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“Afferent, efferent and intrinsic connections, as well as 
cell types and their properties, are the structural basis of 
a brain region’s function” (Zilles and Amunts 2015). Over 
the last several decades, neuroscience has made enormous 
progress in understanding brain-function mechanisms at dif-
ferent spatial scales, ranging from the single-neuron level 
to macroscale cortical maps. While some reports demon-
strate that a function can be localised into a specific area 
(localisationism), a collection of neuroscience studies also 
indicate that functions are mediated through the interaction 
of multiple brain areas. We will argue that extreme locali-
sationism thinking has lost perspective. While areas can be 
sensitive to specific functions, they are not independently 
processing the information. For instance, reading this text 
requires the involvement of a system of interconnected brain 
areas analysing visual words and phonological and lexical 
information (Wandell et al. 2012). Hence, there is a pressing 
need to understand ‘structural connectivity’, which is a term 
generally referring to anatomical connections between brain 
areas. Structural connectivity is essential in understanding 
the circuitry supporting the interaction between brain areas 
and in bridging anatomy with function.

Despite many connectomics projects (Bakker et al. 2012; 
Burns et al. 2013; Van Essen et al. 2013; Zingg et al. 2014; 
Oh et al. 2014; Majka et al. 2020), a comprehensive under-
standing of structural connectivity of the human brain is 
still missing. While several methods for studying structural 
connectivity have been developed, they all present a trade-
off between advantages and limitations. For instance, higher 
spatial resolution comes with a smaller field of view, while 
other methods, typically diffusion magnetic resonance imag-
ing (dMRI), have a lower resolution but cover the whole 
brain. Similarly, some methods are only applicable to 
ex vivo animal brains, while other methods are available 
for living human brains. A consensus on the whole picture 
of the structural connectivity is challenged by these limita-
tions (Rushmore et al. 2020). ‘Structural connectivity’ is 
also a multidimensional concept that is far from the simpli-
fied notion of ‘connected’ or ‘not connected’. At a cellular/
molecular level, the type of synapses will impact the under-
lying neural circuitry with quite different functional implica-
tions (Bargmann and Marder 2013). At a macroscopic level, 
there is increasing evidence from dMRI studies showing that 
differences in white matter bundles can explain behavioural 
diversity among human individuals (Catani et al. 2007; 
Thiebaut de Schotten et al. 2011; Huber et al. 2018; Oishi 
et al. 2018), as well as impact precision medicine (Forkel 
et al. 2014, 2020; Takemura et al. 2019; Forkel and Thiebaut 
de Schotten 2020).

This new Brain Structure and Function special issue enti-
tled ‘Structural connectivity of the cerebral cortex’ aims at 
providing the reader with a comprehensive understand-
ing of the organisation of the brain’s structural connectiv-
ity, based on different methods (Lanciego and Wouterlood 
2020; Blazquez Freches et al. 2020; Huang et al. 2020; Oishi 
et al. 2020; Kaneko et al. 2020; Woodward et al. 2020). The 
special issue also clarifies the multidimensional concept of 
structural connectivity by collecting articles that investigate 
how its variations at different scales affect brain functions 
(Rockland 2020; Gamberini et al. 2020; Andre et al. 2020; 
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Ioannucci et al. 2020; Rooks et al. 2020). Finally, we invited 
investigators developing cutting-edge clinical applications 
of structural connectivity to provide an insight into how 
measuring this connectivity in the human brain can benefit 
society (Vanderweyen et al. 2020; David et al. 2020).

Typically, structural connectivity is derived from chemi-
cal tracers applied to non-human primate brains (Schmah-
mann and Pandya 2006). Since this original work, new types 
of tracers appeared with different properties that render 
interpretation difficult for non-experts. Furthermore, mak-
ing raw tracer data machine-readable for quantitative analy-
ses remains a challenge. Lanciego and Wouterlood (2020) 
(this issue) reviewed a wide range of neuroanatomical tract-
tracing methods, from classical to modern, and examined 
their advantages and disadvantages. Woodward et al. (2020) 
(this issue) also proposed a new tracer processing pipeline in 
marmoset brains. They succeeded at quantifying anterograde 
tracer signals by using the latest artificial intelligence algo-
rithms. They included three-dimensional reconstructions 
of tracer and histological data, as well as registration to a 
standard brain space as an MRI dataset, which bridges the 
gap between tracer data and the aforementioned dMRI data.

Other studies in this special issue demonstrate that direct 
dMRI data from the living human brain can show its con-
nectional organisation. Accordingly, Blazquez Freches et al. 
(2020) (this issue) used dMRI-based tractography to iden-
tify the essential principles of structural connectivity in the 
human temporal cortex. They identified three connectivity 
gradients that displayed, within the temporal cortex, distinct 
connections that were supported by different white matter 
tracts and showed specific relationships to functions. The 
brain can also be divided into subregions (i.e. parcellation) 
according to the areas they preferentially connect. These 
methods are often tricky to implement; therefore, Reuter 
et al. (2020) (this issue) provided open-source software that 
makes the connectivity-based parcellation method broadly 
accessible to the neuroscience community. dMRI can also 
estimate  further spatial details of the white matter. For 
instance, Huang et al. (2020) (this issue) proposed a frame-
work to determine the diameter of white matter axons in the 
living human brain. Oishi et al. (2020) (this issue) performed 
dMRI acquisitions on an ex vivo human brain with a high 
spatial resolution to characterise the white matter organisa-
tion in the subthalamic area. Finally, Kaneko et al. (2020) 
(this issue) used high spatial resolution dMRI data from 
the common marmoset to investigate occipital white matter 
tracts and clarify the similarities and differences in the visual 
system fibre tracts across primate species. Hence, despite 
some considerable advances, these studies make clear that a 
comprehensive understanding of the white matter anatomy, 
particularly in humans, is still missing and crucially needed.

Knowledge derived from the anatomical organisation of 
white matter goes well beyond anatomy, as it contributes 

to the understanding of functional circuitry and cortical 
dynamics (Rockland 2020, this issue). For instance, single-
axon analyses have revealed essential organisation princi-
ples of thalamocortical or cortico-cortical connections, such 
as laminar organisation and the existence of axon collat-
erals and intrinsic/extrinsic connections. Specifically, dif-
ferences in laminar specificity between feedforward and 
feedback connections, together with collaterals within and 
across areas, provide essential insights into the recurrent 
nature of cortical visual processing. Hence, the discovery of 
white matter principles offers critical information to inter-
pret the neural dynamics of intra-areal communications, as 
well as the primary mechanisms supporting functions and 
pathologies.

In line with this statement, the review from Gamberini 
et al. (2020) (this issue) provides a comprehensive overview 
of the organisation of the superior parietal lobule (SPL), 
which combines cytoarchitecture, structural connectivity and 
electrophysiology together with functional MRI. The study 
indicates that while macaque SPL has often been considered 
to be entirely contained within Brodmann’s area 5, it can 
be divided into several regions with distinct connections to 
somatosensory, motor, visual and frontal cortices. Impor-
tantly, functional differences among these areas may be asso-
ciated with anatomical connectivity differences, such as the 
degree of neuronal modulation by visual inputs or involve-
ment in the control of limb movement. Another example 
of function being tightly linked with structural connections 
includes the relationship between the microstructural prop-
erties of white matter tracts in the limbic system and the sub-
clinical diversity of internal and external behaviour among 
children and adolescents (Andre et al. 2020) (this issue). 
Similarly, the lateralisation of the limbic tracts shown in 
Ioannucci et al. (2020) (this issue) is related to the asym-
metrical facial expression of happiness and sadness. Finally, 
the connectivity matrices derived from dMRI data demon-
strate some fair differences according to everyday decision-
making capacity in older age (Rooks et al. 2020) (this issue). 
These examples highlight the importance of white matter 
connectivity to the functional organisation of the brain and 
the differences in behaviour observed.

A better understanding of structural connectivity in 
humans can also impact our society. David et al. (2020) 
(this issue) discovered a relationship between the tissue 
property of specific fibre tracts and aggressive behaviours 
after military deployment, which may help with the early 
identification of soldiers who need an intervention proce-
dure. Vanderweyen et al. (2020) (this issue) reviewed the 
role of dMRI in the optimisation of neurosurgical resection 
strategy and outcome. These papers provide a perspective 
on promising future applications to address contemporary 
problems outside academia.
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While this special issue covered a wide range of topics 
and methods, it does not include other promising approaches 
including polarised light imaging (Axer et al. 2011; Wang 
et al. 2018; Caspers and Axer 2019), tissue clearing methods 
(Hama et al. 2011; Chung and Deisseroth 2013), and expan-
sion microscopy (Wassie et al. 2019). As these measure-
ments rely on different principles and concepts, additional 
studies comparing these methods with ones presented here 
will be essential to link the different spatial scales and pro-
vide a comprehensive understanding of structural connectiv-
ity. Other avenues, such as how neural dynamics are related 
to the underlying structural connectivity, remain utterly open 
for future generations to explore. We wish that collabora-
tive efforts among neuroanatomists with different disciplines 
will help address these difficult remaining issues in the next 
several decades.
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