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Diffusion MRI (dMRI)-based tractometry is a non-invasive neuroimaging method for evaluating white 
matter tracts in living humans, capable of detecting abnormalities caused by disorders. However, 
measurement noise in dMRI data often compromises the signal quality. Several denoising methods 
for dMRI have been proposed, but the extent to which denoising affects tractometry metrics of white 
matter tissue properties associated with disorders remains unclear. We evaluated how denoising 
affects tractometry along the optic tract (OT) in patients with glaucoma. Because glaucoma damages 
retinal ganglion cells, the OT in patients with glaucoma is likely to exhibit tissue abnormalities. 
Therefore, we examined dMRI data from patients with glaucoma to evaluate how two widely used 
denoising methods (MPPCA and Patch2Self) affect tractometry metrics regarding the expected tissue 
changes in the OT. We found that denoising affected the appearance of diffusion-weighted images, 
increased the estimated signal-to-noise ratio, and reduced residuals in voxelwise model fitting. 
However, denoising had a limited impact on the differences in tractometry metrics of the OT between 
patients with glaucoma and controls. Moreover, we found no evidence that denoising improved the 
reproducibility of tractometry. These findings suggest that the current denoising methods have a 
limited impact when used together with a tractometry framework.
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Vision is an essential sensory modality for humans as it provides vital information for avoiding collisions, finding 
food, and communicating with others. Vision impairment significantly reduces the quality of life1 and increases 
the risk of death2. Glaucoma is a leading cause of visual loss in modern aging societies because its prevalence rate 
is higher in elderly populations3. Therefore, an accurate understanding of the impact of glaucoma on the nervous 
system, including white matter pathways that carry visual signals, is important4.

Diffusion-weighted MRI (dMRI)-based tractometry is a non-invasive neuroimaging method for quantifying 
the degree of tissue abnormalities along a specific white matter tract in living humans5,6 (Fig. 1). Although this 
approach has proven useful for identifying tissue changes caused by glaucoma7, its clinical application is limited 
by measurement noise, such as thermal noise during dMRI acquisition8. Researchers have developed denoising 
methods for dMRI data by using either principal component analysis (PCA)-based9,10 or machine learning 
approaches11–13. These methods identify “noise” in dMRI data based on expected characteristics of noise or 
random fluctuations, and subsequently remove identified noise from original images to generate “denoised” 
dMRI data.

Nonetheless, previous neuroimaging research has highlighted the potential risk that denoising methods may 
remove true signals or introduce unwanted biases14. This poses a serious issue when applied to understanding 
clinical disorders. Therefore, establishing the extent to which different denoising techniques alter the data is 
critical for both basic and clinical science. However, assessing their impact on in vivo human dMRI is challenging, 
given that the ground truth of true signals versus noise is unknown. Prior studies have evaluated dMRI denoising 
by analyzing datasets with simulated noise10, visual inspection of the image quality10, quantifying residual 
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in voxelwise model fitting12, and the geometry of tractography in a single tract12. While these approaches 
contribute to understanding the impact of denoising, they did not individually address the extent to which 
denoising affects tractometry metrics for detecting neurobiological tissue changes caused by disorders, such as 
glaucoma in empirical dMRI data.

In this study, we assess how denoising applied to dMRI data affects the ability of tractometry to detect optic 
tract (OT) damage in patients with glaucoma. As glaucoma is a disorder that damages retinal ganglion cells and 
the optic nerve4, it likely affects OT tissues, which comprise axons from these cells. Multiple research groups 
have reported that dMRI and tractometry can detect tissue changes along the OT in patients with glaucoma15–18. 
Therefore, if denoising improves the ability of tractometry to identify white matter tissue abnormalities, it would 
be easier to distinguish data acquired from patients with glaucoma and controls after denoising. We re-analyzed 
dMRI data acquired from patients with glaucoma and controls18 and compared the tractometry results on this 
dataset with and without the application of two widely used denoising methods (Fig. 1; MPPCA10, Patch2Self12). 
We also quantified how denoising affected voxelwise model fitting, the estimated signal-to-noise ratio (SNR) of 
the image, and the scan-rescan reliability of tractometry on the OT.

Methods
Dataset
We analyzed a dataset presented in a previous study18. Below, we briefly describe the details of the dataset.

Subjects
We analyzed T1-weighted structural images and dMRI data acquired from 17 patients with glaucoma (mean 
age = 56.6 years, age range = 24–72, 8 females) and 30 healthy controls with normal visual function (mean 
age = 51.4 years, age range = 36–71, 14 females). All subjects were recruited from the Tokyo area, Japan. Data 
acquisition and analysis were approved by the ethics committees of the Jikei University School of Medicine, 
Tamagawa University, and the National Institute for Physiological Sciences. All subjects provided written 
informed consent. All methods were performed in accordance with relevant guidelines and regulations. All 
patients were diagnosed with primary or secondary open-angle glaucoma by experienced ophthalmologists at 
the Department of Ophthalmology, Jikei University School of Medicine. Detailed information on the clinical 
features is available in a previous publication18. Information regarding comorbidities, pharmacological profiles, 

Fig. 1. Schematic diagram of the data processing pipeline for dMRI-based tractometry approaches. In 
common practice, after acquiring dMRI data (left top panel), researchers may apply denoising algorithms 
on the dMRI dataset. We compared the analysis results with (purple) and without denoising (yellow) while 
keeping the subsequent processing procedure the same. dMRI data are then typically preprocessed to correct 
for susceptibility- and eddy-current distortions19,20. After preprocessing, researchers fit voxelwise diffusion 
models (diffusion tensor imaging, DTI; neurite orientation and dispersion imaging, NODDI) to dMRI data in 
each voxel to quantify white matter microstructural properties. Tractography is used to identify a white matter 
tract of interest (in this study, the optic tract; green in the left bottom panel). Researchers can then calculate a 
tract profile5,6, which is a summary of voxelwise measurements along the tract (bottom middle figures). Finally, 
these tract profiles were averaged along the spatial position along the tract to obtain a single-number summary 
per subject, for each metric and tract. We compared these metrics per subject between data with and without 
denoising.
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and types of treatments was unavailable in the original dataset; therefore, we could not consider these factors in 
this study.

Visual field test
All patients with glaucoma underwent visual field testing using the Humphrey Field Analyzer (HFA) with the 
24 − 2 or 30 − 2 Swedish Interactive Thresholding Algorithm (SITA) Standard (Carl Zeiss Meditec, Dublin, CA, 
USA). The HFA results of all patients were quantified in units of mean deviation from healthy populations.

MRI data acquisition methods
MRI data were acquired using a 3T MAGNETOM Trio, Tim System with a 32-channel head coil (Siemens, 
Erlangen, Germany) at the Tamagawa University Brain Science Institute in Machida, Japan.

 T1-weighted structural images were acquired from all subjects using magnetization and prepared rapid 
acquisition with gradient echo (MPRAGE) sequence with 1 mm isotropic voxels (repetition time [TR], 2000 
ms; echo time [TE], 1.98 ms; in-plane acceleration [generalized autocalibrating partially parallel acquisitions; 
GRAPPA21, 2; see Supplementary Table S1 for T1-weighted structural data acquisition parameter details).

dMRI images were acquired from all subjects using single-shot spin-echo, echo planar imaging with multiple 
b-values22 (EPI; 32 directions with b = 700 s/mm2; 64 directions with b = 2000 s/mm2; 1.7 mm isotropic voxels; 
TR, 4500 ms; TE, 94 ms; in-plane acceleration [GRAPPA], 2; multiband factor, 3; phase partial Fourier, 6/8; 
diffusion scheme, monopolar; see Supplementary Table S2 for dMRI acquisition parameter details) implemented 
in a multiband-accelerated EPI pulse sequence provided by the Center for Magnetic Resonance Research, 
Department of Radiology, University of Minnesota (https://www.cmrr.umn.edu/multiband/)23. In addition to 
diffusion-weighted images, 12 low b-value (b = 0  s/mm2) images were obtained. Two dMRI image sets were 
acquired with reversed phase-encoding directions (anterior-posterior and posterior-anterior) to correct 
susceptibility-induced distortion during preprocessing. These two image sets were also used to quantify the 
scan-rescan reliability of tractometry.

Data analysis
dMRI data denoising
We employed two widely used denoising approaches. One was the MPPCA method10 implemented in the 
“dwidenoise” command of the MRTrix324 ( h t t p s :  / / m r t r  i x . r e a  d t h e d o  c s . i o  / e n / d e  v / r e f e  r e n c e /  c o m m a n d s / d w i d e n 
o i s e . h t m l). This method uses the Marchenko-Pastur (MP) distribution to define noise in dMRI dataset and 
performs PCA-based denoising. The other was Patch2Self12, which is distributed as part of the DIPY toolbox25 ( h 
t t p s :  / / d o c s  . d i p y .  o r g / s t  a b l e /  e x a m p l  e s _ b u i  l t / p r e  p r o c e  s s i n g /  d e n o i s  e _ p a t c  h 2 s e l f . h t m l). Patch2Self is a  s e l f - s u p e r v i s 
e d learning method that does not assume that signal characteristics correspond to noise; instead, it aims to learn 
random fluctuations in four-dimensional dMRI data and then builds a regressor to remove these fluctuations in 
each three-dimensional volume.

We applied one of these methods to the dMRI dataset before preprocessing, using the default parameters 
of each command. Subsequently, the dMRI data with and without denoising were preprocessed using identical 
procedures.

dMRI data preprocessing
The dMRI data were preprocessed using the TOPUP and EDDY tools in FSL to correct for susceptibility-
induced distortions, eddy-current induced distortions, and subject’s motion19,20. Subsequently, the dMRI data 
were co-registered with T1-weighted structural MRI data acquired from the same subject. Further details on the 
preprocessing methods are described in the original study18.

Fitting voxel-wise models
Diffusion tensor imaging (DTI) We fitted the diffusion tensor model to the preprocessed dMRI data to calcu-
late the fractional anisotropy (FA) and mean diffusivity (MD)26–28 using iterated weighted least-squares algo-
rithms implemented in MRTrix329.

Neurite orientation dispersion and density imaging (NODDI) We also fitted NODDI30 to the dMRI data to 
estimate the intracellular volume fraction (ICVF) and orientation dispersion index (ODI) using the NODDI 
MATLAB toolbox ( h t t p : / / m i g . c s . u c l . a c .  u k  /  i n d e x   . p h  p ?   n = T u t o  r i  a l .  N O D D I m a t l a b).

Tractography
The OT and optic radiation in each subject were identified in a previous study18 using probabilistic tractography 
(ConTrack31) on the dMRI data without denoising. In brief, we identified the optic chiasm, lateral geniculate 
nucleus, and primary visual cortex from structural T1-weighted images and used these areas as seed regions for 
tractography. We then generated streamlines connecting these regions and selected streamlines based on the 
scoring process implemented in ConTrack. Additionally, we applied an outlier streamline rejection procedure 
proposed in a previous study6. The detailed procedures for tractography and their anatomical validity have been 
described previously18,32 (see Supplementary Table S3 for tractography parameters).

We used the OT and optic radiation identified from the dMRI data without denoising to perform a subsequent 
tract profile analysis on data with denoising, ensuring consistent voxel selection across all cases.

Calculating tract profiles
We used the Automated Fiber Quantification (AFQ) MATLAB toolbox6  (   h t t p s : / / g i t h u b . c o m / y e a t m a n l a b / A F 
Q     ) to calculate tract profiles representing tissue properties along the OT and optic radiation. In brief, after 
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resampling the streamlines into 100 nodes, the tissue properties (FA, MD, ICVF, and ODI) were calculated at 
each node. These metrics were summarized using a weighted average based on the distance between the tract 
core and each voxel. We excluded the first and last 10 nodes from each tract to minimize the impact of crossing 
with superficial white matter and partial volume effect with gray matter. The data from the remaining 80 nodes 
were averaged to produce a single-number summary of each metric for each subject. Additionally, the data from 
the left and right hemispheres were averaged. Finally, the data from the two dMRI image sets were averaged for 
analyses, except for the scan-rescan reliability analysis, which aimed to quantify the consistency between the 
sets.

Assessment of image appearance and estimated SNR
We assessed the impact of denoising (MPPCA and Patch2Self) on dMRI image quality using two strategies. 
First, we visually inspected diffusion-weighted images with and without denoising (Fig. 2). We also calculated 
the difference map by subtracting the data with denoising from the data without denoising, allowing for visual 
characterization of the impact of each denoising method.

Second, we investigated the impact of denoising on the estimated SNR. Accurately estimating the SNR for 
diffusion-weighted images is challenging because diffusion signals are represented as decreased image intensity 
and vary when a motion probing gradient is applied with different orientations. In this dataset, diffusion-
weighted images were not acquired twice with identical gradient directions and acquisition parameters, making 
it difficult to calculate the SNR based on the variability across multiple scans. Therefore, we estimated the SNR 
using low b-value images acquired multiple times in a single run. We applied the following formula to calculate 
the SNR33–35:

 SNR =
√

2 × SI (first image) / SD (subtracted image) (1)

where SI (first image) is the mean signal intensity of the first low b-value image within the OT, and SD (subtracted 
image) is the standard deviation of the signal intensity differences between the first and second low b-value 
images within the OT. Using this method, we estimated the SNR of the low b-value images in the OT of each 
subject by pooling the OT voxels from the left and right hemispheres. Finally, we compared the SNR of the OT 
between the data with and without MPPCA. We did not evaluate Patch2Self because it does not apply denoising 
to low b-value images, indicating that no SNR impact was expected. Data visualization was performed using a 
function that generates violin plots in MATLAB36 (https://zenodo.org/records/4559847).

Quantification of the impact of denoising on voxelwise model fitting
We quantified the effect of denoising on the fitting of voxelwise models (DTI and NODDI) on diffusion signals 
in the OT.

Based on previous studies37,38, we used the root mean squared error (RMSE) for the DTI:

 
RMSE =

√∑
n
i=1

(ŷi − yi)
n

 (2)

where ŷi represents the signals estimated by fitting the DTI in the voxel i, yi represents the measured signals, 
and n represents the number of voxels in the OT for each subject.

For NODDI, we used the Rician log-likelihood (log L):

 
log L =

∑
n
i=1

[
log

xi

σ 2 − x2
i + s2

2σ 2 + logI0

(
xis

σ 2

)]
 (3)

where xi represents the measured signal in voxel i, s represents the signal estimated by NODDI, σ  represents 
the estimated standard deviation of the noise, and I0 represents the modified Bessel function. This metric was 
chosen because it does not assume Gaussian noise, which may not directly apply to NODDI, which uses non-
Gaussian biophysical models.

For both metrics, we averaged the RMSE and Rician log-likelihood in the OT across the hemispheres and 
two datasets to obtain a single summary value for each subject. We then compared them between data with and 
without denoising (MPPCA and Patch2Self) to quantify the impact of denoising on the voxelwise model fitting. 
To statistically assess this, we performed a two-tailed paired t-test (for calculating P-values) using the MATLAB 
Statistics and Machine Learning Toolbox and a Bayesian paired t-test (for calculating the Bayes factor, BF10) 
using the bayesFactor MATLAB package39 (https://github.com/klabhub/bayesFactor).

Investigation of the impact of denoising on differences between glaucoma and control data
We investigated the impact of denoising (MPPCA and Patch2Self) on diffusivity-based metrics (FA, MD, ICVF, 
and ODI) along the OT, which were single-number summary metrics obtained by averaging along nodes, 
data from two hemispheres, and data from two runs (see “Calculating tract profiles” above). Specifically, we 
assessed the effect of denoising on the differences in these metrics between patients with glaucoma and controls. 
First, we calculated the degree of deviation from the control mean for each glaucoma patient in units of the 
standard deviation of the control subjects for each metric and dataset (without denoising, with MPPCA, and 
with Patch2Self). We visualized the distribution of the degree of deviation from the controls using a violin plot.

Then, we calculated the statistical differences in the deviations between the data with and without denoising 
(MPPCA and Patch2Self). To determine the strength of the effect of denoising on the differences between patients 
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Fig. 2. Diffusion-weighted images with and without denoising in representative subjects (A a healthy control, 
B a patient with glaucoma). The top panel depicts diffusion-weighted images in an axial section (left, image 
without denoising; middle, image with MPPCA; right, image with Patch2Self). The bottom panel depicts 
difference maps between data without denoising and data with one of the denoising methods (MPPCA and 
Patch2Self). Letters in the image denote image orientation (A: anterior, P: posterior, L: left, R: right). Yellow 
arrows in panel B depict the location of white matter regions with high signal intensity in a diffusion-weighted 
image without denoising; the signal intensity is reduced after applying Patch2Self.
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with glaucoma and controls, we calculated the effect size (Cohen’s d). Additionally, we determined the statistical 
differences between datasets by performing a two-tailed paired t-test and a Bayesian paired t-test to calculate 
the P-values and BF10, respectively. P-values greater than 0.025 (equivalent to applying a Bonferroni correction 
for two comparisons, given P = 0.05) were considered insignificant because we conducted two comparisons on 
the dataset without denoising (comparison between data without denoising vs. data with MPPCA; data without 
denoising vs. data with Patch2Self).

In addition to the univariate analysis for each metric, we performed a linear discriminant analysis to assess 
the impact of denoising on the discriminability between patients with glaucoma and controls when multiple 
tractometry metrics were used for classification. This analysis was performed using the fitcdiscr function in the 
MATLAB Statistics and Machine Learning Toolbox. The misclassification probability was used as a measure of 
classification performance, and differences between data with and without denoising were statistically evaluated 
using McNemar’s test (https://github.com/dnafinder/mcnemar;40).

The same analyses were performed on data along the optic radiation to assess the specificity of the results in 
the OT.

Calculation of correlation between visual field test and OT tissue properties
We performed an analysis to calculate the correlation between visual field test scores and OT tissue properties, 
following the approach used in Ogawa et al. (2022)18. In brief, we normalized the diffusivity-based metrics (FA, 
MD, ICVF, and ODI) of patients with glaucoma by calculating their deviation from the control mean, using units 
of standard deviation in the control group. The visual field test scores for each patient (mean deviation of HFA) 
were averaged across both eyes. We then calculated the Pearson correlation between diffusivity measurements 
along the OT and the visual field test results in patients with glaucoma. This analysis was performed on data 
without denoising, data with MPPCA denoising, and data with Patch2Self denoising.

Quantification of scan-rescan reliability
We quantified the scan-rescan reliability of tractometry for each metric (FA, MD, ICVF, and ODI), dataset (data 
without denoising, with MPPCA, and with Patch2Self), and tract (OT and optic radiation) by comparing data 
from two dMRI runs acquired from all subjects (healthy controls and patients with glaucoma). Because these 
two runs were collected with different phase-encoding directions (anterior-posterior and posterior-anterior), 
we expected systematic differences in the tractometry data between them. Nonetheless, a higher inter-subject 
correlation would indicate that tractometry provides reproducible measurements for identifying the properties 
of white matter tracts in individual subjects. We calculated the Pearson correlation coefficient (R) to assess the 
scan-rescan reliability. Additionally, we performed linear regression on the scan-rescan data to estimate the 
regression line using the least squares method in the MATLAB Statistics and Machine Learning Toolbox.

Results
In this study, we determined the impact of two different types of denoising methods (MPPCA and Patch2Self) on 
dMRI data along the OT of patients with glaucoma and healthy controls to assess the extent to which denoising 
affects tractometry metrics and reliability.

Qualitative comparisons of image appearance
First, we qualitatively compared the appearance of the dMRI data with and without denoising. Figure 2 shows 
the axial diffusion-weighted images acquired from representative subjects (one healthy control and one patient 
with glaucoma). Compared to the original images, the denoised images exhibited clearer tissue contrast between 
the gray and white matter. Additionally, the cerebellum exhibited improved visibility of macrostructures, such 
as folds, after denoising. Furthermore, the difference maps between the images with and without denoising did 
not reveal obvious tissue borders, indicating that denoising may not remove information that contributes to the 
tissue contrast. While both methods enhanced the visual appearance of the tissue, we observed that Patch2Self 
excluded more high-contrast information than MPPCA based on visual comparisons of the difference maps (see 
white matter regions highlighted by yellow arrows in Fig. 2B).

We then evaluated how denoising affected the appearance of tissue parameter maps obtained by fitting 
voxelwise models. Figure  3 shows a comparison of the FA and ICVF maps derived from DTI and NODDI, 
respectively. The overall appearance of these maps did not appear to differ significantly between the data with 
and without denoising in terms of tissue contrast. However, we found that the FA values were generally lower 
after Patch2Self was applied compared to the data without denoising. In addition, the ODI values increased after 
Patch2Self (see Supplementary Fig. S1 for comparisons of each diffusivity metric with and without Patch2Self 
in the OT). In the following sections, we quantitatively evaluate the effect of denoising on these metrics along 
the OT.

Impact of denoising on the estimated SNR of images
To quantitatively assess the impact of denoising on the dMRI data along the OT, we first compared how 
denoising affected the estimated SNR of the dMRI measurements along the OT. We evaluated the SNR based 
on comparisons of multiple low b-value images33–35. This analysis was not performed on data with Patch2Self 
because this method, by default, does not apply to low b-value images12.

Figure 4 shows a comparison of the estimated SNR of the measurements along the OT between the data 
without denoising and the data with MPPCA. The data with MPPCA exhibited a significantly higher estimated 
SNR than those without denoising (Fig. 4B; d = 1.87; BF10 > 100; two-tailed paired t-test, t46 = 12.80, P < 0.001). 
This suggests that MPPCA may improve the SNR of measurements along the OT. Furthermore, the difference 
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in the estimated SNR between the data without denoising and the data with MPPCA was significant in the optic 
radiation (Supplementary Fig. S2; d = 4.10; BF10 > 100, t46 = 28.08, P < 0.001).

Impact of denoising on voxelwise model fitting
We evaluated the impact of denoising on the fitting of voxelwise models (DTI and NODDI) for dMRI data in 
the OT. To assess this, we calculated metrics describing model fitting errors in each voxel along the OT (RMSE 
for DTI, Rician log-likelihood for NODDI) and compared these metrics between the data with (MPPCA and 
Patch2Self) and without denoising.

Figure 5A shows a comparison of the RMSE in the OT when DTI was used as a voxelwise model for diffusion 
signals. We found that the data with MPPCA exhibited a significantly lower RMSE compared to the data without 
denoising (d = -5.42; BF10 > 100; two-tailed paired t-test, t46 = 37.18, P < 0.001). Similarly, the data with Patch2Self 
also showed a significantly lower RMSE compared to the data without denoising (d = -6.82; BF10 > 100; 
t46 = 46.74, P < 0.001). Additionally, the data with Patch2Self demonstrated a significantly lower RMSE than the 
data with MPPCA (d = -6.16; BF10 > 100; t46 = 42.25, P < 0.001). These results suggest that the model prediction 
using DTI was closer to the measured diffusion signals in the OT after denoising. Notably, this analysis included 
multiple comparisons across three conditions, but the conclusions would remain unchanged even if Bonferroni 
correction was applied.

Figure 5B shows a comparison of the NODDI model fitting in the OT using Rician log-likelihood (higher 
values indicate smaller errors). Consistent with the DTI results, we found that denoising significantly reduced 
the NODDI model fitting error in the OT voxels (comparison between without denoising and with MPPCA: 
d = 3.28; BF10 > 100; t46 = 22.50, P < 0.001; comparison between without denoising and with Patch2Self: d = 9.16; 
BF10 > 100; t46 = 62.76, P < 0.001). Additionally, the data with Patch2Self showed a reduced NODDI fitting error 
compared to the data with MPPCA (d = 1.59; BF10 > 100; t46 = 10.89, P < 0.001).

We also found similar effects in the voxelwise model fitting for the optic radiation (Supplementary Fig. S3), 
indicating that denoising substantially reduced errors between the voxelwise model prediction and the measured 
diffusion signals in both the OT and optic radiation.

Fig. 3. Impact of denoising on parameter maps estimated using DTI and NODDI in representative subjects 
(A, C a healthy control; B, D a patient with glaucoma). The top panels depict parameter maps calculated 
by DTI (A, B) and NODDI (C, D) in an axial section (left, image without denoising; middle, image with 
MPPCA; right, image with Patch2Self). This axial section is identical to that in Fig. 2. The bottom panels depict 
difference maps between data without denoising and data with one of the denoising methods (MPPCA and 
Patch2Self). Letters in the top left image of each panel denote image orientation (A: anterior, P: posterior, L: 
left, R: right).
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Impact of denoising on tractometry metrics to identify tissue changes caused by glaucoma
In the previous sections, we demonstrated that denoising dMRI data increased the estimated SNR and reduced 
the voxelwise model fitting error in the OT. Here, we address how denoising affects tractometry analysis for 
identifying differences in OT tissue properties between patients with glaucoma and controls.

Figure 6 shows a comparison of the tractometry data along the OT with and without denoising for each 
diffusivity metric (FA, MD, ICVF, and ODI). Individual glaucoma patient data were plotted based on each 
patient’s deviation from the control mean using the standard deviation of the controls as the unit. Notably, as 
shown in the original study18, patients with glaucoma exhibited lower FA, lower ICVF, and higher ODI values 
than controls.

In DTI-based metrics (FA and MD), the data with MPPCA did not show any significant differences from 
that without denoising (FA, d = 0.54, BF10 = 1.74, t16 = 2.23, P = 0.04; MD, d = 0.09, BF10 = 0.26, t16 = 0.37, P = 0.72). 
Although the data with Patch2Self showed statistically significant differences from that without denoising (FA, 
d = 0.72, BF10 = 5.87, t16 = 2.97, P = 0.009; MD, d = 2.64, BF10 > 100, t16 = 10.89, P < 0.001), the differences between 
the controls and patients with glaucoma decreased after Patch2Self (Fig. 6).

The lack of evidence for a significant effect of denoising can be explained by the simplicity of the diffusion 
tensor model, which may not capture the signal characteristics improved by denoising. This prompted us to test 
NODDI, a more complex multi-compartment model of diffusion signals. While the data with MPPCA showed 
no significant difference in ICVF compared to that without denoising (d = 0.17, BF10 = 0.31, t16 = 0.72, P = 0.48), 
the data with Patch2Self showed a statistically significant difference from that without denoising (d = -1.43, 
BF10 > 100, t16 = 5.91, P < 0.001), demonstrating that patient data after Patch2Self deviated more from controls. 
However, the differences in ODI between controls and patients with glaucoma decreased after both MPPCA (d 
= -0.53, BF10 = 1.61, t16 = 2.18, P = 0.05) and Patch2Self (d = -0.58, BF10 = 2.27, t16 = 2.40, P = 0.03).

Because Patch2Self had opposing impacts on ICVF and ODI for distinguishing patients with glaucoma from 
controls, we conducted a supplementary analysis to evaluate how these changes affected classification when 
both metrics (ICVF and ODI) were used in a linear discriminant analysis. The classification performance of the 
data with Patch2Self was only slightly better than that of the data without denoising (Supplementary Fig. S4; 
misclassification probabilities, 0.13 for data without denoising, 0.11 for data with Patch2Self). The difference in 
the misclassification probabilities between the data with and without denoising was not statistically significant 
(McNemar’s test; P > 0.5).

We also analyzed the impact of denoising on dMRI measurements of the optic radiation to identify tissue 
changes caused by glaucoma (Supplementary Fig. S5). Similar to the OT results, we did not find strong evidence 
that MPPCA improved the ability of dMRI to identify glaucoma-related white matter tissue changes. Patch2Self 
affected diffusivity metrics in the optic radiation, leading to significantly increased differences between patients 

Fig. 4. Comparison of the estimated SNR on low b-value images along the OT between data with and without 
denoising. (A) The OT (green) of a representative subject (Control #01) overlaid on an axial section of the 
T1-weighted image. Letters in the image denote image orientation (A: anterior, P: posterior, L: left, R: right). 
(B) Comparison of the estimated SNR on low b-value data between data without denoising (yellow) and data 
with MPPCA. The vertical axis represents the estimated SNR. Blue squares depict data from individual control 
subjects whereas purple dots depict data from individual patients with glaucoma. Data points connected by 
lines were acquired from identical subjects. Thick horizontal lines in the violin plot represent the mean across 
subjects, whereas the widths of the shadowed areas represent the approximate frequency of data points.
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with glaucoma and controls in MD and ICVF, but not in other metrics. Linear discriminant analysis revealed no 
statistically significant improvement in discriminability after Patch2Self (Supplementary Fig. S6).

Correlation between visual field test and OT tissue properties
We calculated the correlation between visual field test scores and OT tissue properties in data with and without 
denoising, to evaluate how denoising affects the correlation between diffusivity measurements and disease 
severity. In data without denoising, as already reported in Ogawa et al. (2022)18, ODI showed a significant negative 
correlation with the visual field test (Supplementary Fig. S7A; R = -0.61, P = 0.009). In addition, FA showed a 
significant positive correlation with visual field test (Supplementary Fig. S7A; R = 0.69, P = 0.002), while MD and 
ICVF did not (MD: R = 0.38, P = 0.13; ICVF: R = 0.30, P = 0.24). We found that data with MPPCA also showed 
significant correlations between OT tissue properties (ODI and FA) and visual field tests (Supplementary Fig. 
S7B; ODI: R = -0.62, P = 0.008; FA: R = 0.70, P = 0.002), and effect sizes of correlation was almost identical to 
those of data without denoising. These correlations were also significant in data with Patch2Self denoising, but 
slightly smaller than those of data without denoising (Supplementary Fig. S7C; ODI: R = -0.54, P = 0.03; FA: 
R = 0.63, P = 0.007).

Impact of denoising on scan-rescan reliability of tractometry
Finally, we evaluated the effect of denoising on the scan-rescan reliability of tractometry by calculating the 
correlation between datasets from two runs. Figure  7 shows the scan-rescan reliability of the FA and ICVF 
along the OT in the data with (MPPCA and Patch2Self) and without denoising. Because data from the two runs 
were acquired with reversed phase-encoding directions, a systematic difference in the ICVF measurements was 
observed between the two runs (Fig. 7, bottom panels). This likely reflects susceptibility-induced distortions 
in the OT41, with each dataset showing systematic differences owing to differences in the distortion correction 
procedure.

Nevertheless, the scan-rescan reliability of FA and ICVF measurements along the OT remained high in the 
dataset without denoising (FA, R = 0.93; ICVF, R = 0.87), demonstrating a high reproducibility of measurements 
despite the systematic differences found in ICVF. Importantly, the scan-rescan reliability in the data with 
denoising was not higher but sometimes slightly lower than that in the data without denoising (MPPCA, FA: 

Fig. 5. Comparison of voxelwise model fitting in the OT between dMRI data with and without denoising. (A) 
Fitting of the diffusion tensor model (diffusion tensor imaging, DTI). The vertical axis represents the fitting 
error of the DTI quantified by the root mean square error (RMSE) for dMRI data with and without denoising 
(MPPCA and Patch2Self) in the OT, where a lower RMSE corresponds to a smaller error. Open squares/circles 
depict the data of individual subjects (blue square, controls; red circle, patients with glaucoma). Data points 
connected among different conditions (without denoising, with MPPCA, and with Patch2Self) by lines are data 
acquired from identical subjects. Thick horizontal lines in the violin plot represent the mean across subjects, 
whereas the widths of the violin plot represent the approximate frequency of data points in each condition 
and RMSE. (B) Fitting of the neurite orientation dispersion and density imaging (NODDI). The vertical axis 
depicts the fitting error of the NODDI quantified by the Rician log-likelihood for dMRI data with and without 
denoising in the OT. A higher Rician log-likelihood indicates smaller error. The other conventions are the same 
as those used in panel A.
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R = 0.92, ICVF: R = 0.85; Patch2Self, FA: R = 0.87, ICVF: R = 0.87). Denoising did not improve the scan-rescan 
reliability of other metrics along the OT (MD and ODI, Supplementary Fig. S8).

Furthermore, we performed the same scan-rescan reliability analysis on the data along the optic radiation 
(Supplementary Fig. S9). Unlike the results in the OT, no strong systematic differences were observed between 

Fig. 6. Comparison of dMRI measurements to identify tissue property differences between patients with 
glaucoma and controls in the OT among data with and without denoising (MPPCA and Patch2Self). The 
horizontal axis represents the data of each dMRI-based metric (FA, MD, ICVF, and ODI) in patients with 
glaucoma normalized to the control mean. The unit of the horizontal axis indicates how much the data of 
patients with glaucoma deviated from the control mean (0) with a unit of the control standard deviation. The 
individual dots represent data of each patient with glaucoma, and dots connected by lines indicate data of 
identical subjects. Thick horizontal lines in the violin plot represent the mean among patients with glaucoma, 
whereas the widths of the violin plot represent the approximate frequency of data points in each metric and 
dataset (yellow, data without denoising; magenta, data with MPPCA; purple, data with Patch2Self).
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the two datasets with reversed phase encoding directions in the optic radiation, most likely because this pathway 
is less affected by susceptibility-induced distortion41. Similar to the results in the OT, denoising did not improve 
the scan-rescan reliability of tractometry measurements in the optic radiation (Supplementary Fig. S9).

Additionally, we calculated the scan-rescan reliability separately for the control and glaucoma groups to 
evaluate whether the results could be generalized across both groups. We found no evidence that denoising 
improved the reproducibility of tractometry in either group (Supplementary Tables S4 and S5).

In summary, we found no evidence that denoising dMRI data improves tractometry scan-rescan reliability in 
the OT of healthy controls and patients with glaucoma.

Discussion
We aimed to evaluate how denoising affects tractometry on dMRI data acquired from patients with glaucoma to 
understand how much denoising may benefit the identification of neurobiological changes occurring in the white 
matter associated with the disease. Because glaucoma is a disorder that damages retinal ganglion cells and the 
optic nerve, it likely affects the diffusivity of the OT, which is part of the optic nerve. Therefore, we were primarily 
interested in how denoising can impact the ability of tractometry to identify differences between patients with 
glaucoma and controls, as well as the scan-rescan reliability in the OT. Our findings demonstrate that denoising 
(MPPCA and Patch2Self) altered the appearance of diffusion-weighted images (Fig. 2), increased the estimated 
SNR along the OT (Fig. 4), and reduced the fitting errors of the voxelwise diffusion models (DTI and NODDI, 
Fig. 5). In contrast, denoising had little or no impact on the ability of tractometry to distinguish between patients 
with glaucoma and controls (Fig. 6). Furthermore, there was no evidence supporting an improvement in scan-
rescan reliability in the tractometry analysis of the OT (Fig. 7). Taken together, while we found that denoising 
improves dMRI data in some aspects, there is little evidence that it improves the detection and reproducibility of 
tractometry analysis for tissue changes caused by glaucoma.

Potential interpretations of the lack of evidence on the impact of denoising for tractometry
While we did not find strong evidence that denoising improves tractometry, we do not aim to underestimate 
the utility of denoising in dMRI. Since denoising clarifies images, it may benefit researchers interested in using 
dMRI for image diagnostics, although such practical advantages have not been tested within the scope of this 
study. We found that denoising had minimal impact on tractometry when used to analyze OT tissue properties, 
but we did not find any unwarranted effects14. Therefore, we consider that the utility of denoising may depend 
on the research goals and analysis strategies undertaken by researchers.

Although speculative, two possibilities may explain why denoising did not improve the tractometry results 
when evaluating the impact of glaucoma on the OT. The first hypothesis is that, while denoising alters the 

Fig. 7. Scan-rescan reliability of tractometry along the OT using two metrics (top, FA; bottom, ICVF) in 
data without and with denoising (left: data without denoising; middle, data with MPPCA; right, data with 
Patch2Self). The horizontal axis shows measurements in Run 1 (acquired with anterior-to-posterior [AP] phase 
encoding direction), whereas the vertical axis represents measurements in Run 2 (acquired with posterior-
to-anterior [PA] phase encoding direction). Each dot represents data from individual subjects (blue squares, 
controls; red circles, patients with glaucoma). Solid lines indicate regression lines, while dotted lines represent 
identity lines.
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appearance of images, it does not enhance neurobiologically meaningful information in the dMRI dataset. 
The second hypothesis is that denoising plays a role in improving dMRI data similar to that of the approach 
typically included in the tractometry pipeline: voxelwise diffusion model fitting. Because dMRI data contain 
measurement noise, a common practice is to fit a model, such as DTI or NODDI, to describe the diffusion signals 
in individual voxels. One purpose of model fitting is to characterize signals, and another is to reduce the impact 
of noise by fitting models that accurately describe expected signal characteristics37. For this purpose, researchers 
have proposed model-fitting procedures that are robust against noise in the data42. Therefore, denoising and 
model fitting may have overlapping roles when used together for tractometry; in fact, we found that denoising 
reduced residuals in model fitting (Fig. 5), but this did not significantly impact subsequent tractometry analyses 
(Figs. 6 and 7). Therefore, we hypothesize that denoising may remove noise in dMRI data that would normally 
be excluded by voxelwise model fitting; when both strategies are used together, denoising does not significantly 
alter the results. Importantly, this possibility should be explored in future investigations to better understand the 
mechanisms underlying the observed effects.

This raises the question of whether denoising can improve tractometry if the voxelwise characterization of 
diffusion signals does not rely on fitting relatively simple models. For example, previous studies have proposed 
model-free methods that do not rely on voxelwise model fitting43–45 or more complex voxelwise diffusion models 
than DTI and NODDI37,46–51. Denoising may have greater benefits when these methods are used to characterize 
diffusion signals. However, we note that our approach to use voxelwise model fitting using DTI and NODDI is 
a widely accepted approach in tractometry studies5,6,52,53, as it is applicable to dMRI datasets with a moderate 
number of directions and b-values, such as clinical neuroimaging data. In fact, a recent systematic review 
showed that tractometry studies on patients with glaucoma adopted this approach, rather than model-free 
methods or more complex voxelwise models54. Therefore, while the utility of denoising for model-free methods 
and more complex voxelwise models should be tested in future research on data that satisfy the prerequisites of 
each approach, such testing falls outside the scope of this study, which aims to test the impact of denoising on 
tractometry analysis for patients with glaucoma.

One might argue that we did not observe an improvement in the scan-rescan reliability owing to a ceiling 
effect, as it was already high in the original dataset. This is consistent with a previous study indicating that the 
reproducibility of tractometry analysis is high52. However, we note that the dataset we analyzed was not of a 
particularly high quality compared with that of some publicly available datasets (e.g., the Human Connectome 
Project Dataset55), as it was acquired using a relatively old MRI scanner model (Siemens Trio Tim) with moderate 
gradient strength (40 mT/m). In addition, it was acquired with a modest number of b-values and directions 
within a relatively short acquisition time. Furthermore, we also found that denoising reduces voxelwise model 
fitting error (Fig. 5), suggesting that a considerable amount of noise was present in our dMRI datasets. While we 
cannot exclude the possibility that denoising may improve tractometry if applied to data of much lower quality, 
the quality of this dataset is comparable to those analyzed in many clinical neuroimaging studies. Therefore, 
we believe that there is still room for improvement in the ability to detect differences and in the reliability of 
tractometry in our dataset.

In parallel to the main findings, we observed that Patch2Self causes systematic effects on diffusivity metrics, 
such as a decrease in FA and an increase in ODI (Supplementary Fig. S1). This effect did not significantly affect 
group discriminability between patients with glaucoma and controls, most likely because diffusion metrics with 
and without Patch2Self are highly correlated across subjects (Figure S1). However, since there is no ground truth 
in in vivo dMRI data, we can only speculate on the underlying cause of this systematic effect. One hypothesis is 
that this effect may be associated with an increased SNR after denoising. However, this interpretation must be 
approached with caution, as a numerical simulation study suggested that the relationship between the diffusion 
anisotropy and SNR can be complex; a low SNR may lead to either underestimation or overestimation of the 
anisotropy56. Another hypothesis is that denoising reduces the large signals in images when dMRI data are 
acquired in specific gradient orientations, thus causing a reduction in FA, which may be analogous to the over-
smoothing effect on structural images discussed in a previous paper14. Visual inspection revealed that Patch2Self 
removed the high-contrast information visible in the original diffusion-weighted images (Fig. 2B), consistent with 
this hypothesis. Nevertheless, given the absence of a ground-truth, this study alone cannot provide a definitive 
interpretation of why this effect occurs and whether it is beneficial by reducing noise or disadvantageous by 
removing true diffusion signals and introducing potential biases, requiring future investigations.

Related studies
Evaluating the impact of denoising on neurobiological information measured by dMRI is generally challenging, 
given the absence of ground truth in in vivo dMRI data. One approach is to test dMRI data acquired from 
phantom57 or biological specimens with simple fiber structure, such as plants58. However, this approach has 
limitations since the configuration of axons in the brain is hard to reproduce in a phantom and not similar to 
those in plants, resulting in a method that works best for phantom or plant data does not always work the best 
for in vivo human data59. The other approach was to add simulated noise to dMRI data and evaluate how much 
denoising could remove it60,61. Although this approach has its merits, the evaluation of empirical datasets remains 
necessary because of the general challenge of ensuring that simulated noise follows the same characteristics as 
noise in empirical datasets.

For these reasons, other lines of previous studies have evaluated the impact of denoising on empirical 
datasets using various approaches available for in vivo dMRI data. For example, previous studies have reported 
improvements in image appearance10,12,50 and estimated SNR62 after denoising. Our observations are consistent 
with these findings (Figs.  2 and 4). Moreover, both a previous study12 and our results (Fig.  5) indicate that 
voxelwise model fitting errors were reduced after denoising, highlighting certain advantages of denoising dMRI 
data.
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However, Schilling et al.61 noted that after voxelwise model fitting, the resulting diffusivity measurements 
(such as FA and MD) were not significantly different between data with and without denoising in spinal cord 
voxels. Additionally, Sagawa et al.62 also pointed out that denoising only has a significant impact on FA in deep 
gray matter, but not in white matter. These findings are consistent with our results, showing that denoising 
with MPPCA had a small impact on the diffusivity metrics obtained by voxelwise model fitting in the OT 
(Fig. 2; but see Supplementary Fig. S1 for the impact of Patch2Self on diffusivity metrics). Our contribution is to 
demonstrate the limited impact of denoising on the ability to identify tissue changes caused by glaucoma and on 
the scan-rescan reliability, thereby providing further insights into the neurobiological significance of denoising 
when combined with current tractometry approaches.

While denoising had a small impact on the voxelwise diffusivity metrics obtained by model fitting, previous 
studies have also noted that it reduces the inter-voxel variability of diffusivity metrics61,62. We speculate that 
although denoising affects inter-voxel variability, it may have a limited impact on tractometry, which is an 
approach that summarizes diffusivity metrics at each node of the tract based on a weighted sum across multiple 
voxels.

Scopes and Limitations of this study
We did not focus on the impact of denoising on tractography in this study because tractography results are 
unlikely to differ substantially if performed separately on data with and without denoising, as we focused on the 
OT, a straight white matter tract without fiber crossing63. We also identified seed regions based on established 
anatomical definitions to identify these tracts. Therefore, we used a consistent definition of the OT and optic 
radiation across datasets with and without denoising. However, it is possible that denoising may improve the 
tractography of white matter tracts for which prior anatomical information is not established, which makes it 
challenging to precisely determine the tract identification protocol based on seed regions. While addressing this 
question is not within the scope of this study, the impact of denoising on tractography needs to be considered in 
future studies of other white matter tracts and disorders.

This study has several limitations. First, our evaluation did not include the NOise reduction with the 
DIstribution Corrected (NORDIC) PCA approach, which has been developed for denoising dMRI datasets 
with complex images and additional noise scans64. Unfortunately, we could not test this approach because only 
magnitude images were available for the current datasets. The advantages of denoising using NORDIC or other 
methods requiring complex data65 should be assessed in future investigations. Second, it is unclear whether 
our findings can be generalized to other visual disorders such as optic neuritis66, because their underlying 
mechanisms causing white matter tissue damage may differ from those of glaucoma. Third, because we focused 
on glaucoma and early visual pathways (OT and optic radiation), we could not test the extent to which the 
findings can be generalized to other white matter tracts with different tissue properties, such as more complex 
fiber crossings (like acoustic radiation67). These limitations pose challenges in broadly applying the findings of 
this study to different anatomical regions. Fourth, the dataset analyzed in this study may not have had sufficient 
statistical power to identify effects of denoising on tractometry if the effect size is very small. In addition, the 
sample size of patients with glaucoma in the dataset was insufficient to compare glaucoma subgroups and 
determine how denoising may affect subgroup differences, as dividing patients’ data into multiple subgroups 
significantly limits statistical power. Future studies with larger cohorts may facilitate assessments considering 
variabilities in comorbidities, pharmacological profiles, and types of treatment as additional factors that may 
affect white matter tissue properties. The generalization of the conclusions to other brain regions, populations, 
and types of disorders remains a topic for future research.

Conclusion
We showed that denoising (MPPCA and Patch2Self) altered the overall image appearance, increased the 
estimated SNR, and reduced the voxelwise model fitting error in dMRI data along the OT. However, these two 
denoising methods had limited impact on the ability of tractometry analysis to identify white matter tissue 
changes caused by glaucoma. In addition, they did not have a major impact on the reproducibility of tractometry. 
Taken together, our results suggest that denoising has a limited impact on dMRI-based measurements of white 
matter tissue properties when combined with tractometry.

Data availability
We made the dataset and codes for replicating figures and statistical analyses publicly available on GitHub  ( h t    
t p s  : /  / g i t h u b . c  o m / O k  a z a k i T a k e m u r a L a b / G l a u c o m a d M R I d e n o i s i n g ; https://doi.org/10.5281/zenodo.15015932).
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