTのアセチルコリン作動性ニューロンの一群は、レム睡眠中の血圧変動に先行して活動が上昇し、血圧変動と相関した活動変化を示した。同様の発火様式は、偏桃体にも見られた。LDTに電気刺激を与えると、血圧変動が誘発されるが、この血圧上昇は、アセチルコリンのニコチン性受容体阻害剤（メカミラミン）の偏桃体への投与によって抑制された。

以上の結果は、LDTのアセチルコリン作動性ニューロンの上行性投射による偏桃体の活動上昇が、レム睡眠中
の血圧変動を引き起こすことを示唆する。偏桃体は、情
動の中枢として、覚醒時には様々な情動刺激によって興
奮し、血圧変動などの自律神経系変動を引き起こしてい
る。レム睡眠中は、情動刺激に代わって、LDT のアセチ
ルコリン作動性ニューロンが、偏桃体を活性化し、覚醒
時と同様の自律神経系変動を起こしていると考えられる。

（8）ショウジョウバエ求愛行動の神経基盤

キイロショウジョウバエは、個体の行動、その基盤と
なる神経回路、さらに神経細胞の特性を決定する遺伝子、
この三階層にわたる縦断的研究が可能な優れた実験材料
である。演者は、約 30 年前に行った性行動異常突然変異
体のスクリーニングに於いて、雄が雌に求愛せず雄に求
愛する系統として satori を分離した。satori 変異原因遺伝
子、fruitless (fri) のクローニングの結果、この遺伝子が
ニューロンの雄化因子である BTB-zinc finger 型転写因子
をコードすることが判明した。Fru タンパク質は雄特異
的に翻訳され、個々の発現ニューロンの形態を雄型にす
ることを通じ、神経回路に性差を作り出している。雄特
異的 Fru 発現ニューロン（P1 と呼ぶ）のクローンを雄の
脳内に作ると、その雄は雄の行動をとることから、P1 が
雄の性行動を開始させる中枢であると考えられた。また、
この P1 ニューロンを雄の脳内で強制的に活動させると、
雄は求愛を開始した。さらに、P1 ニューロンは求愛に先
行して活動することが Ca2+ imaging によって示された。
最近我々は、satori 変異体の雄間求愛が経験依存的に生
ずることを見出し、P1 ニューロンの特性変化がこの行動
変容の基盤にある可能性を見出した。これらの研究の概
略を紹介する。

（9）機能分担と階層性による一体型システムとしての運動前野腹側部

蔵田 潔（弘前大学）

Recent studies have revealed that the ventral premotor cortex
(PMv) of nonhuman primates plays a pivotal role in various
behaviors that require the transformation of sensory cues to
appropriate actions. Examples include decision-making based
on various sensory cues, preparation for upcoming motor
behavior, adaptive sensorimotor transformation, and the
generation of motor commands using rapid sensory feedback.
Although the PMv has frequently been regarded as a single
entity, it can be divided into at least four functionally distinct
regions: F4, a dorsal convexity region immediately rostral to
the primary motor cortex (M1); F5p, a cortical region
immediately rostral to F4, lying within the arcuate sulcus (F5c);
F5c, a ventral convexity region lateral to F4; and F5a,
ventrolateral convexity. Among these, we propose that F4 can
be further divided into dorsal and ventral subregions (F4d and
F4v), which are involved in forelimb and orofacial movements,
respectively, and that F4d and F5p work together as a
functional complex involved in controlling forelimb and eye
movements, most efficiently in coordinated eye-hand
movements for reaching and grasping under visual guidance. In
contrast, F5c is hierarchically higher than the F4d/F5p complex
and plays a role in decision-making based on various sensory
discriminations. Although little is known of the functional
aspects of F5a at present, the PMv subregions form an integral
system from decision-making to execution and complete
eye-hand coordination under various behavioral circumstances.
Transformation from sensory information to behavioral tactics and action by primate medial prefrontal cortex during a trained arm reaching task

松坂義哉（東北医科薬科大学）、Ali Heider Awan（東北大学）

An important aspect of flexible behavior is the use of diverse response tactics (logic to select action). What is the neural mechanism to select tactics, and how different is it from the mechanism to select action itself? We studied this issue in the posterior medial prefrontal cortex (pmPFC) of primates trained to perform a visually-cued arm reaching task which required reaching to either a left or right target under two different tactics. In one tactic (concordant), the cue required reaching to its location whereas in the other tactic (discordant), it required reaching away from its location. After extensive training, the reaction times for the concordant and discordant trials were indistinguishable, indicating that the monkeys developed tactics to overcome the cue-response conflict. Neurons in the pmPFC exhibited prominent activity when the concordant and discordant trials were randomly intermixed (dual tactics condition), requiring the selection of a response tactic. Further, their activity was often selective for the tactic. Surprisingly, the task-related activity of pmPFC neurons disappeared when the valid tactic was rendered invariant across trials (single tactic condition), even though the task still required the selection of actions. In contrast, neurons in the SMA and pre-SMA exhibited activity related to the monkeys’ response under both the dual and single tactic conditions. And finally, under the single tactic condition, the efficacy of action representation by SMA neurons was enhanced so that the action was reliably predicted by the activity of smaller size of neuronal ensemble. These findings indicate that the medial frontal cortical areas of primates play different roles in the guidance of appropriate action under the presence of multiple tactics, and their contribution to the guidance of action is dynamically altered by task condition.

大脳皮質-大脳基底核ループとパーキンソン病

知見聡美、南部篤（生理学研究所）

大脳基底核は随意運動の発現と制御において重要な役割を担う高次中枢であり、その障害によって、随意運動の遂行が困難になったり不随意運動が生じたりする。大脳基底核は大脳皮質との間でループ回路を形成しており、大脳皮質から入力を受けて処理を行った情報をもとに、視床を介して大脳皮質の活動を調節することによって機能を発揮している。大脳基底核からの情報は最終的に視床に伝達するのは、出力部である淡蒼球内節と黒質網様部である。大脳皮質からの情報は、ハイパー直接路、直接路、および間接路の3経路を介して出力部に伝達されるが、これらの経路を介した情報が、正しいタイミングとバランスで伝達されることが、適切な運動の遂行に不可欠であると考えられる。実際に、パーキンソン病などの運動異常症モデル動物の大脳基底核から神経活動の記録を行ってみると、これらの経路を介した情報伝達に異常が生じていることがわかる。正常およびパーキンソン病モデル動物の神経活動をもとに、大脳基底核の運動制御機構とパーキンソン病の病態生理について考察したい。
（12）内側前頭皮質と気分・情動の調節

筒井健一郎、中村晋也（東北大学）

経頭蓋磁気刺激（transcranial magnetic stimulation: TMS）は、頭蓋上に置いたコイルに電流を流して誘導磁場を形成し、それによって脳内に電流を生じさせるものである。われわれはまず、反復経頭蓋磁気刺激（repetitive TMS: rTMS）によって生じる脳活動の変化を評価するために、rTMS前後に皮質表面電位（electrocorticogram: ECoG）および、運動誘発電位（motor evoked potential: MEP）を記録する実験を行った。その結果、10 Hzの反復刺激では、MEPの振幅の増大とともに、ECoGのγ帯域のパワーの増大が、1 Hzの反復刺激では、MEPの振幅の減少とともに、ECoGのβ帯域のパワーの減少が生じていることが明らかになった。これにより、高頻度および低頻度のrTMSによって生じるMEP振幅の変化の背景には、安静時神経活動の変化があることが明らかになった。次に、内側前頭皮質の前部帯状回膝下部（sgACC）を主なターゲットとして、低頻度rTMSを施して局所神経活動を抑制し、行動および生理指標の変化を調べる実験を行った。内側前頭皮質の腹側部に位置するsgACCをターゲットとして刺激するにあたっては、ダブルコーンコイルを使用し、コントロールとして内側前頭皮質の背側部に限定した刺激を行うには8の字コイルを使用した。その結果、ダブルコーンコイルを使ってsgACCをターゲットとして刺激したときのみ、ケージ内の自発行動量の減少、社会的積極性の喪失と引きこもりなどの行動の変化と、血中コルチゾールレベルの上昇を示した。これらの結果は、sgACCを中心とする内側前頭皮質の腹側部が、情動や気分の調節に関わっていることを強く示唆するものである。

（13）fMRI 知見に見るヒト自己概念の階層性

杉浦元亮（加齢医学研究所）

「自己」とは一体何だろうか——過去20余年、この問いへの答えを求めて、自己の多様な側面について脳機能マッピング研究が行われてきた。残念ながら、自己条件と他者条件の差分によって賦活が見られる脳領域は、研究によって大きく異なった。自己を表象する脳メカニズムの存在は「幻想」と思われた。しかし、知見を注意深く整理すると、「自己」は概ね3つに分類が可能である：①感覚・運動連合領域を中心に賦活させる「身体的自己」（自己身体認知・運動自己主体感）、②他者条件と関連する領域を賦活させる「対人関係的自己」（自己対人コミュニケーション）、③皮質内側領域を賦活させる「社会価値的自己」（自己評価・意思決定）。これらの3つの自己関連ネットワークは、それぞれ異なるレベルの内部スキーマ（自身の行動出力とそれにに対するフィードバックの連合）を表象しているという点で相違であり、発達的には①②③の順で階層的に成熟することが想定される。この「自己3階層モデル」の神経基盤はどこまで精緻に検討されているのだろうか？また我々の複雑な社会的行動の理解にどのように応用できるのだろうか？今回はこのようなモデルの精緻化と応用を志向した最近の2つのfMRI研究を紹介する。前者は、自己の①①内部スキーマに固有のネットワークと一般的な感覚予測誤差に反映する領域を区別した。驚くべきことに、このような区別はこれまで実験的には行われてこなかった。後者は、対人関係の自己（②）と社会価値的自己（③）が、現実的・複雑な社会適応の意思決定場面で動的に活用されていることを示した。具体的には、お互いに相手を価値観しあうような、相互パートナー選択の場面を扱った。
（14）視覚性対象認識の神経基盤

鈴木匡子, 大石如香（山形大学）

ものの視覚性認知には、形態だけでなく、色や質感などの表面特徴が大きな手がかりとなる。これらは腹側視覚路で処理されることが報告されているが、質感認知の神経基盤の詳細はまだ明らかになっていない。質感はものの物性（光沢感、透明感など）、状態（乾燥、腐敗など）によって決まり、対象の素材や状態を知る鍵となる。本研究は質感認識が局所脳損傷、変性性認知症によりどのように変化するかを実物、画像で検討し、その神経基盤を知ることを目的とした。

局所脳損傷患者11名、変性性認知症78名（アルツハイマー型認知症（AD）53名、レビー小体型認知症（DLB）25名）と健常高齢者32名を対象とした。基本的な視覚機能であるコントラスト感度、色覚、立体視、形態認知および実物、画像での素材同定課題を行った。実物は棒状に統一した6種類の素材（磁器、金属、ガラス、皮革、布、樹皮）を用い、視覚的に素材を判断させた。画像刺激としては同じ6種類の素材のCGをモニター上に表示した。

その結果、脳血管障害など局所脳損傷患者において、左または両側舌状回/紡錘状回に損傷のある症例で、実物および画像による素材同定が障害されていた。また、変性性認知症では、DLBにおいてADおよび健常対照群に比べ、基本的な視覚機能とともに質感認識が有意に低下していたが、両者に相関は認められなかった。ADでも質感認識は低下していたが、基本的な視覚機能としてコントラスト感度以外は保たれていた。

質感認識は形態や色覚とは独立して障害され、疾患により障害されるが異なる。質感認識には両側側副溝前方が関与しているという報告がある（Cavian-Pratesi et al., 2010）。本研究より質感を認知し、素材を同定する過程には左側のやや前方の側副溝周囲（紡錘状回、舌状回）が関与していることが示唆された。また、変性性認知症の中でDLBは基本的な視覚機能、質感認知とも障害が顕著であり、比較的低次から高次まで腹側視覚路が広汎に障害されていると考えられた。これは後頭葉の血流低下がADより強いとされる知見に合致する所見である。さらに背側視覚路の障害が主と考えられるADでも質感認知障害を認めた。近年、腹側視覚路と背側視覚路の緊密な連合を示す知見やものの重さなど頭頂葉が関与する特徴が腹側視覚路にも表象されているという知見もあり、質感認識についての背側視覚路の関与やADにおける潜在的な腹側視覚路の機能障害についても検討していく必要がある。

（15）Decoding distinct memories in the mushroom body of the fly brain

Toshiharu Ichinose, Mai Kanno, Hiromu Tanimoto（東北大学）

Olfactory learning of Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result of odor choice, but not the process. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Memory retrieval requires both accuracy and speed. Automatic fly detection in each arm of the new maze visualizes more detailed behavior and choice dynamics during memory retrieval. We show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice result intact. We furthermore found that combinations of the mushroom body (MB) output pathways distinguish different memory processes. Thus, our new experimental system contributes to visualize multiple conditioned odor responses beyond the result of the odor choice.
鳴禽類における世代を超えた情報の口承に関わる神経機構

安部健太郎（東北大学）

動物の行動様式や行動習性は、先天的要因および後天的要因によって影響され形成される。とりわけ、哺乳類や鳥類など、高い社会性をもつ動物では、親や社会など同種個体から受ける情報が、個々の能力発達に強く影響する。例えば、ヒトは生後に親や社会などの影響により、言語コミュニケーション能力を獲得するが、このような高次な能力の発達には、ゲノム情報である先天的要因と、社会から受ける情報である後天的要因が両者とも必要であり、なおかつそれぞれが複雑に作用しあうことが想定されている。このような後天的かつ自発的な能力習得は、動物界において稀なものであるため、それらを可能にする神経メカニズムについては、その重要性に反し不明な部分が多い。

鳴禽類（スズメ目）に属する鳥類の多くは、ヒトと同じように、生後に「さえずり」と呼ばれる音声シーケンスを用いた音声コミュニケーション能力を生後の社会環境から得られる情報に依存して獲得・発達させるため、高次音声情報処理および後天的な能力発達のモデル動物として有用である。我々はこれまでに、鳴禽類の音声識別能力は生後の社会環境からの情報を受け発達することをしめしており、鳴禽類の音声コミュニケーション能力の発達に寄与する先天的および後天的要因についてその詳細を明らかにする研究に現在取り組んでいる。また、鳴禽類を生後に隔離飼育することで生後に受容する情報を実験的に制御して育成する技術、および、遺伝子変異鳴禽類を作成する技術を確立しており、これらの技術は、鳴禽類の音声コミュニケーション能力の発達に寄与する先天的要因と後天的要因を実験的に制御することを可能にしている。

神経活動依存的な活性を示す転写制御因子は、後天的因子（環境・社会）依存的に、先天的因子（ゲノム）の表現を制御するという意味で、先天的因子と後天的因子の発現を繋ぐ鍵となると期待される。今回、我々は、鳴禽類において生後の社会情報入力依存的に発現が変化する遺伝子群を明らかにし、それらの発現の制御の鍵となる転写制御因子を明らかにした。また、それらの遺伝子発現制御機構の活性を人為的に制御することにより、鳴禽類において生後の後天的因子依存的な「さえずり」などの音声コミュニケーション能力の発達を抑制及び促進することに一部成功した。これらの成果は、鳴禽類の音声コミュニケーション能力の発達に及ぼす先天的要因と後天的要因、及びそれらの相互作用のメカニズムの一端を明らかにし、動物における生後の環境に依存した柔軟な発達機構の分子メカニズムを明らかにすることができ期待される。
19. 認知神経科学の先端 意識の脳内メカニズム

2017年9月25日〜9月26日
代表・世話人：村山正宜（理化学研究所脳科学総合研究センター）
所内対応者：藤田昌岐（生理学研究所・認知行動発達）
世話人：吉田正俊（生理学研究所・認知行動発達）

（1）Evaluation and decoding of consciousness levels in drowsy or comatose patients by recoding various kinds of EEG and ECoG

鎌田恭輔（旭川医科大学 医学部 脳神経外科）

（2）Consciousness without attention and large capacity conscious memory, investigated with metacognition

土谷尚嗣
（モナッシュ大学 School of Psychology, Faculty of Medicine, Nursing and Health Science）

（3）触知覚とその記憶の定着に関わる皮質間回路活動

村山正宜（理化学研究所 脳科学総合研究センター）

（4）前障の機能解明を目指して

北西卓磨（大阪市立大学大学院医学研究科神経生理学）

（5）線虫C. elegansにおける機能的神経回路の抽出と統合情報量解析

池田宗樹（名古屋大学大学院 理学研究科 生命理学専攻）

（6）What’s so wrong with “Qualia” (and related concepts)?

Shinsuke Shimojo
（Division of Biology & Biological Engineering / Computation & Neural Systems, California Institute of Technology）

（7）Emergentist Account for Non-Reductive Consciousness: Towards the Principle of Consciousness

Jun Tani（OIST）

（8）遷延性意識障害からの脱却を目指して—病態基盤の理解に基づく治療指針の立案と介入の実践経験—

河島則天（国立障害者リハビリテーションセンター研究所）

【参加者名】
青木一郎（名古屋大学）、青西 亨（東京工業大学）、新居桂賀（生理学研究所）、有馬雄祐（東京大学）、池田宗樹（名古屋大学）、石尾政宜（京都大学）、石村 克、伊東 奥（東京工業大学）、今泉 修（東京大学）、岩崎晴彦（京都大学室長研究室）、植松明子（理化学研究所）、大石 誠（筑波大学）、大泉氏史（駒 阿弥）、大迫優真（同志社大学）、大澤臣弘（名古屋市立大学）、太田恭輔（理化学研究所）、太田 智（所属）大松聡子（国立障害者リハビリテーションセンター研究所）、岡 夏樹（京都工芸繊維大学）、尾崎彰俊（京都大学）、桜村昇吾（玉川大学）、金井良太（駒 阿弥）、金沢星慶（東京大学）、金子卓也（滋賀医科大学附属病院）、鎌田恭輔（旭川医科大学）、川口 潤（名古屋大学）、河島則天（国立障害者リハビリテーションセンター研究所）、北園 淳（駒 阿弥）、北西卓磨（大阪市立大学）、木村梨絵（理化学研究所）、鰐田孝和（豊橋技術科学大学）、杉山 祐（慶應義塾大学）、小林由佳（中京大学）、栃木英嗣（京都大学）、小山雄太郎（慶應義塾大学）、大阪 豊（電子通信大学）、篠森敬三（高知工科大学）、川村和久（名古屋大学）、鳥崎秀昭（京都大学）、坂口 豊（東京大学）、金子美恵子（名古屋大学）、角谷基文（生理学研究所）、高村優作（薬大）、田口 杏（北海道大学）、谷 淳（OIST）、玉木竣也（中京大学）、近添淳一（生理学研究所）
【概要】

人間の心の仕組みを、脳を起点にして明らかにすることを目指す認知神経科学は、神経生理学、心理物理学、脳機能イメージング、計算論的神経科学といったさまざまなdisciplineからなる学際的領域である。このような学際的領域を発展させるためには1）専門分野を超えた共同研究（情報交換）の促進と2）研究者の層の厚みを増すこととが不可欠である。本研究会では、意識をキーワードに1）各発表では分野ごとのイントロダクションに重点を置き、議論の時間を多く取ることによって、特定のテーマについて様々な角度から議論を深めるワークショップの形態を取った。この結果、本研究会は講演者12名、ポスター発表者29名、参加者110名の参加のもとで盛況な会を開催することに成功した。このことによって、研究者間の意見交換のみならず、大学院生などの研究者の卵への教育的効果もあったのではないかと考える。

Evaluation and decoding of consciousness levels in drowsy or comatose patients by recoding various kinds of EEG and ECoG

鎌田恭輔（旭川医科大学医学部 腦神経外科）

The clinical practice of neurosurgery frequently encounter patients, who have been in comatose or minimum consciousness state. On the other hand traditional questions about the consciousness origin and dynamic mechanisms has not been clearly solved. Several institutes tried to find the consciousness levels evaluated by resting-state functional MRI (rs-fMRI) and possibly investigated by resting-state electrocorticogram (ECoG) during operation. In this project, we would like to focus on three topics of consciousness research. The first topic is to measure ECoG during surgery with resting-state, somatosensory and auditory stimulations and see functional connectivity and response profiles to the stimuli. The...
different anesthesia levels could be carefully maintained and we can record stable ECoG data during craniotomy. Epilepsy case study is the second topic. Patients with implantation of more than 100 subdural grid channels undergo continuous video-EEG/ECoG monitoring for a few days. The monitoring shows behavior, symptoms and normal and pathological electrophysiological findings simultaneously. We will record EEG.ECoG with resting, sleeping and awake and interictal and ictal states, respectively. Mathematical approaches would contribute to analyzing relationship among the big data. This project would make well synchronization of all data, resulting in indicating relationship between neurophysiology and consciousness levels. Third topic is to detect minimum consciousness level in patients with minimum consciousness states. Although they are not able to communicate, they can feel, listen and mind. We deliver several different stimuli to patients to detect singular P300 to read patient mildness, attention and intention. Our institute has more than 50 comatose patients and is developing a special device, which deliver stimuli and record EEG and analyze evoked P300 with cooperation of guger technology. In my talk, I am going to talk about clinical reality and show how the consciousness level could be evaluated by different ways.

(2) Consciousness without attention and large capacity conscious memory, investigated with metacognition

土谷尚嗣

(モナッシュ大学 School of Psychology, Faculty of Medicine, Nursing and Health Science)

Do we consciously experience only those sensory inputs that we attend to? Or, do we enjoy substantial amount of unattended information in conscious experience? The necessity of top-down attention for conscious perception has been a hotly debated topic in consciousness research. In this talk, we present two studies in which we incorporated trial-by-trial confidence rating and how the level of confidence relates to the accuracy of task performance, a measure called "metacognitive accuracy". We assume that above chance metacognitive accuracy guarantees conscious accessibility of sensory information.

In the first study, we examined how much we remember about the non-target distractor faces in a natural-scene face-search task (Kaunitz, Rowe and Tsuchiya 2016). We show the evidence that we actually remember many more faces than traditionally thought. Even though each face was only briefly fixated (<250ms), at least >7 faces seems to be remembered consciously, accompanied with metacognition.

In the second study, we examined whether face genders or color orientation of patches in the periphery can be consciously discriminated when they simultaneously perform a highly demanding task at the fixation. Replicating previous studies, we found that faces, but not color patches, can be discriminated together with the demanding dual-task. Notably, confidence rating and metacognition provide strong evidence that phenomenology of faces do not change, but color patches do change, under the dual-task condition.

These results open a new direction of rigorous psychophysical studies of consciousness, incorporating a metacognitive measure to backup phenomenological impression of subjects. Overall, our claims supports the claim that consciousness with little or no attention is possible and robust for a certain class of stimuli, but not all of them (Koch & Tsuchiya 2007 Tics).

References:

Kaunitz Rowe Tsuchiya 2016 Psych Sci
https://goo.gl/ghnIXo
Koch & Tsuchiya 2007 TICS
http://goo.gl/TG07vX
(3) 触知覚とその記憶の定着に関わる皮質間回路活動

村山正宜（理化学研究所 脳科学総合研究センター）

脳内における皮膚感覚の知覚（触知覚）メカニズムには未だ不明な点が数多く残っています。例えば、脳内のどの回路が知覚に関与するのか、回路間での情報の流れおよびどの神経活動が知覚の内容を表すのか等はまだ解明されていません。近年、我々は光遺伝学的手法を用いた回路操作により、触知覚に必須な脳回路の同定に成功しています。この回路を選択的に抑制すると、マウスは正確な触知覚が得られません。例えば、ツルツルした床とザラザラした床を区別できなくなります。また我々は、この回路が睡眠中にも活性化することを発見しています。ノンレム睡眠（深い眠り）中にこの回路を抑制すると、触知覚の記憶が阻害されます。本講演ではこれら知見の概要を紹介するとともに、触知覚のセントラルドマの解明に向けた取り組みを紹介します。

(4) 前障の機能解明を目指して

北西卓磨（大阪市立大学大学院医学研究科神経生理学）

前障は、島皮質と線条体にはさまれた脳領域であり、大脳皮質のほぼすべての部位と双方向の線維連絡を持つ。この特異な投射様式のため、前障の機能として、多感覚の統合や、注意、意識などさまざまな推測がなされてきた。しかし、前障は薄いシート状の構造を持つため、選択的な操作やイメージングが難しく、その機能は不明なままである。そこで私たちは、複数の経路選択的な手法を用いて、マウスの前障→大脳皮質経路の機能解析をおこなった（Kitanishi and Matsuo, J Neurosci, 2017）。まず、各種トレーサーを用いて前障ニューロンの投射パターンを系統的に調べた。その結果、前障から大脳皮質の各部位への投射は不均質であり、主要な投射先は内側嗅内野と前頭前野であることをを見つけた。マウスを新奇環境に提示するとこれらを領域に投射する前障ニューロンが活性化し、また、前障→内側嗅内野の経路を光遺伝学的に抑制すると文脈依存学習の成績が低下した。こうした結果から、前障は、新奇経験に関する情報を内側嗅内野に伝達し、内側嗅内野の文脈依存記憶における機能を調節する役割を持つと考えられる。今後、前障の意識への関与を調べるためにどのようなアプローチがありえるのか、未発表データも交えて考察する。

(5) 線虫 C. elegans における機能的神経回路の抽出と統合情報量解析

池田宗樹（名古屋大学大学院 理学研究科 生命理学専攻）

線虫 C. elegans は全神経ネットワークの接続が解き明かされている唯一のモデル動物である。しかし構造的コンクレートミクスの完璧な機能処理機構の解明における第一歩にすぎない。線虫では次なるステップとして、ある特定の機能を担う神経回路を同定し、そこでの神経情報処理・運動形成の過程に着目することで、動物にとって普遍的な神経回路活動の変化を観察するようにしてきました。しかし、個体行動の形成や神経細胞活動の冗長性から、そのような機能的神経回路の同定は容易ではなかった。本研究では、網羅的な神経細胞破壊と大规模行動解析を周辺して、機能的神経回路の新たな同定法を提案する。これにより、線虫の走性行動において、線虫の基本行動要素であるターン運動やカーブ運動を適切に制御している神経回路群の抽出に成功した。

では、特定の機能を担う神経回路が同定され、回路を構成するニューロンの活動が個体自由行動下で完全
に記録できたとき、脳情報処理はいかに解かれ得るだろうか。本研究では、抽出した機能的神経回路に基づき神経回路数理モデルを構築し、情報量解析によって回路のマクロ・ミクロな挙動を定量的に評価することで、この問いに答えを試みた。特に統合情報量が最大となる神経細胞集団、すなわちメインコンプレックスにおける統合情報量の値と走性行動特性の関係に着目し、神経回路のマクロな状態と個体行動との統一的な理解を目指した。本口演を通じ、構造的コネクトミクスのその先に待つ「脳のわかり方」について議論したい。

（6）What’s so wrong with “Qualia” (and related concepts) ?

Shinsuke Shimojo
（Division of Biology & Biological Engineering / Computation & Neural Systems, California Institute of Technology）

Qualia (pl. of quale) are often defined as the absolute quality of subjective experience in sensation/perception. D. Dennett noted four distinctive characteristics; 1) ineffable, 2) intrinsic, 3) private, and 4) directly or immediately apprehensible in consciousness. Qualia, defined as such, are often considered to form a hard problem in that neuroscience, no matter however advanced, in principle could not account for it (in the body-mind context).

Here I will list seven fundamental reasons why the ideas of qualia and related concepts are problematic, and argue that neuroscience can in principle approach to understand the brain-consciousness relationship.

1. Content of perception is closely linked to behavior. If most of behaviors are “easy” problems, then so are various aspects of perception.

2. Personal history is critical. Here I do use “personal history” in my own way, which refers to personal history of dynamic interactions among genes, body, neural system and environment. Even when a quale appears to be possible based on few neurons’ activity isolated in a brain, the only way this is made possible is via the history of such dynamic interactions with external world via body.

3. The hard problem is not single - i.e. what seems to be an united and single impossible problem (how can the brain yield qualia) turned out to be possibly divided into more specific problems, some of which at least are scientifically attackable as easy problems.

4. Upon careful examinations, the unique and absolute quality of sensory experience turned out not always that unique, absolute, or isolated (from the body, the environment, and the others’ view).

5. The “absolute” quality of sensory experience may be actually supported by a network of relative differences (in analogy to Saussure’s theory of language). If it is all about discriminable differences among sensory inputs, then it would rather be an easy problem approachable from the objective psychophysical methods.

6. Qualia may be at least partly a product of postdictive processes. Various examples and studies suggest that definitive awareness and features of a percept is determined or consolidated only postdictively upon inquiry (by self or others). When quale is said to exist, it may not exist in the solid definitive form at the assumed “present” moment, as naïve phenomenology insists.

7. Awareness and conscious description of a percept may heavily depend upon inter-subjectivity and “shared reality” among people. This becomes obvious when one examines developmental acquisition of language (especially those mental lexicon) and the structure of typical psychophysical experiments.
Emergentist Account for Non-Reductive Consciousness: Towards the Principle of Consciousness

Jun Tani (OIST)

Abstract: This talk proposes that the mind is comprised of emergent phenomena, which appear via intricate and often conflictive interactions between top-down intentional processes involved in proactively acting on the external world and bottom-up recognition processes involved in receiving the resultant perceptual reality. This view has been tested via a series of neurorobotics experiments employing predictive coding principles implemented in “deep” recurrent neural network (RNN) models conducted in my lab for more than 20 years. These experimental results suggest that structure for consciousness can be accounted by criticality developed by means of circular causality inevitably emerged in the enactment loop. Finally, I discuss how we can achieve the principle of consciousness by developing interdisciplinary research programs.

References:

Jun Tani, Dr. Eng.
Professor, Cognitive Neuromatics Research Unit,
Okinawa Institute of Science and Technology (OIST)
Lab1-D008, https://groups.oist.jp/cnru

遷延性意識障害からの脱却を目指して
—病態基盤の理解に基づく治療指針の立案と介入の実践経験—

河島則天（国立障害者リハビリテーションセンター研究所）

植物状態（vegetative state; VS）とは、睡眠〜覚醒サイクルが維持されているものの、刺激への反応が現れず、意識の兆しがない状態を指す。この状態を1カ月継続すると、持続的植物状態（persistent vegetative state: PVS）、さらにこれが長期化し、永続的な植物状態を呈する症例は遷延性意識障害（Prolonged consciousness disorder: PCD）に区分される。我々はこれまで、眼球運動計測と脳波解析によって、PCD症例の潜在的残存機能の評価と意図検出の可否判断を試み、病棟での観察では意図の有無を評価できるまでに至らなかった患者に対しても、画像注視時の視線の動きから意図検出ができる可能性を見出すとともに、安静時脳波の特徴から意識の有無についての客観的判断が可能になることを支持する結果を得てきた。また、PCD症例を対象に実施した各種計測の結果から病態特徴を把握し、リハビリテーション指針を立案、1年以上の介入を行った結果、言語教示への反応や摂食行動への移行可能性を見出すに至った症例を経験した。本発表ではPCD症例に対して我々が試みている計測や分析、病態推論のプロセスを紹介し、議論してみたい。
20. 発達・脳科学と教育実践学の融合的連携を探る
～対人相互関係の理解と育成をめざして～

2017年12月4日－12月5日

代表・世話人：松村京子（兵庫教育大学・学校教育研究科）
所内対応者：磯田昌岐（生理学研究所・認知行動発達）

(1) 子どもの自己制御・対人関係能力の向上を意図したSTARTプログラムの介入研究

松村京子（兵庫教育大学・学校教育研究科）

(2) 関係性を支援する ～大阪大学親と子の発達相談での取り組み～

山本知加, 谷池雅子（大阪大学・連合小児発達学研究科）

(3) 相互再帰的インタラクションの発達

板倉昭二（京都大学・文学研究科）

(4) 自閉スペクトラム症の脳イメージングと治療的アプローチ

小坂浩隆（福井大学・子どものこころの発達研究センター）

(5) 子どもと養育者が結ぶ相互再帰の関係性の神経基盤解明と養育者教育プログラム開発に向けて

友田明美（福井大学・子どものこころの発達研究センター）

(6) 対人関係障害のゲノム解析

久島周, 尾崎紀夫（名古屋大学・医学系研究科）

(7) 脳イメージングによる対人関係における相互再帰性の神経基盤の解明

定藤規弘（生理学研究所・システム脳科学研究領域）

(8) 霊長類動物をモデルとして社会的認知機能の神経基盤を探る

磯田昌岐（生理学研究所・システム脳科学研究領域）

(9) ウイルスベクターを利用した遺伝子改変霊長類モデルの開発

高田昌彦（京都大学・霊長類研究所）

【参加者名】
開野陽子（生理学研究所）、橋本亮太（大阪大学）、磯田昌岐（生理学研究所）、友田明美（福井大学）、板倉昭二（京都大学）、小坂浩隆（福井大学）、丁ミンヨン（福井大学）、高田昌彦（京都大学・霊長類研究所）、久島周（名古屋大学）、宮崎美智子（大妻女子大学）、水野敬（理化学研究所）、山本知加（大阪大学）、谷池雅子（大阪大学）、藤岡徹（福井大学）、矢野真樹子（兵庫教育大学）、米田英嗣（京都大学）、藤澤隆史（福井大学）、則武厚（生理学研究所）、植松明子（生理学研究所）、

新居桂陽（生理学研究所）、岡夏樹（京都工芸繊維大学）、二宮太平（生理学研究所）、角谷基文（生理学研究所）、牧田快（福井大学）、定藤規弘（生理学研究所）、中川恵理（生理学研究所）、小池耕彦（生理学研究所）、松村京子（兵庫教育大学）、田邊宏樹（名古屋大学）、吉岡歩（名古屋大学）、吉本隆明（生理学研究所）、山本哲也（生理学研究所）、森大輔（名古屋大学）、東島恵美子（名古屋大学）、濱野友希（生理学研究所）

【概要】
対人相互関係の発達・発現機構を理解し、その知見を教育・療育現場での実践に生かすには、発達科学、認知科学、神経科学、脳機能画像学、教育実践学、臨床医学（特に精神医学と小児医学）、臨床心理学など、きわめて多くの研究分野を統合した学際的連携が必要である。このため、一つの学会や研究会に参加するだけでは、関連領域の最新動向を調査したり、異なる研究分野の研究者同士で情報交換を行ったりすることが難しくなって
いる。対人相互関係の理解と育成を目指す学際的研究領域を発展させるためには、これらの障壁を取り除く努力が必要である。

本研究会では、上記それぞれの研究分野で活躍する研究者が、当該領域の最新の研究成果について講演を行った。通常の学会や研究会では難しい、多角的な視点からの活発な議論が展開された。本研究会の開催を通じて、発達科学、脳科学、臨床医学、教育実践学の交点を中心とする新たな研究分野を開拓し、それを推進するため必要な学際的連携の具体的戦略を見定めることができた。

（1）子どもの自己制御・対人関係能力の向上を意図した START プログラムの介入研究

松村京子（兵庫教育大学・学校教育研究科）

現在の学校教育は、いじめ、不登校、少年犯罪などの深刻な問題を抱えている。これらの根本的解決には問題が発生してからの対応だけではなく、発生を未然に防ぐことが極めて重要である。筆者は、それらの問題に対し、子どもの自己制御能力と対人関係能力を育むための Social Thinking & Academic Readiness Training (START) プログラムを開発（松村, 2011）、学校・幼稚園のクラスペースの教育実践の介入研究を進めている。START プログラムは、Schultz & Betkowski（2008）による Goal Orientation, Attribution Learning & Self-control (GOALS) プログラムを基に、学級担任がひとりで指導でき、日本での教育に導入できるように開発したものである。自己制御・実行機能レッスンと Crick & Dodge（1994）の社会的情報処理（Social Information Processing; SIP）モデルによる SIP レッスンから成る。本研究会では、自己制御・実行機能レッスンについて報告した。

幼児園及び小学校において、START プログラムの実施時期をずらさせて、実施群、対照群を設定し、pre-post デザインの研究を実施した。START プログラムによる効果は、子どもの実行機能（抑制機能・視覚的及び聴覚的ワーキングメモリ）と自己制御能力の個別測定、教師による子どもの行動チェックリスト、授業中の子どもの行動のビデオ分析によって行った。

その結果、START プログラムの効果として、抑制能力、自己制御能力の向上が認められ、小学校高学年においては、ワーキングメモリの向上も明らかになった。

（2）関係性を支援する ～大阪大学親と子の発達相談での取り組み～

山本知加, 谷池雅子（大阪大学・連合小児発達学研究科）

大阪大学親と子の発達相談においては、自閉スペクトラム症（ASD）の子どもと親への医学的・心理学的サポートを実施している。本報告では、我々が開発したペアレントトレーニング少人数・短編型（PTSS）および親への心理教育を並行して実施した子どもへのソーシャルスキルトレーニング（SST）の効果とともに、親の特性を視野に入れた支援の在り方を検討した。PTSS の実施は、親者の自信を向上させ、子どもへの社会的スキルトレーニング（SST）の効果とともに、親の特性を視野に入れた支援の在り方を検討した。PTSS の実施は、養育者の自信を向上させ、子どもへの社会的スキルトレーニング（SST）の効果とともに、外向的な行動（攻撃性など）を改善させた（Okuno et al., 2011, 奥野ら, 2012）。SST の実施は、子どもの学校や家庭におけるソーシャルスキルを改善するとともに、外向的な行動（攻撃性など）を改善させた（山本ら, 2017）。また、SST においてビジネス顕微鏡を用い子どもと集団との関係性を把握する取り組みを実施し、有用性を確認した（Yamamoto et al., 2016）。PTSS や SST を実施する中で、親にも子どもと同様の特性がある場合、子どもに合わせた支援を実施するだけでなく、親にも特性に合わせた支援を行う必要性が認められた。

Broad Autism Phenotype（BAP）は、ASD の診断は満たさないもののコミュニケーションなどに特性と定義され、日本においても ASD 児の親の 2～18%で見られるとされており（酒井ら, 2014）。今後は、子どもの特性に加え、親の特性と親子間のやりとりを重視した支援法の開発が不可欠である。
（3）相互再帰的インタラクションの発達
板倉昭二（京都大学・文学研究科）

対人関係の良好な形成には、自他理解に基づく相互再帰的な関係性が基盤にある。従来の他者理解研究は、個と個が独立して、相手の心的状態を推測するような誤信念課題などが使用されていたが、相互再帰的なアプローチでは、インタラクションをベースに個と個との関係を一つのシステムとして考える。また、それは成人間、母子関、乳幼児間にも立ち現れると考える。このような関係は、相互再帰的制約による自由度の縮減と新たな自由度の創出によって変容する。われわれは、スティル・フェイス・パラダイムを用いて、乳児とリモートコントロールにより社会的シグナルを発するアンドロイドロボットが、乳児とコミュニケーション的な関係形成が可能であることを示した。また、スティル・フェイス段階（乳児の社会的パートナーが反応を返さない）では、ヒトが相手の場合は、re-engagement行動が見られるが、アンドロイドの場合はその限りではない。引き続き、個体間のインタラクションが、we-mode形成にどのように関わるのかを明らかにしていく。

また、他領域との連携に関しては、以下の3点を想定している。1）教育学との連携、2）脳科学との連携、3）発達障がい学との連携を目指す。

（4）自閉スペクトラム症の脳イメージングと治療的アプローチ
小坂浩隆（福井大学・子どものこころの発達研究センター）

視線が合いづらく、他者の表情や気持ちがわかりづらい社会性障害が主症である「自閉スペクトラム症（autism spectrum disorders, ASD）」の、（1）神経基盤は未だ不明なところが多く、（2）早期発見・早期対応が重要であるが有力なバイオマーカーは存在しており、（3）確立された治療法は少ない。これらを解決すべく福井大学と他機関との共同臨床研究「脳画像研究」、「バイオマーカーの探求」、「新規治療法の開発」について報告したい。脳画像研究では、ASD者のさまざまな脳部位（島、下前頭回、扁桃体、前後部帯状回など）の構造や機能の異常が指摘されており、それぞれの部位間の脳内ネットワーク障害があると推測される。課題を遂行しない安静時機能的MRI研究などは被験者層の広がりに期待されている。バイオマーカーの探求では、視線計測器で社会性を客観的に測定できるように機器開発中である。簡便にできるバイオマーカーの検知は、ASD児の早期発見、早期支援につなげることに期待されている。新規治療法の開発では、下垂体後葉ホルモンであるオキシトシンがASD者の社会性を向上する可能性が示されており、単回または連続投与の臨床試験を行っている。安全性が高いと考えられるが、有効性は一部のASD群にしか確認されておらず、この個人差を探究していかなければならないほか、臨床応用までにいくつかの検討事項が残されている。これらの臨床研究の成果として、当事者が社会参画しやすい世の中へ少しでも近づけられることを期待したい。

（5）子どもと養育者が結ぶ相互再帰的関係性の神経基盤解明と養育者教育プログラム開発に向けて
友田明美（福井大学・子どものこころの発達研究センター）

近年、小児期逆境体験（ACE）が健康や寿命におよすメカニズムが報告された（1995-97 ACE Study, 米疾病予防管理センター, USA）。脳の発達、免疫システム、ホルモンシステム、そしてDNAの読み取りや転写に
 ACE と精神障害発症リスクが密接に関連していることも脳科学的探究から明らかになってきている。

このようなマルトリートメントを予防するために、神経発達障害児の親子関係の発達支援としての親子関係トレーニングが、親子それぞれの社会的動機づけを高めて互いへの関係性強化因子として働き、親子間の相互再帰システムとして関係性の発達を促進するという仮説のもと、実証的研究に取り組みたい。

対人関係障害を呈する自閉スペクトラム症 (ASD) と統合失調症の発症には遺伝要因が強く関与する。私たちは、日本人患者を対象に、発症に強い影響を与える頻度の稀なゲノムコピー数変異 (CNV) を探索してきた。その結果、統合失調症や ASD 患者の 8～9%で多様な発症関連 CNV を同定している。この中には、統合失調症の発症リスクを 50 倍程度に上げる 22q11.2 欠失、3q29 欠失などの大規模 CNV が含まれる。また ASD と統合失調症の両方に共通の CNV も多数見出している。22q11.2 欠失領域に存在する DGCR8 はマイクロ RNA 形成に関与しており、22q11.2 欠失の分子病態にマイクロ RNA が関与することが示唆されている。以上の CNV のほかに、ASD の有病率が高いレット症候群についてもゲノム解析および病態解析を行っている。レット症候群は X 染色体上的 MECP2 のゲノム変異で起こるが、その詳細な分子病態は不明であった。最近、MECP2 が特定のマイクロ RNA のプロセシングを促進し、mTOR シグナルが低下することを見出している。以上の 22q11.2 欠失や MECP2 変異の例のように、ASD や統合失調症の分子病態へのマイクロ RNA の関与が注目されている。最後に、精神疾患の霊長類モデルを見つける目的で、ニホンザルを対象とした CNV 解析を行っており、精神疾患関連 CNV をもと個体の解析結果を紹介する。

科学技術の加速的な発展による社会環境の劇的な変化を特徴とする現代社会において、社会性を含むヒト高次脳機能の神経基盤を明らかにすることは、その問題の多くが関連する人間の精神や社会的行動の解明に必要かつ意味深い研究であり、MRI を始めとするヒト生体イメージングが重要かつ役割を果たす。MRI は、精神活動と脳構造を非侵襲的に対応する有力な手法であり、脳という場を制限条件として与えることにより、高次脳機能の心理モデルの構築と検証に寄与する。実際に、様々な社会的行動特性の脳内基盤は、機能的用いた研究の展開によって急速に明らかになりつつある。さらに MRI を用いることにより、動物実験に基づいた膨大な知見の集積しつつある脳科学領域の情報を、人間の高次脳機能研究に結びつけることができる (種間比較)。生理学研究所では、2 台の MRI を用いて、コミュニケーションをとっている 2 名の神経活動を同時に計測することにより相互再帰性の脳科学研究を推進するとともに、7TMRI を導入して、ヒトと非ヒト霊長類との比較を進めている。
このような、MRI をハブとした異分野連携によって、教育実践や発達支援の現場における介入効果の理論的基礎付けを行う（現場→基礎）一方で、その改良に向けた応用研究を推進する（基礎→現場）ような円環的・相互循環的な研究体制を実現し得る。

(8) 霊長類動物をモデルとして社会的認知機能の神経基盤を探る

磯田昌岐 (生理学研究所・システム脳科学研究領域)

自他理解や対人相互交渉の基盤となる社会的認知機能の発達過程及び脳内機構に関する研究は、これまで発達科学や認知神経科学を中心に行われてきた。近年は、ヒトと近縁の霊長類動物、特にサルやマーモセットを用いた実験研究により、社会的認知機能と関連する神経活動を高い時間・空間解像度で計測することが可能となりつつある。発表者らは、対面するサル2個体が「やりとり」する行動タスクを考案し、その際の神経活動をリアルタイムで計測する、統御性の高い実験パラダイムを開発した。そして、自己と他者の行動情報処理の神経機構を明らかにするとともに、自閉スペクトラム症とよく似た症状を呈するサルの自然発生例を世界で初めて報告し、その遺伝子変異、神経活動特性、行動特性を明らかにした。今後、自他の「共有」や「相互(再帰)性」を取り入れた行動タスクの開発を一層進めながら、従前の脳科学に「2個体脳科学」へのパラダイムシフトを迫りたいと考えている。

(9) ウイルスベクターを利用した遺伝子改変霊長類モデルの開発

高田昌彦 (京都大学・霊長類研究所)

ウィルスベクターの脳内投与による遺伝子改変モデルの開発は、特にサルを実験対象とした脳科学研究者の間で近年国際的潮流になりつつある。アデノ随伴ウィルスやレンチウィルスに由来する組換え体ウィルスベクターを直接サル脳に注入して外来遺伝子を導入する研究手法である。また、逆行性感染型レンチウィルスベクターは神経路選択的遺伝子導入に必要不可欠である。このような手法は、Cre-loxP や Tet-ON の他、optogenetics や DREADD と組み合わせることにより、高次脳機能の解明や精神・神経疾患の病態解明に資する遺伝子改変モデルの開発に寄与する。また、最近開発した新規アデノ随伴ウィルスベクターは、その血管内投与によって全脳レベルでの遺伝子導入技術に極めて有効である。本講演では、これらの先端技術の概要について紹介するとともに、遺伝子改変霊長類モデルを用いて人間関係科学に関する研究をどのように推進すべきかについて考察したい。
21. 行動を制御する神経ネットワーク機能の解明に向けて

2017年12月8日-12月9日
代表・世話人：松本正幸（筑波大学・医学医療系）
所内対応者：南部 篤（生理学研究所・生体システム）

（1）選択した行動の評価と更新に関わる線条体の直接路と間接路の役割
野々村 聡（玉川大学・脳科学研究所）

（2）マカクザル腹側淡賦球の異なる機械付け行動への関与
佐賀洋介（国立精神・神経医療研究センター・モデル動物開発部）

（3）大脳基底核による運動制御：マカクザル視床下核の化学遺伝学的な活動制御
長谷川 拓（生理学研究所・生体システム）

（4）黒質－線条体ドーパミン神経路が行動抑制に果たす役割
小笠原宇弥（京都大学・霊長類研究所）

（5）狂犬病ウイルスベクターを用いた逆性性越シナプス的ラベル法によるマーモセット帯状皮質への入力様式：大脳基底核および小脳からの入力について
上園志織（京都大学・霊長類研究所）

（6）経頭蓋磁気刺激（TMS）を用いたサル内側前頭皮質の情動制御メカニズムの解明
中村晋也（東北大学大学院・生命科学研究科）

（7）Inter-regional spatial information transfer during novel experiences
北西卓磨（大阪市立大学・医学研究科）

（8）ブロック単位および試行単位のプロアクティブ抑制と領域特異的な大脳皮質神経活動の修飾
吉田純一（玉川大学・脳科学研究所）

（9）上肢筋-脳幹間の人工神経接続を利用した脊髄損傷患者の歩行機能再建
篠田周作（相模女子大学短期大学部・食物栄養学科）

（10）The foveal visual representation of the primate superior colliculus
Chih-Yang Chen（京都大学・医学研究科）

（11）サルの同期サッカードと連続運動の分節化
竹谷隆司（北海道大学・医学研究所）

【参加者名】
松本正幸（筑波大学）、田中真樹（北海道大学）、竹谷隆司（北海道大学）、鈴木智貴（北海道大学）、中村晋也（東北大学）、山田 洋（筑波大学）、関 和彦（国立精神・神経医療研究センター）、佐賀洋介（国立精神・神経医療研究センター）、中山義久（東京都医学総合研究所）、横井 修（東京都医学総合研究所）、木村 實（玉川大学）、吉田純一（玉川大学）、野々村 聡（玉川大学）、篠田周作（相模女子大学）、川崎めぐみ（名古屋大学）、田中絵実（名古屋大学）、高田昌彦（霊長類研究所）、山中 聡（霊長類研究所）、上園志織（霊長類研究所）、Chih-Yang Chen、田辺創思（霊長類研究所）、小笠原宇弥（霊長類研究所）、高田裕生（霊長類研究所）、大塚友紀子（霊長類研究所）、木村 慧（霊長類研究所）、伊佐 正（京都大学）、雨森賢一（京都大学）、加藤利佳子（京都大学）、北西卓磨（大阪市立大学）、木村 寛（神戸大学）、西田一貴（神戸大学）、Olivier Darbin（University of South Alabama）、南部 篤（生理研）、畑中伸彦（生理研）、千越隆美（生理研）、佐野裕美（生理研）、長谷川 拓（生理研）、高橋 横（生理研）、DwiWahyuIndriani（生理研）、若林正浩（生理研）、WorananWongmassang
【概要】
脳は、眼や耳などの感覚器官を通じて外界の情報を受け取り、血糖値や水分濃度など体内の情報をモニターや、それらを統合、認識、記憶と照合することによって適切な行動を決定・発現する。このような脳のプロセスを解明しようとするシステム神経科学は、各脳領域の神経活動がどのような情報をコードし、その活動が動物の行動をどう制御するのかに注目してきた。その一方、近年、個々の脳領域だけではなく、各領域をつなぐネットワークの役割に注目した研究が急速に増えつつある。このような研究は、光遺伝学やイメージング技術など、目的の神経ネットワークの活動を操作・可視化する革新的な手法の開発によって大きく発展した。特に近年は、齧歯類や他の小型動物に限られていたこれらの技術が、より大型の霧状長モデル動物にも適用が可能になりつつあり、革新的な技術を用いて高次脳機能を解明しようとするシステム神経科学の動向に注目が集まっている。本研究会では、知覚や認知、情動、運動制御などを研究対象とする新進気鋭の若手システム神経科学者に最新の成果を持ち寄ってもらい、その方向性などを議論し、参加者とその理解を共有した。

(1) 選択した行動の評価と更新に関わる線条体の直接路と間接路の役割

野々村 聡（玉川大学・脳科学研究所）

選択した行動の結果の良し悪しを次行動選択に活かすことは、変動する環境の中で生きていくために必要な能力である。本研究では、線条体の直接路と間接路を構成する投射細胞が、それぞれ選択した行動の評価と更新にどのように関わるのかを調べた。

背内側線条体（DMS）を目的領域にし、アデノ随伴ウイルスを用いて直接路、間接路細胞特異的にchannelrhodopsin wide-receiverを発現させた。DMSで記録している細胞のLED光への光応答性を調べ、単潜時応答が確認できた場合に直接路細胞または間接路細胞とした。ラットは、異なる行動（Lever Pull と Push）に確率的な報酬（80% reward と 20% reward）が連合している課題を訓練された。選択した行動の結果は、報酬が得られる場合にはReward tone、得られない場合にはNo-Reward toneによって知られた。課題遂行中のDMSから細胞活動を記録した結果、多くの直接路細胞はReward toneで、間接路細胞はNo-reward toneで活動を増大させていた。また、直接路のReward toneへの応答は、次試行で同様の行動選択を行う場合（stay）、間接路のNo-Reward toneへの応答は異なる行動選択を行う場合（switch）により強い応答を示していた。光遺伝学的に、直接路細胞の応答を増大または減弱させた場合には、次の試行でのstay確率が上昇または減少し、間接路細胞の活動を増大させた場合には、switch確率が上昇した。
これらの結果、直接路と間接路がそれぞれ選択した行動を評価し、次の行動を更新するために異なった役割をしていることを示唆している。

(2) マカクザル腹側淡蒼球の異なる動機付け行動への関与

佐賀洋介（国立精神・神経医療研究センター・モデル動物開発部）

淡蒼球は大脳基底核に構成する核の1つでGABA作動性の抑制性細胞から構成されており、運動機能に関わっているとされてきたが、特に腹側淡蒼球（ventral pallidum; VP）は辺縁系テリトリーであることが示唆され、
マカクザルを用いた研究においては報酬によって活動が調節され、動機付け行動に関わることが明らかになってきた。しかしながら、VPが能動的な行動、特にアプローチとアボイダンス行動にどのように寄与しているかは不明である。

そこで、本研究ではサルに条件刺激（CS）と無条件刺激（US）の関係を学習させ、アプローチ・アボイダンス行動選択できるように課題を設定した。CSは、ジュース（ポジティブ）と空気砲（air-puff:ネガティブ）のものを提示した。この課題の遂行中にVPから細胞記録を行なった。多くの細胞がCS提示、行動選択後のUSを予測している間に興奮・抑制を示した。これらの多くがポジティブ・ネガティブな条件選択性を示した。続いて、GABA拮抗薬であるビククリンを注入すると、エラーが増加し、ネガティブCS試行で特に顕著に増加した。さらに、行動課題遂行中のサルの心拍数をモニタリングしていると、GABA拮抗薬を注入後に心拍数が加速していくこともわかった。

これらの結果はVPがポジティブな動機付けだけでなく、ネガティブな動機付け行動にも寄与していることが示唆される。

(3) 大脳基底核による運動制御: マカクザル視床下核の化学遺伝学的な活動制御

長谷川 拓（生理学研究所・生体システム）

大脳基底核は直接路、間接路そしてハイバー直接路を介して運動制御を行うと考えられているが、これらの路がどのように協調しているかは明らかではない。視床下核の運動制御に関わる神経メカニズムを解明するために、本研究ではDREADD (Designer Receptors Exclusively Activated by Designer Drugs) を用い、マカクザルの視床下核の活動を可逆的に抑制し、行動学的・電気生理学的な解析を行った。

ニホンザルの視床下核の運動関連領域を電気生理学的に同定し、抑制型DREADD 受容体（hM4Di）を発現するアデノ随伴ウイルスを注入した。遺伝子発現を3週間以上待ち、clozapine N-oxide（CNO）を静脈投与したところ、反対側の上肢に不随意運動が見られた。上肢による到達課題をさせたところ、運動開始直後から到達行動が不安定になり、到達後の運動の停止も困難になった。この到達課題中に淡蒼球内節の運動関連領域に一過性の静止（pause）が観察された。行動実施時の神経発火パターンは投与後でも一定した変化は見られなかった。また、神経発火のパラメーターを詳細に解析したところ、CNO投与によって発火パターンの試行間の変動（ファノ因子）が上昇し、神経発火の一過性の静止（pause）が長くなる傾向が確認できた。以上の結果から、大脳基底核の出力核である淡蒼球内節は、運動実施時の神経発火パターンによって視床へ情報を伝達し、運動制御を行うと予想される。

(4) 黒質-線条体ドーパミン神経路が行動抑制に果たす役割

小笠原宇弥（京都大学・霊長類研究所）

本研究では、ドーパミン神経系がResponse inhibition（行動抑制）に果たす役割を解析した。我々はstop signal課題を遂行中のサルの黒質総合部と尾側被蓋野からドーパミンニューロンの神経活動を、尾状核から投射ニューロンの神経活動を記録した。まず、76個のドーパミンニューロンから神経活動を記録し、そのうち25個のニューロンでstop signalに対する運動性応答を観察した。このような応答はサッカードの抑制に失敗したときに弱まった。このようなドーパミンニューロンは黒質総合部に局在分布していた。次に、165個の尾状核ニューロンから神経活動を記録し、そのうち56個のニューロンでstop signalに対する運動性応答を観察し、一方66個
のニューロンで抑制性応答を観察した。ドーパミンニューロン同様にこの興奮性応答はサッカードの抑制に失敗したときには弱まり、そして stop-signal delay が長くなるほど強くなった。次に尾状核へ投射するドーパミン信号と行動抑制との因果関係を解析するため、stop signal課題遂行中のサルの尾状核背側にドーパミン D2 受容体拮抗薬とドーパミン D1 受容体拮抗薬を局所注入した。その結果、D1、D2 の両方でサッカードの抑制に失敗するエラー率が上昇した。以上の結果から、黒質従線の興奮性ドーパミン信号が行動抑制の実行に重要な役割を果たしていることが示唆される。

（5）狂犬病ウイルスペクターを用いた逆行性越シナプス的ラベル法によるマーモセット帯状皮質への入力様式：大脳基底核および小脳からの入力について

上園志織（京都大学・霊長類研究所）

大脳基底核と小脳は、大脳皮質と多シナプス的なループ回路を形成している。これまでの化学トレーサーを用いた神経解剖学的解析から、前部帯状皮質（ACC）は腹側線条体に入力し、腹側淡蒼球／黒質網様部／淡蒼球内縦、視床背内側核を経て ACC に戻る、といういわゆる前帯状回ループを形成していると考えられている。一方、後部帯状皮質（PCC）と大脳基底核とのループ回路については明らかにされていない。また、ACC および PCC は、腹側線条体だけでなく背側線条体へも直接投射することができるマウスにおいて報告されており、これらの皮質は背側線条体とのループ回路を形成している可能性がある。一方で、帯状皮質と小脳との連絡については不明な点が多い。このような背景から、本研究では霊長類の大脳基底核および小脳から帯状皮質への多シナプス性入力様式を明らかにするため、蛍光タンパク質（RFP または GFP）を発現する改変狂犬病ウイルスベクターを用いた逆行性越シナプス的トレーシングをおこなった。マーモセットの ACC および PCC に異なる蛍光タンパク質を発現する狂犬病ウイルスベクターをそれぞれ注入した結果、帯状皮質が腹側線条体だけでなく背側線条体からも多シナプス性入力を受けることが示唆された。また、越シナプス的逆行性ニューロンラベルの分布様式的の相違から、ACC と PCC は大脳基底核および小脳と様式の異なる多シナプス的ループ回路を形成していることが示唆された。

（6）経頭蓋磁気刺激（TMS）を用いたサル内側前頭皮質の情動制御メカニズムの解明

中村晋也（東北大学大学院・生命科学研究科）

前帯状皮質膝下部（subgenual anterior cingulate cortex: sgACC）は情動制御の重要な脳領域として関心が高まっている。本研究では、非侵襲的な脳刺激法である経頭蓋磁気刺激（Transcranial magnetic stimulation: TMS）を用いて、この脳領域を含むサルの内側前頭皮質の諸脳領域へ低頻度反復 TMS（rTMS）を施し、それにより生じる行動および生物学的変化を調べた。ダブルコーンコイルによる sgACC を含む内側前頭皮質への低頻度 rTMS により、日中の自発活動量の著しい低下が認められた。また、ヒトの神経を対象とした社会行動にも大きな影響がみられ、実験者が飼育ケージの前に来ると、通常は実験者に近づき手を伸ばすなどの行動を見せが、刺激後に実験者から離れて飼育ケージの奥に留まる時間が増加した。さらに、目標達成意欲を計測する行動課題として、ボード上に配置されたエサを取るフードピッキング課題を課した。サルが自発的にエサを取るのをやめるまで課題を繰り返し、それまでのセッション数を刺激前後で比較したところ、セッション数の有意な減少がみられた。生理的な指標として血中コルチゾール濃度を調べた結果、有意な上昇が認められた。以上のことから、sgACC およびその周辺領域
域への低頻度rTMSによって活性性や社会性の低下、意欲の減退などのうつ様症状が引き起こされたと考えられ、これらの領域が情動的制御に重要な役割を果たしていることが示唆される。

（7）Inter-regional spatial information transfer during novel experiences

北西卓磨（大阪市立大学・医学研究科）

ヒポcampal place cells, which fire whenever animals traverse specific locations in environments, are thought to be crucial for spatial memory. However, the cellular/network mechanisms underlying place cell activity remain unclear. Synaptic plasticity may mediate the formation of place cell activity by changing inter-regional information transfer. We tested this hypothesis by blocking GluR1-dependent synaptic plasticity in CA1 pyramidal cells and by monitoring firing patterns from these plasticity-blocked cells in freely behaving rats. Viral vector-mediated blockade of synaptic plasticity impaired two types of firing patterns: rapid formation of spatial firing patterns in a novel environment and temporal firing patterns along slow gamma oscillations, which is thought to originate from the CA3 region. The results suggest that GluR1-dependent synaptic plasticity at CA3-CA1 synapses determines spatial and temporal firing patterns during novel experiences, which in turn enhances the information transfer through the CA3-CA1-entorhinal pathway.

（8）ブロック単位および試行単位のプロアクティブ抑制と領域特異的な大脳皮質神経活動の修飾

吉田純一（玉川大学・脳科学研究所）

プロアクティブ抑制は、行動のキャンセルが急に必要となりうる状況において、行動の開始を遅くするという行動抑制である。このプロアクティブ抑制は、状況に応じて長い時間スケールでも短い時間スケールでも生じることが知られているが、両者が同じ神経メカニズムによって制御されているのかは明らかではなかった。我々は、頭部固定ラットに適用できる新しいストップ・シグナル課題を確立し、異なる時間スケールの状況に由来するプロアクティブ抑制の行動学的および電気生理学的な特徴の相違を調べた。一次運動皮質（M1）、二次運動皮質（M2）、後部頭頂皮質（PPC）および眼窩前頭皮（OFC）の課題関連神経活動の記録解析を行ったところ、M1 と PPC のニューロン群では、ブロック単位のプロアクティブ抑制のときには反応直前のスパイク活動の上昇が減少していたが、試行単位のプロアクティブ抑制のときには逆に亢進していた。またM2 のニューロン群では、ブロック単位のプロアクティブ抑制の際には反応を準備する時間帯のスパイク活動の上昇が亢進がみられたが、試行単位のときには見られなかった。これらの実験結果は、異なる時間スケールで生じるブロック単位と試行単位のプロアクティブ抑制は、それぞれ別々の大脳皮質の制御メカニズムによってコントロールされている可能性を示唆している。
（9）上肢筋－腰髄間の人工神経接続を利用した脊髄損傷患者の歩行機能再建

篠田周作（相模女子大学短期大学部・食物栄養学科）

脊髄損傷による歩行機能の喪失は、腰髄にある下肢歩行中枢への下行性入力が遮断されることに起因する。しかし、損傷領域の吻側にある上位中枢、及びその尾側にある脊髄内神経回路網の機能が失われているわけではない。従って、それらを何らかの方法で接続できれば歩行機能を再建できる可能性がある。この問題に対する解決策の一つとして、Closed-loop型のBrain-computer interfaceを用いて、物理的に離れた神経系領域を人工的に接続する“人工神経接続”が挙げられる。人工神経接続は、ある部位の生体信号を記録し、その生体信号に応じた刺激を物理的に離れた部位へ行う事により、記録部位と刺激部位の間に活動関係を作り出し、人工的な神経接続として機能する刺激パラダイムである。我々は、随意的に制御可能な上肢筋の筋活動パターンに依存した腰髄への脊椎上磁気刺激により、上肢筋－腰髄間の人工神経接続を脊髄損傷患者へ適用し、麻痺肢における歩行運動の随意制御を試みた。

上肢筋－腰髄間の人工神経接続により、脊髄損傷患者は下肢の歩行運動を誘発し、その運動の開始・停止、歩調を随意制御することが可能であった。さらに、この人工神経接続による歩行運動は、腰髄及び下行路の可塑的変容を引き起こし、残存する歩行機能の向上を引き起こした。これらの結果から、人工神経接続は、麻痺肢の歩行運動を誘発・制御できるだけでなく、残存する機能の再建にも有用である。

（10）The foveal visual representation of the primate superior colliculus

Chih-Yang Chen（京都大学・医学研究科）

Neurophysiological investigations of foveal representations are not common because of difficulties with eye movements and small response field (RF) sizes. Here we recorded from the foveal visual representation of the superior colliculus (SC) in 2 awake and 2 anesthetized monkeys. In the awake animals, we recorded from 121 neurons with foveal preferred eccentricities and compared their visual RF characteristics to those of >200 more eccentric neurons. In the anesthetized animals, we densely mapped preferred RF locations and related them to SC anatomy, mapping 66 foveal sites and comparing them to >100 more eccentric ones. We systematically moved our electrodes by 100, 250, or 500 micrometer steps along the two-dimensional SC surface. Foveal SC neurons’ RF’s were strongly skewed and lateralized, having sharp cutoffs at the “foveal edge” of the visual representation. RF skew decreased progressively with increasing eccentricity, along with an exponential increase in RF size. Such increase also happened within the central foveola region (<0.5 deg radius), suggesting non-uniform sampling of visual space by the SC even within the smallest foveal eccentricities. Foveal visual neural sensitivity was also as strong as the periphery. Our dense mappings of SC surface topography revealed a highly orderly foveal representation, which is continuous with peripheral topography. In all, our results demonstrate strong laterality of visual representations in the foveal SC, non-uniform sampling of space, high neural sensitivity, and a surprisingly large foveal magnification factor.
同期運動の能力はヒトやオウムのような言語学習者にのみ備わっているという仮説が提唱されている。我々はサルに同期運動を訓練することを試みた。一定の時間間隔で左右交互に現れるターゲットを眼で追わせ、刺激に同期したサッカードの度に報酬を与えたところ、同期運動を行うようになった。ただ、サルにも周期的な刺激に合わせた同期運動を行う能力があるが、同期運動が自発的に行われることはなく、報酬によって外的に動機づけられる必要があることが示された。

タッピングのような同期運動を行うと、しばしば3拍子や4拍子のような内観が生じる。こうした自発的な分節化のメカニズムにせまるために、上述の同期サッカード課題を用いた行動実験を行った。正六角形に配置した6つのランドマーク上に順に標的刺激を提示して、連続的にサッカードを行わせた。このうち3つのランドマークを囲むように長方形の枠を提示し、各標的への固視時間を分析した。1頭のサルでは辺を横断する前に、別の1頭ではそのさらに前の標的で固視時間が延長した。残りの1頭では、長方形で囲まれた3つの標的で固視時間が延長した。これらの現象は同期性課題でのみ認められ、サル自身がタイミングを計る必要のある場合に分節化が生じるものと考えられる。
22. 第7回社会神経科学研究会「サル脳に学ぶ社会神経科学の基盤」

2017年11月30日－12月1日

代表・世話人：南本敬史（量子科学技術研究開発機構）
所内対応者：定藤規弘（自然科学研究機構生理学研究所）

（1）心が身体を動かす神経基盤
西村幸男（公益財団法人東京都医学総合研究所）

（2）帯状頭皮質前部を中心とした不安回路と社会神経科学
雨森賢一（京都大学脳皮質センター）

（3）マカクサルを用いた2個体脳科学の創成に向けて
礫田昌岐（生理学研究所）

（4）マーモセットを用いた社会行動の研究
中村克樹（京都大学脳神経研究所）

（5）ヒト判断機能の脳長類モデル動物の検討～サルの脳を調べる意義とは～
山田洋（筑波大学医学部）

（6）脳磁気刺激でさらめるサル内側前頭皮質の情動・気分調節機能
筒井健一郎（東北大学脳科学センター）

【参加者名】
南本敬史（量子科学技術研究開発機構放射線医学総合研究所）、定藤規弘（自然科学研究機構生理学研究所）、雨森賢一（京都大学脳皮質センター）、礫田昌岐（自然科学研究機構生理学研究所）、筒井健一郎（東北大学脳科学センター）、中村克樹（京都大学脳神経研究所）、西村幸男（公益財団法人東京都医学総合研究所）、山田洋（筑波大学医学部）、梅田聡（慶應義塾大学文学部）、高橋史（玉川大学脳科学研究所）、高橋英彦（京都大学大学院医学研究科）、月浦恭（京都大学大学院人文・環境学研究科）、春野雅彦（情報通信研究機構（NICT）脳情報通信融合研究センター）、端田直也（自然科学研究機構生理学研究所）、吉田恒（名古屋大学）新居山陽（総合研究大学院大学生命科学研究科生理学専攻）、石田裕昭（公益財団法人東京都医学総合研究所）、井出野尚（德山大学経済学部）、 исследования）、塩見和（情報通信研究機構（NICT）脳情報通信融合研究センター）、鯨田孝和（情報通信研究機構生理学研究所）、佐々木章宏（理化学研究所）、塩見和（情報通信研究機構生理学研究所）、直木幸（情報通信研究機構（NICT）脳情報通信融合研究センター）、高橋晃（静岡大学情報学部）、戸松彩花（国立精神・神経医療研究センター神経研究所）、中山義久（公益財団法人東京都医学総合研究所）、今野幸夫（玉川大学脳科学研究所）、中村克樹（京都大学脳神経研究所）、筒井健一郎（東北大学脳科学センター）
【概要】
サルを用いたシステム神経科学研究は、特に行動課題遂行中のサル脳の隅々からニューロンの活動を丹念に調べ上げ、記述することで、ヒトの高次脳機能を理解するうえでの重要な基礎を築いてきた。一方、げっ歯類を対象とした神経活動操作技術やヒト脳機能イメージング研究におけるネットワーク解析や因果論的解析手法など、近年の技術革新による神経回路・神経ネットワークレベルでの神経機構を解き明かす試みが進んできている。このような脳科学を取り巻く状況が刻々と変化する中、サルを用いた脳科学研究において、新たな取り組みを進め、分野をリードする6名の研究者を招き、サル社会性の脳機能研究に加え、社会性の基盤となる意欲、情動や意思決定をテーマとする最新の研究について講演いただいた。参加者はサル脳研究、社会神経科学に関わる研究者を中心に50名であった。参加者から希望を募り、7名の研究者がポスターセッションで発表した。各講演に対する質疑応答を別に、総合討論の時間を設け、ヒトを対象とした社会神経科学研究に加え、サル脳研究の優位性として強調された。一方、より多くの脳活動データを利用した、いわゆるビッグデータ解析のアプローチによる個人差（個体差）を生み出す脳基盤の解明など、ヒト脳研究での優位性を生かすべく、その知見をサル脳研究にも適用する試みも重要であると議論された。「ヒトを理解する」という共通した目的のもと、このような研究領域を超えた議論の機会は非常に有意義であり、今後もこのような研究会の開催を望む意見もあった。

総合討論においては、「サルでわかった社会神経科学の基盤がヒトの脳機能理解にどのようにつながるか？」、「ヒトやヒト社会脳の理解においてサル脳科学研究にどのようなことを期待するか？」などの双方向の視点から討論が展開された。例えば、サル神経科学研究と社会神経科学研究に共通した問題意識があるが、その理解を進める上で用語の定義の確認・共通化が必要であるという問題提起がなされた。また、情動の神経機構については自律神経系反応と脳活動との関係を理解することについて、ヒト-サル間で相互に関与する実験系があるが、神経系への介入を試行できる点が、サル脳研究の優位性として説明された。一方、より多くの脳活動データを利用した、いわゆるビッグデータ解析のアプローチによる個人差（個体差）を生み出す脳基盤の解明など、ヒト脳研究での優位性を生かすべく、その知見をサル脳研究にも適用する試みも重要であると議論された。「ヒトを理解する」という共通した目的のもと、このような研究領域を超えた議論の機会は非常に有意義であり、今後もこのような研究会の開催を望む意見もあった。

（1）心が身体を動かす神経基盤

多くの人が意欲の高い時に競技スポーツなどの運動パフォーマンスで良い結果を残すことができた経験があるのではないだろうか。また、リハビリテーションの現場においても運動機能回復を促す上で患者の意欲を引き出すことが重要であることを示唆されてはいるが、意欲や情動が運動機能、さらに運動障害の回復に寄与する神経メカニズムや因果関係は未だ不明な点が多い。これまで意欲を制御するといわれている側坐核と腹側被蓋野からなる中脳辺縁系は、四肢の運動機能に直接の関係はないと思われてきた。我々は、このような心と身体を繋ぐ神経基盤を解明することを目指し、意欲に関与している中脳辺縁系の身体運動制御機構について研究している。本講演では、fMRIによるヒトの意欲操作の研究とサルでの中脳辺縁系の神経活動操作によって明らかになってきた、心が身体を動かす神経基盤について議論したい。

西村幸男（公益財団法人東京都医学総合研究所）
（2）帯状回皮質前部を中心とした不安回路と社会神経科学

雨森賢一（京都大学 白眉センター/霊長類研究所）

葛藤を伴う意思決定を行うには、刺激に対する単純な応答を抑制し、コストと利益のバランスを考えた価値判断を行わなければならない。ある選択をするとき報酬と同時に罰が与えられる場合、報酬獲得の意欲と罰は避けたいという気持ちが葛藤する。これを「接近回避葛藤」といい、脳の情動制御の基本的なプロセスと考えられている。我々は、マカクザルに報酬と罰のセットを与え、両者の決断を行わせ、数理モデルを用いて行動と予測を比較し、ニューロン活動を同定した。こうした重要なパラメータを表現するニューロン群は、大脳皮質-大脳基底球の様々な領域から同時記録した。次に、意思決定を定量的に分析するために、数理モデルを用いる行動を予測し、モデルパラメータと関係する神経活動を同定した。こうした重要なパラメータは、ニューロン群が報酬獲得の意欲と罰を避ける葛藤を示す。これと、我々は、マカクザルに報酬と罰のセットを与え、選択の意思決定を行わせ、その神経活動(ニューロン活動と局所電場電位)を、大脳皮質-大脳基底球の様々な領域から同時記録した。まず、意思決定を定量的に分析するために、数理モデルを用いた行動を予測し、モデルパラメータと関係する神経活動を同定した。こうした重要なパラメータを表現するニューロン群は、大脳皮質-大脳基底球の多くの領域に分散して存在した。次に、マイクロスティミュレーション法を用いて、それぞれの領域で意思決定への因果的な影響を調べた。

（3）マカクザルを用いた2個体脳科学の創成に向けて

磯田昌岐（自然科学研究機構生理学研究所 認知行動発達機構研究部門）

自他理解や対人コミュニケーションを含む社会的認知機能の発達および発現制御に関する研究は、これまで発達心理学が中心となっておこなわれてきている。近年では脳機能画像研究との連携が進め、そのような心理過程と脳領域との非侵襲的な対応づけに成功しつつある。しかし、ヒトを対象とした機能的画像法で同定される脳活動の実態を解読するには、神経活動を直接記録・解析できる霊長類動物を用いたシステム神経生理学研究もきわめて重要である。霊長類動物、特にマカクザル（以下、サル）は社会的動物であるだけでなく、ゲノム構造、脳の機能構造、脳による認知行動制御において、ヒトと共通した脳活動の実態を解読するにあたって、サルも重要なモデル動物であると考えられる。発表者は、ヒトとサル2個体を用いて社会的認知機能を評価する、十分に統御された実験パラダイムを世界に先駆けて開発するとともに、システム神経生理学的手法を適用して自己と他者の行動情報処理の神経機能を明らかにする研究を展開してきた。また、このような実験系を利用することで、対他関係に見られる問題を認めた自閉スペクトラム症候群の自然発生例を世界で初めて報告し、その遺伝子変異、神経活動特性、および行動特性を明らかにすることに成功した。今後、さらに自閉症の「共有」や「相関異常性」に焦点をあてた実験研究を展開し、サル研究者の立場から、従来の脳科学に「2個体脳科学」へのパラダイムシフトを迫りたいと考えている。
（4）マーモセットを用いた社会行動の研究

中村克樹（京都大学霊長類研究所）

コモンマーモセット（Callithrix jacchus）は南米原産の小型霊長類であり、体長でも３５０〜４５０g程度である。コモンマーモセットは、その繁殖力の高さ・扱いややすさ・人獣共通感染症の観点からの安全性、さらに霊長類の中では遺伝子編集を含む実験が比較的容易であることから近年多くの研究に用いられている。さらに、家族を単位として生活したり、子育てを群のメンバー全員で分担したり、食物分配行動を示したり、音声コミュニケーションを頻繁に行ったりという特徴的な社会行動を示すことでも知られている。

本研究会では、こうしたコモンマーモセットに特徴的な行動のいくつかを紹介し、これまでに私たちの研究室で試みてきたことの一部を紹介し、社会行動の研究におけるコモンマーモセットの可能性を議論したい。

（5）ヒト判断機能の霊長類モデル動物の検討
〜サルの脳を調べる意義と〜

山田 洋（筑波大学医学医療系人間総合科学研究科）

感覚や運動の研究では、ヒトとマカクザルでの脳機能の類似性の高さから、マカクザルはヒトのモデル動物として位置づけられてきた。では、感覚や運動以外の脳機能についてはどうだろうか？極端な例として、心について考えてみる。ヒトの心とはどのような物理現象なのか？動物に心はあるのか？サルには？ネズミには？ショウジョウバエには？線虫には？一度は思い浮かべたことのある疑問だと思う。心は脳の活動が生み出した“主観的な何か”であると考えられるが、マカクザルの脳を調べてヒトの心を理解できるのかは、未だに良くわからない。

神経科学では、知覚・認知・運動・記憶・欲求などの様々な機能として脳を理解し、その機能を生み出す神経原理が詳細に調べられてきた。感覚や運動などのヒトとマカクザルで比較可能か脳機能があるか、社会性のようにな較が簡単でない機能もある。私は、ヒトを理解したくって脳を研究しているが、サルの脳を調べて本当にヒトを理解できるのか？という素朴な疑問は、常に頭の片隅に存在している。

私はこれまでに、物の良し悪しを判断する脳機能を明らかにするための研究を行ってきました。具体的には、マカクザルが物の好き嫌いを判断する際に、脳がどのように判断を決めるのかに注目して研究を進めてきた。マカクザルは、侵襲的な操作が可能な実験動物の中で最もヒトに近い脳を備えており、霊長類の複雑な判断機能を理解するのに最も適当な動物種である。しかしながら、サルとヒトでは生活様式に大きな差があるため、本当に価値判断を調べるための実験動物として適当なのか？基本的な検討を行うところから研究を開始した。本研究会では、ヒトで用いられている経済学の実験パラダイムをサルに導入した、次の3つの研究について紹介する。

１）ヒト価値判断のモデル動物として、マカクザルを用いることは適当か？
〜ヒトはリスクを嫌うが、マカクザルも同様にリスクを嫌う〜

２）空腹のマーモセットはヒトと同じくらい合理的
〜マーモセットはお腹が空くと好きなものをちゃんと食べる〜

３）マカクザルの前頭葉に備わった価値判断の計算機能
〜価値を判断するのに脳は割り算を行う。ウェバーの法則と価値判断〜

この3つの研究内容をもとに、サルの個体（個人）の脳機能を明らかとすることの意義を議論したい。社会を構成する個人の特性がどのようにに集団に反映されるのか、を理解する上で非常に重要な問題である。

465
経頭蓋磁気刺激（transcranial magnetic stimulation: TMS）は、頭蓋上に置いたコイルに電流を流して誘導磁場を形成し、それによって脳内に電流を生じさせるものである。われわれはまず、反復経頭蓋磁気刺激（repetitive TMS: rTMS）によって生じる脳活動の変化を評価するために、rTMS前後に皮質表面電位（electrocorticogram: ECoG）および、運動誘発電位（motor evoked potential: MEP）を記録する実験を行った。その結果、10 Hzの反復刺激では、MEPの振幅の増大とともに、ECoGのγ帯域のパワーの増大が、1 Hzの反復刺激では、MEPの振幅の減少とともに、ECoGのβ帯域のパワーの減少が生じていることが明らかになった。これにより、高頻度および低頻度のrTMSによって生じるMEP振幅の変化の背景には、安静時神経活動の変化があることが明らかになった。次に、内側前頭皮質の前部帯状回膝下部（sgACC）を主なターゲットとして、低頻度rTMSを施して局所神経活動を抑制し、行動および生理指標の変化を調べる実験を行った。内側前頭皮質の腹側部に位置するsgACCをターゲットとして刺激するにあたっては、ダブルコーンコイルを使用し、コントロールとして内側前頭皮質の背側部に限定した刺激を行うには8の字コイルを使用した。その結果、ダブルコーンコイルを使ってsgACCをターゲットにして刺激したときのみ、ケージ内の自発行動量の減少、社会的積極性の喪失と引きこもりなどの行動の変化と、血中コルチゾールレベルの上昇を示した。これらの結果は、sgACCを中心にとする内側前頭皮質の腹側部が、情動や気分の調節に関わっていることを強く示唆するものである。
23. 第1回ヒト脳イメージング研究会

2017年9月1日～9月2日

代表・世話人：松田哲也（玉川大学脳科学研究施設教授）
所内対応者：定藤規弘（システム脳科学研究領域心理生理学研究部門教授）

（1）ヒト脳イメージング研究に望むこと
岡部繁男（東京大学大学院医学系研究科神経細胞生物学専攻）

（2）ヒト・霊長類動物脳コネクトムとパイプライン
林 拓也（理化学研究所ライフサイエンス技術基盤研究センター）

（3）脳イメージングデータ解析のAIの応用と脳機能から学ぶAIの開発
石井 信（京都大学大学院情報学研究科システム科学専攻）

（4）モザイクマーモセットMRI研究からヒトへ
畑 純一（理化学研究所脳科学総合研究センター / RIKEN Brain Science Institute
実験動物中央研究所 / Central Institute for Experimental Animals）

（5）小動物用MRIで捉える脳脊髄のダイナミックな変化
吉岡芳親（大阪大学先端学際研究機構）

（6）モデル動物と人をつなぐ精神神経疾患イメージング研究
橋口真田（国立研究開発法人量子科学技術研究開発機構放射線医学総合研究所）

（7）動物・ヒトイメージングによる神経可塑性研究
花川 宗（国立精神・神経医療研究センター/脳病態統合イメージングセンター（IBIC））

（8）超高磁場MRIによる脳機能理解
福永雅喜（自然科学研究所 生理学研究所 心理生理学研究部門）

（9）MRSを用いた非侵襲的脳内代謝物による機能評価
原田雅史（徳島大学大学院医歯薬学研究部）

（10）複数データ統合によるヒト脳ダイナミクス研究
山下宙人（ATR脳情報解析研究所）

（11）拡散強調MRIによる白質線維束の研究
竹村浩昌（情報通信研究機構 脳情報通信融合研究センター（CiNet）
日本学術振興会特別研究員（SPD））

【参加者名】

石井 信（京都大学大学院情報学研究科）、岡部繁男（東京大学大学院医学系研究科）、畑 純一（理化学研究所脳科学総合研究センター）、原田雅史（徳島大学大学院医歯薬学研究部）、橋口真田（国立研究開発法人量子科学技術研究開発機構放射線医学総合研究所）、吉岡芳親（大阪大学先端学際研究機構）、竹村浩昌（脳情報通信融合研究センター）、花川 隆（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、林 拓也（理化学研究所ライフサイエンス技術基盤研究センター）、福永雅喜（生理学研究所）、山下宙人（ATR脳情報解析研究所）、小川誠二（東北福祉大学）、上野賢一（理化学研究所脳科学総合研究センター）、尾内康民（徳島大学大学院医歯薬学研究部）、花川 宗（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、吉田雅史（理化学研究所ライフサイエンス技術基盤研究センター）、須原哲也（放射線医学総合研究所）、上野賢一（理化学研究所脳科学総合研究センター）、尾内康民（徳島大学大学院医歯薬学研究部）、花川 隆（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、林 拓也（理化学研究所ライフサイエンス技術基盤研究センター）、福永雅喜（生理学研究所）、山下宙人（ATR脳情報解析研究所）、小川誠二（東北福祉大学）、上野賢一（理化学研究所脳科学総合研究センター）、尾内康民（徳島大学大学院医歯薬学研究部）、花川 宗（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、吉田雅史（理化学研究所ライフサイエンス技術基盤研究センター）、須原哲也（放射線医学総合研究所）、上野賢一（理化学研究所脳科学総合研究センター）、尾内康民（徳島大学大学院医歯薬学研究部）、花川 隆（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、林 拓也（理化学研究所ライフサイエンス技術基盤研究センター）、福永雅喜（生理学研究所）、山下宙人（ATR脳情報解析研究所）、小川誠二（東北福祉大学）、上野賢一（理化学研究所脳科学総合研究センター）、尾内康民（徳島大学大学院医歯薬学研究部）、花川 宗（国立精神・神経医療研究センター/脳病態統合イメージングセンター）、吉田雅史（理化学研究所ライフサイエンス技術基盤研究センター）、須原哲也（放射線医学総合研究所）
【概要】
第1回ヒト脳イメージング研究会を、2017年9月1日（金）から2日（土）の2日間、玉川大学（東京都町田市）において開催しました。本研究会は、MRI、PET、MEG等のイメージング手法を用いてヒトの脳の構造、機能、分子機構の解明を目指した研究者が集まり、研究に関する議論、若手人材育成、学際的研究者交流を促すことを目的とし、基礎神経科学分野におけるヒト脳ニューロイメージング研究者が中心となり、数理工学、情報学、工学、物理学の研究者と革新的な計測・解析手法の開発を目指した交流、社会学、心理学、臨床医学の研究者と学際的脳イメージング研究の広がりを目指しました。特別講演で東京大学大学院医学研究科 岡部繁男教授をお迎えし、「ヒトの脳イメージング研究が他の脳研究とどのように連携していくことが期待されているか？」をテーマに講演いただき、その他にも、米国Human Connectome Projectで進められているヒト脳コネクトーム研究、人工知能（AI）による脳画像解析や脳をモデルにしたAI開発に関する教育講演、「ヒト脳イメージングと動物イメージングの連携」、ヒト脳イメージング研究の先端をテーマにしたシンポジウムを開催しました。今回、一般参加者200名、講師11名の方に参加いただき、一般演題発表も52演題登録があり、この分野の研究会としてはとても多くの方に参加いただくことができました。

特別講演
（1）ヒト脳イメージング研究に限るか

岡部繁男
（東京大学大学院医学系研究科神経細胞生物学分野）

脳科学は基礎研究から臨床応用まで幅広い内容を含む融合領域である。分子とシステムの間をつなぐ神経回路研究は、脳の融合研究を行う上で中核となる分野である。このような分子から細胞、回路をつなぐ研究は主に実験動物を用いた侵襲的な実験によって行われてきた。脳の局所回路における神経細胞間の結合を構造・機能の両面から網羅的に解析することを可能とする技術的な革新も進んできており、将来には新たな脳領域を相互に結び付ける遠距離の神経伝導の性質についても研究が進んできよう予想される。複雑な神経回路の形成原理を明らかにすることが出来れば、脳の発達と機能発現についての理解へとつながる可能性がある。
一方で最終的にはヒトの脳機能と、その障害によって引き起こされる様々な脳疾患の診断法・治療法の開発を目指した研究も急速に進められている。このような研究は非侵襲的な手法を用いて、因果関係よりも現象の間の相関を解析することによって、脳のシステムレベルでの理解を得ることに重点が置かれている。現在の脳科学の一番大きな問題は、一方で分子から回路レベルで進化している実験動物によるミクロ神経回路の研究と、ヒトを対象として進められているよりマクロレベルでの脳機能研究をどのように結び付けて理解すれば良いのか、という点において依然としてかなり大きなギャップが存在する。ヒト脳イメージングはヒトの脳研究を実験動物レベルの研究と結び付ける際の別の領域であり、新技術開発や検証可能な脳情報処理に関するコンセプトの提案が期待されている。本講演ではこのような観点から、脳研究における階層のギャップを埋めるための考え方や方法論、研究体制の在り方などについて議論をしたい。
教育講演1
(2) ヒト・霊長類動物脳コネクトームとパイプライン

林 拓也
（理化学研究所ライフサイエンス技術基盤研究センター機能構築イメージングチーム）

我々ヒトの脳がつかさどる複雑かつ高度な機能を理解するため脳機能への介入操作技術やネットワーク・共振回路としての機能解明法など最新かつ多角的なアプローチで解明が進んでいる。その中で脳の機能分画化とその分画間の連絡性解明（コネクトーム）は古くからの命題でミクロレベル（例：錐体細胞等の細胞種類と細胞間連絡、皮質内層構造と層間連絡性など）からマクロレベル（例：運動・感覚言語野と弓状束）まで広く研究対象となってきた。しかしマクロレベルでの脳分画化は100年以上前からブロードマンなど解剖学者が進めた細胞・髄鞘構築の観察による皮質分画化しか方策がなく生体脳での分画化を行うことは不可能であった。ヒューマンコネクトームプロジェクト（HCP）は、米国・英国の3つの機関（ワシントン大学・ミネソタ大学・オックスフォード大学）が中心となり2011年から始まった国家プロジェクト。非侵襲MRI画像撮像法を用いてこうした脳機能解明の根本的問題の解決に挑戦、その結果、生きたヒトの脳においても高精度なマルチモーザル画像取得と高度な解析を行うことで一側半球の大脳皮質を180個に分画化できることを昨年明らかにした（GlasserらNature 2016）。HCPでは3テスラ MRI装置の独自カスタマイズと高精度頭部画像1200例の取得、従来の画像解析技術（FSL, Freesurfer, Caret等）の性能を最大限に発揮する解析プラットフォーム（HCP パイプライン）の構築、さらに標準化・オープン化・クラウド化など先駆的な情報処理思想も導入され国際的に影響力の高い研究基盤となっている。本教育講演では今後の国際連携研究の中心技術となりうるHCPデータ・パイプラインを紹介し、さらに現在進行中の生涯HCP（Lifespan HCP）や疾病HCP（Connectome-Related to Human Disease, CRHD）、我々チームで構想中の霊長類脳プロジェクト（NHPHCPコネクトーム）を紹介する。

教育講演2
(3) 脳イメージングデータ解析のAIの応用と脳機能から学ぶAIの開発

石井 信
（京都大学大学院情報学研究科システム科学専攻）

計測機器の高スループット化に応じて、脳イメージングデータのサイズが大きくなり、人手での解析ができない時代が迫りつつある。このことは、特に、イメージングデータに基づき脳の設計図を作ろうとする研究分野（コネクトミクス）において顕著である。画像処理を中心に近年応用が進んでいる人工知能（AI）などの大規模情報処理技術のターゲットとして適当である。本講演では、AI技術の応用として、電子顕微鏡画像のセグメンテーションと二光子トモグラフィからの回路再構成について、講演者らのグループでの研究を交えて紹介する。また、ヒトのコネクトミクスが、視覚注意のデコードにおいても有効であることを示す。一方で、現在のAIの中心をなす畳み込みネットワーク（CNN）は、元来、乳類の視覚系に対する階層的モデルとして提案されたが、35年の月を経て、脳とは全く異なるものとして独自の進化を遂げた（深層ネットワーク）。講演の後半では、脳の階層性のみならず、双方構造が予測などの機能において重要であり、そのことをモデル化した新しい人工知能アーキテクチャについて紹介する。
シンポジウム1

(4) コモンマーモセットMRI研究からヒトへ

畑 純一

（理科学研究所 脳科学研究総合研究センター / RIKEN Brain Science Institute
慶応義塾大学医学部 生理学教室 / Department of Physiology, Keio University School of Medicine
実験動物中央研究所 / Central Institute for Experimental Animals）

近年、霊長類の中でも新世界ザルのマーモセットは、ヒトに対応づけられた研究モデルとして注目されている。しかしながら、正常個体のマーモセットの脳構造についてはまだ完全には解明されていない。マーモセットの脳構造を本質的に理解するためには、マクロスケールとミクロスケールのギャップを解消し、この二つのスケールを統合するようなメソスコピックな脳構造の解明が求められている。そこで、我々は新規の超高磁場拡散MRIシステムを開発し、3次元の拡散MRI画像および髓鞘分布MRI画像を撮像することで、従来のMRI撮像技術では不可能であった、より高精細な神経線維構造の3次元再構築の実現を目指す。また、遺伝子編集を行う予定の精神・神経疾患モデルマーモセットを対象に、神経線維構造、髓鞘分布、rs-fMRIネットワーク等を観察的に追跡し、正常個体との比較を通して、特定の病態を同定することを目指す。これにより、精神・神経疾患に関連した神経回路網における病態の同定が可能となり、ヒトの病態メカニズムの解明に寄与することが期待される。さらに、現代社会において深刻な問題となっている、育児放棄や虐待ネグレクトによる発達性トラウマ障害・愛着障害、およびこれらの世代間連鎖の病態メカニズムの解明へとつなげることを目指している。

(5) 小動物用MRIで捉える脳脊髄のダイナミックな変化

吉岡芳親

（大阪大学 先端の学際研究機構）

小動物用の11.7T-MRIでは、平面分解能50μm、厚さ300μm程度であれば、比較的コントラストの良い撮像が容易である。MRIの非侵襲性を生かした同一個体での経時的な撮像では、100μmレベルの小さな構造変化でも評価可能であり、多発性硬症モデルマウスの同じ個体での経時的な繰り返し撮像で、脊髄そのものの構造変化のみならず、100μmレベルの血管の病態進行に伴うダイナミックな変動が捉えられた。ラットを対象とした味覚嫌悪学習では、Mnを用いることで扁桃体、視床下部、海馬などの関与部位をMRIで可視化できた。味覚嫌悪学習は、従来法のようにLiClで行うことができが、免疫系に係わる、リポポリサッカリド（LPS）でも引き起こされることが分かった。神経軸索そのものの活動の可視化は容易ではないが、Mnを用いることで側頭核から脳の前頭野に向かう軸索の活動変化を可視化できた。中枢神経系は、免疫特異器官と考えられて来たが、健常時においても、末梢で標識したマクロファージが脳実質内へ入るとの事で、MRIにより示唆され、さらに組織でも確認することができた。また、11.7T-MRIでは、標識したマクロファージを1細胞レベルで追跡可能であり、経時に3D画像として描画する事で、脳内でゆっくりと動きまわるマクロファージを捉えることができた。
（6）モデル動物と人をつなぐ精神神経疾患イメージング研究

樋口真人
(国立研究開発法人量子科学技術研究開発機構 放射線医学総合研究所)

精神神経疾患の多くにおいて、発症の引き金となる因子メカニズムは未解明であるが、発症カスケードの最上流と考えられる分子過程が同定されている疾患も存在する。アルツハイマー病と類縁疾患がその例であり、アミロイドβやタウなどのタンパクが異常線維を形成して脳内に沈着することが、病態の発端と考えられている。異常タンパクの沈着と脳機能異常や神経細胞死がどのように結びつくのかについては不明な点が多いが、モデル動物を活用することにより、この仕組みを解明できると見込まれる。特にタウ沈着が生じるモデルマウスは、加齢に伴い顕著な神経細胞死を呈することから、神経変性のメカニズムを調べるのに適している。私たちのグループでは手続き学習のメカニズムに関わる脳活動の測定を人とげっ歯類で並列的に行なっている。ただし、脳活動の測定は学習前後で課題成績や主観的難易度が変わるため、解釈の上で難しい点が残る。測定中の課題成績に依存しない可塑性研究の手法として、脳の灰白質容積をボクセルレベルで統計解析を行う voxel-based morphometry (VBM) などを用いて、脳の構造的可塑的性質を非侵襲的に視覚化する手法がある。また、白質線維統合性の可塑的変化の代用マーカーとして、拡散テンソル解析に基づく拡散異方性の変化を用いることができる。このような構造可塑性の研究も人と実験動物でパラレルに行うことが可能であり、神経可塑性を機能と構造の両面から人と実験動物の両方向から視覚化することで、MRI で計測可能なマクロ神経可塑的変化がどのような神経細胞生物学的変化を反映しているのかを明らかにする橋渡し研究に発展することが期待される。

（7）動物・ヒトイメージングによる神経可塑性研究

花川 隆
(国立精神・神経医療研究センター脳病態統合イメージングセンター (IBIC))
シンポジウム 2
（8）超高磁場 MRI による脳機能理解

福永雅喜
（自然科学研究機構 生理学研究所 心理生理学研究部門）

MRI による生体計測は、装置要因としての空間分解能、信号雑音比（SNR）とともに、組織パラメータである緩和時間およびコントラストに依存する。一方、磁場強度の上昇は、SNR の上昇に加え、磁気共鳴の物理パラメータである共鳴周波数の上昇をもたらし、MR 信号の位相分散や周波数シフトも顕著となる。磁場強度の上昇に伴う信号雑音比の改善により実用的な時間内で計測が可能となったサブミリメーターオーダーの形態画像や T2*緩和時間の短縮によって BOLD 効果に大きな感度改善が得られる fMRI などに大きなアドバンテージをもたらす。現在、世界ではすでに 50 台を越える 7 テスラ以上のヒト用超高磁場 MRI が稼働しており、頭部のみならず全身応用を目指した研究開発が進められている。また、近年、磁化率効果を用いた脳 MRI が注目され、特に超高磁場 MRI では、組織内（灰白質内、白質内）コントラストが増強される。その特長を生かした磁化率画像では、強度画像の数倍もの組織コントラストをもつため、7 テスラ超磁場 MRI は、従来型の大局的な脳構造（脳回、脳溝）を越えた、個体ベースでの脳の機能・構造関連解析への応用が期待される。

（9）MRS を用いた非侵襲的脳内代謝物による機能評価

原田雅史
（徳島大学大学院医歯薬学研究部）

MRS は各脳内代謝物の構造にもとづく原子核の共鳴周波数の違いを利用して代謝物を同定し、その濃度や緩和時間等に関係する情報を測定する手法である。ヒト用の装置で最も多く用いられる核種は 1H であるが、31P や 19F,13C 等の信号も取得できる装置がある。本講演では、まず 1H を用いた MRS を中心に神経伝達に関するグルタミン酸やグルタミン、γ-アミノ酪酸等の代謝物の定量化と臨床応用における研究を紹介する。これまでの研究では、統合失調症や自閉症、強迫性障害等の機能的疾患における研究が多く認められる。また、最近の研究では遺伝子情報を反映する biomarker としても期待されており、これに関係する研究も紹介する。さらに外部から投与された化合物の経時的代謝を追跡するトレーサー手法としての応用も述べ、今後の MRS の発展性について考察を行う。

（10）複数データ統合によるヒト脳ダイナミクス研究

山下宙人
（ATR 脳情報解析研究所）

神経科学の目的の 1 つは、脳で行われるさまざまな情報処理を神経細胞ネットワークがどのように実現しているかを解明することです。ヒトを対象にした研究では、fMRI や脳波（EEG）、脳磁図（MEG）、近赤外分光計測法（NIRS）などの非侵襲的なヒト脳イメージング手法を用いて、課題に関連した脳活動や自発脳活動の研究が
行われてきました。特に近年の fMRI を用いた研究により、脳部位ごとの機能（ブレインマッピング）や脳部位間の繋がり（コネクトーム）について多くの知見が得られています。しかし、ブレインマッピングやコネクトームの知見だけでは脳情報処理過程に関する理解としては十分と言えず、ミリ秒の速い脳活動変化を対象にした脳ダイナミクス研究の重要性が高まっています。ATR 脳情報解析研究所では、複数の脳計測データをソフトウェア的に統合することによって、1 つの脳計測の限界を超えるための研究を 10 年以上に渡って行ってきました。2004 年に佐藤らが時間分解能優れた脳磁図データと空間情報に優れた fMRI データを階層ベイズモデルによって統合することにより、高次空間分解能で脳活動を可視化する方法を提案し、近年、拡散 MRI による解析情報を利用することにより、脳ネットワークダイナミクスを定量モデル化する方法を提案しました。本講演では、ATR で取り組んでいる複数データ統合によるヒト脳ダイナミクス研究について紹介します。

（11）拡散強調 MRI による白質線維束の研究

竹村浩昌 1,2)

1) 情報通信研究機構 脳情報通信融合研究センター（CiNet）
2) 日本学術振興会 特別研究員（SPD）

ヒトの脳は 1500 グラム程度の重量を持つ巨大な生体組織であり、数多くの機能的に異なる領域から構成される。ヒトの脳では長距離の線維束から構成される白質が発達しており、白質の線維束が遠く離れた領域どうしの情報伝達を支えることで大規模かつ複雑な情報処理を達成していると考えられる。かつてはヒトの白質線維束を調べる手法は死後脳を対象としたものに限られていたが、近年は拡散強調 MRI（dMRI）を用いた計測・解析法が発展したことによって、生きているヒトからの白質線維束の走行や構造特性を計測することが可能となってきた。今回講演ではまず dMRI の解析法について、単一ボクセルを対象とした解析と複数ボクセルの関係をモデル化する解析（トラクトグラフィー）の両面から概説する。次にヒトを対象とした dMRI 計測を疾患研究、サルとの種間比較、心理物理実験、Quantitative MRI 計測、fMRI や MEG を用いた脳活動計測などの多種多様なアプローチと組み合わせることで得られた近年の研究成果について報告する。最後に、ヒトを対象とした dMRI 研究の現時点での限界点や課題について解説し、今後のヒト dMRI 研究の方向性について議論したい。
24. クライオ電子顕微鏡によるタンパク質の高分解能単粒子構造解析

2017年11月28日—11月29日
提案代表：岩崎憲治（大阪大学）
所内対応：村田和義（生理学研究所）

（1）クライオ電子顕微鏡で解き明かす細菌ペソモーター回転子の立体構造と回転対称性
川本晃大（大阪大学）

（2）ヘテロクロマチンユニットのクライオ電子顕微鏡構造解析
滝沢由政（沖縄科学技術大学）

（3）In situ structural studies of macro molecular complexes in cells by cryo-electron tomography with Volta phase plate
Yoshiyuki Fukuda（MPI, Martinsried）

（4）近原子分解能クライオ電子顕微鏡単粒子解析に向けた撮影条件の検討
横山武司（理化学研究所）

（5）最新クライオ電子顕微鏡cryoARMの性能評価と構造解析
加藤貴之（大阪大学）

（6）回転型H+-ATPase/合成酵素の低温電子顕微鏡による全体構造
光岡薰（大阪大学）

（7）Structure of the Methanococcus Archaellum
Matthias Wolf（沖縄科学技術大学）

（8）SPHIRE：極低温電子顕微鏡法による近原子分解能構造決定のための自動検証機構を備えたユーザーフレンドリーパイプライン
守屋俊夫（MPI, Dortmund）

（9）Solving the structures of small proteins with the help of the Volta phase plate
Radostin Danev（MPI, Martinsried）

（10）クライオ電子顕微鏡と遺伝学による繊毛研究
吉川雅英（東京大学）

【参加者名】
川本晃大（大阪大学）、滝沢由政（沖縄科学技術大学）、Yoshiyuki Fukuda（Max Planck Institute）、横山武司（理化学研究所）、加藤貴之（大阪大学）、光岡薰（大阪大学）、Matthias Wolf（OIST Graduate University）、守屋俊夫（Max Planck Institute）、Radostin Danev（Max Planck Institute）、吉川雅英（東京大学）、秋山修志（分子研）、Ghosh Ilika（埼玉大学）、古池美彦（分子研）、渡邉拓巳（信州大学）、小林真弓（神戸大学）、宮崎直幸（大阪大学）、Brown Zuben（大阪大学）、板崎充（大阪大学）、牧野文信（大阪大学）、宮田知子（大阪大学）、馬場健太郎（奈良先端科学技术大学）、杉田征彦（沖縄科学技術大学）、芳賀信幸（石巻専修大学）、湯本史明（高エネルギー加速器研究機構）、前川あゆ美（沖縄プロテイントモグラフィー㈱）、細木直樹（日本電子㈱）、荒牧慎二（TVIPS GmbH）、矢木真穂（分子研）、角田潤（生理研）、ソンチョン（生理研）、島貫瑞樹（沖縄科学技術大学）、神吉恭太（沖縄科学技術大学）、Kun-Yi Hsin（沖縄科学技術大学）、Tae Gyun Kim（沖縄科学技術大学）、柴田敏史（沖縄科学技術大学）、Matthews Melissa（沖縄科学技術大学）、Smith Melissa（沖縄科学技術大学）、吉田美和子（沖縄科学技術大学）、藤田陽子（京都大学）、藤原徹（京都大学）、柳澤香明（京都大学）、岩崎憲治（大阪大学）、鈴木翔大（大阪大学）
生理学研究所年報 第39巻（Dec,2018）

【概要】
本研究会は、「クライオ電子顕微鏡によるタンパク質の高分解能単粒子構造解析」をテーマにして開催致しました。100名を超える参加者を得て、10演題の口演と22演題のポスター発表について活発な議論が行われました。日本医療研究開発機構（AMED）および日本顕微鏡学会関西支部後援のもと、最先端の単粒子解析法による構造解析について、医学・生物学における我が国での進展を目指し、議論する場として企画されました。第一部は、「次世代に向けたクライオ電顕単粒子解析」と題して、現在行われているような単粒子解析のターゲットから、一歩踏み込んでより複雑な構造体の解析に挑んでいる方から国産のクライオ電顕を開発している方までの発表があります。夕方からポスターセッションにおいて、国内で活躍する多くの方と、より深い議論と情報交換を図って頂けます。二日目は、第二部として「クライオ電子顕微鏡解析における分解能革命」をテーマに、近年の技術により原子モデル解明まで到達したトップレベルの成果を紹介頂きます。従来の限界分子量を打開したポルタ仕様の開発者Danev博士をはじめ、ハードウェアに独自の工夫を凝らして成果を得た例や、そして、1日目のハードの紹介に続いてソフトウェアサイドからの紹介等多岐にわたって発表が行われます。

2013年来、クライオ顕微鏡による近原子分解能解析の爆発的な増加が、創薬を目指している方々に期待をもたれるようになりました。そして2017年のノーベル化学賞がクライオ電子顕微鏡に授けられたことによって、一際注目を浴びることとなりました。このような中で我が国のクライオ電子顕微鏡学者が集い、最先端の技術について共有し、さらに一層の進歩を目指すことは、大変意義深いことです。電子顕微鏡の歴史も深く、医学・生物両方に渡って幅広い研究を展開している生理学研究において是非この機会を利用して活発な御議論を展開頂けますよう切に願うものであります。

本研究会のルーツは、2000年から提案者：藤吉好則先生（元京都大学）、所内対応者：亀山国昭先生により始まりました。電子顕微鏡を主な対象として、これまで“定量化”、“位相情報回復”、“生体分子の高分解能構造解析”、“感染症の現場観察”、“環境セル観察”など、時代のニーズに対応して生体構造の可視化における先端的な内容を扱ってきました。そして今後も次々と生まれてくる電顕技術を積極的に生物電顕に応用するため、最先端顕微鏡群の研究成果とともに、生理学研究所が共同研究機器として提供している超高圧電顕、クライオ位相差電顕、SBF-SEMなどの成果を持ち、医学・生物学に必要な可視化方法と解析手法を含めてその関連技術を討論し、生体観察方法の発展と新たな展開を創造する機会を提供していきたいと考えています。
(1) クライオ電子顕微鏡で解き明かす細菌ペニモーター回転子の立体構造と回転対称性

川本晃大（大阪大学・蛋白質研究所）

サルモネラ等の細菌はペニと呼ばれる運動器官を数本持ち、最適な環境で泳ぎやすくなることができる。ペニモーターのトルクはプロトンチャネルである固定子とCリング構成蛋白質であるFliGとの相互作用によって発生する。そして、FliGとMSリング構成膜蛋白質であるFliFとの相互作用を介してロッドからフック、ペニ毛繊維へと順々に伝達され、溶液中を泳ぐための推進力が生み出している。このことから、CリングとMSリング間で行われるトルク伝達機構を明らかにすることが、ペニモーターの高効率なエネルギー変換機構を理解する上で重要な手掛かりとなる。先行研究によれば、Cリングは34回回転対称構造であることが明らかになっている一方で、MSリングは26回回転対称構造であることが示唆されており、両リング間の対称性ミスマッチの役割が議論されてきた。そこで、機能状態の生体分子複合体の構造を観察できるクライオ電子顕微鏡法を用いてMSリングの構造解析を行った。精製法と解析方法を検討し工夫することで、3.9Å分解能でのSリングの立体構造解析に成功した。また、Sリングの回転対称構造がこれまで示唆されていた26回ではなく、Cリングと同じ34回であることが明らかになった。これにより、CリングとMSリングとの間に対称性ミスマッチは存在せず、両リングが強固に結合して効率的なトルク伝達を行っているという新規のモデルが提唱された。

(2) ヘテロクロマチンユニットのクライオ電子顕微鏡構造解析

滝沢由生（沖縄科学技術大学・生体分子電子顕微鏡解析ユニット）

真核生物のゲノムDNAは、クロマチンと呼ばれる高次の構造をとることにより、核内に収納されている。そのクロマチン構造の最小単位は、ヌクレオソームであり、ヒストンH2A、H2B、H3、H4それぞれ2対ずつが、約147bpのDNAに巻かれた構造をとっている。クロマチンの形成は、ヒストン修飾やヒストンバリントによって制御されており、転写、複製、DNA組換えおよび修復に関与していることが知られている。クロマチンの中でも、ヘテロクロマチンと呼ばれる領域は、凝集したクロマチン構造をとっている。転写が抑制的に働いている。へテロクロマチンは、HP1タンパク質が、ヒストンH3のトリメチル化された9番目のリジン残基へ、特異的に結合することにより、形成されることが知られている。しかし、HP1がクロマチンへ結合することにより、へテロクロマチン構造がどのように形成されているのかは、未だ明らかにされていない。そこで、我々は、ヘテロクロマチンの基本構造を明らかにするために、ヘテロクロマチンの最小単位としてHP1-ヌクレオソーム複合体を試験管内再構成系により精製し、ポルタ型位相板を用いたクライオ電子顕微鏡構造解析を行った。単粒子解析の結果得られた構造より、2つのヌクレオソームは、HP1を介して、ブリッジされた構造をとっている。更に、2つつのヌクレオソームを繋ぐリンカーDNAは、HP1とは結合しない構造をとっていることが分かった。本研究会では、クライオ電子顕微鏡構造解析の詳細および、得られたヘテロクロマチン基本構造から、ヘテロクロマチン構造構築機構を議論したい。
（3）In situ structural studies of macro molecular complexes in cells by cryo-electron tomography with Volta phase plate

Yoshiyuki Fukuda（Max Planck Institute of Biochemistry, Martinsried）

細胞内におけるタンパク質間の相互作用及びタンパク質複合体形成機構の解明は、細胞機能の理解において重要である。クライオ電子顕微鏡法は、生理的状態に近似した環境で保存された細胞を、数ナノメートルの空間分解能で3次元的に観察することが可能である。従来のクライオ電子顕微鏡法において問題とされていた画像コントラストを改善するために、ボルタ位相板が開発された。このボルタ位相板によるコントラストの改善により、テンプレートマッチング法を用いて26Sプロテアソーム及びトリペプチドペプチダーゼⅡ（TPPⅡ）といった巨大タンパク質複合体を海馬初代培養神経細胞内において直接検出することができた。そして、検出したタンパク質複合体のサブトモグラム平均化及び構造の分類により、これらの複合体の異なるコンフォーメーション状態が示された。生化学的手法による解析とは異なり、テンプレートマッチング法は細胞内における位置情報を保持しているため、細胞内における分布を解析することで、TPPⅡと26Sプロテアソームとの間の空間的会合が明らかにされた。さらには、従来の透過電子顕微鏡法において観察されていないThermoplasma acidophilumの細胞膜上での膜タンパク質複合体が観察された。このように、ボルタ位相板を用いたクライオ電子顕微鏡は、細胞内におけるタンパク質複合体の構造及び局在を直接解析するという、細胞生物学研究の新たな手法をもたらすと考えられる。

（4）近原子分解能クライオ電子顕微鏡単粒子解析に向けた撮影条件の検討

横山武司（理化学研究所・ライフサイエンス技術基盤研究センター）

直接電子検出器の登場と画像処理技術の向上により、クライオ電子顕微鏡の到達分解能が飛躍的に向上した。当研究チームでは、クライオ電子顕微鏡による単粒子解析で複数の複合体の構造解析を行っている。当初、検出器としてFEI Falcon IIを用いてIntegrationモードでデータ測定を行った際には、リボソームのような大きな粒子では3Å台の高分解能構造が得られていたものの、Glutamate dehydrogenase（GDH）のような比較的小さな粒子では分解能は6Å程度にとどまり、Gatan K2 Summitを導入によって、超解像モードでデータを取得することが可能になり、その結果、GDHにおいても分解能を3Å台に向上することが出来た。本発表では、近原子分解能での構造解析に向けた直接電子検出器を用いた撮影条件と画像処理方法の検討について報告する。また、リボソーム複合体の構造解析についても併せて報告する。

（5）最新クライオ電子顕微鏡cryoARMの性能評価と構造解析

加藤貴之（大阪大学・生命機能研究科）

タンパク質や核酸などの生体分子の構造解析には、X線結晶構造解析、NMR、クライオ電子顕微鏡が用いられる。ほとんどの数年前までクライオ電子顕微鏡はX線結晶構造解析やNMRに比べて分解能が低く、それ単体で原子モデルを構築するには至らなかった。そのため複合体の構造をクライオ電子顕微鏡で中〜低分解能で解析し、そこに別の手法で得られた原子モデルを当てはめることで擬似的な原子モデルを構築するのが一般的であった。しかし
かし近年，電子を直接検出するダイレクトディテクターによって，クライオ電子顕微鏡による構造解析における
分解能は飛躍的に改善した。最近では 4 Å の分解能を超える構造がそれほど珍しくなくなってきたおり，2 Å を
超える構造も解かれている。現在クライオ電子顕微鏡によって解析され，データベースに登録されている構造は
年々増加しており，最近は年間 1000 件を超え，本年はす
でに NMR による登録件数を超えている。そのような背
景から，我々は数年前から日本電子（株）と共に新型の
クライオ電子顕微鏡の開発を行ってきた。この新型クラ
イオ電子顕微鏡は，市販された電子顕微鏡の中で最高分
解能を記録した JEM-ARM200 をベースに，液体窒素の自
動供給が可能な自動試料交換装置，単粒子像解析用に特
化したクライオポールピース，コントラスト改善を行う
ための Ω 型エネルギーフィルターを備えたハイエンドク
ライオ電子顕微鏡である。
我々は CryoARM200 と名付けられた新型の電子顕微鏡
の様々な性能を評価した。まず，試料に Pt/Ir を用いてそ
のトーンリングから分解能の限界を評価したところ，最
高分解能は 1.8 Å まで到達することが分かった。そこで
β-galactosidase をテストサンプルとして，自動データ撮
g影ソフト JADAS を用いて 3 日で 2,500 枚の画像を撮影し，
合計 88,000 粒子の分子像を用い，Relion を使って構造解
析した結果，分解能 2.6 Å での構造解析に成功し，一部
のアミノ酸のベンゼン環に穴が開いていることが確認で
きた。この分解能は 200kV の電子顕微鏡として世界で同
率 1 位の結果で，CryoARM200 が十分に高分解能解析が
可能であることが証明された。本来 CryoARM には，も
っと干渉性の高い cold field emission gun （cold FEG）を装
着することができる。Cold FEG を装着した CryoARM300
はさらなる高分解能での解析が期待できる。

（6）回転型 H+-ATPase/合成酵素の低温電子顕微鏡による全体構造

光岡 薫（大阪大学・超高圧電子顕微鏡センター）

回転型 ATPase は，ATP 合成酵素，または ATP 加水分
解によるエネルギーを用いてプロトンを輸送する
ATPase として機能している。それらは膜タンパク質複合
体で，ATP 駆動回転モーターである親水性部分 V1 と，
プロトンポンプである疎水性部分 Vo から成る。好熱菌
（Thermus Thermophilus）由来の V-ATPase は回転型
ATPase の一つである。我々は，単粒子解析により，親水
性のモーター部分が回転した 3 つの異なる状態の
V-ATPase 構造を，それぞれ 5.0, 6.7, 7.5 Å 分解能で決定
した。膜タンパク質と強く結合して遊離の界面活性剤を
除くことが出来る LMNG という界面活性剤を用いるこ
とで，再現性良く試料調製を行う事ができた。さらにマ
スクを用いて分類することで，その親水性ドメインの構
造を 4.6 Å 分解能で解析し，結合した ADP を可視化した。
これらの構造から，この回転型 ATPase の動的な性質が
議論でき，膜貫通ドメインを通るプロトン輸送経路が示
唆される。

（7）Structure of the Methanococcus Archaellum

Matthias Wolf（Molecular Cryo-Electron Microscopy Unit, OIST）

Many archaea swim in a liquid environment by means of
flagella. While the archaeal flagellum (archaellum) is similar to
its bacterial counterpart in function and composition, its
structure and evolution are fundamentally different. In contrast,
the archaellum is related to another bacterial surface structure,
experiment yielded a 1.5 Å crystal structure of
Methanocaldococcus jannaschii FlaB1, which was put into its
biological context by means of a cryo-EM reconstruction at 4 Å
resolution of *Methanococcus maripaludis* created with single
particle analysis of helical segments. Both structures reveal a
highly conserved metal-binding site, which is required for
filament integrity. We found that filament polarity in archaea is
opposite to bacterial filament polarity, but growth polarity is the
same. This results in archaenal filaments growing from their base.
An updated model for filament growth and assembly is
presented.

(8) SPHIRE: 極低温電子顕微鏡法による近原子分解能構造決定のための自動検証機構を備えた
ユーザーフレンドリーパイプライン

SPHIRE ソフトウェアパッケージは、改訂された
SPARX システムのモジュール群と新規開発されたグラ
フィカル・ユーザー・インタフェイスを備えた極低温
電子顕微鏡法単粒子解析のパイプラインを提供しています。
統計的再サンプリングの概念を用いた結果検証及び
再現性に重点を置くことにより、単粒子解析を容易に習
得・実践できるように設計されています。このために,
SPHIRE には典型的な単粒子 3 次元構造決定処理の全て
の手順が実装されています。具体的には（1）ドリフト分
析、（2）コントラスト伝達関数分析、（3）粒子像抽出、
（4）妥当性検証を備えた 2 次元クラスタリング、（5）
妥当性検証を備えた初期 3 次元構築、（6）最尤法に基づ
く新規高速 3 次元構造精密化処理、（7）3 次元ばらつき
（variability）に基づく 3 次元構造分類、および（8）局
所分解能分析です。サンプルデータセットを使った詳細
なステップ・バイ・ステップ・チュートリアルを実行す
ることで、単粒子解析はもしくは **SPHIRE** を初めて使用す
るユーザーでも、3.5 Å 分解能の構造を **SPHIRE** パイプラ
インで決定することができます。また、既立した特徴と
して、特殊かつ困難な構造解析の事例を考慮した自由度
の高いオープンな設計を実現しています。つまり、熟練
ユーザーが独自の *Python* コードを作成したり、パフォー
マンスを微調整することが、必要に応じて可能です。最
後に、計算量の多い処理段階を最適化することで、典型
的なサイズのデータセットの処理時間を数日から数時間
に短縮することに成功しました。その結果、**SPHIRE** 単
粒子解析パイプラインを使用すれば 1～2 日以内で近原
子分解能レベルの構造を得ることが可能になりました。

(9) Solving the structures of small proteins with the help of the Volta phase plate

Radostin Danev（Max Planck Institute of Biochemistry, Martinsried）

The Volta phase plate (VPP) is a remarkably simple device
comprising a thin (~10 nm) amorphous carbon film positioned
at the back focal plane of the objective lens [1]. The film is
continuously heated at ~250°C to prevent beam-induced
contamination and enable the Volta potential effect. The strong
central diffraction beam of unscattered electrons interacts with
the film and modifies its surface properties leading to the
creation of a Volta potential difference (the outer potential just
above the film surface) between the central spot and the
surrounding areas. This in turn leads to a three-dimensional
electrostatic potential distribution above and below the film
which when integrated along the beam path results in a phase
shift difference between the central beam and the scattered
beams. The effect of the central diffraction beam on the film is
cumulative, producing a phase shift which increases with the
electron dose. The increase is not linear and slows down as the
phase shift approaches ~π/2 [1], which coincidently is the ideal
phase shift for a phase plate.
Single particle applications of the VPP are still in their early days, but the results thus far are very encouraging. The improved contrast was instrumental in the near-atomic cryo-EM structure determination of peroxiredoxin-3 (~250 kDa) [2], the nucleosome (~200 kDa) [3], a calcitonin class-B GPCR (~150 kDa) [4] and hemoglobin (64 kDa) [5]. The VPP has the capability to extend the applicability of cryo-EM towards smaller particles and it is not unreasonable to expect that in the near future even structures under 50 kDa could be solved to near-atomic resolutions.

(10) クライオ電子顕微鏡と遺伝学による繊毛研究

吉川雅英（東京大学大学院・医学系研究科）

真核生物の繊毛は非常に複雑な細胞内小器官であり、様々な細胞でプロペラやアンテナなど重要な役割を果たしている。繊毛は、何百もの異なるタンパク質が、自己組織化によって正確に組み立てられる。このような複雑なシステムの仕組みを解明するために、私たちは遺伝学と構造生物学（クライオ電子顕微鏡）を組み合わせて研究を行っている。私たちは、Chlamydomonas の遺伝学とクライオ電子線トモグラフィー（cryo-ET）を組み合わせることによって特定のタンパク質の3次元位置を図定してきた。また、私たちは最近、ゼブラフィッシュとマウスを、繊毛を研究するためのモデル生物として用いはじめた。この二つのモデル生物ではゲノム編集技術を適用することができる。これらの新しいアプローチにより、新しい繊毛タンパク質を同定し、特徴付けることを可能にする。
各種シンポジウム
2017（平成29）年度生理研国際シンポジウム

The 48th NIPS international Symposium
“Neural circuitry and plasticity underlying brain function”

第48回生理学研究所国際シンポジウムは「脳機能の基盤となる神経回路・可塑性」というタイトルで10月31日から11月2日の3日間、岡崎コンファレンスセンターにて開催されました。所内からの参加者28名を含む合計95名が参加しました。特別講演者のE.M Callaway博士（米国・Salk Institute）をはじめとする6名の海外招待講演者（米国4名、韓国1名、スイス1名）、特別講演者の河西春郎博士（東京大学）を含む7名の国内招待講演者、および3名の所内講演者の合計16名による講演が行われました。また、7名の若手研究者によるshort talkと33題のポスター発表を行いました。各講演者は、（1）生後発達期の神経活動や経験に依存したメカニズム、（2）マルチモーダルな感覚情報統合システムとその可塑性、（3）神経回路形成・除去の分子機構、（4）記憶・学習、（5）サブセルラーレベルでの情報処理機構に焦点を当て、未発表データを含む最新の研究成果が発表されました。参加者は最新の研究結果を共有し、人的交流を深めると共に、これから当該分野の将来の方向性について議論しました。

The 48th NIPS International Symposium
“Neural circuitry and plasticity underlying brain function”

The 48th NIPS International Symposium “Neural circuitry and plasticity underlying brain function” was held at Okazaki Conference Center from October 31th to November 2nd, 2017. Ninety five attendees including 28 attendees from NIPS came to the symposium. Six invited speakers from abroad (USA 4, South Korea 1, Switzerland 1) and 10 domestic invited speakers talked on their outstanding research on novel experimental approaches. Speakers for the special lectures were Professor Edward M Callaway (Salk Institute, USA) and Professor Haruo Kasai (the University of Tokyo, Japan). In addition, 7 short talks presented by young researchers and 33 poster presentations were provided. All speakers presented their recent research focusing on (1) activity- and experience dependent developmental mechanisms, (2) multimodal integration and plasticity, (3) molecular mechanisms for formation and elimination of neural circuits, (4) learning and memory and (5) subcellular mechanisms for information processing. Attendees intensively discussed to share recent results, network with colleagues and shape the scientific direction of this research field.
Program

Oct 31 (Tue) 2017

Opening remarks
Keiji Imoto (Director General, NIPS, Japan)

Session 1: Activity- and experience dependent developmental mechanisms
Chair: Yoshio Hata (Tottori University, Japan)
13:45 – 14:20
Yumiko Yoshimura (NIPS, Japan)
“The roles of visual experience in the maturation of neural responses in the primary visual cortex”
14:20 – 14:55
Kenichi Ohki (the University of Tokyo, Japan)
“Gap junctions in postnatal excitatory neurons regulate spine density and response reliability”

Chair: Takuji Iwasato (National Institute of Genetics, Japan)
15:10 – 15:45
Madoka Narushima (NIPS, Japan)
“The metabotropic glutamate receptor subtype 1 mediates experience-dependent maintenance of mature synaptic connectivity in the dorsal lateral geniculate nucleus”
15:45 – 16:20
Nobuhiko Yamamoto (Osaka University, Japan)
“Activity-dependent mechanisms for thalamocortical circuit formation”

Session 2: Multimodal integration and plasticity
Chair: Mariko Miyata (Tokyo Women’s Medical University, Japan)
16:35 – 17:10
Patrick Kanold (University of Maryland, USA)
“Crossmodal induced refinement of auditory cortex circuits”
17:10 – 17:45
Seung-Hee Lee (KAIST, Korea)

“Neural circuits for sensory integration”

Short Talk 1:
Chair: Rie Kimura (NIPS, Japan)
17:45 – 18:00
Tzu-Huei Kao (the University of Tokyo, Japan)
“Roles of synaptic activity in climbing fiber to Purkinje cell synapse elimination in the developing cerebellum”
18:00 – 18:15
Mieko Morishima (NIPS, Japan)
“Pyramidal cell subtype-dependent inhibitory-excitatory circuits in layer 5 of the rat frontal cortex”
18:15 – 18:30
Eriko Kuramoto (Kagoshima University, Japan)
“Local connections of excitatory neurons to parvalbumin-containing interneurons in motor-associated cortical areas of mice”

November 1 (Wed) 2017

Special Lecture 1
Chair: Yumiko Yoshimura (NIPS, Japan)
9:00 – 10:00
Edward M. Callaway (Salk Institute, USA)
“Imaging the mouse visual system: parallel pathways and visual cortical areas”

Session 3: Molecular mechanisms for formation and elimination of neural circuits
Chair: Takeshi Yagi (Osaka University, Japan)
10:15 – 10:50
Denis Jabaudon (University of Geneva, Switzerland)
“Dynamic control of neuronal diversity in the developing neocortex”
10:50 – 11:25
Kazuo Emoto (the University of Tokyo, Japan)
“Molecular and cellular basis for neurite remodeling in
Drosophila”

11:25 – 12:00
Tomomi Shimogori (RIKEN, Japan)
“Activity dependent Btd3 protein dynamics for selective
dendrite morphogenesis in developing neurons”

Special Lecture 2
Chair: Yumiko Yoshimura (NIPS, Japan)
13:30 – 14:30
Haruo Kasai (the University of Tokyo, Japan)
“Dopamine actions on the dendritic spines and conditioning
behaviors”

Short Talk 2:
Chair: Kenji Hayashi (NIPS, Japan)
14:45 – 15:00
Shin-ichi Higashijima (NIBB, Japan)
“Axially-confined in vivo single-cell labeling by primed
conversion using blue and red lasers with conventional confocal
microscopes”

15:00 – 15:15
Ichiro Aoki (Nagoya University, Japan)
“BK potassium channels resist premature memory
overwriting in C. elegans”

15:15 – 15:30
Shuntaro Izawa (Nagoya University, Japan)
“MCH neurons in the hypothalamus impairs memory during
sleep”

15:30 – 15:45
Eisuke Koya (University of Sussex, United Kingdom)
“Changes in appetitive associative strength and reward
value modulate the Intrinsic excitability of nucleus accumbens
neuronal ensembles”

15:45 – 18:00
Flash talk, Poster Session

November 2 (Thu) 2017

Session 4: Learning and memory
Chair: Junichi Nabekura (NIPS, Japan)
9:00 – 9:35
Wenbiao Gan (New York University School of Medicine, USA)
“Dendritic branches are independent units for memory
storage and generalization”

9:35 – 10:10
Masanori Murayama (RIKEN, Japan)
“Top-down cortical circuit for perception and memory
consolidation in mice”

10:10 – 10:45
Takaki Komiyama (UCSD, USA)
“Imaging neural ensembles during learning”

Session 5: Subcellular mechanisms for
information processing
Chair: Hiromu Yawo (Tohoku University, Japan)
11:00 – 11:35
Hiroshi Kuba (Nagoya University, Japan)
“Tonotopic differentiation of dendritic computation in
sound localization circuit”

11:35 – 12:10
Yoshiyuki Kubota (NIPS, Japan)
“The Diversity of Cortical Inhibitory Synapses”

Closing remarks
Yumiko Yoshimura (NIPS, Japan)
【トレーニングコース】
第28回 生理科学実験技術トレーニングコース

2017年7月31日－8月4日
担当：鍋倉淳一（生体恒常性発達研究部門）

【概要】
生理科学実験技術トレーニングコースは、今年で28回目を迎え、7月31日（月）より8月4日（金）までの5日間、生理学研究所の明大寺・山手両キャンパスで開催された（担当：鍋倉淳一）。生理学研究所は、シナプスから個体行動レベルまでの各階層を縦断する研究を行い、大型共同利用機器を保有している。これらの利点を生かして、生理科学・神経科学に関する多様な技術を普及させたり、それらを使って研究レベルを向上させることが、このコースの目的である。本年度は、16コース（約110名）の募集を行ったところ193名の応募があった。108名の方々が採択され、下記のコースを受講された。受講者の5割程が大学院生で、他は学部生と、大学や企業の研究者であった。開催にあたって、日本生理学会からご援助をいただき、実習指導には生理研職員を中心として、他大学からの講師の先生方も含めて、80人程の研究者があたった。

【講演】
1. 「研究の転換期をどうつかむか？ グリア研究との出会い。」池中一裕（生理学研究所 分子神経生理研究部門 教授）
2. 「社会的認知機能の神経機構を探る」磯田昌岐（生理学研究所 認知行動発達機構研究部門 教授）

【紹介】
『生理学研究所の紹介』鍋倉淳一（生体恒常性発達研究部門 教授）

【講義】
「動物実験教育訓練：－生理学研究と動物実験－」山根到（生理学研究所・動物実験コーディネータ室 専門研究職員）

【実習内容】
1. In vitro 発現系を用いたイオンチャネル・受容体の機能解析
2. 海馬神経初代培養法とシナプス超解像観察
3. 心臓の圧受容・適応シグナル評価法
4. 2光子顕微鏡による細胞内分子活性化のFRETイメージング
5. 培養上皮細胞の蛍光免疫染色と上皮バリア機能の評価
6. クライオ電子顕微鏡によるタンパク質の単粒子構造解析
7. ウイルスベクターの作製と導入遺伝子の発現観察
8. ゲノム編集技術による遺伝子改変動物作製のための発生工学技術
9. 遺伝子改変マウスの基本的実験手法と学習・記憶行動解析入門
10. パッチクランプ法を用いた温度感受性TRPチャネル解析
11. スライスパッチクランプ法を用いた神経・シナプス活動・回路解析
12. 2光子励起顕微鏡を用いた生体細胞機能画像解析法
13. 覚醒下実験動物からの神経活動記録法入門
14. SPM を用いたヒト脳の fMRI 解析
15. 生体アンプ回路工作と機械工作入門
16. PIC による回路工作とプログラミング

各コースのさらに具体的な内容に関しては、以下を参照されたい。
http://www.nips.ac.jp/training/2017/courses2.html

トレーニングコース終了時には、例年参加者からアンケートをいただいている。下記 URL にアンケートの集計結果を示す。
【セミナー報告】
セミナー報告

1. 回路のダイナミクスをリカレント情報量最大化で理解する
田中琢真（滋賀大学データサイエンス学部）

大脳皮質のスライス培養では、発火のシーケンスや、発火細胞数が特徴的な分布に従う神経雪崩（neuronal avalanche）が見られる。また、皮質感覚野では様々な特徴選択性を持った細胞が出現することも知られている。これらは無関係な現象のように思われるが、神経回路の情報の保持能力が高くなるような結合を作っていると仮定すると統一的に説明できる。

余裕があれば最近取り組んでいる、出現確率の高い回路によって課題実行中の運動野を再現するモデルも取り上げる。

2. ラット前頭皮質における錐体細胞を中心とした神経回路について
森島美絵子（大脳神経回路論部門）

大脳皮質5層錐体細胞は、様々な皮質下領域、線条体、視床等にその軸索を投射し、大脳皮質の情報の最終出力細胞であることが知られている。

これまでに、2つの投射先（反対側の線条体、橋核）の異なる2種の錐体細胞が、皮質内においてそれぞれが異なるシナプス情報伝達を行い、タイプ依存的な神経回路を形成することを明らかとしてきた。特定の錐体細胞に対する抑制性細胞の作用については、未だ明らかでないことが多い。そこで、これらの2種の錐体細胞と抑制性細胞のサブグループであるソマトスタチン陽性細胞が互いにどのようなシナプス結合し、作用するのかについて調べた。

本セミナーでは、ソマトスタチン細胞は、錐体細胞のタイプに依存して、異なる情報ネットワークを形成することを紹介していきたい。

3. マカクザル視床下核の化学遺伝学的抑制による運動異常とその神経機構
長谷川拓（生体システム研究部門）

大脳基底核は直接路、間接路、ハイパー直接路を介して運動の実行に関わるが、それらの経路がどのように調しているかは明らかではない。古典的な大脳基底核のモデルでは、基底核の出力核である淡蒼球内節が、直接路による抑制と間接路による興奮を受け、そのバランスによって運動を制御するとされる。間接路を担う視床下核は、損傷を受けるとパリズムと呼ばれる不随意運動を引き起こし、また、高頻度の電気刺激はパーキンソン病の症状を改善することが知られている。このように視床下核は運動制御に強く関わっているものの、その脳メカニズムは明らかではない。我々は化学遺伝学的手法、DREADD (Designer Receptors Exclusively Activated by Designer Drugs) においてマカクザルの視床下核を可逆的に抑制し、行動学的・電気生理学的な解析を行った。アデノウイルスベクターによって抑制型のDREADD 受容体 M4Di を視床下核へ発現させ、clozapine-N oxide (CNO) を全身投与すると、反対側の上肢に不随意運動が観察された。到達運動課題中に視床下核を抑制すると、不随意運動は主に運動遂行中に計測され、運動の開始は影響を受けないことが分かった。 到達運動課
題中の淡蒼球内節から単一神経細胞記録を行ったところ、視床下核の抑制によって運動に関連した発火頻度の上昇が減弱し、減少は増強される傾向があった。しかしながら、古典的なモデルに反し、平均発火頻度には変化が見られなかった。さらに、多くの淡蒼球内節の神経細胞において、神経発火の試行間の変動量が上昇した。以上の結果は、視床下核は運動の特定のタイミングで淡蒼球内節へ興奮性の影響を与えることで、進行中の運動遂行を調節していることを示している。視床下核が抑制されることによって基底核の出力が不安定になり、運動異常を引き起こすと考えられる。

4. 内側脳領域における自発的／能動的な意思決定と学習のアルゴリズム

赤石 黎（Rochester大学 研究員）
(2017.5.24)

帯状皮質を中心とする脳の内側部の領域は意思決定や報酬学習において中心的な役割を果たし、様々な精神病的な疾患の責任領域であることでも知られている。今回の発表では、これらの内側部の領域がヒトを含む動物が通常行なっている内部的な情報を基にした能動的な行動に関わっていることを示したい。特にこれらの脳領域の外的な事象に依存しない情報処理の様式（アルゴリズム）について最近の研究を基に解説したい。具体的には、知覚意思決定における認知バイアス（posterior cingulate）、因果学習における確証バイアス（subgenual cingulate）、長期報酬予測意思決定における柔軟な価値の構築（dorsal anterior cingulate）についてそれぞれの脳領域の機能と合わせて説明したい。

5. クライオ電顕の今後の展開

"Enabling in situ structural biology by combining cryo FIB-based sample preparation and cryo electron tomography"

Alexander Rigort (Life Sciences Business Unit, Thermo Fisher Scientific)
(2017.6.7)

Many cells are too thick to study intact in cryo electron tomography.
Before the interior of a frozen-hydrated cell can be imaged, it must be thinned to electron transparency while maintaining cryogenic conditions. In order to do so, a Scios Cryo DualBeam™ cryo focused-ion-beam (cryo-FIB) microscope is used. Utilizing the ion beam of the cryo-FIB microscope, frozen specimens are thinned down to the appropriate thickness of 200-300 nm. Cryo-FIB milling [1,2] opens relatively large and distortion-free windows into the cell’s interior, enabling targeting of structural features within the cellular context.

Using a so called in-situ lammella milling or on-the-grid thinning strategy allows directly targeting vitrified cells on EM grids with the ion beam. Thereby, multiple regions of interest, containing high-quality electron cryo-lamelas, can be created straight on EM grids. These grids, harboring cryo-lamelas, are then transferred to either a Talos Arctica™ or Titan Krios™ transmission electron microscope for high-resolution imaging by cryo electron tomography.

Here I will discuss recent advances in cryo-FIB instrumentation and show how newly developed hardware and workflows facilitate cryo sample preparation.
6. クライオ電顕の今後の展開

“ボルタ位相差クライオ電子線トモグラフィーを用いたサーモプラズマの形態解析”

Yoshiyuki Fukuda（Max Planck Institute of Biochemistry）

(2017.6.7)

テルモプラズマ・アキドピルムは、好熱・好酸性の古細菌の一種である[1]。テルモプラズマ属は、通常の古細菌とは異なり、細胞壁を持たない。そのため、テルモプラズマ属は高度に動的で、多様な形態を示すと考えられている。しかしながら、細胞内の構造に関しては、いまだに多くのことが不明である。近年の電子顕微鏡関連技術・装置の発展の一つに、ボルタ位相差法がある[2]。このボルタ位相差板を用いる事によって、急速凍結生物試料のクライオ透過電子顕微鏡観察像のコントラストが著しく改善される事が報告されている[3]。そのため、ボルタ位相差法を用いたクライオ透過電子顕微鏡観察は、テルモプラズマ細胞内部構造の解明への一助となることが期待される。本発表では、ボルタ位相差法を用いたクライオ電子線トモグラフィーにより得られた、テルモプラズマ全載細胞断層像において可視化された細胞内部構造および、断層像内において同じく可視化されたタンパク質複合体のサブトモグラム平均化による構造解析について報告する。

7. クライオ電顕の今後の展開

"Phase plates expand the capabilities of cryo-EM"

Radostin Danev（Max Planck Institute of Biochemistry）

(2017.6.7)

Recently, we developed the Volta phase plate (VPP) for transmission electron microscopy. It greatly improves image contrast and holds promise for further performance gains in cryo-electron microscopy (cryo-EM). Currently, we are exploring the usability of the VPP for cryo-electron tomography and cryo-EM single particle analysis.

The initial results are very encouraging. We expect that the VPP will enable visualization of fine cellular structures, in situ, and cryo-EM studies of "difficult" macromolecular complexes in terms of small size, heterogeneity and flexibility.

8. 脳活動非線形ダイナミクスと脳情報処理の個人特性の操作的解明

北城圭一

(国立研究開発法人 理化学研究所・脳科学総合研究センター・BSI-トヨタ連携センター脳リズム情報処理連携ユニット・連携ユニットリーダー)

(2017.6.10)

脳の神経活動は、振動、位相同期、ノイズ誘起現象等の豊富な非線形ダイナミクスを示す。しかしヒトの脳の機能的検査処理において、これら非線形ダイナミクスが果たす果和的役割の解明はこれからである。本セミナーではヒト脳波の安静時自発活動、及び、感覚ノイズや頭蓋磁気刺激（TMS）入力への応答の個人差から、個人特性の理解や病態予測を目指す統計的機械学習手法を用いた大規模データ解析研究を紹介する。さらにはデータ同化による数理モデルとの統合例を紹介し、脳の非線形ダイナミクス研究の今後の方向性を提案する。
9. Encoding of spatial and temporal properties of motor tics

Izhar Bar-Gad (Associate Professor, Gonda Brain Research Center Bar Ilan University, Israel)

(2017.6.14)

Striatal disinhibition leads to spontaneous abnormal action release manifesting as motor tics, resembling those expressed in Tourette syndrome patients. We utilized microstimulation within the motor cortex of freely-behaving rats before and after striatal disinhibition to study the spatial and temporal properties of tic expression. The spatial properties of these tics were dependent on the striatal organization while the temporal properties were dependent on the cortico-striatal activity. A data-driven computational model of cortico-striatal function closely replicated the temporal properties of abnormal action release. These converging experimental and computational findings suggest a clear functional dichotomy within the cortico-striatal network, pointing to disparate temporal (cortical) vs. spatial (striatal) encoding of action release.

10. 染色体数変異－統合失調症と自閉スペクトラム症に関与する遺伝子, 行動表現型の解体－

Noboru Hiroi (Albert Einstein College of Medicine)

(2016.6.9)

Many genetic variants with association with neuropsychiatric disorders are now known, and they have been recapitulated in genetic mouse models.

Because of their exceptional degrees of association with schizophrenia, autism spectrum disorder (ASD) and intellectual disability (ID), copy number variants (CNVs), a few hundred kilobase to megabase hemizygous deletion and duplication of the human chromosomes, have emerged as promising entry points to delve into neuronal and cellular mechanisms underlying neuropsychiatric disorders. Many mouse models of CNVs have been --and are being-- developed since 2007. However, the robust association of 22q11.2 CNVs with schizophrenia, ASD and ID has been known since 1992, 2002 and 1998, respectively, and a number of 22q11.2 CNV mouse models have been analyzed in detail. Our group has identified the transcription factor Tbx1 as a driver 22q11.2 gene for dimensional elements of schizophrenia, ASD and ID in mouse models. Consistent with this observation, several studies have reported individuals with TBX1 mutations and ASD and ID diagnosis. I will specifically highlight ASD-related phenotypes of Tbx1 heterozygous mice to illustrate a lack of individual variability and its impact on social communication between neonatal pups and mothers. Several issues have emerged from mouse models of 22q11.2 and other CNVs, including their reproducibility and genuine relevance of behavioral and neuronal phenotypes to human psychiatric disorders. I will illustrate pitfalls of CNV mouse models and strategies to circumvent them.

共催: 科研費・新学術領域「多様な「個性」を創発する脳システムの統合的解理」

11. 高脂肪食に伴う視床下部炎症の摂食促進ニューロンへの作用について

平澤みちる

(Division of Biomedical Sciences, Faculty of Medicine, Memorial University St. John’s, Newfoundland, Canada)

(2017.6.29)

高脂肪食を原因とする肥満は脳の炎症を伴い、これが肥満の一因となることが知られている。しかし、この様な脳の炎症が視床下部に混在する摂食・体重増加を促進または抑制するニューロンにどの様に影響するかはよく知られていない。そこで我々はパッチクランプの手法を用い、高脂肪食を与えたラットの視床下部において摂
食・体重増加を促進する神経群のひとつである MCH (melanin-concentrating hormone)ニューロンの機能的変化を調べた。その結果、高脂肪食を4週間以上摂食した群では MCHニューロンの脱分極が見られた。これは炎症因子であるプロスタグランジン E2が MCHニューロンの Na+/K+ポンプを抑制することによるものであった。また、高脂肪食を4週間(MCHニューロンが脱分極するのに十分な期間)与えたラットに MCH拮抗薬を投与すると摂食・体重の増加が有意に抑制された。以上から、高脂肪食はプロスタグランジン E2を介して視床下部内の摂食促進性の MCHニューロンを活性化させ、肥満を誘発・促進するものと考えられる。URL: http://www.med.mun.ca/Medicine/Faculty/Hirasawa,-Michiru.aspx

12. 細胞外体液の動態からみる形態形成
猪股秀彦
（理化学研究所 多細胞システム形成研究センター（CDB）体軸動態研究チーム・チームリーダー）
（2017.7.7）

発生過程において、分泌蛋白質は胚内に濃度勾配を構築することが知られている。胚を構成する細胞は、この濃度勾配に従って異なる細胞へと分化し組織を形成する。これまでに分化を誘導する様々な分泌蛋白質（モルフォゲン）が同定されており、組織パターン形成の中心的な役割を果たしていることが知られている。一方、分泌蛋白質が溶解する細胞外体液の役割に関しては不明な点が多い。本セミナーでは、細胞外体液の動態が分泌蛋白質の分布及び形態形成に与える影響をアフリカツメガエル胚を指標に紹介する。
※このセミナーは日本語で行われます。

13. Identification of a local circuit in the dentate gyrus controlling context memory salience
Oliver Stork
（Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg）
（2017.7.7）

Contextual information provides a unique temporal and spatial signature for a given experience, specifying the “where” and “when” of episodic memories. Cholinergic neuromodulation in the hippocampus controls the salience of background context memory, which acquired in the presence of elemental stimuli predicting an aversive reinforcement. This allows an individual to prevent excessive responding to contextual reminders when a cue-specific memory has been formed. However, the involved intrahippocampal circuits and their relation to the cholinergic septal afferences have not been resolved so far. With pharmacogenetic inhibition we now demonstrate that a group of local circuit neurons, the so-called hilar perforant path-associated (HIPP) cells of the dentate gyrus, mediate the devaluation of background context memory during Pavlovian fear conditioning. The salience adjustment is sensitive to reduction of hilar neuropeptide Y (NPY) expression via dominant negative CREB expression in HIPP cells and to acute blockage of NPY-Y1 receptors in the dentate gyrus during conditioning. We show that NPY transmission and HIPP cell activity contribute to inhibitory effects of acetylcholine in the dentate gyrus and that M1 muscarinic receptors mediate the cholinergic activation of HIPP cells as well as their control of background context salience. Our data provide evidence for a peptidergic local circuit in the dentate gyrus that mediates the cholinergic encoding of background context salience during fear memory acquisition.

This circuit may be critically involved in pathology development of post traumatic stress disorder, where escalation of background context fear has been implicated in the occurrence of intrusive memories and attenuated fear extinction.
14. 天敵の「におい」に対する生理的反応の神経回路

近藤邦生（生殖・内分泌系発達機構研究部門）

(2017.7.14)

生き残るために、動物は身の周りの危険に対して適切に対応する必要がある。マウスなどの動物は、天敵の「におい」に対して恐怖の行動や生理的反応を示す。恐怖の生理的反応の一つであるストレスホルモン応答は、脳の視床下部のCRHニューロンが制御している。我々は仮性狂犬病ウイルスを用いて、天敵の「におい」の情報をCRHニューロンに伝える神経回路を解析した。その結果、

天敵の「におい」によって活性化されるCRHニューロンの上流の神経細胞が、Amygdalo-piriform transition area (AmPir)という嗅皮質の領域に存在していることがわかった。さらにAmPirの神経活動の抑制により、天敵の「におい」によるストレスホルモン応答が抑制された。以上の結果より、AmPirが天敵の「におい」に対する生理的反応に重要であることが明らかになった。

15. 物体材質認知の神経機構

郷田直一（感覚認知情報研究部門）

(2017.7.14)

私たちは様々な物体を見て、その材質の種類（金属・石材・木材など）を瞬時に認識し、さらに、その手触りや物性（滑らかさ・硬さ・重さなど）などの非視覚的な属性をもかなり正確に理解する。近年、心理学、神経科学、工学の各分野において、このような物体の材質認知の仕組みについての関心が高まり、新しい知見が集まりつつある。しかしながら、材質認知の神経機構についてはまだ不明な点が多い。我々の研究グループは、fMRIを用いたヒト・サルの脳活動計測と情報表現解読、心理実験による印象計測、コンピュータ・ビジョン技術を活用した画像解析を組み合わせた手法を用いて、この問題に取り組んでいる。特に視覚野の情報処理に注目し、これまで、大脳側頭視覚経路における材質情報の表現、およびその情報表現の形成における多感覚経路（物体を見て触れる経路）の重要性について検討してきた。本セミナーでは、これらの研究を紹介する。

16. 細胞外マトリクス分子リモデリングによる運動ニューロン変性の抑制機構

田中智弘

（岡崎統合バイオサイエンスセンター（生理学研究所）心循環シグナル研究部門 NIPS リサーチフェロー）

(2017.7.14)

筋萎縮性側索硬化症（ALS）の進行に伴い、脊髄に存在する運動ニューロンは変性し、標的骨格筋の麻痺を引き起こす。その変性過程において、運動ニューロンは細胞死に先立ち、軸索末梢が標的骨格筋から退縮する「除神経（denervation）」と呼ばれる現象がALS患者、モデルマウスにおいて認められ、運動機能低下の直接的な原因と考えられている。しかしこ除神経をターゲットとしたALS治療アプローチには未解明の点が多く残されていた。今回私たちは、神経―筋インターフェースに存在する細胞外マトリクス分子が除神経を抑制する可能性を検討し、1）細胞外マトリクス分子のリモデリングを引き起こす緩徐な運動によってALSモデルマウスの除神経が抑制されること、2）運動により細胞外マトリクス分子であるラミニンβ2がシナプス領域特異的に集積し、アクティブゾーンなどシナプス前終末の構造体を安定化することで除神経を遅延させる役割があることを明らかにした。今後、このような細胞外マトリクス分子を中心とした除神経を抑制・遅延させるメカニズムを解析していくことで、ALSなど除神経による運動機能低下を抑えうる新たな治療ターゲットの解明が期待される。
17. Integration and modulation of visual information in the thalamus
Santiago Rompani (Friedrich Miescher Institute for Biomedical Research)
(2017.7.18)

The thalamus receives sensory input from different circuits in the periphery. How these sensory channels are integrated at the level of single thalamic cells is not well understood. We performed targeted single cell-initiated transsynaptic tracing to label the retinal ganglion cells that provide input to individual principal cells in the mouse lateral geniculate nucleus (LGN). We identified three modes of sensory integration by single LGN cells. In the first, 1–5 ganglion cells of mostly the same type converged from one eye, indicating a relay mode. In the second, 6–36 ganglion cells of different types converged from one eye, revealing a combination mode. In the third, up to 91 ganglion cells converged from both eyes, revealing a binocular combination mode in which functionally specialized ipsilateral inputs joined broadly distributed contralateral inputs. Thus, the LGN employs at least three modes of visual input integration, each exhibiting different degrees of specialization.

18. Dissecting Long-Range Cortical Networks During Behavior
Jerry Chen (Department of Biology, Boston University, U.S.A.)
(2017.7.19)

A longstanding goal in neuroscience is to achieve a complete understanding of the central nervous system, from the brain as a whole all the way down to individual neurons and synapses. A fundamental challenge in achieving this goal is bridging knowledge gaps impeded by the difficulty in integrating experimental measurements across different scales, for example between computations in local circuits and communication across brain areas. In the mammalian neocortex, cortico-cortical connections formed by long-range projection neurons across different areas are essential for higher cognitive function. I will present the development of new technologies that enable simultaneous recordings of identified long-range projection neurons across cortical areas. Using the mouse tactile whisker sensorimotor system as a model, I will describe the application of such methods for dissecting the role of long-range networks in the neocortex during sensory-guided decision making.

References

19. The coming neuroinformatics revolution in cognitive neuroimaging
Tal Yarkoni
(Research Assistant Professor, Department of Psychology, University of Texas at Austin)
(2017.7.25)

Studying the brain using functional MRI is a complex and effort-intensive process. Conventionally, expert human input is required at virtually all stages of the workflow, ranging from experimental design to preprocessing to interpretation of results. In recent years, however, a vibrant neuroinformatics ecosystem has developed that promises to substantially reduce the effort burden on investigators by automating many of the typical processing and analysis steps. In this talk, I review a number of new tools, platforms, and standards—including the BIDS standard, the Nipype framework, and the OpenNeuro, NeuroVault, Neurosynth, and NeuroScout platforms—that collectively offer to dramatically improve the efficiency and
scale of fMRI data analysis. I argue that widespread adoption of these tools would substantially reduce human effort and investigator bias, thereby freeing up researchers to focus their energies primarily on those aspects of the typical workflow that are best handled by humans—namely, hypothesis generation, experimental design, and model specification.

20. Prefrontal cortical microcircuits for memory-guided behavior
神垣 司
(University of California, Berkeley – USA)
(2017.7.25)

The prefrontal cortex (PFC) is known to play a pivotal role in maintaining the upcoming task information without the sensory input. To examine how the prefrontal microcircuits implement active memory maintenance, we used calcium imaging in mice performing a delayed Go/No-Go task. We found that the dorsomedial PFC (dmPFC) pyramidal neurons exhibited robust delay activity, with different subpopulations representing Go and No-Go action plans. Inhibiting pyramidal neurons through the optogenetic activation of somatostatin (SST)- or parvalbumin (PV)-positive interneurons, even transiently during the delay period, significantly impaired task performance. In marked contrast, activating vasoactive intestinal peptide (VIP)-positive interneurons enhanced the behavioral performance and increased memory representation in pyramidal neurons, partly by inhibiting SST or PV neurons. SST/VIP neuron activation also impaired/enhanced performance of a delayed two-alternative forced choice task, indicating that the microcircuit mechanism can be generalized to a different memory-guided behavior. These results suggest that dmPFC is a critical component of the working memory machinery and that VIP neurons can dynamically regulate the functional gain of pyramidal neurons in the dmPFC.

21. 聴覚皮質の機能構造-大域から局所まで-
野田貴大
(Institute of Neuroscience, Technical University Munich)
(2017.7.26)

音の知覚情報処理に関わる聴覚皮質は、トノトピー（周波数マップ）構造をもつが、神経集団から局所回路にいたる様々なスケールで、異なる階層の情報処理を担うと考えられる。しかし、各スケールで処理される情報と、スケール間の情報の相互連絡について、体系的なことはほとんど分かっていな。本研究は、まず大域スケールで、げっ歯類の音脈分凝現象をモデルに神経集団間の機能ネットワークを、次に、局所スケールで観られるトノトピーの特異的構造を、そして、スケール間のトノトピー構造の幾何学関係を、それぞれ調べた。その結果、大域的な神経集団の活動では、神経振動の位相が音脈分凝現象と関連し、音脈分凝の生起条件で位相情報にもとづく機能ネットワークが出現することを示した。一方、局所的なトノトピー構造（局所トノトピー）は、これまで不均一な分布が報告されていたが、皮質全層の2光子カルシウムイメージングを通じて、局所トノトピーに不均一性と均一性が共存することを示した。さらに、局所トノトピーと大域的なトノトピーとの間の見かけ上の構造的な乖離が幾何学的に結びつく可能性を示した。以上の結果をもとに、聴覚皮質の異なるスケールにおける情報処理の違いと、局所スケールの機能構造で処理された音情報が大域的な神経集団の担う音情報に統合される過程を考察する。
22. Characterizing effective input to mouse striatal medium spiny neurons that exhibit up- and down-state transitions
Marko Filipović (Bernstein Center Freiburg, Germany)
(2017.7.27)

Striatum, the main input station of basal ganglia, is a network of inhibitory medium spiny neurons (MSNs) receiving excitatory cortical and thalamic input and playing a crucial role in motor and cognitive functions. Striatal MSNs express D1 or D2 dopamine receptors and form a two-population mutually inhibitory network. To understand the role of striatum in brain function and dysfunction it is important to characterize the differences in cortical and thalamic inputs to the two types of MSNs, and in their integrative properties.

D1- and D2-MSNs recorded under ketamine anesthesia exhibit transitions between depolarized and hyperpolarized membrane potentials, known as up- and down-states, respectively. It is presumed that activity during down-states is determined by intracellular processes, whereas large membrane voltage fluctuations during up-states are a product of increased synaptic input.

We measured statistics of MSN membrane potentials in both states and used it to estimate the effective membrane time constant (τ_{eff}) of neurons. The significant difference in τ_{eff} between up- and down-states is consistent with the assumption that MSNs in up-states operate in a synaptically driven high-conductance regime. By comparing D1- and D2-MSN statistics we found that on average D1-MSNs receive stronger input.

We found that the means of membrane potentials during up-states and their variances in high-gamma band varied in a correlated manner (p). Using a point neuron model of MSN and a simplified representation of cortico-striatal network we found that this effect could be explained by assuming that MSNs receive correlated effective inputs.

Finally, across different MSNs we observed high variability in p itself. Using a simple model of MSN we show that the main determinant of variability in p is the diversity of synaptic weights and input correlations and that most of the intrinsic properties of MSNs have little effect. This suggests that neuronal heterogeneity among MSNs could be obscured by statistics of synaptic inputs and synaptic weights.

In summary, by analyzing in vivo recorded data we show that MSNs operate in a high-conductance regime, and that D1 cells receive either stronger or more excitatory input than D2 MSNs. Furthermore, we show evidence that this input is correlated.

23. 有機蛻光「色素骨格」の開発
多喜正泰 (名古屋大学トランスフォーマティブ生命分子研究所)
(2017.7.28)

蛻光顕微鏡技術の目覚ましい発展は生命科学研究の手法を一変し、今なお進化し続けている。特に回折限界を超えた空間分解能を実現する超解像顕微鏡技術や立体分子の蛻光一分子追跡技術により、細胞内の複雑な微細構造や機能について多大な情報がもたらされてきた。しかし、一般に高い時空間分解能で蛻光イメージングを達成するためには、強いレーザー光照射が必要になる。

例えば，STED顕微鏡は励起レーザーに加え，非常に強力なSTEDレーザーを照射して超解像画像を取得している。そのため，STED顕微鏡においては蛻光色素の褪色が著しく、イメージング画像の継続取得が困難であった。したがって、強レーザー照射下においても褪色しきにくい蛻光分子を開発することは，細胞を用いたイメージング研究において重要な課題であるといえる。

我々は，既存の色素の構造修飾ではなく，典型元素をπ共役系に組み込むことにより，特異な性質を有するオリジナルの蛻光色素骨格を創出してきた。例えば，リンを含むπ共役骨格を平面固定化することにより，超耐光性とも形容できる極めて光安定性が高いたが光色素を得ることに成功した。また最近では，リンオキシドを含む新しいキサンテイン骨格も開発し，これが700 nm以上の近赤外蛻光特性を有しながら，耐光性および化学的安定性に優れていることも見出している。

本講演では，細胞骨格の超解像3Dイメージング，マ
ルチカラーSTEDイメージング、さらに分子イメージングなど、様々な蛍光色素の特性を活かした最新の蛍光イメージング技術を紹介したい。

24. レム睡眠の意義とメカニズム〜遺伝学・発生学からのアプローチ〜
林 悠（筑波大学 国際統合睡眠医科学研究機構 准教授）
(2017.7.28)

哺乳類の睡眠は、レム睡眠とノンレム睡眠という2つのステージから成る。夢を生じるレム睡眠は、その役割が脳科学における大きな謎であった。また、レム睡眠とノンレム睡眠の切り替えのメカニズムもよく分かっていなかった。今回私たちは、マウスの胎生期において、特定の細胞系譜を遺伝学的に標識し、生後にその神経活動を操作するという新規のアプローチにより、レム睡眠とノンレム睡眠の切り替えを担うニューロンを同定した。これにより、任意のタイミングでレム睡眠を阻害できる方法を確立した。その結果、レム睡眠は記憶の形成に重要な神経活動とされる徐波を、ノンレム睡眠時に誘発する役割があることを明らかにした（Hayashi et al., Science 350, 957-961, 2015）。さらに最近では、レム睡眠を数週間に亘って操作することも実現した。今後、レム睡眠が脳の発達過程や老化的長期的なプロセスに関与する可能性についても解明できると期待される。

25. A change in perspective
Martijn A. Cloos（Department of Radiology, NYU School of Medicine）
(2017.8.17)

During the last four decades, magnetic resonance imaging (MRI) has evolved into a pre-eminent clinical imaging modality and invaluable research tool. Much of this development proceeded through increasingly advanced mechanisms to subdue experimental imperfections within the scanner. Over the years, these successes instilled the notion that the pathway towards the ultimate MR system is beset with ever-more-elaborate calibration and compensation mechanisms. But, do we really have to wonder this path? In this talk, I would like to show two examples of a change in perspective that can alleviate the struggle for control and provide new degrees of freedom to broaden the scope of our MR experiments. The first example, will highlight some of the work on parallel transmission at 7 Tesla and our transition to “Plug and Play Magnetic Resonance Fingerprinting”. In the second example, we will take a closer look at the traditional NMR phased array and how a new detector element, called HIC, may change the way we perceive MR coils.

26. 「セカンドメッセンジャー活性酸素種」によるタンパク質可逆的酸化修飾の特異的可視化～エンドソームに限定したROS産生「レドキソソーム」モデルと情報伝達～
堤 良平（Perlmutter Cancer Center, New York University Langone Health）
(2017.8.24)

活性酸素種（ROS）は一般に細胞ストレスの一因としてされているが、増殖因子等の外部刺激によっても細胞内で産生される。この生理的に産生されるROSはセカンドメッセージとして機能し、標的分子の一時的な可逆的酸化を介した機能調節によって正常な細胞内情報伝達に寄与する。
(PTP) ファミリーは ROS の主要な標的酵素であると考えられているが、その可逆的酸化の詳細は技術的困難から明らかにされていなかった。本研究では、特定のタンパク質の可逆的酸化修飾を顕微鏡下で観察可能とする手法を開発し、PTP の一種 SHP2 をモデルとして詳細を検討した。本セミナーでは、細胞内でセカンドメッセンジャー ROS による標的分子の可逆的酸化が時空間的に高度に制御されている事、ならびに細胞内情報伝達において重要な役割を有する ROS 産生小胞「レドキソソーム」の存在を強く示唆する本研究の結果を紹介したい。

27. 条件刺激－報酬間関係のアップデートにおける前頭前野眼窩部 (orbitofrontal cortex) の因果的役割

小川正晃 (京都大学大学院医学研究科・神経生物学分野) (2017.9.20)

いわゆる古典的報酬条件づけでは、動物に対し、学習前には無意味な物理的刺激（条件刺激）と報酬が一定の時間的関係で繰り返し提示される。前頭連合野（前頭前野）の一領域である眼窩部 (orbitofrontal cortex: OFC) は、このような刺激と報酬間関係の学習の結果を、状況に応じて適切にアプデデートし、未来の適応行動に活かす領域であると考えられる。しかし、従来の技術的な限界から、条件刺激提示や報酬を予測する秒単位の時間の OFC 神経細胞活動が、未来の適応行動をどのように制御するのか、すなわちその因果的役割は未解明である。つまり、OFC の正確な役割は突き止められていない。

そこで我々は、マウスにおいて、秒単位で可逆的に神経活動を抑制する光遺伝学法を用いて、条件刺激 2 つと報酬の有無の関係が逆転する学習課題における OFC の因果的役割について検討した。特に、逆転時に、以前は報酬と条件づけされていた刺激提示後に報酬が提示されない秒単位の時間の OFC の役割に着目した。このタイミングに光を照射して OFC の活動を抑制すると、その条件刺激に対する反応行動の低下（消去学習）が遅延した。さらに興味深いことに、その次に、以前は無報酬と条件づけされていた刺激後に新たに報酬が提示されるか、その条件刺激に対する行動増加も遅延した。また、OFC 領域の一部の細胞特異的に抑制を行うと、この効果が逆になった。以上より、OFC は、過去の刺激－報酬有無の学習記憶を利用して、現在の条件刺激の意味合いを適切にアップデートすることによって因果的に関わることが示された。

28. 免疫細胞による神経回路恒常性の維持

堀内 浩 (生体恒常性発達研究部門 NIPS リサーチフェロー) (2017.9.20)

正常な脳活動を維持するための神経回路恒常性は、生体の免疫状態が大きく関わっていることがわかってきている。このような背景から、生体の免疫機能を基軸とした恒常性のメカニズムについて研究してきた。講演者は、網羅的な探索から、ミクログリアの活性化刺激をもたらす非免疫の方法をコントロールしながら、IL-19 ファミリーである Interleukin-19 (IL-19) と IL-17A 産生ヘルパー T 細胞 (Th17) の関与を検討した。興味深いことに、IL-19 欠損が自体免疫異常を示す多発性硬化症のモデルマウス (EAE) を用いて IL-19 の機能を調べた結果、脳脊髓において発症前に発現増加し、発症時には正常レベルまで低下することがわかった。IL-19 欠損は、EAE の早期発症と病態悪化と脊髄における自己免疫細胞の増加を示した。
TGFβ, IL-23 ならびに抗原提示に必要な HMCII の発現増加が認められた。したがって、IL-19 はマクロファージの抗原提示能を制御することで Th17 細胞への分化を抑制し、この抑制機構の破綻がミクログリアあるいは浸潤したマクロファージによる神経炎症を増悪する可能性が新たに示唆された(Horiiuchi et al, in preparation)。本セミナーでは、現在取り組んでいるミクログリアによる神経回路活動修飾機構について合わせて紹介したい。

29. Imaging myelin and iron in the brain

Jongho Lee (Department of Electrical and Computer Engineering Seoul National University, Korea)

Myelin and iron are important substances for normal functions of the brain. The changes in their local concentrations have been reported in multiple brain disorders (e.g. demyelination in multiple sclerosis and iron deposition in deep gray matter in Parkinson’s disease). Hence, imaging their concentrations quantitatively using MRI has been an important topic of research. In this presentation, I will introduce myelin water imaging and magnetic susceptibility mapping as potential methods to quantitatively visualize myelin and iron in the brain.

Short-Bio:
Jongho Lee is Associate Professor at the Department of Electrical and Computer Engineering, Seoul National University. He received his Ph.D in Electrical Engineering and Ph.D minor in Psychology at Stanford University (2007). From 2007 to 2010, he worked at National Institutes of Health as a research fellow. From 2010 to 2014, he continued his academic career as Assistant Professor at the Department of Radiology, University Pennsylvania. In 2014, he moved back to Korea to join a faculty position at Seoul National University. His research interests include development of neuroimaging methods and imaging devices.

30. 感覚系視床シナプスの発達過程における代謝型グルタミン酸受容体 1 型（mGluR1）の役割

鳴島 円（生体恒常性発達研究部門）

感覚神経系において、成熟した精緻な神経回路が形成・維持されるためには正常な感覚経験が必要である。感覚情報の中継核である視床では、視覚系視床の外側膝状体（dLGN）、体性感覚系視床の後内側腹側核（VPm）ともに、発達時に神経活動依存的なシナプス除去が行われること、また発達後の神経活動の外乱により、求心性シナプスの再編成が起こることが知られている。本セミナーでは、dLGN 求心性シナプスが視覚入力の遮断により再編成される現象の原因が、代謝型グルタミン酸受容体 1 型（mGluR1）の活性化によるシナプス維持機構の破綻であることを報告した論文（Narushima et al., Neuron, 2016）の内容を紹介しつつ、感覚系視床の発達期における mGluR1 の機能を俯瞰したい。

31. Big Data in neuroimaging: Analysis of 100,000 datasets in UK Biobank

Fidel Alfaro-Almagro D.Phil. Student (University of Oxford)

UK Biobank is a prospective epidemiological study of over 500,000 individuals (40-69y when recruited) in the UK. Blood, urine and saliva samples were collected, samples for genetic analysis and physical measurements taken, and each volunteer
answered an extensive questionnaire on aspects of health and lifestyle. Additionally, brain, heart and body imaging from 100,000 of the participants is now being acquired (17,000 to date). The brain imaging comprises 6 modalities (T1w, T2 FLAIR, resting fMRI, task fMRI, diffusion MRI and susceptibility weighted imaging) and has been highly optimised to run in 35 minutes.

Brain imaging data is not immediately usable for most research purposes in its raw form. It needs to be processed and analysed in a specific replicable manner for the outcome of an analysis to be valid and meaningful; the way in which such tools are applied is referred to as a “processing pipeline”. UK Biobank needs a pipeline that can process and integrate many modalities; it must be robustly automatable. Our pipeline also generates 4000 “imaging-derived phenotypes” (IDPs) aiming to identify biomarkers for early diagnosis. These include metrics such as subcortical structure volumes, white matter hyperintensities, microstructural measures in major tracts, and structural/functional connectivity metrics.

Finally, due to the huge number of subjects, manual analysis would be too costly, so we have developed an automated Quality Control tool using machine learning methods to identify images with problems either in their acquisition or in later processing steps.

Desdemona Fricker (Centre de Neurophysique, Physiologie, Pathologies, Université Paris Descartes, France) (2017.10.2)

The presubiculum is part of the parahippocampal region and it contains neurons that are sensitive to head direction. These head direction cells provide crucial input to entorhinal grid cells and they are important for hippocampal-based landmark navigation. In my talk, I will focus on the physiology and anatomy of single presubicular neurons. Using optogenetic tools, paired records and responses to head direction signals of the intact animal, we provide new detail on how dynamic properties of inhibitory circuits sculpt head direction information processing in presubiculum. We show that presubicular pyramidal cells and parvalbumin expressing interneurons are directly excited by thalamic input. Martinotti type interneurons are indirectly recruited by local pyramidal neurons in a facilitating manner, and their inhibitory feedback plays a dual role: precisely timed spikes may not inhibit the firing of in-tune head direction cells, while exerting lateral inhibition.

References
Nat Commun. 2017; 8:16032
https://www.nature.com/articles/ncomms16032
Front Neural Circuits. 2015; 9:20
http://journal.frontiersin.org/article/10.3389/fncir.2015.00020/full

33. Toward Making the Invisible and Complicated Understandable in Circuits and Cells of Nervous Systems: Recent Progress in Multi-scale Multi-modal Imaging

Mark H. Ellisman (カリフォルニア大学サンディエゴ校医学部) (2017.10.4)

Probes for correlated microcopies, advances in instrumentation and analysis, will be shown involving light, x-ray, electron and ion imaging methods. Use of these methods - in various combinations - are providing researchers with a powerful arsenal of tools and technologies for obtaining multiscale and multimodal data, from the level of molecules to whole organs - from milliseconds to life spans. This talk will highlight projects in which development and application of new contrasting methods and imaging instruments have allowed us to observe important relationships between cellular, subcellular and molecular constituents of cells in nervous systems.
34. 予測的アプローチによる生体情報処理の同定
本田直樹（京都大学大学院生命科学研究科 特定准教授）
(2017.10.13)
分子生物学の発展により細胞内シグナル伝達を担う分子経路が詳しく同定されている。しかし、細胞が実際にどのような情報処理（入出力変換）を行っているのかについては良く分からない。一方で、ライブイメージングなどの計測技術が発展し、生体情報処理を反映しているであろう動態を定量化することが可能になった。そこで我々は、定量データから機械学習を用いて細胞の挙動を予測することで、生体情報処理の様式を抽出する予測的アプローチを行ってきた。今回の発表では、データ解析の考え方を概説し、いくつかの研究成果を紹介する。

35. ヒトの知識獲得における選択性とその神経基盤
倉重宏樹
（電気通信大学情報理工学研究科 情報・ネットワーク専攻）
(2017.10.16)
ヒトは知識獲得において、外界から単に受動的に情報を受け取るのではなく、むしろ能動的に情報を選択する行動を行っている。これまでの認知神経科学や心理学の研究により、知識獲得の選択性を規定する因子が徐々に明らかになりつつある。これらの研究から知識獲得は何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかしながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかししながら、知識獲得の選択性が知識のどのような機能の増進に寄与しているかは不明である。また知識獲得の選択性を生じる神経基盤が何らかの合目的的な過程であることが示唆される。しかし

36. 眼球運動時の視覚世界的安定性に寄与する神経機構
稲場直子
（北海道大学大学院・医学研究院・医学教育推進センター）
(2017.10.17)
眼が動いても安定した視覚を維持するには、「眼球運動によって生じる網膜像のプレ」と「運動の前後に生じる視覚的ギャップ」を補正し新たな視覚世界を連続的に再構成する必要がある。私はこの神経機構に興味を持ち、マカクサル脳の視覚野 MT 野および MST 野からニューロン活動を記録した。その結果、①MT 野から MST 野へ
視覚情報伝達の間に「眼球運動によって生じる網膜像の動き」の補正が起こっていること。

MST野には「眼が動いた後の視覚情報」に加え「眼が動く前の視覚情報の記憶」に関連した活動を示すニューロンが存在すると明らかにした。後者は「眼球運動前後の視覚的ギャップ」の補正に寄与していると考えられる。今後はこの系への入力源を明らかにし、これらの「眼球運動によって再帰的に起こる感覚入力の補正」に関わる情報処理プロセスをトリガーと考えられる眼球運動指令の遠心性コピーの機能的意味の解明に展開していきたい。

37. 随意運動制御の神経回路解析から社会性を形成する神経回路解析へ
戸松彩花
（国立研究開発法人 国立精神・神経医療研究センター 神経研究所 モデル動物開発研究部）
(2017.10.17)

運動制御の効率化には感覚情報の利用が欠かせない。私はこれをいくつかの手法で確認してきた。例えばヒトが両手をリズミカルに動かす時、左右対称は簡単だが、ずれた動きは難しい（ex. 右手で三角、左手で四角など）が、自らの運動の捉え方（複数ある運動特徴のうち、いずれに注意するか）を変えると、その捉え方の違いが運動の安定性を変化させること（Tomatsu & Ohtsuki 2005）を報告し、運動の捉え方、すなわち感覚情報の利用の仕方の違いは複数の脳部位の活動の違いに反映されることをfMRI実験で見出した。次に研究対象を動物に移し、サルの小脳半球部V-VI葉にある3種類の神経細胞（帯状線維、ゴルジ細胞、プルキンエ細胞）を対象に、手首の随意運動中の活動記録を行った。その結果、随意運動中の小脳が、大脳から運動指令のコピーを得ており、小脳内を情報伝達する中で、運動の結果生じる体性感覚を予測している可能性を報告した（Tomatsu et al. 2016）。さらに運動中の体性感覚情報の処理機構に焦点を絞り、随意運動中の小脳の脊髄一次介在ニューロンの活動を解析する（Confais et al. 2017, Takei et al. 2017）とともに、ラットでの予備実験を経て、現在進行中のサルの慢性実験では、随意運動時の筋感覚入力、脊髄において皮膚感覚とは異なる規則でゲーティングを受けていることを示すデータを蓄積中である。

感覚情報は、他者の関係性にも影響する。両手の動きと同様、2者間においても左右対称の運動が最も簡単で、横並びの2人が互いに相手の動きを観察しながら同じ体部位をリズミカルに動かすと鏡像関係になりやすい、意図的にずれを維持することが困難である（Schmidt et al. 1990）。つまり我々の脳神経系には、他者の動きと自らの動きを同期させやすいメカニズムが存在し、集団行動を行う上で役立っていると考えられる。この機能の喪失は、自閉症などの社会性に困難のある症状を説明しうる要因の一つかもしれない。そこで私は、他者との同期現象を手掛かりとして、社会性を形成する神経回路に迫っていきたいと考えている。先行研究より、右島皮質と右線条体が、社会的なタイミング（他者に合わせる）機能に重要とのヒトfMRIの報告（Schirmer et al. 2016）がある。私は、2頭のサルに、相手と自己の動きの同期具合を調整させる課題を訓練し、このときの島皮質および線条体の神経活動を記録し、神経活動と2者の運動の同期性との関連を、サルとメトロノーム音との同期時と比較することで、社会性形成に特有の現象が検証できていると考えている。さらに該当部位の不活性化で起こる行動変化から、その機能を確認することができ、そして同様の実験環境において、ミラーニューロンの脳領域も含めた多領域同時記録を行い、領域間の関係性を検討して、社会性を形成するメカニズムを包括的に理解したい。これらのサルの実験と並行してヒトのfMRI実験を適宜行い、サルの慢性実験を効率的に進める所存である。
38. Two pore domain potassium channels: Functional properties and therapeutic potential

Florian Lesage (Institute of Molecular and Cellular Pharmacology, CNRS, Valbonne, France)

K⁺ channels participate in many biological functions from ion homeostasis to generation and modulation of the electrical membrane potential. They are involved in a large variety of diseases. In the human genome, 15 genes code for K⁺ channels with two pore-domains (K₂P). These channels form dimers of pore-forming subunits that produce background conductances finely regulated by a range of natural and chemical effectors, including signaling lipids, temperature, pressure, pH, antidepressants and volatile anesthetics. Since the cloning of TWIK1, the prototypical member of this family, we have carried out a lot of work about their structure and biology. These studies are still in progress, but data gathered so far show that K₂P channels are central players in many processes including ion homeostasis, hormone secretion, cell development and excitability. A growing number of studies underline their implication in physio-pathological mechanisms such as vascular and pulmonary hypertension, cardiac arrhythmias, nociception, neuroprotection and depression. During my presentation I will give a synthetic view of the most noticeable features of these channels.

39. Drp1-細胞骨格の相互作用による心筋ミトコンドリアの品質管理

解村明幸 (心循環シグナル研究部門)

ミトコンドリアの分裂・融合サイクルはその品質管理に重要である。ミトコンドリアの品質管理異常は様々な疾患の原因となることから、ミトコンドリア分裂・融合サイクルを制御する分子群は新たな治療標的として注目されている。近年、ミトコンドリア分裂におけるアクチン細胞骨格の重要性が示唆されているがその詳細な分子メカニズムはわかっていない。私たちはこれまでに、心筋梗塞後に心筋細胞が早期老化を引き起こす段階においてミトコンドリアの過剰分裂が起こること、およびその原因が低酸素に依存したミトコンドリア分裂促進 GTP 結合蛋白質 Dynamin-related protein 1 (Drp1) の活性化にあることを見出した。本セミナーでは、低酸素依存性ミトコンドリア分裂におけるアクチン結合蛋白質 Filamin A の役割に加え、既承認薬のドラッグスクリーニングから同定された Drp1-Filamin A 相互作用阻害化合物の心不全改善効果について紹介する。

40. 生体機能リズムの障害としての自閉スペクトラム症 (ASD)

小西行朗 (同志社大学赤ちゃん学研究センター・センター長)

ASD については現代ほどの診断と療育を中心に研究が進んでおり、基礎研究では遺伝子（エピジェネティクスも含んで）研究が主体であると思われる。しかしながら、その発症メカニズムを胎児期から系統的に科学的に見ようとする試みはまだ不十分である。我々は 5 年前から文部科学省新学術領域研究「構成論的発達科学」において胎児期からの様々な生体機能リズムなどのバイオマーカーの発見に努めてきた。その結果、心拍変動、深部体温、サーカディアンリズム、内分泌機能などの異常の多い ASD の一群を発見し、生体機能リズムとしての ASD という仮説を立てたので、今回このことをを中心に話したいと思っている。
41. 鼻上皮における非典型的嗅神経細胞の解析

大村真代（ドイツ マックスプランクリサーチユニット 神経遺伝学 講座）

嗅覚は酵母から哺乳類において外界からの様々なシグナルを受容、認識する機能を有し、生命の維持と繁栄に重要な役割を担っている。げっ歯類などは一般的な匂いを感じる主嗅覚システムとフェロモン分子を受容する副嗅覚システムの主に二つの独立した嗅覚システムを保持している。

Trpc2 は鋤鼻器から単離され、フェロモン受容に必須であり、長年の間副嗅覚システムに特異的に発現していると考えられていたが、我々は、嗅上皮上で遺伝子発現プロファイルと分布が異なるタイプ A とタイプ B 細胞の 2 種類の Trpc2 を発現している非典型的な嗅細胞を同定した。タイプ B 細胞の詳細な遺伝子発現プロファイルの解析を行ったところ、可溶性グアニル酸シクラーゼ Gucy1b2 が特異的に発現していた。さらに、タイプ B 細胞の機能解析を行ったところ、タイプ B 細胞は外気中の酸素濃度が低下した時に活性化されることが明らかになった。本発表ではタイプ B 細胞のマウスにおける生物学的機能を紹介したい。

42. ヒト系列運動学習の定着に関わる神経基盤

菅原 翔（心理生理学研究部門）

運動技能を習得する上で、経験した技能を忘れずに定着させることは極めて重要である。私はヒトを対象とした機能的磁気共鳴画像法を用いて、タイピングやピアノの演奏のような系列運動技能の定着に関与する神経基盤について研究を行ってきた。系列運動技能の定着は睡眠依存的であり、睡眠前後で線条体活動に変化が起こることが以前より報告されている。このような睡眠を介して起こる線条体活動変化が、系列運動技能の安定化に関与することが明らかになった。加えて、運動技能には関与しないと考えられてきた海馬を中心とする宣言的記憶システムが、系列運動技能の定着に関与することを示唆する知見を得た。今回の発表では、これまでの研究成果を総括するとともに、これらの知見に基づく展望について紹介する。

43. 環境ストレスから恒常性と生命を守る脳の神経回路メカニズム

中村和弘（名古屋大学 大学院医学系研究科 統合生理学分野）

環境には、暑熱、寒冷、感染、天敵、飢餓など、様々な環境ストレスが存在し、脳はこうしたストレスから生体の恒常性と生命を守るために自律性の調節を行う。私達は、生理学や神経解剖学、光遺伝学などを組み合わせた多角的解析によって、環境ストレスから生命を守る中枢神経回路メカニズムの解明を進めてきた。例えば、皮膚で感知した環境温度変化の情報を視床下部の体温調節中枢（視索前野）へ伝達し、そこから体温調節の指令を末梢へ伝達することで深部体温を守る一連の中枢神経回路を明らかにした。さらに、感染時に病原体への抵抗力を高める発熱の惹起にこの神経回路が関わることを見出した。また、天敵に対峙した時などには、その心理ストレスによって脈拍、体温、血圧が上昇するが、こうした交感神経反応を誘導する視床下部-延髄間の神経伝達路を同定し、現在、上流のストレス信号伝達路を解明しつつある。さらに、飢餓時にエネルギー消費を節約して摂餌行動を促進する、飢餓による紅血症の発生を抑制するための発熱性応答を指令する神経回路を明らかにした。

私達が解明した、多様な環境ストレスから恒常性と生命を守る中枢神経回路メカニズムは、人間を含めた哺乳類の生命機能の根幹をなすシステムであり、生活習慣病やストレス疾患などの発症機序の解明に大きく貢献すると考えている。
44. TRPV1 チャネルにおける酸化ストレス感知機構の解明
黒川竜紀（大分大学医学部病態生理学講座准教授）

TRPV1 チャネルは、感覚神経細胞に発現が認められ、熱刺激、化学刺激といった侵害刺激に加えて、酸化ストレスにより活性化される。しかし、TRPV1 における酸化ストレス感知は、システインの酸化的修飾を介していると考えられているが、その分子基盤は明らかになっていない。本研究で我々は、ヒト TRPV1（hTRPV1）の第258番目（Cys-258）と742番目のシステイン残基（Cys-742）間で、サブユニット間のジスルフィド結合を形成していることを見出した。これらシステイン残基をセリン残基に置換した C258S もしくは C742S hTRPV1 ではタンパク質の安定性が減少していたことから、このサブユニット間のジスルフィド結合は、チャネルの安定化に重要であることが示唆された。興味深いことに、この C258S hTRPV1 では、酸化剤による活性化は見られなくなった。さらに、質量分析計による解析により、Cys-258 は酸化物に対して高い感受性を示した。以上の結果より、Cys-258 は酸化を感知する役割とジスルフィド結合により構造を安定化させる 2 つの機能を有していることが示された。

Note: 講演内容の研究は、前職の京都大学大学院工学研究科合成・生物化学専攻の森泰生教授研究室にて行われたものである。

45. Tentonin 3, a novel mechanosensitive channel for proprioception
Uhtaek Oh（Sensory Research Center, CRI, Brain Science Institute, Korea Institute of Science and Technology）

Korea Institute of Science and Technology/Brain Science Institute 的 Uhtaek Oh 先生による部門公開セミナーを開催いたします。痛みの分野において TRP チャネルやクロライドチャネル研究で著名な先生ですが、今回は最近明らかにされた機械刺激受容チャネル TTN3 の固有覚における役割などについてご紹介していただける予定です。どうぞお誘い合わせの上、奮ってご参加下さいませ。

46. GPI アンカー側鎖合成酵素の同定と解析
平田哲也（生体膜研究部門）

グリコシルホスファチジルイノシトール（GPI）アンカーは、糖脂質 GPI によるタンパク質の翻訳後修飾であり、初期発生や神経形成等に必須である。GPI は小胞体で合成された後、タンパク質へと付加されて GPI アンカー型タンパク質となる。N-アセチルガラクトサミン（GalNAc）から始まる 3 糖による側鎖構造により、GPI の構造多様性がもたらされるが、その生合成経路は不明であり、生理的意義も不明である。私は、GPI の GalNAc 側鎖の合成に関わる最初の糖転移酵素を同定することを目的に研究を行った。本セミナーでは、哺乳動物細胞での遺伝的スクリーニング法により得られた GalNAc 側鎖合成酵素に関する研究成果を報告する。最後に、本研究所に異動してから取り組んでいる、パルミトイル化修飾を軸とした神経機能研究について、今後の展望を紹介する。

(2017.11.24)
47. 大脳皮質5層の細胞タイプ特異的なマイクロカラム

米田泰輔（理化学研究所脳科学総合研究センター、局所神経回路研究チーム）

(2017.12.14)

大脳皮質では多様な神経細胞が複雑な神経回路網を形成している。ネコやサルの視覚野においては、似たような応答選択性を示す神経細胞は、方位選択性カラムや眼優位カラムのような機能ユニットを形成する。しかしながらこれらは一部の皮質領域に限局しており、皮質全域に共通した機能ユニットがあるかは不明である。

我々はマウスの様々な皮質領域において、大脳皮質5層の主な出力細胞である皮質下投射細胞が尖端樹状突起方向に並び、微細なカラム状の配置を取ることを明らかにした。また大脳皮質5層の異なるタイプの興奮性ニューロンおよび抑制性ニューロンは、細胞タイプ特異的なマイクロカラムを形成することを示した。さらに我々は様々な皮質領域において2光子カルシウムイメージングを行い、尖端樹状突起方向に並んだ皮質下投射細胞ペアが高い自発活動相関を示すことを明らかにした。また視覚刺激下の視覚皮質では、個々のマイクロカラムに含まれる細胞は類似した方位選択性と眼優位性を示した。

これらの結果はマイクロカラムが大脳皮質に共通した機能ユニットである可能性を示唆する。

48. 超高圧電子顕微鏡、SBF-SEM、低温電子顕微鏡による生体試料の形態および構造解析

ソンチホン（生理学研究所脳機能計測・支援センター形態情報解析室研究員）

(2017.12.25)

電子顕微鏡には仕様の異なる様々なタイプのものがあり、研究の目的に応じて最適なものが選択される。本セミナーでは演者が生理研の保有する三つユニークな電子顕微鏡（超高圧電子顕微鏡、SBF-SEM、低温電子顕微鏡）を用いて行ってきた研究を紹介する。一番目は、超高圧電子顕微鏡（超高圧電顕）による細胞内共生藻としてのクロレラと宿主ミドリゾウリムシとの相互連絡の形態解析である。生理研の1MV超高圧電顕は最大、5μmまでの樹脂包埋試料を観察することができる。クロレラを共生させているミドリゾウリムシを加圧凍結後、凍結置換法により樹脂に包埋し、その1μmに近い厚切り片の超高圧電顕トモグラフィーから、共生クロレラが宿主のミトコンドリアと物理的な接触により相互連絡していることを明らかにした。二番目は、連続ブロック表面走査型電子顕微鏡（SBF-SEM）を用いた細胞内共生細菌プロフテラの形態解析である。柑橘類の害虫として知られるプロフテラは、毒素をもつプロフテラを細胞内に共生させることにより天敵からの防御に使っている。一方のプロフテラは極小のゲノムサイズを持つ細胞生物の一つ（459 kbp）で、宿主に共生することでのみ生存できることが知られている。プロフテラの内部には直径約200 nmのチューブ状構造が複数存在し、その線状の形態維持に寄与していると考えられているが、その全体像は不明である。本研究では大面積の3次元微細構造解析に有効なSBF-SEMを用いてプロフテラ全長の構造を解析した。その結果、チューブ状構造はらせん状にねじれた数本の細い繊維から構成され、これが細胞のほぼ全長を貫き、細胞ごとに様々な数と長さで存在していることがわかった。また、このチューブ状構造がその極小ゲノムと関係していることも明らかとなった。三番目は、低温電子顕微鏡（Cryo-EM）によるノロウイルスキャプシドの高分解能構造解析である。Cryo-EMは急速で試料を凍らせてそのまま観察する方法である。本研究では、阪大にある最先端のCryo-EMも併用してノロウイルスキャプシド構造を3.7 Å分解能で解析し、その原子座標を決定した。さらに、ノロウイルスキャプシドが遺伝子型（数パーセントのアミノ酸）の違いで大きく構造変化することを見出した。
49. High-Throughput Electron Microscopy and Synchrotron X-ray NanoCT of Whole Mammalian Brains for Brain-wide Cellular Connectomic
Shawn Mikula (Max Planck Institute of Neurobiology, Germany)
(2018.1.5)

The development of methods enabling the mapping of all synaptic connections between all neurons comprising an individual mammalian brain would lead to brain-wide circuit reconstructions that precisely define the neuronal networks underlying and responsible for generating the diverse behavioural repertoire for that individual. Recent advances in mouse whole-brain electron microscopic (EM) sample preparation (Mikula & Denk, 2015), multi-beam scanning electron microscopy (mSEM, Kemen et al., 2015), ultramicrotomy and synchrotron X-ray nanoCT (Dyer et al., 2017) have brought us closer to a complete mouse whole-brain cellular connectome.

Several obstacles remain, however. Here, I report on three different approaches using serial section scanning electron microscopy (ssSEM), serial block-face electron microscopy (SBEM) and synchrotron X-ray nano-computed-tomography (nanoCT).

Both ssSEM and SBEM from whole mouse brains indicate that sample membrane contrast and section thickness are sufficient for identifying matching neurites across adjacent slices. Synapses can be readily identified. Quantitative assessments of neurite traceability and synapse detection across whole-brain samples indicate that both ssSEM and SBEM are suitable for reconstructing brain-wide circuits.

In contrast to ssSEM and SBEM, both of which require ultramicrotomy to serially-section the sample, synchrotron X-ray nanoCT allows for non-invasively imaging whole brains at the nano-scale. Current resolutions with this method allow for brain-wide cell body detection and the tracing of large myelinated axons, though further improvements in resolution will be required for complete neuronal circuit reconstructions, possibly through the use of brighter light sources and improved iterative back-projection algorithms.

References:
SPIE Advanced Lithography, 2015, San Jose, California, United States https://doi.org/10.1117/12.2188560

50. Biochemical computation in single dendritic spines: implications in synaptic plasticity
Ryohei Yasuda (Max Planck Florida Institute for Neuroscience)
(2018.1.11)

Activity-dependent changes in synaptic strength and structure are believed to be cellular basis of learning and memory. A cascade of biochemical reaction in dendritic spines, tiny postsynaptic compartments emanating from dendritic surface, underlies diverse forms of synaptic plasticity. The reaction in dendritic spines is mediated via signaling networks consist of hundreds of species of proteins. Aiming to elucidate the operation principles of such signaling networks, we have developed several new techniques to measure the key properties of the signaling components. First, based on 2-photon fluorescence lifetime imaging and highly sensitive biosensors, we have developed techniques to image signaling...
activity in single dendritic spines. We have succeeded in monitoring activity of several key signaling proteins in single spines undergoing structural and functional plasticity. This provided new insights into how the spatiotemporal dynamics of signaling are organized during synaptic plasticity. We have developed sensitive and specific sensors for CaMKI, CaMKII, Rho GTPase proteins, Rab GTPase proteins, protein kinase C isozymes (α, β, γ etc) and the BDNF receptor TrkB. Second, based on CRISPR/Cas9-mediated gene-editing, we have developed a technique to fuse fluorescent tags to endogenous proteins in single cells in vivo. This technique, termed SLENDR, allows us to measure the precise localization and dynamics of any proteins. Third, we have established a molecular tool to manipulate protein activity with light. Using this technique, we measured the temporal window of CaMKII activity required for synaptic plasticity and animal’s learning by inhibiting the kinase at different timing. New results obtained by these techniques provided new insights into the mechanisms underlying the spatiotemporal regulation of signaling dynamics underlying synaptic plasticity and learning and memory.

51. T Ivermectinによるリガンド依存性イオンチャネル活性の制御機構
陳 以珊（神経機能素子研究部門）

Ivermectin (IVM) is a drug developed by Dr. Satoshi Omura and Dr. Campbell. It is widely used as an antiparasitic agent in the world. Both doctors contributed greatly to the development of treatments for parasitic infections and were awarded the 2015 Nobel Prize in Physiology or Medicine. IVM binds to the membrane domain of the glutamate-activated chloride (GluCl) channel in invertebrates and causes hyperpolarization of the cell, leading to the death of parasites. IVM also binds to the membrane domain of glycine receptors and adenosine triphosphatase (ATP) receptors and activates the CaMK family of kinases. In this study, we found that IVM increases the current of GIRK channels and that the regulation of GIRK channel activity is mediated by CaMKII. This mechanism provides new insights into the mechanisms underlying the spatiotemporal regulation of signaling dynamics underlying synaptic plasticity and learning and memory.

52. Pharmacological rescue of mitochondria during heart disease
Jin Han（National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University）

Tetrahydrobiopterin (BH4) has been suggested to regulate cardiac mitochondrial function as a multifunctional cofactor and an antioxidant, an important role in the cardiovascular system. However, its mechanism on transcriptional coactivators such as peroxisome proliferator activated receptor γ coactivator-1 (PGC1α) and AMP-activated protein kinase (AMPK) signaling, major regulators of energy metabolism in heart, is unknown. Aim of this study was to assess the role of BH4 in the PGC1-α and AMPK signaling in the hearts of mammalian animal. Using a sepiapterin reductase (Spr) knockout mouse, a model of BH4 deficiency, we found that BH4 regulates transcription of PGC1-α and phosphorylation of AMPK α and β and the expression of their target proteins involved in mitochondria biogenesis (mitTFA, and ERRα), antioxidant (Prx3 and SOD2) and fatty acid utilization (CD36 and CPTI-M) in the hearts. BH4 can binds to Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKII) then activates CaMKIV mediated CREB phosphorylation and AMPK phosphorylation in the heart of model mice. Spr KO mice have shown the development of a lethal cardiomyopathy with mitochondrial dysfunction and
exogenous BH4 supplementation successfully rescued those phenotypes. These results reveal a novel molecular mechanism of BH4 in the regulation of cardiac energy metabolism and suggest that BH4 has therapeutic potential for the cardiomyopathy.

53. Local neuromuscular junction assembly and disassembly and inappropriate glial properties occur before motor-unit degeneration in ALS.

Eric Martineau (モントリオール大学)

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease affecting motor neurons. Glial dysfunction is a hallmark of ALS, contributing to numerous aspects of the disease. Although loss of neuromuscular junction (NMJ) is an early event, it remains unclear whether it is a consequence of local pathological signals or the expression of a degenerating neuron. Indeed, the rescue of motor neuron death does not necessarily rescue NMJ loss, suggesting that the local synaptic and glial mechanisms may play a key role. Particularly, perisynaptic Schwann cells (PSCs), glial cells at the NMJ, regulate the synaptic and structural plasticity of this synapse and may be implicated in the disease. Hence, we hypothesized that local branch-specific NMJ loss would precede the global degeneration of motor neurons (motor-unit degeneration) and that PSCs would show maladapted properties in ALS. First, we sought to directly assess the time course of structural changes in the axonal arborization of individual motor neurons using repeated in vivo imaging in a slow progressing model of ALS (SOD1G37R mice). We found that individual axonal branches and synapses are dismantled asynchronously for weeks before the whole motor axon degenerates. Surprisingly, we observed that the dismantling of individual axonal branches was accompanied by contemporaneous axonal sprouting and synapse formation onto nearby NMJs. Axonal arborizations, but not axon terminals, sprouted almost exclusively onto NMJs that they did not initially innervate, thus increasing motor-unit size. Paradoxically, motor-units failed to re-innervate their dismantled NMJs which suggests that reinnervation mechanisms are abnormal in ALS. These results support a model in which NMJ denervation in ALS is a dynamic process of continuous denervation and maladapted new innervation. Next, we sought to investigate whether PSC properties were altered during ALS progression knowing their role in regulating NMJ stability and reinnervation. Using Ca²⁺-imaging, we found that PSCs displayed an increased muscarinic receptor (mAChR)-dependent activity. Glial mAChRs are known to regulate the gene expression of PSCs and their ability to favor reinnervation. Hence, we sought to analyze PSC-dependent NMJ repair mechanisms in symptomatic SOD1G37R mice. We found that PSCs extended disorganized processes from denervated NMJs and failed to initiate or guide nerve terminal sprouts, consistent with our in-vivo observations. We also found that PSCs failed to upregulate Galectin-3 (MAC-2) in SOD1 mice, a marker of glial phagocytosis, which is incompatible with their role as axonal debris phagocytes. Altogether, these results show that denervation of NMJs is a dynamic local process to which glial cells exert a maladapted response. This raises stabilization of NMJs or enhancement of re-innervation through glial mechanisms as attractive therapeutic targets for ALS.

54. Cardiac substrate metabolism following hypoxia: Role of Peroxisome Proliferated receptor alpha (PPAR)

Amira Hajirah Abd Jamil

(Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur Malaysia · Senior lecturer)

The principal substrate used by the normal adult human heart is free fatty acids, the remainder being, predominantly, carbohydrate. During failure, the heart becomes less reliant on fatty acid metabolism, possibly as a result of tissue hypoxia. Therefore,
understanding hypoxic adaptation may explain the metabolic changes that occur during the development of heart failure and potential therapeutic advancement. As peroxisome proliferator activated receptor alpha (PPARα) modulates cardiac fatty acid metabolism, we investigated the role of PPARα in cardiac metabolic adaptation to chronic hypoxia. We have reported isolated hearts from chronically hypoxic (11% O2 for 3 weeks) mice were more glycolytic, had reduced PPARα expression and decreased fatty acid metabolism, but had normal function, determined using in vivo cine-MRI. 31P MRS of isolated perfused mouse hearts showed a drop in phosphocreatine (PCr) with hypoxia, but ΔGATP was not altered, indicating that metabolic reprogramming was sufficient to maintain ATP production and contractile function. Increased or decreased PPARα expression, using a high fat diet or PPARα null mice, respectively, prevented metabolic adaptation to hypoxia and caused cardiac dysfunction. Cardiac vascular endothelial growth factor (VEGF), prominent hypoxia-inducible factor (HIF) target, was increased by hypoxia, indicating that HIF may have been involved in metabolic adaption. In order to determine the relationship between HIF and PPARα, HIF was stabilised pharmacologically using FG2216/BIC in HL-1 cardiomyocytes, to show decreased PPARα expression and caused similar metabolic changes to those seen in the in vivo hypoxic heart. We proposed that HIF-mediated downregulation of PPARα is crucial for metabolic adaptation and maintenance of cardiac function during chronic hypoxia.

55. レドックスシグナルと活性イオウ：食による制御

Keith Murai (Professor, Dept of Neurology and Neurosurgery Director, Centre for Research in Neuroscience)
居原 秀 (大阪府立大学大学院理学系研究科)
(2018.2.3)

生物は常に親電子物質と接し、その反応性を利用しつつ高度で巧妙な“親電子レドックスシグナル”システムが構築した。親電子性を制御するには、求核性が必要である。最近になって再発見された“活性イオウ分子”は、高い求核性、ユニークな化学特性、生体内含量などの点から、非常に興味深く、様々な細胞機能の調節機構を理解する上で重要な分子である。本講演では、レドックスシグナル/活性イオウ分子の概要、食による制御の可能性について論じる。

56. シナプス伝達および可塑性の分子機構とその生理機能

富田 進
（Department of Cellular and Molecular Physiology and Department of Neuroscience Yale University School of Medicine, U.S.A.）
(2018.2.8)

近年の研究は、脳神経回路が動物の行動を制御していることを明らかにしている。神経回路は、神経が主にシナプスを介して機能的に結合して形成されるものである。シナプスにおけるシグナル伝達は、神経伝達物質およびその受容体を介して行われる。また、動物の行動は瞬間ごとに変化して行くものであり、その可塑的な役割をシナプス伝達効率の動的変化（シナプス可塑性）が担っていると考えられている。

我々のグループは、これまでにシナプス伝達を担う神経伝達物質受容体がその補助サブユニットと安定的複合体を形成することにより、シナプス局在及び機能を調節し、その生理機能を担うことを明らかにして来た。また、この研究を発展させ、シナプスにおける受容体機能を担う全ての構成因子の単離にもいくつかの受容体において成功している。これらの構成因子の同定は、シナプス可塑性を担う基質の発見、および、その分子機構に基づくシナプス可塑性の調節および可塑性の生理的意義の解明へと繋がって行く。今回、これららの論題について未発表の実験結果も含め最新の知見を発表する。
57. The TRPM2 ion channel is required for sensitivity to warmth.

Chun-Hsiang Tan (Kaohsiung Medical University)

(2018.2.9)

The discovery of the TRP family of ion channels was a significant advance in our understanding of thermosensation. However, genetic deletion of TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, TRPM3, and TRPA1, however, has only modest effects on physiological thermal behavior in mice, with the exception of TRPM8, the deletion of which has marked effects on the perception of moderate coolness. In addition, these knockout mice thermoregulate normally. Although TRPV3 and TRPV4 were initially suggested to participate in the detection of non-painful warmth, later findings showing that mice deficient in both TRPV3 and TRPV4 show thermal preference behavior similar to wild type mice on a thermal gradient and little or no change in acute heat perception indicate that the molecular mechanism responsible for detecting non-painful warmth remains elusive. Recently, we showed that TRPM2 ion channel is required for warmth sensation. We used calcium imaging to identify a population of thermally sensitive somatosensory neurons which do not express any of the known thermally activated TRP channels, including TRPV1, TRPV2, TRPV3, TRPV4, and TRPM3. We then used a combination of calcium imaging, electrophysiology and RNA sequencing to show that the ion channel generating heat sensitivity in these neurons is TRPM2. Autonomic neurons, usually thought of as exclusively motor, also express TRPM2 and respond directly to heat. Most importantly, mice in which TRPM2 had been genetically deleted showed a striking deficit in their sensation of non-noxious warm temperatures, consistent with the idea that TRPM2 initiates a ‘warm’ signal which drives cool-seeking behavior. These results demonstrate that the molecular mechanism underlying warmth sensation is mediated by TRPM2.

58. 熊本大学生命資源研究・支援センターのマウス・ラットの微生物検査

中村直子（熊本大学生命資源研究・支援センター 実験動物分野）

(2018.2.14)

熊本大学生命資源研究・支援センター 動物資源開発研究施設（CARD）では、一般飼育室への病原微生物侵入防止、飼育中の実験動物の感染防御および CARD から送り出す各種マウスの微生物学品質を一定に保つため、定期的な微生物モニタリングを中心とした微生物品質検査をおこなっている。この中で、1989 年より開始した微生物モニタリングは、感染実験領域を除く館内の全てのマウスとラットの飼育室を対象として ICLAS モニタリングセンターが提唱している微生物のカテゴリーおよび国立大学法人動物実験施設協議会（国動協）が推奨している「微生物学的モニタリング対象微生物および寄生虫」で示されたデータを参考に微生物品質検査をおこなっている。

この中で、1989 年より開始した微生物モニタリングは、感染実験領域を除く館内の全てのマウスとラットの飼育室を対象として ICLAS モニタリングセンターが提唱している微生物のカテゴリーおよび国立大学法人動物実験施設協議会（国動協）が推奨している「微生物学的モニタリング対象微生物および寄生虫」で示されたデータを参考に微生物品質検査をおこなっている。

モニタリング開始当初は、肺マイコプラズマ、ネズミコレネ菌やセンダイウイルスなど、現在の動物実験施設では珍しくなった病原微生物も検出され、病変のある動物や症状を示す動物も多く見つかっていた。我々は、これらの病原微生物を施設内から排除するために、微生物モニタリング用モニタ動物から微生物カテゴリー B や C に含まれる病原微生物が検出された場合は、当該飼育室で飼育中の動物の隔離あるいは淘汰、飼育室のクリーニングさらには飼育室の再構築を進め、施設内から病原微生物の排除のための対策をおこなってきた結果、現在は、病原微生物が検出されない状態となっている。

現在のような感染症に起因する病変の見つかる実験動物を増えることがなくなってくる時代が来るとは思ってもいなかったため、モニタリング開始当初に毎月のように見つかっていた各種感染症の自然感染による病変の写真記録を残していたことが悔やまれるが、今回は、CARD でおこなっているマウス・ラットの微生物検査についてこれまでの経験を交えて紹介する。
59. 運動関連情報処理に関係する霊長類大脳皮質の神経ネットワークの研究
二宮太平（認知行動発達機構研究部門）
(2018.2.15)

今回の昼食セミナーでは、生理研着任前におこなっていた（1）霊長類の運動関連領域の结合様式に関する解剖学的手法を用いた研究と、着任後に開始した、（2）自他の動作情報処理に関わる神経ネットワーク機構の解明に向けた、電気生理学的手法を用いた研究について紹介したい。

（1）順行性神経トレーサーを用いて、マカクザルの補足運動野（SMA）と次運動野（M1）および、運動前野（PM）とM1との層特異的投射様式を検討した。SMAからM1へは主に1層と2/3層の上部に強い順行性ラベルが見られた。他方、PMからはM1の2/3層下部へと入力していた。SMAおよびPMのM1への入力様式は、それぞれ機能的関連が深いとされる、基底核および小脳から視床を介したM1への入力様式とよく似ており、機能的に近い情報が層特異的にM1へと入力している可能性を示唆する。

（2）他者の行動とその結果を正しく理解することは、他者を含めた環境に適応する上で非常に重要である。本研究では、他発音と交互に行動選択課題を遂行するマカクザルを対象に、自他の動作情報処理に関連するとされる内側前頭皮質、上側頭溝、腹側運動前野の3つの脳領域から神経活動の同時記録をおこない、3領域からなる神経ネットワークを解析する。現在、記録実験を開始したところであり、予備的ではあるが結果について紹介したい。

60. 走査電子顕微鏡(SEM)の医学・生物学応用
甲賀大輔（旭川医科大学 解剖学講座）
(2018.2.16)

走査電子顕微鏡（SEM）は、透過電子顕微鏡（TEM）による切片の二次元的な観察とは異なり、サンプルに電子線をぶつけてそこから発生する信号をモニターすることで、試料表面の立体（3D）形状や組成像を観察することができる魅力的な機器である。このようなSEMの特徴を生かして、これまで様々な細胞や組織の3D構造解析にこの装置が応用されてきた。またその過程で、一般的なSEM試料作製法では観察することができない構造（基底膜に囲まれた細胞の表面構造や細胞内の微細構造など）を可視化する目的で、多くの試料作製法が開発されてきた。このようにSEM試料作製法は、TEMに比べると多様であり、観察対象に応じて工夫を凝らす必要がある点が難しいと言えるが、面白いい点でもある。

また、近年私たちは3D・SEM再構築法の一つである「連続切片SEM法」を独自に開発し、ゴルジ装置の3D構造解析に応用してきた。このモダンな3D技法は、SEMによる切片観察（section face imaging）をベースにしているが、FIB-SEMやSBF-SEMとは大きく異なっており、ユニークである。さらに、私たちはこの連続切片SEM法と免疫細胞化学手技を合わせた新たな3D技法の開発にも成功している。本講演では、これまでのSEMによる医学・生物学領域における研究を通じて開発されてきた新旧の試料作製法の中から、いくつかの有用な手法について紹介し、今後のバイオ研究におけるSEMの可能性について考えてみたい。
61. FIB-SEM 法を用いたショウジョウバエ視覚系神経経路のコネクトミクス研究
四宮和範（ハーバードヒューズ医学研究所 ジャネリア・リサーチ・キャンパス 米国）
(2018.2.22)
近年の三次元電子顕微鏡法および情報処理技術の飛躍的な発展にともない、さまざまな生物の神経系を題材としたコネクトミクス研究が行われるようになってきている。我々はショウジョウバエの視覚系神経経路を対象に、FIB-SEM（focused-ion beam-aided scanning electron microscopy）法を用いて神経回路のコネクトミクス的再構成を行った。ショウジョウバエの脳において、視覚情報はまず低次視覚中枢である視葉において集中的に処理される。視葉は約 3 万の神経細胞と 4 つのニューロピルを有し、動き・色の情報を並行して処理して脳本体に送る。本研究では主に動き情報処理回路に着目し、動き情報の抽出から脳本体への投射に至る神経回路をシナプスレベルで網羅的に同定した。
まず視葉のほぼ全体を含むサンプルを作製し（153 x 85 x 180 μm）、FIB-SEMを用いてイメージングを行った。得られた 3 次元画像データにおいて神経細胞の自動セグメンテーションおよびシナプス位置の予測を行い、神経細胞の追跡および再構成をソフトウェア上で行った。
視覚において動き情報を検出するのは T4 および T5 と呼ばれる神経細胞であり、それぞれ明縁（moving ON-edge）および暗縁（moving OFF-edge）の情報を方向選択的に抽出している。これらの神経細胞はそれぞれ視髄（medulla）および視小葉（lobula）に入力部位をもち、視小葉板（lobula plate）に投射している。まず T4 と T5 の全体を完全に再構成し、これらの樹状突起部に入力する全神経をシナプス結合を用いて同定した。T4 については先行研究と一致する結果が得られ、T5 に関しては新たに同定されたものを含む 10 種類の神経細胞が入力していることが判明した。動き情報の方向選択的な検出には視野の異なる位置からの複数の入力が必要であるが、T4 と T5 の入力シナプスの位置をすべて決定することで、これらの入力の間に存在する空間的なずれを正確に同定することにも成功した。
さらに視小葉板において T4 および T5 とシナプスを形成する神経細胞を網羅的に再構成し、数十種類の神経細胞およびこれらからなる神経回路を同定した。これにより、明縁・暗縁の情報に検出する両回路の統合様式が初めて明らかにされるとともに、異なる方向の動きに対応する回路間で相互抑制機構が存在することも示された。動き検出回路の全容が解剖学的手段を用いてシナプスレベルで同定されたことにより、回路を構成する個別の神経細胞の詳細な機能解析がさらに進むことが期待される。また神経回路の高精度な同定法としての本手法の有用性が明らかになったことで、将来により大規模かつ複雑なシステムの全容を把握するための手段としても有望であることが示された。

62. 脳機能を模倣した人工知能の実現に向けた脳機能イメージング解析の取組み
佐藤能臣（東北大学大学院情報科学研究科）
(2018.2.27)
脳科学と人工知能との新たな対話が始まろうとしている。ここ数年、注目を集め、画像認識や音声認識などの様々な分野で高い性能を出した深層畳込みニューラルネットワーク（DCNN）は、脳の視覚野の sparse coding モデルの 1 つと考えられている。しかし、実際の脳は、sparse coding 以外にも、rate coding や phase coding などの神経コーディングによって外界の情報を処理していると考えられている。本講演では、ニューラルネットワーク理論の「情報量最大化原理」（入出力間の相互情報量が最大化されるようなネットワークの自己組織化の学習）と、その相互情報量と関連することが期待される phase-amplitude decoupling（PAC）を用い人間の脳の視覚野から記録された ECoG 時系列を解析することで見出された category-selective phase coding を組み合わせた DCNN の改良研究を紹介する。そして、12 カテゴリ、12000 枚の膨大な数の画像をランダムに見せた注視課題中のマカクザルの下側頭葉皮質から記録された ECoG 時系列を PAC 解析することで、改良した DCNN が、脳原
理的に妥当性が高い可能性を示唆する結果を示す。また、この解析から得られる知見をもとに、DCNNを用いた画像データ解析とfMRIデータ解析を組み合わせることで、個人の嗜好を模倣する人工ニューラルネットワークの実現の可能性について議論する予定である。

63. 蛋白質科学を基盤とした多器官ネットワークの解明
菊地晶裕（金沢大学大学院医学系研究科）
(2018.3.5)
要旨無し

64. Dynamic Coordination of Mitochondrial Structure and Function
Woong Sun（Department of Anatomy, Korea University College of Medicine）
(2018.3.15)

65. Chemokine signaling regulates eye morphogenesis in Xenopus
Hosung Jung（Department of Anatomy, Yonsei University College of Medicine）
(2018.3.15)

66. 多変量fMRI解析を用いた脳内運動情報表現理解へのアプローチ：系列運動の階層的脳内表現
横井 慎（情報通信研究機構 脳情報通信融合研究センター）
(2018.3.16)
我々の脳が様々な運動を獲得し制御するメカニズムを理解するためには、脳の「どこで」「どのような」情報が処理されているのか知る必要がある。近年の機能的磁気共鳴画像法（fMRI）の高解像度化に伴い、空間的に平滑化したボクセルの活動度の大小だけを評価のではなく、複数のボクセルの活動度のパターンの情報を用いた多変量解析手法（例：デコーディング）が急速に発展しつつある。
「デコーディングの精度にのみ関心がある」という工学的観点だけでなく、「各脳領域においてどのような情報表現がなされているのか明らかにしたい」という神経科学的観点から、特に最近ではRepresentational Similarity Analysis(RSA)やPattern Component Modelling(PCM)などの活動パターン間の類似度がもつ構造に着目した手法が普及しつつある。本講演では上記の比較的新しい多変量fMRI解析手法（RSAおよびPCM）を系列運動の情報表現の研究に応用した例を紹介する。
【大学院特別講義】
大学院特別講義

1. 第204回（2017.4.26）
演者：生体機能調節研究領域 細胞生理研究部門 富永真琴 教授
演題：温度感受性TRPチャネルの構造と機能

2. 第205回（2017.5.10）
演者：システム脳科学研究領域 認知行動発達機構研究部門 磯田昌岐 教授
演題：霊長類動物を用いた社会的認知機能のシステム的理解

3. 第206回（2017.6.7）
演者：脳機能計測・支援センター 多光子顕微鏡室 村越秀治 准教授
演題：神経細胞内シグナル伝達の蛍光イメージング

4. 第207回（2017.7.5）
演者：脳機能計測・支援センター 電子顕微鏡室 村田和義 准教授
演題：クライオ電子顕微鏡による生体分子の構造解析

5. 第208回（2017.8.9）
演者：生体機能調節研究領域 細胞構造研究部門 泉 裕士 准教授
演題：細胞間隙パリアと上皮ホメオスタシス - ショウジョウバエ腸管をモデルとした研究から

6. 第209回（2017.10.25）
演者：分子細胞生理研究領域 生分子神経生理研究部門 大野伸彦 特任准教授
演題：神経系におけるオルガネラ動態の生理機能とその制御機構

7. 第210回（2017.11.22）
演者：システム脳科学研究領域 統合生理研究部門 柿木隆介 教授
演題：ヒトにおける痛みと痒みの脳内認知機構

8. 第211回（2017.12.6）
演者：基盤神経科学研究領域 大脳神経回路論研究部門 川口泰雄 教授
演題：大脳皮質の亀体細胞多様性と抑制スタイル

9. 第212回（2018.1.24）
演者：基盤神経科学研究領域 視覚情報処理研究部門 吉村由美子 教授
演題：大脳皮質の経験依存的発達機構

10. 第213回（2018.2.14）
演者：システム脳科学研究領域 心理生理学研究部門 定藤規弘 教授
演題：社会脳研究の展開：脳機能イメージングを用いたアプローチ