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a b s t r a c t 

The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important func- 
tion in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular 
(M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response prop- 
erties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders 
based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative 
because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here 
we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution 
proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P sub- 
divisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with 
that from human histological studies, (2) comparing the data with functional magnetic resonance imaging mea- 
surements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the 
spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions 
observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions 
identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based 
on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV 

mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This 
method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be 
tested. 
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. Introduction 

Over the past several decades, progress in functional and struc-
ural neuroimaging has enabled detailed mapping methods for various
ortical visual areas in the living human brain ( DeYoe et al., 1994 ;
ngel et al., 1994 ; Sereno et al., 1995 , 2013 ; Dumoulin and Wan-
ell, 2008 ; Wandell and Winawer, 2011 ; Glasser et al., 2016 ; Benson and
inawer, 2018 ). These methods have provided important insights on

ow properties of the cortical visual areas are related to visual percep-
ion and dysfunctions ( Wandell and Winawer, 2015 ). However, to date,
ew neuroimaging methods have been established to investigate subcor-
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ical visual areas, such as the thalamic nuclei, despite them being crucial
or understanding the visual system. 

The lateral geniculate nucleus (LGN) is a key thalamic nucleus in
he human visual system ( Livingstone and Hubel, 1988 ; Bakken et al.,
021 ). It is widely known that the LGN receives visual inputs from reti-
al ganglion cells and transfers those signals to the primary visual cor-
ex ( Nassi and Callaway, 2009 ). While the role of the LGN in trans-
itting visual signals has been extensively studied ( Livingstone and
ubel, 1988 ), other lines of research suggest that the LGN is involved

n a wide range of visual functions, including eye-specific dominance
nd suppression during binocular rivalry ( Haynes et al., 2005 ), visual
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ttention ( O’Connor et al., 2002 ; Schneider and Kastner, 2009 ;
ing et al., 2015 ), and visual perceptual learning ( Yu et al., 2016 ).
he LGN is also involved in the neuronal synchrony widely observed

n the visual cortex ( Hughes et al., 2004 ; Liu et al., 2012 ; Minami et al.,
020 ). Understanding the structure and function of the LGN is also es-
ential for evaluating morphological degeneration related to diseases
 Mcketton et al., 2014 ; Giraldo-Chica and Schneider, 2018 ) and the
natomical basis of residual visual functions in blindsight ( Schmid et al.,
010 ; Bridge et al., 2019 ; Atapour et al., 2021 ). 

The human LGN is composed of six layers that are categorized into
wo major subdivisions: the magnocellular (M) and parvocellular (P)
ubdivisions. These subdivisions are clearly distinguishable on the basis
f cell size, with larger neurons in the M subdivision than the P subdivi-
ion ( Hickey and Guillery, 1979 ; Gupta et al., 2006 ). A number of studies
ave suggested that the M and P subdivisions have complementary roles
n visual processing by demonstrating distinct spatial, temporal, lumi-
ance, and chromatic stimuli preferences ( Derrington and Lennie, 1984 ;
chiller et al., 1990 ; Usrey et al., 2000 ; Denison et al., 2014 ). Accord-
ng to psychophysical performances in response to specific types of vi-
ual stimuli and neural responses in the M and P subdivisions, these
wo subdivisions have been proposed to have distinct roles in attention
 Yeshurun and Levy, 2003 ) and reading ( Demb et al., 1998 ; Stein, 2001 ;
ain et al., 2014 ). A psychophysical study using a motion coherence

ask also led to a hypothesis that the M subdivision is damaged ear-
ier than the P subdivision as a consequence of glaucoma ( Joffe et al.,
997 ). However, the hypotheses proposed by previous psychophysical
tudies remain speculative because they are derived mostly from simi-
arities between the neural responses of the M and P subdivisions and
timuli-dependent psychophysical performances without assessing the
ifferences in functional and structural measurements between the two.
herefore, it is essential to establish a method to identify LGN subdivi-
ions in individual living human brains to enable the direct comparison
f neuroimaging data from the LGN subdivisions and psychophysical
ata. 

Non-invasive neuroimaging-based measurements of the structural
roperties of human LGN subdivisions have been challenging because
f the requirements of high-resolution and quantitative magnetic res-
nance imaging (MRI) measurements for the LGN, which has a small
olume of approximately 180 mm 

3 ( Mcketton et al., 2014 ). Several
euroimaging approaches to identify LGN subdivisions have been pro-
osed. The first approach is to use functional MRI (fMRI) to localize
 and P subdivisions based on the difference in blood oxygenation

evel-dependent (BOLD) response selectivity for distinct visual stimuli.
hile previous studies successfully demonstrated the utility of fMRI to

dentify human LGN subdivisions ( Denison et al., 2014 ; Zhang et al.,
015 , 2016 ), this approach has some limitations regarding the spatial
esolution (1.25–2 mm isotropic voxels), robustness of the measure-
ents, and necessity of the use of visual stimuli, which limits the ap-
licability for clinical populations with visual field loss. The second ap-
roach is to use quantitative structural MRI to identify LGN subdivisions
ased on tissue differences between them. By using 7T MRI, Müller-
xt et al. (2021) demonstrated that this approach enables them to iden-

ify human LGN subdivisions using high-resolution measurements per-
ormed on ex vivo human brains. They also identified LGN subdivisions
n individual human brains in vivo , using the LGN population atlas aver-
ged across subjects as a common reference space. However, structural
RI-based identification of the LGN subdivisions in living humans using

linically feasible 3T MRI remains to be achieved. 
Macromolecular tissue volume (MTV) is a promising quantitative

tructural MRI method that has been proven to be highly correlated with
ipid volume fraction. It provides consistent results across hardware, en-
bling more quantitative comparisons across brain regions and subjects
 Mezer et al., 2013 ). We expected that non-invasive MTV measurements
sing 3T MRI would be useful for identifying M and P subdivisions,
ach of which has different microstructural properties in both cellular
nd subdivision scales. Specifically, while the cell size of M neurons is
2 
arger than that of P neurons, the M and P subdivisions also have dif-
erent structural characteristics at the subdivision scale, such as higher
euronal cell densities and greater myelin densities in the P subdivi-
ion than in the M subdivision in non-human primates ( Hassler, 1966 ;
ücel et al., 2000 , 2003 ; Pistorio et al., 2006 ) and in humans ( Müller-
xt et al., 2021 ). Because MTV is a measurement at the millimeter scale
nd will mainly represent anatomical characteristics at the subdivision
evel, the P subdivision might show a higher MTV than the M subdi-
ision. Here, we examined whether the M and P subdivisions could be
istinguished by the MTV in individual living humans. 

Using our newly developed method, we found a gradual change
n the MTV fraction within the LGN along each axis (lateral–medial,
entral–dorsal, and anterior–posterior). This pattern of change was con-
istent among subjects and enabled the parcellation of the LGN into
wo subdivisions in a consistent manner with post-mortem human data.
oreover, the difference in stimulus selectivity of the BOLD response

etween the subdivisions identified by MTV was consistent with pre-
ious physiological studies. The MTV-based LGN parcellation was ro-
ust over measurements taken on different days. The parcellation us-
ng widely used non-quantitative methods such as the T1-weighted/T2-
eighted (T1w/T2w) ratio map was less accurate, which suggested that
uantitative structural mapping is crucial for identifying the M and P
ubdivisions in human LGN. This study provides a novel method of non-
nvasively investigating the properties of LGN subdivisions in living hu-
an brains, which can be combined with functional or behavioral ex-
eriments to test neuroscientific or clinical hypotheses. 

. Materials and methods 

The first step in our proposed method was to identify the location
nd contour of the entire LGN using high-resolution proton density
PD)-weighted imaging, as employed in previous studies of human LGN
 Mcketton et al., 2014 ; Viviano and Schneider, 2015 ; Giraldo-Chica and
chneider, 2018 ). We then defined the LGN subdivisions using the MTV
raction data and the anatomically known volume ratio of the M and P
ubdivisions. Finally, we tested the validity of the definition based on (1)
omparisons with histological data, (2) fMRI measurements of stimulus
electivity, and (3) an analysis of test-retest reliability. 

.1. Subjects 

Fifteen healthy volunteers (7 females; mean age, 23.53 years; stan-
ard deviation, 1.71 years; range, 21–26 years) participated in this
tudy. All subjects had normal or corrected-to-normal vision with no
linical history of eye disease. None of the subjects had a history of neu-
ological disorders. All subjects provided written informed consent to
articipate in this study. The study was conducted in accordance with
he ethical standards of the Declaration of Helsinki and approved by
he local ethics and safety committees of the Center for Information and
eural Networks (CiNet), Advanced ICT Research Institute, National In-

titute of Information and Communications Technology. 
The main analysis performed in this study was a single-subject ap-

roach focused on the identification of LGN subdivisions in individual
ubjects, visual inspection of results in each subject, and comparisons
mong the subject data and histological data without performing statis-
ical tests of group differences. Therefore, statistical power and sample
ize estimation are not relevant for these analyses. For some analyses,
e performed statistical tests to evaluate differences between M and P

ubdivisions using the two-tailed paired t -test (e.g. Fig. 4 , Fig. 6 ). We
xpected a large effect size ( d ′ > 1.10) in the fMRI experiment, con-
idering the large separation effect reported in a previous fMRI work
 Denison et al., 2014 ). The power of this study ( N = 15) was sufficiently
arger than the sample size required to detect a large effect ( d ′ = 1.10)
n the power analysis using a two-tailed paired t -test ( N = 13; G 

∗ Power
.1). 
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.2. Structural MRI data acquisition 

All MRI data were collected at the CiNet using a 3T MAGNETOM
IEMENS Prisma scanner (Siemens Healthcare, Erlangen, Germany)
ith a 32-channel head coil. 

.2.1. T1w MRI data acquisition 

T1w magnetization prepared-rapid gradient echo (MPRAGE) im-
ges (voxel size, 0.75 mm × 0.75 mm × 1.0 mm; repetition time
TR], 1900 ms; echo time [TE], 3.58 ms; flip angle, 9°; matrix,
56 × 256 × 208; in-plane acceleration factor, 2) were acquired from
ll subjects. These images were used as references, on which the sub-
equent MRI data (PD-weighted, MTV, T1w/T2w ratio and fMRI data)
as coregistered in the same coordinate space for each individual sub-

ect. The total acquisition time for the T1w MRI data was approximately
5 min per subject. 

.2.2. PD-weighted MRI data acquisition 

PD-weighted images were acquired from all subjects to locate the
GN. The acquisition parameters of the PD-weighted images were the
ame as those used in a previous study of the human LGN ( Viviano and
chneider, 2015 ; voxel size, 0.75 mm × 0.75 mm × 1.0 mm; TR,
000 ms; TE, 21.0 ms; flip angle, 120°; matrix, 256 × 256; in-plane
cceleration factor, 2). These images were acquired at least 40 times
n all subjects. To improve the signal-to-noise ratio, we continued to
epeat the PD-weighted image acquisition if the subjects agreed (maxi-
um number of repetitions: 60). Each image consisted of 50–60 coronal

lices (slice thickness, 1 mm; no gap) covering the whole posterior tha-
amus. The total acquisition time for the PD-weighted MRI data was
pproximately 60–90 min per subject, depending on the number of rep-
titions. 

.2.3. MTV data acquisition 

The MTV data were acquired from all subjects according to a pre-
iously described protocol ( Mezer et al., 2013 ; Oishi et al., 2018 ;
akemura et al., 2019 ; Minami et al., 2020 ). In brief, four fast low-angle
hot (FLASH) images were measured with flip angles of 4°, 10°, 20°, and
0° (TR, 12 ms; TE, 2.43 ms) with 1 mm isotropic voxels. We used a short
E, as used in the original works proposing the use of MTV to minimize
2 ∗ ( Mezer et al., 2013 , 2016 ). For the purposes of removing field inho-
ogeneities, five additional spin echo inversion recovery (SEIR) scans
ere also measured with an echo planar imaging (EPI) readout (TR, 3 s;
E, 49 ms; 2 × acceleration). The inversion times were 50, 200, 400,
200, and 2400 ms. The in-plane resolution and slice thickness of the
dditional scan were 2 mm × 2 mm × 4 mm, respectively. The total ac-
uisition time for MTV data was approximately 35 min per subject. For
3 subjects, we acquired MTV data again on a different day to evaluate
he test–retest reproducibility. 

.2.4. T1w/T2w MRI data acquisition 

We also acquired data from 13 subjects for a T1w/T2w ratio map, a
echnique widely used in the analysis of Human Connectome Project
ata ( Glasser and Van Essen, 2011 ). The T1w image was acquired
sing a 3D MPRAGE (TR, 2400 ms; TE, 2.06 ms; TI, 1000 ms; flip
ngle, 8°; bandwidth, 220 Hz/pixel; echo spacing, 7.5 ms; matrix,
56 × 256 × 176; voxel size, 1 mm isotropic resolution) sequence. The
2w image was acquired using sampling perfection with application op-
imized contrast using different angle evolutions (SPACE: TR, 3200 ms;
E, 438 ms; flip angle, 120°; bandwidth, 574 Hz/pixel; echo spacing,
.88 ms; turbo factor, 139; matrix, 256 × 256 × 176; voxel size, 1 mm
sotropic resolution) sequence. The T1w image acquired for T1w/T2w
s distinct from the T1w image used for the main analysis which have
ifferent in-plane voxel size (see 2.2.1 T1w MRI data acquisition). Al-
hough these acquisition protocols aimed to follow those used in the
uman Connectome Project ( Glasser and Van Essen, 2011 ), they were
ot identical due to hardware differences. These data were collected
sing prescan normalization to reduce image intensity bias. 
3 
.3. Structural MRI data analysis 

.3.1. T1w MRI data 

The T1w MRI images of individual subjects were interpolated and
ligned to the ICBM 152 2009b symmetric template in the MNI152
atabase ( Fonov et al., 2009 , 2011 ; http://www.bic.mni.mcgill.ca/
ervicesAtlases/ICBM152NLin2009 ; voxel size, 0.5 mm isotropic reso-
ution) using a rigid-body transformation implemented in the FSL FLIRT
ool ( Jenkinson et al., 2002 ). No spatial smoothing or normalization was
erformed. These T1w MRI images of individual subjects in MNI space
ere used for coregistration with PD-weighted, MTV, T1w/T2w ratio
nd fMRI data to enable comparisons among datasets in MNI coordinate
pace. T1w MRI images were also used for the segmentation of the gray
nd white matter, thalamus, pallidum, and putamen. Segmentation was
erformed using the FAST and FIRST tools in FSL ( Zhang et al., 2001 ;
atenaude et al., 2011 ). 

.3.2. PD-weighted MRI data 

The PD-weighted image from the first scanning session was used as
 reference. All subsequent PD images acquired from the same subject
ere coregistered to the reference using a rigid-body transformation im-
lemented using the FSL FLIRT tool. We then averaged all PD-weighted
mages. The averaged PD-weighted image was then interpolated and
ligned to the T1w MRI data in MNI coordinate space. 

.3.3. MTV data 

Using the mrQ software package ( https://github.com/mezera/mrQ )
n MATLAB, the FLASH and SEIR scans were processed to produce the
TV maps ( Mezer et al., 2013 , 2016 ). MTV aims to quantify the mi-

rostructural properties of brain tissue based upon the non-water vol-
me fraction. To this end, the mrQ pipeline first calculates the PD value
n each voxel based on the FLASH data acquired with multiple flip an-
les ( Mezer et al., 2016 ). The PD map is then corrected for inhomo-
eneity of the radiofrequency transmit and gains of receiving coils. The
ormer inhomogeneity is corrected by using the unbiased field map de-
ived from the SEIR-EPI scans ( Barral et al., 2010 ). The latter one is
orrected by combining FLASH data from individual coils with different
ains ( Mezer et al., 2013 ). Note that the SEIR-EPI images were coregis-
ered with FLASH images using Advanced Normalization Tools (ANTs,
ttp://stnava.github.io/ANTs/ ) included in the mrQ pipeline, and we
isually confirmed that ANTs registration successfully coregistered the
EIR-EPI images with some distortion into FLASH images for all subjects.
astly, the mrQ pipeline calculates the MTV map based on the bias-
orrected PD maps. The mrQ pipeline uses voxels in the cerebrospinal
uid (CSF) as a reference, as these voxels are fully filled with water
water volume fraction [WVF] = 1.00) regardless of the subject and
R hardware. The mrQ pipelines defined the CSF voxels as voxels in
hich T1 relaxation time is approximately 4.3 s, a value known as the
1 of the ventricle. The MTV is defined as follows: MTV = 1 − WVF,
hich is used to quantify the non-proton macromolecule volume frac-

ion in each voxel. Following calibration using CSF voxels, MTV has
een proven to be consistent across MR hardware ( Mezer et al., 2013 ).
e note that some voxels within the ventricle have non-zero MTV frac-

ions, since those voxels are not classified as CSF voxels in the mrQ
ipeline. Those voxels do not show T1 close to 4.3 s due to measure-
ent noise or the presence of the choroid plexus. Finally, the MTV map

s aligned to the T1w MRI data to enable further comparisons with other
mages in the same coordinate space. The full analysis pipeline and val-
dation results for the MTV method can be found in previous publica-
ions ( Mezer et al., 2013 , 2016 ; Oishi et al., 2018 ; Takemura et al., 2019 ;
inami et al., 2020 ). The code for calculating MTV is publicly available

 https://github.com/mezera/mrQ ). 

.3.4. T1w/T2w MRI data 

We obtained a T1w/T2w ratio map by coregistering the T2w image
o the T1w image using the FLIRT tool in the FSL using rigid-body trans-

http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
https://github.com/mezera/mrQ
http://stnava.github.io/ANTs/
https://github.com/mezera/mrQ
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Fig. 1. The identification of whole lateral geniculate nucleus (LGN) and macromolecular tissue volume (MTV) mapping in the LGN of a single human subject. (A) 
A coronal section of a proton-density (PD) weighted image in a representative subject (left hemisphere, Subject S10). Left panel, the coronal PD-weighted image of 
the whole left hemisphere. The cyan rectangle indicates the region magnified in the right panel. Right panel, the magnified PD-weighted image near the LGN. TRN, 
thalamic reticular nucleus; Hi, hippocampus; MGN, medial geniculate nucleus; Pul, pulvinar. The scale bar (white line) indicates 6 mm. (B) The region-of-interest 
(ROI) covering the whole LGN (translucent blue), which was manually defined from the PD-weighted image. (C) MTV map coregistered with the PD-weighted image. 
The hot color map corresponds to MTV fractions in individual voxels. The MTV image has a lower resolution than the PD-weighted image because of a larger voxel 
size (1 mm isotropic). Additionally, some voxels within the ventricle have non-zero MTV fractions since the mrQ pipeline has rigorous criteria for selecting CSF voxels 
based on T1 relaxation time (see Materials and Methods). (D) MTV fractions within the LGN ROI. The MTV fraction gradually changed along the ventral–dorsal and 
lateral–medial axes. Note that the scale of the MTV fraction differs from that of panel C. 
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3  
ormation and calculated the ratio between them. The T1w/T2w ratio
ap was then coregistered to the reference T1w MRI data in the MNI

oordinate space. 

.4. Identifying LGN from PD-weighted MRI data 

We identified the position of the LGN in individual subjects based on
he PD-weighted image averaged across multiple acquisitions ( Fig. 1 ).
his is because a previous study ( Viviano and Schneider, 2015 ) demon-
trated that the averaged PD-weighted image has good contrast in iden-
ifying the LGN. Following the procedure described by Viviano and
chneider (2015) , the entire LGN was manually delineated based on
isible intensity differences between the LGN and neighboring tis-
ues (surrounding white matter and CSF) using the ITK-snap tool
 http://www.itksnap.org/ ; Fig. 1 B). Delineation was performed by two
aters who were blinded to the purpose of this study. We primarily used
he delineation of the first rater for the main analysis, and the delin-
ation of the second rater was used to confirm inter-rater consistency.
elineation was performed in a series of coronal sections of PD-weighted

mages, because the coronal sections had the highest spatial resolution
ompared with the axial and sagittal sections. The whole LGN region-
f-interest (ROI) was used in subsequent analyses to classify the M and
 subdivisions using MTV. 

.5. Parcellation of the LGN based on MTV and other structural MRI maps

.5.1. Main analysis using the fixed volume ratio and MTV fractions 

We first rank-ordered all of the voxels within the whole LGN ROI
ased on their MTV fractions. Previous phantom experiments confirmed
hat MTV measurements correlate with the lipid fraction ( Mezer et al.,
013 ; Filo et al., 2019 ; Shtangel and Mezer, 2020 ). Previous histological
tudies have identified that the P subdivision has a higher neuronal cell
ensity ( Hassler, 1966 ; Yücel et al., 2000 , 2003 ; Müller-Axt et al., 2021 )
4 
nd greater myelin content ( Pistorio et al., 2006 ; Müller-Axt et al., 2021 )
han the M subdivision. Therefore, we hypothesized that the P subdivi-
ion would demonstrate larger MTV fractions than the M subdivision.
ence, we classified the 20% of voxels with the lowest MTV fraction
s the putative M subdivision and the remaining 80% of voxels as the
utative P subdivision ( Fig. 2 and Supplementary Figs. S1 and S2). This
atio was based on previously reported volumes of the LGN subdivisions
rom human histological studies ( Andrews et al., 1997 ; Selemon and
egovic, 2007 ) and was used in a previous fMRI study ( Denison et al.,
014 ). Fig. 2 B provides examples of MTV-based LGN parcellation in a
epresentative hemisphere. 

.5.2. LGN parcellation using PD-weighted image and T1w/T2w ratio map 

We attempted to parcellate the LGN based on the image intensity
f the non-quantitative structural MRI maps (PD-weighted image and
1w/T2w ratio map). For the PD-weighted image, we classified the
0% of voxels with the highest image intensity as the putative M sub-
ivision and the remaining 80% of voxels as the putative P subdivision
ecause the image contrast of PD-weighted images demonstrates an op-
osite trend to that of MTV maps. For the T1w/T2w ratio map, we used
dentical criteria as employed for the MTV mapping. 

.6. Histological data (BigBrain) analysis 

To compare the MTV-based parcellation of the LGN subdivisions
ith the histological definition, we analyzed publicly available BigBrain
ata (100 𝜇m version of the BigBrain 3-D Volume Data Release 2015
n MNI space from https://bigbrain.loris.ca ; Amunts et al., 2013 ). In
rief, BigBrain is a 3D reconstruction of 7404 histological sections of
ne post-mortem human brain that provides high-resolution anatomical
ata aligned with MNI coordinate space. In this database, all six layers
n the human LGN are visible (see Fig. 2 C, Supplementary Fig. S3). 

Manual segmentation of the M (layers 1–2) and P subdivisions (layers
–6) of the human LGN was carried out on the BigBrain data. Manual

http://www.itksnap.org/
https://bigbrain.loris.ca
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Fig. 2. LGN subdivisions parcellated by MTV fraction on a se- 
ries of representative coronal sections in the LGN of a single 
human subject. (A) MTV fractions in the LGN ROI overlaid on a 
representative series of coronal sections of a PD-weighted im- 
age (the left and right panels represent anterior and posterior 
sections; distance between sections: 0.5 mm) in a representa- 
tive hemisphere (left hemisphere, subject S10). The conven- 
tions were identical to those used in Fig. 1 D. (B) The M and 
P subdivisions estimated from the MTV fractions in the hemi- 
sphere shown in panel A. We classified 20% of voxels with the 
lowest MTV fractions as belonging to the M subdivision (dark 
magenta) and the remaining 80% of voxels as belonging to 
the P subdivision (light green). The white scale bar indicates 
4 mm. See Supplementary Figs. S1 and S2 for LGN images of 
all coronal sections in the left and right hemispheres, respec- 
tively. (C) The M and P subdivisions from a human histological 
dataset (BigBrain; Amunts et al., 2013 ). The cyan scale bar in- 
dicates 4 mm. See Supplementary Fig. S3 for LGN images of 
all coronal sections of the BigBrain data. 
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egmentation was performed by two raters (see 2.4 “Identifying LGN
rom PD-weighted MRI data ”). We used the M and P subdivision defi-
ition from BigBrain as a reference to compare the MRI-based parcella-
ion. The delineation performed by the first rater was used for the main
nalysis, whereas delineation performed by the second rater was used to
valuate inter-rater consistency. Manual segmentation of the BigBrain
ata is shown in Fig. 2 C and Supplementary Fig. S3. 

.7. Comparison of MRI-based parcellation with histological data 

To quantify the spatial organization of the M and P subdivisions,
e calculated the spatial centers of both subdivisions in MRI and his-

ological data, following the analysis used in a previous fMRI study
 Denison et al., 2014 ). The 3D spatial centers of the M and P subdivisions
ere defined as the mean voxel coordinates in each spatial dimension

left–right, ventral–dorsal, and anterior–posterior) in MNI space. When
oregistering the reference (T1w) image to MNI space, the human tha-
amic nuclei showed individual differences in their positions, volume,
nd shape ( Csernansky et al., 2004 ). Therefore, the position of the LGN
nd its subdivision in the MNI coordinates is variable among individual
rains. Thus, we calculated the relative position of the center of each
GN subdivision with respect to the widths of the LGN in each spatial
imension to compare the spatial organizations of LGN subdivisions be-
ween the datasets. 

We also evaluated the degree of similarity between MRI-based par-
ellation (MTV, PD-weighted, and T1w/T2w ratio) and BigBrain data by
alculating the cosine similarity of vectors connecting the spatial centers
f the M and P subdivisions. We performed this comparison focusing on
he vector orientation in two-dimensional space corresponding to coro-
al space (left–right; ventral–dorsal) because the data in this dimension
ave the highest spatial precision in both the PD-weighted images and
igBrain data. 

.8. Functional MRI data acquisition 

All subjects took part in an additional fMRI experiment to investi-
ate the stimulus selectivity of the BOLD response in LGN voxels. We
5 
cquired fMRI data with 1.5 mm isotropic voxels for 10 subjects (S1–
10) and 2 mm isotropic voxels for 5 subjects (S11–S15). 

.8.1. Acquisition parameters 

The fMRI data were acquired with an interleaved T2 ∗ weighted gra-
ient echo sequence at voxel sizes of 1.5 or 2.0 mm isotropic using simul-
aneous multi-slice EPI sequences (TR, 2250 ms; TE, 40 ms; flip angle,
5°; in-plane field of view, 192 mm × 192 mm) provided by the Center
or Magnetic Resonance Research, Department of Radiology, University
f Minnesota ( https://www.cmrr.umn.edu/multiband/ ; Moeller et al.,
010 ). Transverse axial slices (57 slices for 1.5 mm isotropic voxels and
0 slices for 2.0 mm isotropic voxels) with no gaps were oriented to
over the LGN and occipital lobe. Certain parameters differed for the
cquisition of 1.5-mm and 2-mm isotropic voxel size data (multi-band
actor, 3; acquisition matrix, 128 × 128; echo spacing, 0.93 ms; partial
ourier, 6/8 for 1.5 mm isotropic voxels; multi-band factor, 2; acqui-
ition matrix, 96 × 96; echo spacing, 0.68 ms; partial Fourier was not
pplied for 2 mm isotropic voxels), while the other parameters were
dentical. 

.8.2. Stimuli, block design, and task 

All visual stimuli were generated using Psychtoolbox 3 in MAT-
AB ( http://psychtoolbox.org/ ). Stimuli were projected from a pro-
ector (WUX5000, Cannon, Tokyo, Japan) located outside the scanner
oom and reflected via a mirror onto a gamma-corrected translucent
creen positioned over the subject’s head. Gamma-correction was ap-
lied using Mcalibrator2 ( Ban and Yamamoto, 2013 ; https://github.
om/hiroshiban/Mcalibrator2 ). Stimuli were presented on a full flat
creen (416 mm × 222 mm) at a spatial resolution of 1920 × 1200 and a
rame rate of 60 Hz. The screen was viewed via a mirror mounted over
he subject’s eyes. The viewing distance and visual angle of the screen
as 92 cm and 41.2° × 25.8°, respectively. 

We adapted two types of publicly available stimuli (M-type and P-
ype stimuli; Fig. 4 A) designed to elicit selective BOLD responses in
he M and P subdivisions ( Denison et al., 2014 ; https://github.com/
acheldenison/MPLocalizer ). The M-type stimulus was a 100% contrast,
lack–white grating with a low spatial frequency (0.5 cycles per degree)

https://www.cmrr.umn.edu/multiband/
http://psychtoolbox.org/
https://github.com/hiroshiban/Mcalibrator2
https://github.com/racheldenison/MPLocalizer
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nd higher flicker frequency (15 Hz). The P-type stimulus was a near-
soluminant red–green grating with higher spatial frequency (2 cycles
er degree) and lower flicker frequency (5 Hz). The orientation of the
rating (0°, 30°, 60°, 90°, 120°, or 150°) was changed every 3 s in a ran-
om manner. Prior to the fMRI experiment, we adjusted the luminance
f the P-type stimuli to make it perceptually isoluminant using a flicker
ethod ( Ives, 1912 ; Minami and Amano, 2017 ). 

We used a block design for the fMRI experiment in which each run
omprised 15 blocks (6 blocks for each of the M- and P-type stimuli and
 blocks with a blank screen). Each block was 20.25 s in duration (in-
luding 18 s for stimulus presentation and 2.25 s for the blank period,
uring which the subjects provided their responses). During each block,
ubjects were instructed to count the number of randomly presented tar-
ets, two-dimensional Gaussian contrast decrements within the stimuli,
hile maintaining fixation. A number of targets appeared during each
lock varied from 0 to 3. During the blank period, subjects reported
ow many targets they had seen during the previous stimulus block
y pressing a button out of four buttons (see Supplementary Materials
or the task performance results in the fMRI experiment). The subjects
ompleted 7–8 runs. This procedure and other details of the stimuli,
ask, and block design have been previously described ( Denison et al.,
014 ). 

.9. Functional MRI data analysis 

The fMRI data were analyzed using mrVista ( https://github.com/
istalab/vistasoft ). We registered the data onto T1w MRI data to enable
omparisons with other MRI datasets. We corrected the slice timing to
atch the multi-slice acquisition order. The data were then corrected for

he subject’s motion within and between scans. We fitted a general linear
odel consisting of predictors (M- and P-type stimuli were regressors)

onvolved with the hemodynamic response function ( Boynton et al.,
996 ) to the time course of each voxel. We used the Boynton hemo-
ynamic response function (HRF) to match the procedure in a previous
MRI study ( Denison et al., 2014 ). By fitting the HRF model to the time
eries of BOLD responses, we estimated the beta values for the M- and P-
ype stimuli. We then calculated the difference between them (beta M-P )
s follows: 

et a M−P = bet a M 

− bet a P (1)

We used beta M − P as an index for evaluating the stimulus selectiv-
ty of the LGN subdivisions identified by MTV. Since it is unlikely that
hysiological artifacts on BOLD signals can be different across differ-
nt types of visual stimulus presentation, this subtraction can minimize
he physiological artifacts on BOLD responses. We averaged the beta M-P 
cross all voxels in each LGN subdivision parcellated on the basis of
TV maps. Finally, we compared beta M-P between the MTV-based M

nd P subdivisions to evaluate the consistency between the stimulus se-
ectivity of the BOLD responses and MTV-based parcellation of the LGN
ubdivisions. 

.10. Test–retest reliability analysis 

To assess the reproducibility of the MTV measurements and MTV-
ased LGN parcellation, we remeasured MTV of 13 subjects (mean age,
3.85 years; 5 females). The data acquisition and analysis of MTV retest
ata were identical to those of the main experiment. We evaluated the
eproducibility of the MTV measurements within the LGN by calculat-
ng the intraclass correlation coefficient (ICC) of voxels between the test
nd retest data. In addition, we quantified the reproducibility of the
TV-based LGN parcellation by calculating the proportion of LGN vox-

ls classified into the same subdivisions using the test and retest data.
e evaluated the statistical significance of this proportion by compari-

on with a null distribution, which was obtained by shuffling the label-
ng of the M and P voxels 10,000 times and calculating the distribution
f the proportions of voxels classified into the same subdivisions using
6 
he test and shuffled data. Lastly, we performed a comparison between
he retest and BigBrain data using the same procedure as that used for
he test data. 

. Results 

We identified the whole LGN in individual subjects using PD-
eighted images and then used MTV maps ( Mezer et al., 2013 ) to iden-

ify the LGN subdivisions at the single-subject level in fifteen subjects.
he validity of MTV-based parcellation of human LGN was evaluated
y comparisons with histological data of a postmortem human brain
BigBrain; Amunts et al., 2013 ) and fMRI data collected from identical
ubjects. Furthermore, we tested the validity of LGN parcellation us-
ng data obtained from other types of structural MRI images. Finally,
e evaluated the test–retest reliability of the MTV-based parcellation of

he human LGN. 

.1. The LGN in PD-weighted images 

In each individual hemisphere, the position and shape of the whole
GN was visible in the PD-weighted images ( Fig. 1 A) as reported previ-
usly ( Viviano and Schneider, 2015 ). We asked raters to delineate the
hole LGN in all individual hemispheres by manually inspecting the
D-weighted images ( Fig. 1 A,B; see Materials and Methods). Supple-
entary Fig. S4 depicts the volume of the whole LGN in all individual
emispheres. The LGN volume identified from manual delineation on
igBrain histological data ( Amunts et al., 2013 ) and previous structural
RI studies ( Mcketton et al., 2014 ; Giraldo-Chica and Schneider, 2018 )

re also shown in Supplementary Fig. S4. 
We evaluated the consistency of LGN delineation between the two

aters. Dice coefficients of the LGN delineation by the two raters based
n PD-weighted images were 0.74 ± 0.005 and 0.78 ± 0.004 in the
eft and right hemispheres (mean and ± S . E.M across subjects), respec-
ively. Dice coefficients of the LGN delineation by the two raters based
n BigBrain data were 0.90 and 0.90 in the left and right hemispheres,
espectively. While the manual delineation of the LGN performed by the
wo raters was not identical, there was a large overlap between raters. In
ubsequent analyses, we used the LGN ROI delineated by the first rater
or the main analysis, and the delineation of the second rater confirmed
nter-rater consistency. 

Among the 15 subjects tested in this study, the mean ( ± S . E.M.)
olume of the whole LGN was 153.48 mm 

3 ± 2.32 mm 

3 and
58.40 mm 

3 ± 1.83 mm 

3 in the left and right hemispheres, respec-
ively. The LGN volume manually identified from PD-weighted images
as, on the whole, consistent with that obtained from BigBrain data

168.65 mm 

3 and 162.37 mm 

3 in the left and right hemispheres, respec-
ively) and previous MRI studies using similar PD-weighted images (Sup-
lementary Fig. S4; Mcketton et al., 2014 ; Giraldo-Chica and Schnei-
er, 2018 ). The right LGN was marginally significantly larger than the
eft ( d ′ = 0.61, t 14 = 2.14, 95% confidence interval [CI] = − 0.02–9.87,
 = 0.05, two-tailed paired t -test). Notably, the M and P subdivisions
ould not be identified through visual inspection of the PD-weighted
mage. 

.2. Identification of M and P subdivisions using the MTV fraction 

Next, we analyzed the MTV maps coregistered with the PD-weighted
mages for each individual subject ( Fig. 1 C). In brief, the MTV method
ims to quantify macromolecular tissue density by quantifying the pro-
on density based on structural MRI data acquired with different param-
ters. The measurement is then calibrated using voxels in the CSF, which
re fully filled with water, as a reference (see Materials and Methods for
etails). We note that in the dataset acquired in this study, MTV has suf-
cient sensitivity to identify known microstructural differences between
ubcortical structures (see Supplementary Materials and Supplementary
ig. S5 for MTV difference between pallidum and putamen). 

https://github.com/vistalab/vistasoft
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Fig. 3. Center positions of the MTV-based M and P subdivisions compared with BigBrain data. The panels depict the center positions for the M (magenta) and P 
subdivisions (green) in LGN (left panel, left LGN; right panel, right LGN). The horizontal and vertical axes represent the left–right and ventral–dorsal axes, respectively. 
The M and P subdivisions identified in a representative coronal slice using BigBrain data are inserted in each panel. The center positions were calculated in MNI 
coordinates and are plotted as a proportion of each subject’s entire LGN along a given axis. The filled circles and solid lines represent the spatial centers of the M and 
P subdivisions estimated from the MTV map in individual hemispheres. The open circles and dotted lines represent the spatial centers of the M and P subdivisions 
in a human histological dataset (BigBrain; Amunts et al., 2013 ). We found that the centers of the M voxels defined using the MTV were located more medially and 
ventrally than the P voxels in all hemispheres, which was consistent with the BigBrain histological data. 
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In all individual hemispheres, we observed gradual changes in MTV
ractions within the LGN ROIs ( Fig. 1 D); the dorsal–lateral part of the
GN exhibited a higher MTV fraction than the ventral–medial part.
e then parcellated the human LGN by incorporating prior knowledge

rom an anatomical study that demonstrated that the area of the P sub-
ivision is roughly four times larger than that of the M subdivision
 Andrews et al., 1997 ). Based on this knowledge, we classified 20% of
he voxels with the lowest MTV as belonging to the putative M subdivi-
ion and the remaining 80% as belonging to the putative P subdivision
 Fig. 2 ; see Supplementary Figs. S1 and S2 for results obtained from all
ubjects). We found that the voxels classified as part of the putative M
ubdivision appeared at the ventral–medial part, whereas those classi-
ed as part of the putative P subdivision appeared at the dorsal–lateral
art. We also note that these M and P subdivisions were observed as two
istinct clusters of voxels, which were highly continuous across slices in
ost hemispheres (Supplementary Figs. S1 and S2). 

.3. Validations of M and P subdivisions identified using MTV data 

We evaluated the validity of the MTV-based LGN parcellation by
omparing it with the publicly available histological data for human
GN subdivisions (BigBrain; Amunts et al., 2013 ; Supplementary Fig.
3). To do so, we calculated the centers of the coordinates among all of
he M and P subdivision voxels classified based on the MTV in all hemi-
pheres and compared them with those from the BigBrain data ( Fig. 3
nd Supplementary Fig. S6). Because voxels classified as belonging to
he M or P subdivision mostly formed distinct clusters in each individ-
al hemisphere (Supplementary Figs. S1 and S2), the spatial center was
 valid metric for comparisons with histological data. In the BigBrain
ata, the center of the M subdivision was located in the medial, pos-
erior, and ventral part of the LGN, while the center of the P division
as located in the lateral, anterior, and dorsal part (dashed lines and
pen circles in Fig. 3 , Supplementary Fig. S6). This spatial organization
f M and P subdivisions was in line with the prior human histological
GN study ( Selemon and Begovic, 2007 ). We found that the center of
he coordinates for the M and P subdivisions defined by the in vivo MTV
7 
ata showed a similar trend as that seen using the BigBrain data, and
his trend was well replicated across all subjects (solid lines and filled
ircles in Fig. 3 , Supplementary Fig. S6). In addition, the M and P subdi-
isions estimated by MTV showed a pattern consistent with those of the
igBrain data when we used the LGN ROI delineated by a second rater
Supplementary Fig. S7). Therefore, these results suggest that the LGN
ubdivisions identified using the MTV were in good agreement with the
natomical architecture defined using histological human LGN data. We
ote that when we classify voxels based solely on position (ventral 20%
f the voxels as the M subdivision; the remaining 80% as the P subdi-
ision), we could not obtain parcellation consistent with the BigBrain
ata (Supplementary Fig. S8). 

We also performed supplementary analyses to address how much re-
ults depend on the arbitrary choice of a fixed volume ratio between
 and P subdivisions ( Denison et al., 2014 ) by testing different ratios

Supplementary Fig. S9) or a fixed threshold value of MTV rather than
xed ratio between M and P subdivisions (Supplementary Fig. S10). The
enter of coordinates for the M and P subdivisions defined by both crite-
ia were consistent with those of the BigBrain data (see Supplementary
aterials). 

.4. MTV-based M and P subdivisions exhibited different visual stimulus 

electivity on fMRI 

In the above analysis, we tested the validity of our parcellation based
n the spatial arrangement of the M and P subdivisions. We further
ested whether the M and P subdivisions identified using MTV exhibited
he different visual stimulus sensitivities reported in previous macaque
nd human studies. Specifically, the M subdivision is more sensitive to
uminance contrast stimuli with lower spatial frequency and higher tem-
oral frequency but is less sensitive to chromatic stimuli; the P subdivi-
ion is more sensitive to chromatic stimuli with higher spatial frequency
nd lower temporal frequency but is less sensitive to luminance contrast
timuli ( Derrington and Lennie, 1984 ; Usrey et al., 2000 ; Denison et al.,
014 ; Zhang et al., 2015 ; Yu et al., 2016 ). Using fMRI, we measured
he BOLD responses to a pair of visual stimuli designed to differentially
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Fig. 4. MTV-based M and P subdivisions exhibit stimulus selectivity as reported in previous literature. (A) Stimuli used to test the functional selectivity of M and P 
subdivisions. Upper panel: An achromatic, low spatial, and high temporal frequency with high luminance contrast grating stimulus used to activate the M subdivision. 
Lower panel: A high color contrast, high spatial, and low temporal frequency with low luminance contrast grating stimulus used to activate the P subdivision. These 
stimuli were adapted from Denison et al. (2014) . (B) Stimulus selectivity measured by fMRI in the MTV-based M and P subdivisions ( top panel , left LGN; bottom panel , 
right LGN; N = 15 each). The vertical axis depicts the difference in the beta value between the M- and P-type stimuli (a positive value indicates higher sensitivity 
to M-type stimuli). The dots indicate data in individual hemispheres. The dark and light gray dots represent the measurements with 1.5 mm isotropic (S1–S10) and 
2.0 mm isotropic (S11–S15) voxels, respectively. The asterisks represent statistically significant differences in stimulus selectivity between the M and P subdivisions 
measured using the BOLD response (two-tailed paired t -test, ∗ : p < 0.0005). Details of the fMRI methods are described in Materials and Methods, Functional MRI data 

acquisition . 
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ctivate the M and P subdivisions ( Fig. 4 A; see Materials and Methods,
unctional MRI data acquisition). We examined the extent to which the
 and P subdivisions defined using MTV exhibited different stimulus

electivity in their BOLD response. 
We calculated the difference in the beta weights of the M- and P-

ype stimuli (Beta Mstim-Pstim 

; a positive value indicated that the BOLD
esponse was greater for the M-type stimuli) for the M and P subdi-
isions defined using the MTV in individual hemispheres ( Fig. 4 B). A
roup analysis showed a significant difference in the Beta Mstim-Pstim 

be-
ween the M and P subdivisions ( d ′ = 0.84, t 14 = 4.54, CI = 0.06–0.16,
 = 0.0005 for the left hemisphere; d ′ = 0.57, t 14 = 3.58, CI = 0.03–
.14, p = 0.003 for the right hemisphere, two-tailed paired t -test). This
onsistency with known stimulus selectivity in the M and P subdivi-
ions further supports the finding that MTV-based parcellation provides
8 
easonable in vivo identification of LGN subdivisions at the level of in-
ividual hemispheres. 

.6. Inter-subject variability in MTV fractions 

We examined whether the MTV fractions in the estimated M and
 subdivisions were consistent across the healthy subjects who partic-
pated in this study ( Fig. 5 ). The MTV fractions of the estimated M
ubdivision were 0.25 ± 0.003 and 0.24 ± 0.004 for the left and right
emispheres (mean ± S . E.M across subjects), respectively, whereas the
TV fractions of the estimated P subdivisions were 0.29 ± 0.003 and

.28 ± 0.003 for the left and right hemispheres, respectively. Therefore,
he inter-subject variability of the MTV fractions of each subdivision was
uch smaller than the mean difference between the M and P subdivi-
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Fig. 5. MTV fractions in the estimated M and P subdivisions were similar across all subjects. The vertical axis depicts the MTV fraction averaged across voxels within 
the M ( left panel , magenta) and P subdivisions ( right panel , green) in individual hemispheres. The dark and light bars indicate the MTV fractions of the left and right 
hemispheres, respectively. The horizontal dotted lines indicate the averages for each hemisphere across subjects. The MTV fractions in each subdivision were similar 
across 15 subjects. The error bars depict ± 1 standard deviation across the voxels. 
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ions in healthy subjects. Given the low variability in the measurements
cross the healthy population, MTV measurements of the LGN are re-
iable for use in evaluating how the LGN tissue in patients with, for
xample, eye disease deviates from that of control subjects. We describe
he inter-hemispheric differences in MTV of M and P subdivisions in the
upplementary Materials. 

.7. Parcellation using PD-weighted images and T1w/T2w ratio maps 

MTV is a useful method for obtaining quantitative measurements
f brain tissue properties ( Mezer et al., 2013 ; Duval et al., 2017 ;
erman et al., 2018 ). However, a number of studies have used other
ypes of MRI-based metrics, such as the ratio between T1w and T2w
mages (T1w/T2w ratio), to evaluate tissue properties. The acquisition
ime for these images is shorter, although the measurements are not
ully quantitative ( Glasser and Van Essen, 2011 ; Glasser et al., 2016 ).
herefore, we tested whether the M and P subdivisions can be similarly
arcellated using image intensities on non-quantitative structural MRI
cans to evaluate the potential advantages of the MTV-based approach.

We tested LGN parcellation using the intensities of the PD-weighted
mages ( Fig. 6 A), which were used to identify the whole LGN. Parcel-
ation was also investigated using the T1w/T2w ratio map, which has
ften been used in previous studies to parcellate cortical areas ( Fig. 6 B;
lasser and Van Essen, 2011 ). We found that parcellation using the PD-
eighted images and T1w/T2w ratio map appears to be less consistent
ith the BigBrain data in many cases ( Fig. 6 ); this contrasts with the
TV-based parcellation ( Fig. 3 ), in which the M subdivisions are located
ore medial and ventral than the P subdivisions in a consistent manner
ith the BigBrain data and a previous anatomical study ( Selemon and
egovic, 2007 ). 

We then quantified the degree of similarity between BigBrain and
RI-based parcellations (MTV, PD-weighted, and T1w/T2w) by calcu-

ating the cosine similarity of the vector connecting the spatial centers
f M and P subdivisions with those of the BigBrain data ( Fig. 6 C; see
aterials and Methods). In both hemispheres, MTV-based parcellation

howed high similarity with BigBrain data (0.92 and 0.84 for left and
ight hemispheres, respectively). The cosine similarity of PD-weighted
mage-based parcellation was 0.30 and 0.58 for the left and right hemi-
pheres, respectively, which was lower than that of MTV-based parcel-
ation although this difference reached statistical significance only in
he left hemisphere after Bonferroni correction ( d ′ = 2.92, t 14 = 7.84,
I = 0.45–0.79, p = 0.00002 for the left hemisphere; d ′ = 0.92,
9 
 14 = 2.46, CI = 0.03–0.49, p = 0.03 for the right hemisphere, two-tailed
aired t -test). The cosine similarity of the T1w/T2w ratio map-based
arcellation for the left hemisphere was 0.79, which was significantly
ower than that of the MTV-based parcellation ( d ′ = 1.23, t 12 = 3.43,
I = 0.04–0.19, p = 0.005, two-tailed paired t -test), whereas the cosine
imilarity of the T1w/T2w ratio map-based parcellation for the right
emisphere was 0.83, which was not significantly different from that
f the MTV-based parcellation ( d ′ = 0.04, t 12 = 0.07, CI = − 0.11–0.12,
 = 0.95, two-tailed paired t -test). We note that while we did not find
ignificant differences in the cosine similarity, the T1w/T2w ratio map-
ased parcellation in the right hemisphere appears to be inferior to the
TV-based parcellation in Fig. 6 B. This is because in seven subjects, the

osition of M center was lateral to the position of P center unlike the
patial organization of the subdivisions in the BigBrain data ( Fig. 6 B). 

While MTV is corrected for both radiofrequency transmitter (B 1 
+ )

nhomogeneity and receive-coil gain biases ( Mezer et al., 2013 ), the PD-
eighted map was not corrected for these biases. The T1w/T2w ratio
ap has been proposed as a proxy of myelin content, but it is not ex-
licitly corrected for B 1 

+ inhomogeneity ( Glasser and Van Essen, 2011 ;
hams et al., 2019 ). Therefore, the better parcellation using MTV than
hat using PD or T1w/T2w presumably originates from correction for
hese measurement biases. 

.8. Assessment of the partial volume effect as a potential confounder 

Because the LGN is surrounded by white matter and CSF ( Fig. 1 ),
t is possible that the partial volume effect on these surrounding tis-
ues may lead to bias in the MTV-based identification of the M and P
ubdivisions. To address this concern, we performed additional analy-
es excluding voxels within 1 mm (the resolution of MTV data) from
he LGN surface to minimize the partial volume effect in the surround-
ng tissue. We found that the consistency with BigBrain was reduced in
his analysis using the 1 mm criterion, such that 17 of 30 hemispheres
howed the same trend as the BigBrain data (Supplementary Fig. S11A),
uggesting that the partial volume effect may potentially influence the
esults. However, it is difficult to interpret the results of this analysis
ecause this analysis removed a large proportion of voxels (76.80% ±
.46% mean ± S . E.M across subjects) from the LGN ROI, which will cre-
te challenges for stable parcellation, regardless of the partial volume
ffect. 

We believe that the partial volume effect may not fully account for
he successful MTV-based parcellation because fMRI analysis using LGN
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Fig. 6. LGN subdivisions may not be identifiable from non-quantitative structural MRI maps. (A) LGN parcellation based on the image intensities of PD-weighted 
images. The centers of the M and P voxels vary across the hemispheres and are inconsistent with the LGN coordinates obtained using the BigBrain data. (B) LGN 

parcellation based on the image intensities of T1w/T2w maps. In most hemispheres, the centers of the M and P voxels along the left–right axis are inconsistent with 
those of the BigBrain data. The conventions are identical to those used in Fig. 3 . (C) Similarity of the vector connecting the spatial centers of the M and P subdivisions 
with that of the BigBrain data. The vertical axis represents cosine similarity in the coronal plane (left–right and ventral–dorsal axes) between BigBrain and MRI-based 
parcellation (MTV, light blue; PD-weighted, black; T1w/T2w, gray). The asterisk indicates a statistically significant difference ( p < 0.025, which is equal to p = 0.05 
after Bonferroni correction for two comparisons). The error bars indicate ± 1 S.E.M. 
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OI after the removal of LGN surface voxels showed that the differ-
nce in visual stimulus sensitivities between estimated M and P subdivi-
ions was preserved despite removing voxels (Supplementary Fig. S11B;
 ′ = 0.69, t 14 = 5.24, CI = 0.06–0.14, p = 0.0001 for the left hemi-
phere; d ′ = 0.23, t 14 = 2.23, CI = 0.002–0.08, p = 0.04 for the right
emisphere, two-tailed paired t -test). While the partial volume effect
an be a potential confounder, it may not fully explain the successful
TV-based parcellation (see Discussion). 

.9. LGN M and P subdivisions were robust across sessions on different 

ays 

We tested the test–retest reliability of the M and P parcellations by
erforming the same MTV measurement in 13 subjects on a different
ay. The MTV fractions of voxels within the LGN ROI were highly cor-
elated between the test and retest experiment (ICC(1,1) = 0.77; Fig. 7 A;
ee Supplementary Fig. S12 for results in individual subjects, see Mate-
ials and Methods). In calculating the probability that individual voxels
an be classified into the same subdivisions between the test and retest
xperiments, we demonstrated that 85.62% and 82.31% of voxels in the
eft and right LGN, respectively, were classified in the same subdivision
 Fig. 7 B; mean across subjects). To assess the statistical significance of
hese numbers, we randomly classified 80% of the voxels into the P sub-
ivision and the remaining 20% into the M subdivision to obtain a null
istribution. We repeated this process by shuffling the voxels 10,000
imes. The maximum probabilities of the voxels being classified into
he same subdivisions between the test and shuffled data were 71.73%
nd 71.55% for left and right hemispheres (mean across subjects), re-
pectively, suggesting that the test–retest reliability of MTV-based par-
ellation was highly significant ( p < 0.0005). Finally, using the retest
ataset, we replicated the results indicating that the centers of the M
nd P subdivisions showed the same spatial patterns as in the histolog-
10 
cal data ( Fig. 7 C; cosine similarity of MTV retest and BigBrain data,
eft = 0.93; right = 0.87). Taken together, these results support a con-
iderable degree of reproducibility for our results from the MTV-based
GN parcellation. 

. Discussion 

It is widely known that the human LGN consists of functionally and
natomically different subdivisions. However, identifying these subdi-
isions in individual living human brains using conventional structural
euroimaging methods had been challenging. In this study, we demon-
trated the approximate parcellation of LGN subdivisions at the single-
ubject level by combining in vivo structural MRI methods (multiple PD-
eighted imaging and MTV measurement). The spatial positions of the

dentified LGN subdivisions were consistent with those identified using
istological data ( Amunts et al., 2013 ). Furthermore, using fMRI, we
onfirmed that these subdivisions exhibit different stimulus selectivity,
hich is consistent with the findings of previous physiological studies.
inally, we confirmed that MTV-based LGN parcellation is highly con-
istent across datasets acquired on different days, suggesting that the
roposed method is highly reproducible. Other non-quantitative struc-
ural MRI methods did not provide LGN parcellation consistent with
istological data. Taken together, this study provides evidence of the
tility of this quantitative structural MRI approach to LGN parcellation
nd establishes methods of measuring the structural properties of hu-
an LGN subdivisions in single living human subjects using a clinically

easible 3T MRI scanner. 

.1. Microstructural origin of MTV-based parcellation 

Our results demonstrated that the MTV fraction can be a useful
easurement for distinguishing M and P subdivisions. One might ask
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Fig. 7. Test–retest reproducibility of MTV-based parcellation. (A) Two-dimensional histogram comparing the MTV measurements across days in LGN voxels (horizon- 
tal axis, 1st day; vertical axis, 2nd day). The data are derived from LGN voxels pooled across subjects, who participated in the retest scans ( n = 13; see Supplementary 
Fig. 12 for plots of individual subjects). The color map indicates the number of voxels. The intraclass correlation coefficient (ICC) of MTV measurements across days 
was 0.77. This high correlation coefficient indicated that the MTV measurements were reproducible across days. (B) Reproducibility of classification. The vertical 
axis depicts the probability that individual voxels were classified into the same LGN subdivisions between the test and retest dataset. The individual dots depict the 
results in individual hemispheres. The dotted lines depict the maximum probability of voxels being classified into the same subdivisions when randomly replacing 
the labels of subdivisions (M and P) among all voxels for 10,000 times. (C) The centers of the coordinates for the M and P subdivisions identified with MTV-based 
parcellation using the test (1st day) and retest (2nd day) datasets of subjects (filled circles and solid lines) who participated in the retest MTV measurement ( n = 13). 
We replicated the results on the centers of M and P subdivisions in a consistent manner with those in BigBrain data ( Amunts et al., 2013 ; open circles and dotted 
line). The plot of the test dataset was identical to Fig. 3 except for the number of subjects. The conventions are identical to those used in Fig. 3 . 
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hat types of microstructural differences lead to MTV differences be-
ween M and P subdivisions. In principle, the MTV quantifies non-
ater macromolecular volumes on the basis of calibrated quantitative
D maps ( Mezer et al., 2013 ). Phantom experiments confirmed that
TV measurements correlate with the lipid fraction ( Mezer et al., 2013 ;

ilo et al., 2019 ; Shtangel and Mezer, 2020 ). However, there is no es-
ablished theory on how much MTV variance in a particular brain area
an be explained by specific types of microstructural properties. A num-
er of histological studies on non-human primates reported differences
n anatomical properties between M and P subdivisions, such as the
igher neuronal cell density ( Hassler, 1966 ; Yücel et al., 2000 , 2003 )
nd greater myelin content in the P subdivision ( Pistorio et al., 2006 ).
 recent post-mortem human study confirmed these properties ( Müller-
xt et al., 2021 ). These results are in line with our results showing a

arger MTV fraction in the P subdivision than in the M subdivision, since
oth a larger number of cells and greater myelin content will result in a
arger lipid volume fraction. It is also possible that other neurobiological
actors, such as glial cell density, partly explain the difference in MTV
etween the M and P subdivisions. This remains an open question for
uture investigations that compare quantitative MRI data with several
ifferent types of histological data registered in the same coordinate
pace ( Alkemade et al., 2022 ) or that generate synthetic quantitative
RI data from histology data ( Schurr and Mezer, 2021 ). 

.2. Advantage of MTV-based parcellation over other structural MRI 

ethods 

In standard practice, many neuroimaging studies have utilized T1w
nd/or T2w images to locate cortical areas or subcortical nuclei. While
he relative values in these images are useful for identifying the bor-
ers between gray and white matter, their absolute values cannot be
nterpreted as being quantitative, because the measurements are af-
ected by multiple sources of inhomogeneity such as B 1 

+ inhomogeneity
r coil gain bias. Recent developments in quantitative MRI have en-
bled the quantification of MRI parameters, which allows the compar-
son of brain tissue properties between human subjects ( Mezer et al.,
013 ; Weiskopf et al., 2015 ; Forstmann et al., 2016 ; Keuken et al.,
017 ; Cercignani et al., 2018 ). These quantitative MRI measurements
ave provided valuable insights into the tissue properties of cortical
reas ( Sereno et al., 2013 ; Lutti et al., 2014 ; Carey et al., 2018 ) and
hite matter ( Stüber et al., 2014 ; Schurr et al., 2018 ; Takemura et al.,
019 ). 

Mezer et al. (2013) proposed MTV methods and demonstrated con-
istency of MTV measurements with lipid volume fractions in a phan-
om, high test–retest reproducibility, and sensitivity for white matter
issue changes in patients with multiple sclerosis. A strong advantage of
his method is its independence from the static magnetic field strength,
ince it is based on PD measurements calibrated by assuming that the
ater fraction in CSF voxels is 100%. In fact, Mezer et al. (2013) demon-

trated that MTV measurements in the brain are consistent across mea-
urements performed using different types of hardware. Therefore, we
hose MTV mapping as a potential method for parcellating the human
GN because it is relatively independent of hardware choices and thus
seful for future clinical studies. 

We found that MTV enabled the parcellation of the LGN in a con-
istent manner to that seen using histological data ( Fig. 3 ), and subdi-
isions identified by MTV exhibited stimulus selectivity that was con-
istent with previous physiological studies ( Fig. 4 ). MTV-based parcel-
ation was superior to parcellation based on non-quantitative structural
RI maps (PD-weighted images or T1w/T2w maps; Fig. 6 ). This is most

ikely because the MTV was corrected for B 1 
+ inhomogeneity, while the

ther maps were not. While the T1w/T2w map has been demonstrated
o enhance tissue contrast and thus be useful for delineating borders be-
ween brain areas ( Glasser and Van Essen, 2011 ) and has advantages in
erms of shorter acquisition time, several studies demonstrated incon-
istencies between T1w/T2w and quantitative MRI measurements that
12 
ere more sensitive to myelin ( Arshad et al., 2017 ; Hagiwara et al.,
018 ; Uddin et al., 2018 ). These inconsistencies are most likely due
o the fact that T1w/T2w images are not calibrated for B 1 

+ inhomo-
eneity ( Glasser and Van Essen, 2011 ). While we have not excluded
he possibility that ad-hoc B 1 

+ bias field correction ( Glasser et al.,
013 ) may improve LGN parcellation using T1w/T2w images, our re-
ults demonstrated that MTV-based LGN parcellation performed better
han T1w/T2w-based LGN parcellation, at least in the left hemisphere,
ost likely because of the superior calibrations for B 1 

+ inhomogeneity
n the LGN. 

.3. Comparison with fMRI-based LGN parcellation 

A few fMRI studies have examined the spatial pattern of visually
voked BOLD signals in the LGN ( Denison et al., 2014 ; Zhang et al.,
015 ). These studies demonstrated that clusters of LGN voxels pref-
rentially respond to distinct types of visual stimuli, which was con-
istent with neurophysiological findings, suggesting that an approxi-
ate identification of the LGN subdivisions in living humans can be

chieved using fMRI-based measurements of visual stimulus sensitivi-
ies. Quantitative structural MRI-based parcellation methods as shown
n this study have several advantages compared with fMRI-based par-
ellation methods. First, the fMRI-based methods require a precise con-
rol of visual stimuli, which involves the presentation of isoluminant
timuli to selectively activate P subdivisions ( Denison et al., 2014 ); this
s unnecessary when using the structural MRI-based methods. Further-
ore, the use of visual stimuli limits the application of LGN parcel-

ation methods in clinical studies of patients with visual field loss or
hen using MRI scanners without visual stimulus presentation equip-
ent. Second, structural MRI-based methods are more spatially precise,

ince the voxel size for MTV measurements (e.g., 1 mm isotropic vox-
ls in this study) is generally smaller than those used in fMRI experi-
ents (e.g., 1.8 × 1.8 × 1.5 mm for 3T or 1.2–1.5 mm isotropic voxels

or 7T in Denison et al., 2014 ). When using fMRI, large veins passing
hrough multiple voxels can limit the spatial specificity of the BOLD sig-
al ( Uluda ğ and Blinder, 2018 ; Kay et al., 2019 ). Therefore, our methods
re advantageous in terms of spatial precision. Finally, MTV-based par-
ellation has higher test–retest reliability across days ( Fig. 7 ) compared
ith that reported previously in an fMRI study ( r < 0.4; Denison et al.,
014 ). Therefore, MTV-based parcellation provides more stable identi-
cation of M and P subdivisions in individual living human brains. We
ote that fMRI-based identification of LGN subdivisions may be advan-
ageous for coregistration to other functional maps compared with struc-
ural MRI-based methods because the image distortions are more similar
etween functional images than between structural and functional im-
ges. As fMRI-based methods are sure to improve ( Huber et al., 2018 ;
ay et al., 2020 ), it is expected that the accuracy for dissociating BOLD
ctivity between the M and P subdivisions will increase. 

On a separate note, one could argue that the positive Beta Mstim-Pstim 

n the P subdivision observed in the fMRI experiment ( Fig. 4 ) is counter-
ntuitive as neurons in the P subdivision should be more responsive to
-type stimuli. However, this result is consistent with a previous fMRI
tudy using the same stimuli ( Denison et al., 2014 ). We speculate that
arger responses to M-type stimuli in P subdivisions may occur since
00% black–white luminance contrast stimuli (M-type stimuli) elicit
ery strong BOLD responses in general ( Boynton et al., 1996 ). This idea
s consistent with the findings of an electrophysiological study on the
acaque LGN, which showed that, although P neurons have a lower

ontrast sensitivity than M neurons, the responses of P neurons increase
s the luminance contrast increases ( Derrington and Lennie, 1984 ). Al-
hough we might have obtained a more balanced response profile be-
ween the M-type and P-type stimuli if we lowered the luminance con-
rast of the M-type stimuli, such stimulus manipulation may limit the
ignal-to-noise ratio of BOLD responses evoked by the M-type stimuli.
he optimization of visual stimulation protocols for LGN fMRI is thus
n open question that should be resolved in future fMRI studies. 
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.4. Related study 

A recent study evaluated histological and quantitative T1 (qT1) MRI
easurement on ex vivo human LGN sections ( Müller-Axt et al., 2021 ).
heir histological examination showed that cell and myelin densities
re higher in P subdivisions than M subdivisions. They then demon-
trated that high-resolution ex vivo qT1 measurements within the LGN
an be used to classify M and P subdivisions. In addition, they acquired
tructural MRI data from living human brains using the MP2RAGE se-
uence and demonstrated that they can identify M and P subdivisions
sing the LGN population atlas averaged across subjects in a com-
on reference space. This result is consistent with our study show-

ng LGN-based parcellation based on in vivo MTV measurements using
T MRI. 

There are several differences between our work and Müller-
xt et al. (2021) . First, Müller-Axt et al. (2021) and this study per-

ormed different types of validation. While Müller-Axt et al. (2021) com-
ared high-resolution ex vivo qT1 mapping with multiple histolog-
cal measurements, we compared MTV-based parcellation with Big-
rain and fMRI-based stimulus selectivity measurements. These differ-
nt types of comparisons performed in Müller-Axt et al. (2021) and our
tudy provide comprehensive anatomical and physiological evidence on
he validity to use quantitative structural MRI measurements to iden-
ify human LGN subdivisions. Second, we used 3T MRI while Müller-
xt et al. (2021) used 7T MRI. The value of this study is to demon-
trate feasibility of structural MRI-based LGN parcellation in 3T, which
s a more broadly accessible system for many investigators and closer
o the clinical system. Taken together, Müller-Axt et al. (2021) and the
resent study provide complementary evidence on the utility of quan-
itative structural MRI method to estimate LGN subdivisions in living
uman brains. 

.5. Limitations and future directions 

In this study, we classified voxels into M and P subdivisions using
xed volumetric ratios or a fixed threshold value based on MTV data
ooled across subjects (Supplementary Fig. S10). Given that the volu-
etric ratio has some individual differences ( Andrews et al., 1997 ) and

an be different in some populations (e.g., patients with eye diseases),
his procedure limits the applicability of MTV-based LGN parcellation to
linical populations. For this reason, it would be more ideal to classify
he LGN voxels into M and P subdivisions by fitting a mixture model
omposed of two curves with distinct peaks to the distribution of the
TV fractions in each individual LGN without using any anatomical

ssumptions. However, this approach was not practical in this study be-
ause the MTV-based distribution of the LGN voxels in our in vivo data
id not show two distinct peaks or skewed distributions corresponding
o the M and P subdivisions (Supplementary Fig. S13). High-resolution
x vivo macaque magnetization transfer ratio (MTR) data (see Supple-
entary Materials and Supplementary Fig. S14) shows a skewed distri-

ution of MTR values, with a longer tail for a lower MTR (which corre-
ponds to M subdivision). This skewed distribution may be more consis-
ent with that observed in a previous high-resolution ex vivo MRI study
n the human brain ( Müller-Axt et al., 2021 ). Therefore, if we could
chieve MTV data acquisition with much higher spatial resolution in
uture work, one could expect a more skewed distribution and possibly
wo peaks of MTV in the LGN. For such a high-resolution dataset, the
se of curve fitting to identify the M and P subdivisions may be practical
s demonstrated in Müller-Axt et al. (2021) . 

The limited spatial resolution of the in vivo MTV data acquisition may
ave impacted the results and needs consideration. First, we could not
ully exclude the partial volume effect of neighboring tissues and CSF as
 potential confounder. However, the partial volume effect alone did not
ully explain the results (Supplementary Fig. S11). Second, in some sub-
ects, the MTV-based parcellation failed to identify the anterior part of
he M subdivision, which was visible in BigBrain (Supplementary Figs.
13 
1–S3). This is likely because the anterior part of the M subdivision is
mall (Supplementary Fig. S15) and thus difficult to identify at the cur-
ent spatial resolution. Therefore, improving spatial resolution will be
ssential for reducing a partial voluming effect and improving the ac-
uracy of identifying the M subdivisions. In addition, thin koniocellular
ayers (K layers) are known to exist between each layer of the M and P
ubdivisions in the LGN ( Guillery and Colonnier, 1970 ). Previous histo-
ogical studies have indicated that the K layers have distinct anatomical
roperties compared with those in the M and P subdivisions ( Hendry and
eid, 2000 ). Considering the location of K layers, the MTV fractions in
any LGN voxels are likely to be affected by partial volumes between

he K layers and M or P subdivisions. Therefore, part of the variance in
he structural measurements may be affected by the anatomical proper-
ies of the K layers. 

The MTV-based parcellation method proposed in this work has a
elatively long acquisition time (60–90 min and 28 min for the PD-
eighted image and quantitative structural MRI, respectively). This

aises challenges in the application of this method to clinical routines.
owever, because the acquisition of all MRI data seems unnecessary to
btain reasonable MTV-based parcellation (see Supplementary Figs. S16
nd S17 for the results when reducing the number of data used for anal-
ses of MTV and PD-weighted image, respectively), performing studies
n patients or larger numbers of healthy subjects using this method is
ot fully impractical. 

This study focused on validating single-subject analyses of MTV-
ased parcellation of LGN subdivisions. To this end, we acquired data
rom 15 young adult subjects, to achieve acquisition of multiple types
f data (fMRI and retest data) in the same individuals and to minimize
ndividual variabilities derived from aging. On the other hand, since a
revious study showed age dependency of the LGN volume ( Li et al.,
012 ), it is important to extend this work by acquiring MTV data from
 relatively large sample of aging populations to reveal how aging may
mpact the microstructural properties of the LGN subdivisions. 

The MTV method itself may have room for improvement. For exam-
le, while the MTV method aims to minimize the T2 ∗ effect by using a
hort TE ( Mezer et al., 2013 , 2016 ), it is possible that some T2 ∗ effect
ay still be present in the MTV maps. In the future, it is important to

nvestigate the extent to which the removal of T2 ∗ contributions from
TV maps may affect MTV-based LGN parcellation by acquiring data

sing multiple TEs ( Abbas et al., 2015 ). 
Despite the aforementioned limitations, an extension of MTV-based

GN parcellation methods proposed in this work may open opportuni-
ies for future clinical and neuroscience studies since it enables mea-
urement of the LGN in living humans and thus can be analyzed to-
ether with other clinical, behavioral and functional measurements. Po-
ential applications may include comparisons between tissue properties
f the M subdivisions and deficits of visual motion discrimination perfor-
ance observed in clinical populations such as glaucoma and dyslexia

 Chase and Jenner, 1993 ; Felmingham and Jakobson, 1995 ; Demb et al.,
998 ; Stein, 2001 ; Main et al., 2014 ; Maddess et al., 1992 ; Cello et al.,
000 ) by acquiring MTV data with psychophysical or clinical data from
he same individual subjects. Alternatively, one can also investigate the
ovariance of MTV between LGN subdivisions and other parts of the vi-
ual system to learn how different parts of the visual system mature to-
ether during the development of living humans ( Andrews et al., 1997 ;
iyata et al., 2022 ). However, at this point, there is a caveat in us-

ng a proposed MTV-based parcellation method relying on fixed volume
atio between M and P subdivisions to clinical populations, since such
atio itself may be affected by disorders. Therefore, addressing these fu-
ure research questions may require further improvements on methods,
hich enables data acquisition with higher spatial resolution and data
nalysis without prior assumptions of volumetric ratio between subdivi-
ions. We hope that extensions of this study will provide more concrete
ethods to investigate how the properties of LGN subdivisions are re-

ated to the organization, functions, and disorders of the human visual
ystem. 
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. Conclusion 

We propose a method to identify M and P subdivisions of LGN in in-
ividual living humans by combining two structural MR measures: high-
esolution PD-weighted images and MTV maps. MTV measurements
ithin the LGN showed a consistent pattern with the previously known
natomical differences between the M and P subdivisions in ex vivo hu-
an and non-human primate brains. Moreover, we demonstrated the

alidity of the method to identify M and P subdivisions based on MTV
n each individual brain, by showing that: (1) the locations of the de-
ned M and P subdivisions were consistent with that from a postmortem
uman brain, (2) the defined M and P subdivisions showed significantly
ifferent stimulus selectivities in a consistent manner with the known
unctional difference between these subdivisions, and (3) the M and P
ubdivisions were robustly identified using remeasured MTV data. This
ethod will open an avenue for direct comparisons of LGN subdivision
roperties with behavioral or functional data or evaluating the conse-
uence of visual disorders on LGN tissue properties using a widely ac-
essible 3T MRI system. 
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