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Abstract

Neural oscillations at ;10Hz, called alpha oscillations, are one of the most prominent components of neural
oscillations in the human brain. In recent years, characteristics (power/frequency/phase) of occipital alpha os-
cillations have been correlated with various perceptual phenomena. However, the relationship between inter-
individual differences in alpha oscillatory characteristics and the properties of the underlying brain structures,
such as white matter pathways, is unclear. A possibility is that intrinsic occipital alpha oscillations are medi-
ated by thalamocortical interaction; we hypothesized that the most promising candidate for characterizing the
intrinsic alpha oscillation is optic radiation (OR), which is the geniculo-cortical pathway carrying signals be-
tween the lateral geniculate nucleus (LGN) and primary visual cortex (V1). We used resting-state magnetoence-
phalography (MEG) and diffusion-weighted/quantitative magnetic resonance imaging (MRI) (dMRI/qMRI) to
correlate the frequency and power of occipital alpha oscillations with the tissue properties of the OR by focusing
on the different characteristics across individuals. We found that the peak alpha frequency (PAF) negatively cor-
related with intracellular volume fraction (ICVF), reflecting diffusion properties in intracellular (axonal) space,
whereas the peak alpha power was not correlated with any tissue properties measurements. No significant cor-
relation was found between OR and beta frequency/amplitude or between other white matter tract connecting
parietal and inferotemporal cortex and alpha frequency/amplitude. These results support the hypothesis that an
interaction between thalamic nuclei and early visual areas is essential for the occipital alpha oscillatory rhythm.
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Significance Statement

Alpha oscillations, the most salient neural oscillations in the human brain, are known to be involved in vari-
ous types of perception. The frequency of occipital alpha oscillations varies across participants, but the
underlying structures regulating this variability remain unknown. We combined magnetoencephalography
(MEG) measurements with diffusion-weighted MRI (dMRI) and quantitative MRI (qMRI) measurements and
found that frequency properties of intrinsic occipital alpha oscillations correlated with a tissue property of
the optic radiation (OR), a white matter tract connecting the lateral geniculate nucleus (LGN) and primary
visual cortex (V1). This result supports the idea that thalamocortical interactions mediate the properties of
intrinsic occipital alpha oscillations.
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Introduction
Alpha (8–13Hz) oscillations in the human brain are

closely related to several types of perceptual or cognitive
functions. For example, the amplitude of intrinsic alpha
oscillations is predictive of performance on a visual or
memory task (Klimesch, 1999; Ergenoglu et al., 2004;
Linkenkaer-Hansen et al., 2004; Thut et al., 2006; Palva
and Palva, 2007; van Dijk et al., 2008; MacLean et al.,
2012). In occipital alpha oscillations, MacLean et al.
(2012) demonstrated a correlation between the inter-indi-
vidual differences in resting-state occipital alpha power
and attentional blink magnitude, which suggests that the
amplitude of resting-state occipital alpha oscillations pre-
dicts attentional performance. Other more recent studies
have linked the frequency of intrinsic occipital alpha oscil-
lations to several types of perceptual phenomena such as
the flickering wheel illusion (Sokoliuk and VanRullen,
2013), sound-induced double-flash illusion (Cecere et al.,
2015), two-flash fusion (Samaha and Postle, 2015), and
motion-induced spatial conflict (Minami and Amano,
2017). These studies imply that temporal resolution of vis-
ual processing depends in part on the rhythm of occipital
alpha activity (Bonnefond et al., 2017). Thus, converging
evidence suggests that occipital alpha oscillatory activity
is a crucial substrate regulating the properties of human
visual processing.
While the significance of occipital alpha oscillatory var-

iations in visual processing has been established, how the
neuroanatomical substrates underlying such variations
correlate with them is not clear. Such variations can be re-
lated to individual differences in human brain structures,
such as the white matter tracts supporting communica-
tion between distant brain areas (Catani and Thiebaut de
Schotten, 2015). Since microstructural properties (e.g.,
myelination and axonal diameter) of white matter tracts
significantly impact signal conductance, it has been hy-
pothesized that white matter properties also relate to neu-
ral oscillatory activity (Fields, 2015). While a previous study
reported a correlation between connectivity based on diffu-
sion-weighted magnetic resonance imaging (dMRI) and
alpha oscillations (Hindriks et al., 2015), it remains to be an-
swered which white matter tract and what underlying mi-
crostructural properties may correlate with inter-individual
variability in occipital alpha properties.
Other studies have investigated the source of occi-

pital alpha oscillations electrophysiologically. One study

(Bollimunta et al., 2011) reported that alpha current genera-
tors appeared to be in layer 4C of the primary visual cortex
(V1), which receives inputs from the thalamic lateral genic-
ulate nucleus (LGN), and in V1 layer 6, which projects
back to the LGN. These findings suggest that the intrinsic
occipital alpha oscillations are generated via interactions
between LGN and V1. Using concurrent electroencepha-
lography-functional MRI (EEG-fMRI) acquisition in humans,
Liu et al. (2012) demonstrated that blood oxygenation
level-dependent signals in visual thalamus (LGN and pulvi-
nar) correlate with posterior alpha power, further support-
ing the importance of thalamo-cortical loop on a genesis of
occipital alpha oscillation. Thus, we hypothesized that tis-
sue properties of the optic radiation (OR), the main white
matter tract that connects the LGN and V1, could underlie
the inter-individual variability in occipital alpha oscillatory
activity.
To test this hypothesis, we investigated whether the

tissue properties of the OR are related to the frequency
and/or power of the occipital alpha oscillations. We
performed resting-state magnetoencephalography (MEG),
dMRI, and quantitativeMRI (qMRI) in healthy human partic-
ipants. We quantified occipital alpha properties from the
MEG data, and then identified the OR by analyzing dMRI
data with constraints from prior anatomical knowledge
(Sherbondy et al., 2008a). We evaluated the OR tissue
properties using three metrics, namely the intracellular vol-
ume fraction (ICVF; Zhang et al., 2012) and orientation dis-
persion index (ODI; Zhang et al., 2012) estimated from
dMRI and macromolecular tissue volume (MTV; Mezer et
al., 2013) estimated from qMRI. We chose these metrics
because previous studies have demonstrated their sensi-
tivity for the different microstructural properties of white
matter. ICVF and ODI are sensitive to different types of
properties of axons such as volume and spatial configura-
tion of axons, respectively (Mollink et al., 2017; Wang et al.,
2019). In contrast, MTV is sensitive to lipid volume fractions
in white matter, which correlate with myelin levels (Mezer et
al., 2013; Duval et al., 2017). Inter-individual variability in
these tissue properties of OR was compared with that in
occipital alpha oscillations.

Materials and Methods
Participants
A total of 24 participants were recruited for the study

(five females; 20–53years, 25.7 6 7.4 years, mean6SD). All
participants had normal or corrected-to-normal vision and
gave their written informed consent to participate. All experi-
mental procedures were performed according to the
Declaration of Helsinki and approved by the ethics committee
of the National Institute of Information and Communications
Technology (NICT). For any given participant, MEG and MRI
scans were conducted on different days.

Quantification and statistical analysis
MEGmeasurement and analyses
MEG data during the resting state were collected using a

360-channel whole head MEG system at Center for
Information and Neural Networks (CiNet), NICT (NeuroMag
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360, Elekta) comprising 204 planar gradiometers, 102
magnetometers, and 54 axial gradiometers. MEG signals
were recorded at a sampling frequency of 1000Hz. For the
analysis, we used 204 planar gradiometers, which com-
prised two coils measuring spatial derivatives in orthogonal
directions (x and y) of magnetic fields along the surface at
102 positions. Participants opened and closed their eyes
for 30 s in response to a sound cue in a dark room. Each
measurement (eyes-open or eyes-closed) was repeated
six times for a total of 3min for each resting condition.
Analyses of MEG data were performed using the

FieldTrip toolbox (Oostenveld et al., 2011; http://www.
fieldtriptoolbox.org/) running on MATLAB. We first re-
moved artifacts originating from blinks or heartbeats by
independent component analysis (James, 2002) and ap-
plied a 1- to 40-Hz bandpass filter. We then applied a fast
Fourier transform to the data using 10-s time windows
(10,000 time points) shifted by 1 s and averaged 126
spectra (21 spectra per each 30-s period). We then
summed the power of the two gradient components at
each of the 102 positions and selected five combined
channels (pairs of planar gradiometers at five positions)
with the largest alpha power for each participant. From
these channels, we determined the peak alpha frequency
(PAF) from the frequency showing the maximum power in
the alpha band (defined as 8–13Hz for this purpose).
As a control, we also estimated the peak beta frequency.

Linear regression was applied to fit a linear model to the
log-transformed spectrum in the beta range (13–30Hz;
Haegens et al., 2014); the fitted linear trend (the 1/f compo-
nent) was subtracted from the spectrum because it ob-
scures the smaller peaks in the beta range. Thereafter, we
defined the peak beta frequency based on the frequency
showing the maximum power in the beta band (13–30Hz)
for each participant using the subtracted spectrum.
Because the power of alpha/beta oscillations is highly sus-

ceptible to non-physiological factors such as the distance
from the MEG helmet, we estimated the alpha/beta power in
the source domain. For this purpose, we performed source
localization using dynamic imaging of coherent sources
(DICS; Gross et al., 2001). The DICS was applied at around
the individual peak alpha/beta frequencies, and the neural ac-
tivity index (NAI; Veen et al., 1997) was calculated. We aver-
aged the NAI across the left/right superior, middle, and
inferior occipital areas as an estimate of normalized occipital
alpha/beta power in the resting-state. All regions of interest
were anatomical defined based on the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002).

Structural MRI data acquisition
Anatomical MRI data acquisition and tissue segmentation
T1-weighted magnetization prepared rapid gradient

echo (MP-RAGE) images (1 mm isotropic; TR, 1900ms;
TE, 2.48ms) were measured for all participants (N=24)
using a 3T SIEMENS Prisma/Trio scanner at CiNet. An au-
tomated procedure in FreeSurfer software (https://surfer.
nmr.mgh.harvard.edu/; Fischl, 2012) was used to deter-
mine the white/graymatter border that was used for subse-
quent dMRI analysis. The total acquisition time for the
anatomical MRI data was;15min for each participant.

dMRI data acquisition
dMRI data were measured from all participants

(N = 24) using a 3T SIEMENS Prisma scanner at CiNet
with a 32-channel head coil. For data acquisition, dual-
spin echoplanar imaging (EPI; TR, 3300ms; TE,
66.4ms; multiband factor, 3; partial Fourier, 5/8; voxel
size, 2� 2 � 2 mm3) was implemented in a multiband
accelerated EPI pulse sequence provided by the Center
for Magnetic Resonance Research, Department of
Radiology, University of Minnesota (https://www.cmrr.
umn.edu/multiband/; Setsompop et al., 2012).
Diffusion-weighted imaging with b=300, 1000, and 2000

s/mm2 was conducted along 6, 30, and 64 isotropically dis-
tributed directions, respectively. Data were acquired with a
pair of reversed-phase-encoding directions (A-P and P-A).
In the dMRI session, eight non-diffusion-weighted (b=0) im-
ages were acquired for each phase-encoding direction (A-P
and P-A) to minimize EPI distortion. The total scan time for
dMRI was;25min for each participant.

qMRI data acquisition
qMRI data were measured from all participants (N=24)

using a 3T SIEMENS Trio scanner at CiNet with a 32-chan-
nel head coil. Parameters for qMRI were as described in a
previous publication (Mezer et al., 2013). Four fast low-
angle shot (FLASH) images were measured with flip angles
of 4°, 10°, 20°, and 30° (TR, 12ms; TE, 2.41ms) and a scan
resolution of 1 mm isotropic. Five additional spin echo in-
version recovery (SEIR) scans were also measured with an
EPI readout (TR, 3 s; TE, 49ms; 2� acceleration) to remove
field inhomogeneities. The inversion times were 50, 200,
400, 1200, and 2400ms. In-plane resolution and slice
thickness of the additional scan were 2� 2 mm2 and 4
mm, respectively. The total scan time of qMRI was
;35min for each participant.

dMRI data analysis
Preprocessing
dMRI images were corrected for susceptibility-induced

distortions using FSL TOPUP tools (Andersson et al.,
2003). Eddy current distortions and participant motion in
the dMRI images were corrected using FSL EDDY tools
(Andersson and Sotiropoulos, 2016). Finally, dMRI images
were aligned to the T1-weighted MP-RAGE images using
mrDiffusion tools implemented in Vistasoft (https://github.
com/vistalab/vistasoft).

Estimation of ICVF and ODI
After preprocessing, a neurite orientation dispersion

and density imaging (NODDI) model was fitted to dMRI
data using the NODDI MATLAB toolbox (http://mig.cs.ucl.
ac.uk/index.php?n=Tutorial.NODDImatlab) to obtain ICVF
and ODI maps in individual participants (Zhang et al.,
2012). ICVF is a marker of neuronal density, with a high
value indicating densely packed fibers, while ODI quanti-
fies the coherence of fiber orientations, with a low value
indicating aligned fibers.

Tractography on the OR
The OR was identified using a probabilistic tractogra-

phy method, ConTrack (Sherbondy et al., 2008b), which is
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known to have sufficient sensitivity to identify the OR from
dMRI data (Sherbondy et al., 2008a). First, the approxi-
mate location of the LGN was estimated by manual in-
spection of the T1-weighted image and deterministic
tractography from the optic chiasm (Ogawa et al., 2014).
Then, an 8-mm radius sphere that covered the LGN end-
points of streamlines from the optic chiasm was placed.
Second, the location of V1 was identified using a probabil-
istic atlas of retinotopic visual areas (Wang et al., 2015).
Using ConTrack, we generated 100,000 candidate
streamlines connecting LGN and V1 (angle threshold, 90°;
step size, 1 mm). Tracking was restricted using the white
matter mask generated by tissue segmentation. Streamlines
passing through ventricles were also rejected. Finally, the
top 30,000 streamlines with the highest scores in ConTrack
(Sherbondy et al., 2008b) were selected from candidate
streamlines for subsequent analyses. Further details on the
methods to identify the OR using ConTrack are described
elsewhere (Ogawa et al., 2014; Takemura et al., 2017, 2019;
Oishi et al., 2018).

Tractography on the posterior arcuate fasciculus (pArc)
As an anatomical control, we also analyzed the pArc

(Catani et al., 2005; Weiner et al., 2017). Since previous
studies showed that it is essential to use a tractography
algorithm with better sensitivity for resolving crossing fi-
bers for pArc (Weiner et al., 2017), we used a multi-shell,
multi-tissue constrained spherical deconvolution (CSD;
Lmax = 8; Jeurissen et al., 2014) to estimate fiber orienta-
tion distribution in each voxel with MRtrix3 (http://www.
mrtrix.org/; Tournier et al., 2012). We then used CSD-
based probabilistic tractography implemented in MRtrix3
to generate 2 million streamlines for each dMRI dataset
(step size =1 mm; maximum angle between successive
steps=45°; minimum length=4 mm; maximum length=250
mm; Fiber orientation distribution amplitude stopping
criterion=0.05). The seed voxels for tracking were randomly
chosen from the entire white matter mask. Finally, the pArc
was identified from whole-brain streamlines using auto-
mated pipelines implemented as a part of the AFQ toolbox
(https://github.com/yeatmanlab/AFQ/tree/master/vof;
Yeatman et al., 2014; Weiner et al., 2017).

Across-session averaging and outlier exclusion
Each streamline of the identified white matter tracts (OR

and pArc) was merged from two dMRI sessions with re-
versed-phase-encoding directions. Outlier streamlines
were excluded based on criteria used in previous studies
(Takemura et al., 2017; Oishi et al., 2018) for subsequent
evaluation of tissue properties.

Estimation of tract length
Furthermore, we estimated the tract length of the OR in

each participant by calculating the mean length of the
streamlines belonging to the OR. The tract lengths in the
left and right OR were averaged.

qMRI data analysis
Using the mrQ software package (https://github.com/

mezera/mrQ) in MATLAB, both the FLASH and SEIR
scans were processed to produce the MTV maps (Mezer

et al., 2013). MTV quantifies the tissue volume density by
estimating a quantitative proton-density map from the
qMRI dataset after correcting for RF coil bias by the mrQ
analysis pipeline using SEIR-EPI scans (Barral et al.,
2010; Mezer et al., 2013). Because the CSF voxels are en-
tirely filled with water, we assumed that these voxels had
a full water volume fraction (WVF). We then calculated the
WVF ratio in cortical gray or white matter voxels com-
pared with CSF. MTV was defined as: MTV=1�WVF. It
was used to quantify the non-proton macromolecule vol-
ume fraction in each voxel. Finally, the MTV maps were
aligned to T1-weighted MP-RAGE images to register
them with the dMRI data. The full analysis pipeline can be
found in previous publications (Mezer et al., 2013, 2016).
Because a large fraction of macromolecules in white matter is
myelin, previous works have suggested that MTV is a rela-
tively sensitive metric for myelin levels (Duval et al., 2017;
Berman et al., 2018). Therefore, we tested MTV as a metric
providing a different type of microstructural information com-
pared with ICVF and ODI, which are considered to reflect the
volume or spatial configuration of axons.
As a supplemental analysis, we also estimated g-ratio

that is defined as the ratio between the inner and outer di-
ameters of the myelin sheath and can be estimated from
dMRI and qMRI data (Stikov et al., 2015; Ellerbrock and
Mohammadi, 2018; Berman et al., 2019). We calculated
the putative g-ratio in each voxel by combining MTV and
NODDI measurements following a formula proposed by a
previous study (Berman et al., 2019).

Evaluating the tissue property of white matter tracts
Tissue measurements (ICVF, ODI, and MTV) of each vis-

ual white matter tract were evaluated using the methods
used in previous studies (Yeatman et al., 2012; Duan et
al., 2015). Briefly, each streamline was resampled to 100
equidistant nodes. ICVF, ODI, and MTV were calculated
at each node of each streamline. The property at each
node was then summarized by taking a weighted average
of the tissue measurements (ICVF, ODI, and MTV) on individ-
ual streamlines within that node. The weight of each stream-
line was assigned based on the Mahalanobis distance from
the tract core. The first and last ten nodes close to the gray-
whitematter interface, where the tract is likely to be heavily in-
tersected by the superficial U-fiber system, were excluded.
We then averaged 80 values along different nodes in the OR
for each tissue measurement to obtain a single-number sum-
mary of participant-specific ICVF, ODI, and MTV. Finally,
these tissue measurements were averaged across hemi-
spheres for each tract. Since resting-state occipital alpha os-
cillations are not restricted to a specific hemisphere, it is
reasonable to compare it with white matter tract properties
averaged across hemispheres.

Statistical comparisons
We calculated Pearson correlation coefficients between

the frequency/amplitude (NAI) of alpha oscillations in the rest-
ing condition and the MRI-based tissue properties of the
white matter tracts for each participant (uncorrected p-values
are described in the text). We applied a Bonferroni correction
to the six comparisons between two MEG measures (PAF/
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NAI) and three tissue properties (ICVF/ODI/MTV) by adjusting
the threshold for statistical significance to alpha = 0.0083.
We also conducted a default Bayesian hypothesis test

for the presence of correlations using the BayesMed
package in R (Wetzels and Wagenmakers, 2012). Bayes
factor values (BF10) were calculated to assess the relative
plausibility of the observed data under the two competing
hypotheses (Jeffreys, 1961; Wetzels and Wagenmakers,
2012; BF10 between 3 and 10 indicates substantial evi-
dence for the alternative hypothesis; BF10 between 1 and
3 provides anecdotal evidence for the alternative hypoth-
esis; BF10 between 0.33 and 1 indicates anecdotal evi-
dence for the null hypothesis; and BF10 between 0.1 and
0.33, substantial evidence for the null hypothesis).
To assess the specificity of the correlation between alpha

oscillations and OR, we calculated the correlation for another
frequency band and for another white matter tract and tested
the difference between the two dependent correlations with
one variable in common (Lee and Preacher, 2013).

Results
Relationship between alpha oscillations and the OR
Figure 1 shows the MEG spectra of all participants in

the eyes-open and eyes-closed resting conditions meas-
ured from 10 planar gradiometers showing the maximum
amplitude. Averaged PAF values in the eyes-open and
eyes-closed resting conditions were ;10Hz (eyes-open:
10.26 0.2Hz; eyes-closed: 10.16 0.2Hz, mean 6 SE).
No statistically significant difference was observed be-
tween PAF values in the eyes-open and eyes-closed con-
ditions (t(23) = 0.99, p=0.33, BF10 = 0.33, two-tailed paired
t test). In addition, NAI values in the eyes-open condition,
calculated by performing source localization, were not
significantly different from those in the eyes-closed condi-
tion (eyes-open: 6.036 0.65; eyes-closed: 6.8760.72,
mean 6 SE t(23) = 0.87, p=0.39, BF10 = 0.39, two-tailed
paired t test).
Figure 2A shows the trajectory of the OR identified by

probabilistic tractography on the dMRI dataset. We com-
pared PAF (N=24; Fig. 2B–D) and NAI (N=24; Fig. 2E–G)
in the eyes-open resting condition with the ICVF, ODI, and
MTV in the OR. We found a significant negative correlation
between the PAF and ICVF (r = �0.53, p=0.0075; Fig. 2B)
but not between the PAF and ODI/MTV [ODI, r=0.30,
p=0.15 (Fig. 2C); MTV, r = �0.15, p=0.48 (Fig. 2D)] in the
OR. The Bayes factor values supported the results of this
conventional statistical analysis (BF10 = 4.63, 0.43, and
0.20 for ICVF, ODI, and MTV, respectively). There was no
significant correlation between NAI and ICVF/ODI/MTV in
the OR [ICVF, r = �0.004, p=0.99, BF10 = 0.16 (Fig. 2E);
ODI, r = �0.04, p=0.86, BF10 = 0.16 (Fig. 2F); MTV, r =
�0.17, p=0.42, BF10 = 0.22 (Fig. 2G)].
Similar to the findings from the eyes-open condition,

the ICVF in the OR was negatively correlated with PAF in
the eyes-closed resting condition (r = �0.42, p=0.028,
BF10 = 1.66), but this effect was not statistically significant
after Bonferroni correction. The correlation between the
PAF and ODI/MTV in the OR was not significant (ODI, r =
�0.07, p=0.75, BF10 = 0.17; MTV, r=0.12, p=0.57,
BF10 = 0.18), and there was no significant correlation be-
tween the NAI and ICVF/ODI/MTV in the OR (ICVF, r =

�0.13, p=0.55, BF10 = 0.19; ODI, r = �0.18, p=0.41,
BF10 = 0.22; MTV, r =�0.37, p=0.078, BF10 = 0.73).
To investigate whether the relationship between PAF in

the eyes-open resting condition and ICVF holds even with-
in individuals, we compared the PAF at the hemisphere
with smaller ICVF with that at the hemisphere with larger
ICVF. However, no significant difference in PAF was ob-
served (t(23) = 0.90, p=0.37, BF10 = 0.40, two-tailed paired t
test). This is most likely because PAF highly correlated be-
tween the hemispheres (r=0.99, p,0.0001, BF10 = 3e15).

Relationship between beta oscillations and OR
To test whether the correlation between the character-

istics of neural oscillations and tissue properties in the OR
is specific to the alpha band, we performed a control anal-
ysis to compare the peak frequency/NAI of beta oscilla-
tions and OR properties (in the eyes-open resting
condition). Consequently, neither the peak frequency
[ICVF, r = �0.05, p=0.82, BF10 = 0.16 (Fig. 3A); ODI, r =
�0.10, p=0.66, BF10 = 0.17 (Fig. 3B); MTV, r=0.23,
p=0.27, BF10 = 0.29 (Fig. 3C)] nor NAI [ICVF, r=0.06,
p=0.78, BF10 = 0.16 (Fig. 3D); ODI, r = �0.26, p=0.22,
BF10 = 0.33 (Fig. 3E); MTV, r=0.17, p=0.44, BF10 = 0.21
(Fig. 3F)] was correlated with OR properties.

Relationship between alpha oscillations and pArc
As an anatomical control, we assessed correlations be-

tween alpha oscillatory characteristics and ICVF/ODI/
MTV of the pArc (Fig. 4A) in the eyes-open resting condi-
tion. pArc tissue properties were not significantly corre-
lated with PAF [ICVF, r=0.04, p=0.85, BF10 = 0.16 (Fig.
4B); ODI, r=0.38, p=0.069, BF10 = 0.81 (Fig. 4C); MTV,
r=0.20, p=0.35, BF10 = 0.24 (Fig. 4D)] or NAI [ICVF,
r=0.19, p=0.37, BF10 = 0.23 (Fig. 4E); ODI, r = �0.15,
p=0.48, BF10 = 0.20 (Fig. 4F); MTV, r = �0.17, p=0.43,
BF10 = 0.21 (Fig. 4G)].

Specificity of relationship between PAF and ICVF of OR
To support the specificity of the correlation between the

PAF and ICVF of OR, we tested whether this correlation is
significantly different from the correlation for a different fre-
quency band (beta) and from the correlation for a different
white matter tract (pArc). The correlation between PAF in the
eyes-open resting condition and ICVF of OR was significantly
stronger than the correlation between the peak beta fre-
quency and ICVF of OR (z =�2.30, p=0.021, two-tailed test)
and also from the correlation between PAF and ICVF of pArc
(z = �2.73, p=0.006, two-tailed test). These results suggest
that the correlation between neural oscillations and ICVF is
specific to the relationship between alpha oscillations and
OR.

Relationship between PAF and other tissue properties
of OR
As a supplementary analysis, we tested whether the

significant correlation between the PAF and ICVF in the
OR (Fig. 2B) is explained by other metrics of structural
properties such as MRI-based estimation of g-ratio
(Berman et al., 2019) and tract length. We assessed the
correlations between PAF and these variables of the OR
in the eyes-open resting condition. As a result, g-ratio
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and length did not significantly correlate with PAF (g-ratio,
r=0.13, p=0.55, BF10 = 0.18; length, r = �0.24, p=0.26,
BF10 = 0.20), suggesting that the properties of occipital alpha
oscillations might not be related with thesemetrics.

Discussion
Inter-individual differences in occipital alpha oscillations

are reflected in several aspects of perception and

behavior (Klimesch, 1999; MacLean et al., 2012; Sokoliuk
and VanRullen, 2013; Cecere et al., 2015; Samaha and
Postle, 2015; Minami and Amano, 2017). In the current
study, we found that the inter-individual differences in
PAF were significantly correlated with the ICVF of the OR.
We also found this correlation to be absent in the control
conditions. Beta-band frequencies were not significantly
correlated by any tissue properties in the OR. Tissue
properties of the pArc, an association fiber tract located

Figure 1. Power spectra of MEG data for all participants and distributions map of selected channels averaged across participants. A, The
power spectra of the eyes-open and eyes-closed resting conditions for all participants. Ten-second moving time windows (10,000 time
points) were used for the first Fourier transform (FFT) analysis. B, The channels used for the FFT analysis. Five combined channels (10 pla-
nar gradiometers) showing the largest alpha power were selected for each participant and were then pooled across participants.
Distribution maps indicate the total selected number of combined channels at each location. Selected channels cover the parieto-occipital
area.
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posteriorly to the lateral sulcus and connecting the parietal
and inferotemporal cortices (Catani et al., 2005; Martino and
García-Porrero, 2013; Weiner et al., 2017; Panesar et al.,
2019), were not correlated with any alpha band oscillatory
characteristics. Importantly, correlation between PAF and
the ICVF of the OR was significantly stronger than that in
these control analyses for beta oscillations and pArc, con-
firming the specificity of the correlation.
We employed probabilistic tractography to identify the

trajectory of the OR (Fig. 2A; see also Materials and
Methods); we used dMRI- and qMRI-based microstruc-
tural measurements to study the OR tract’s properties.
We chose to analyze ICVF and ODI, which are indexes of
intracellular (axonal) volume of white matter and the de-
gree of spread of fiber trajectories, respectively (Zhang et
al., 2012). We further chose to analyze MTV, which quanti-
fies the non-proton (non-water) neural tissue density
(Mezer et al., 2013). These three metrics have been eval-
uated by a number of investigators and data describing
their relationships with underlying microstructural proper-
ties and their reliability as analytical measures have been
published previously (Zhang et al., 2012; Mezer et al.,

2013; Duval et al., 2017; Mollink et al., 2017; Berman et
al., 2018; Fukutomi et al., 2018; McCunn et al., 2019;
Wang et al., 2019). Thus, we used these three metrics,
which are sensitive to different properties of white matter
tissue that are independent of each other, to investigate
what structural factors are associated with alpha oscilla-
tion. We confirmed that there were no significant correla-
tions among ICVF, ODI, and MTV in OR (ICVF and MTV,
r=0.32, p=0.12, BF10 = 0.52; ODI and MTV, r = �0.05,
p=0.81, BF10 = 0.16; ICVF and ODI, r = �0.09, p=0.66,
BF10 = 0.17), supporting independence among these
three metrics.
In the present study, the PAF negatively correlated with

ICVF of the OR. ICVF is an index to quantify the diffusion
signal in intracellular space and to estimate volume of
axonal space in white matter (Zhang et al., 2012). A previ-
ous study validated the use of ICVF by showing that ICVF
is correlated with histologic measurements of neurite den-
sity (Wang et al., 2019). In the present study, we found no
significant correlation between PAF and MTV of OR,
which is sensitive to lipid volume fractions and may reflect
myelin levels in the white matter (Mezer et al., 2013;

Figure 2. Relationship between the alpha frequency/amplitude and tissue properties of the OR. A, The OR identified by tractogra-
phy in a representative participant (left, axial view; right, sagittal view). B–D, Correlation between the peak alpha frequency (PAF) in
the eyes-open resting condition and the ICVF (B), ODI (C), or MTV (D) of OR for all participants (N=24). The negative correlation be-
tween the PAF and the ICVF was significant. E–G, Correlation between the neural activity index (NAI) at the PAF in the eyes-open
resting condition and the ICVF (E), ODI (F), or MTV (G) of OR. The NAI and the ICVF/ODI/MTV were not significantly correlated.
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Berman et al., 2018; Duval et al., 2017). Therefore, our re-
sults suggest that the volume of axons, rather than myelin
levels, might be associated with inter-individual differen-
ces in occipital PAF. However, we emphasize that the mi-
crostructural interpretation of NODDI parameters (ICVF/
ODI) is still actively debated among investigators; indeed,
it is not yet clear how much the histologic validation of
MRI metric by a single study can be generalized to meas-
urements in other areas or datasets collected using differ-
ent resolutions or acquisition parameters (Harkins et al.,
2016; Jelescu et al., 2016; Schilling et al., 2018; Wang et
al., 2019). Further understanding of the correlation de-
scribed in this study requires future investigations that
clarify the relationship between MRI-based measure-
ments and microstructure of the OR.
Although we found a correlation between inter-individual

differences in alpha oscillations and the OR, the causal re-
lationship between them remains to be explored. Recent
studies have demonstrated that white matter plasticity is
influenced by properties of signal conduction along axons
or learning (Fields, 2015; Wake et al., 2015; Sampaio-
Baptista and Johansen-Berg, 2017). One might hypothe-
size that conductance of oscillatory neuronal activities,
such as alpha oscillations, may affect such plasticity.
Conversely, a recent review on neural network models
(Pajevic et al., 2014) proposed that the variations in con-
duction velocity and conduction delay relating to the white
matter microstructure significantly change the interaction
between two coupled oscillators, leading to profound ef-
fects on the oscillation amplitude and frequency. Thus, we
speculate that occipital alpha oscillations and OR structural
properties exert influences on each other. In other words, in-
formation transmission between the LGN and V1 via alpha
oscillations may change the microstructural properties of

the OR, whereas the microstructural properties of the OR
may also modulate the alpha oscillations.
A previous study by Bollimunta et al. (2011) indicated

that intrinsic alpha activities are generated in layers 4C
and 6 of V1, which are interconnected with the LGN. This
would suggest that bidirectional thalamocortical neuro-
transmission shapes the activity of the alpha band neural
oscillators. In addition, simultaneous local field potential
measurements in the LGN and V1 and directed connectivity
analysis suggested that feedback processing from V1 to
LGN is mediated by the alpha oscillations (Bastos et al.,
2014). These physiological findings relating alpha band ac-
tivity to the LGN-V1 loop are consistent with ours. However,
we cannot rule out the involvement of other corticothalamic
loops in alpha oscillations because MRI resolution might be
insufficient to distinguish LGN-V1 fibers from the fibers be-
tween other nuclei (e.g., the pulvinar; Bridge et al., 2016)
and V1 if they overlapped within the same voxels. In fact, a
simultaneous EEG-fMRI study demonstrated that blood ox-
ygenation level-dependent signals in LGN and pulvinar cor-
relate with posterior alpha power, suggesting a possibility
that alpha oscillation is generated by multiple thalamo-corti-
cal loops including those in pulvinar (Liu et al., 2012).
Some previous studies have examined the relationship

between properties of occipital alpha oscillation and
measurements of white matter (Hindriks et al., 2015;
Renauld et al., 2016). Hindriks et al. (2015) performed
tractography on dMRI data and counted the number of
streamlines connecting the areas defined by the AAL atlas
(Tzourio-Mazoyer et al., 2002). They reported that the am-
plitude of the occipital alpha oscillations correlated with
the streamline counts on the fiber pathways between the
V1 and other visual areas. Unlike the study herein, they

Figure 3. Relationship between the beta frequency/amplitude and tissue properties of the OR. A–C, Correlation between the peak
beta frequency in the eyes-open resting condition and the ICVF (A), ODI (B), or MTV (C) of the OR for all participants (N=24). D–F,
Correlation between the NAI at the peak beta frequency in the eyes-open resting condition and the ICVF (D), ODI (E), or MTV (F) of
OR. None of the correlations were significant.
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did not focus on a specific white matter tract. That
may be one of the reasons why they found a correla-
tion between the alpha power and white matter prop-
erties while we did not. The previous study also
focused only on the alpha power, whereas the current
study included alpha frequency, which is also crucial
for characterizing visual processing (Sokoliuk and
VanRullen, 2013; Cecere et al., 2015; Samaha and
Postle, 2015; Minami and Amano, 2017). Renauld et al.
(2016) did not find significant correlation between OR
tissue properties and PAF, which were found in the
present study. They used fractional anisotropy and ap-
parent fiber density, which are the metrics on tissue
properties that were different from those used in our
study. They estimated these metrics from single-shell
dMRI data (b = 1000 s/mm2, 64 directions) acquired
using a 1.5-T MRI. In contrast, we performed analysis
on NODDI metrics (ICVF) based on multi-shell (b = 300,
1000, and 2000 s/mm2) dMRI data with larger number
of directions (100 directions in total) acquired by 3-T
MRI with a strong gradient (80mT/m). We speculate
that different conclusions arise at least partly because
of the higher sensitivity and specificity of our

measurements, derived from differences in dMRI signal
modeling, acquisition scheme, and hardware.
In summary, we found that the frequency of the intrinsic

occipital alpha oscillations was negatively correlated with
the microstructural property (ICVF) of the OR, suggesting
the ORmay serve as an essential anatomical substrate of in-
trinsic alpha oscillations. Currently, there is no clear interpre-
tation to explain the underlying mechanism for these
correlations. Future studies will be required to clarify the re-
lationships between ICVF and the microstructure of white
matter tracts.
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