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Abstract

Human cingulate sulcus visual area (CSv) was first identified as an area that responds

selectively to visual stimulation indicative of self-motion. It was later shown that the area is

also sensitive to vestibular stimulation as well as to bodily motion compatible with locomo-

tion. Understanding the anatomical connections of CSv will shed light on how CSv interacts

with other parts of the brain to perform information processing related to self-motion and

navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685–

3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the struc-

tural connectivity of CSv, and demonstrated connections between CSv and the motor and

sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed

to complement this work by investigating the relationship between CSv and adjacent major

white matter tracts, and to map CSv’s structural connectivity onto known white matter tracts.

By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e.

streamlines) from the whole-brain tractography that terminate near CSv. We then assessed

to which white matter tracts those streamlines may belong based on previously established

anatomical prescriptions. We found that a significant number of CSv streamlines can be cat-

egorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and

the cingulum. Given current thinking about the functions of these white matter tracts, our

results support the proposition that CSv provides an interface between sensory and motor

systems in the context of self-motion.

Introduction

Accurate perception of self-motion lays the basis for much of our interaction with and naviga-

tion within the environment. It allows us, for example, to avoid obstacles, to control our pos-

ture, and to maintain the intended trajectory during locomotion. For primates, including
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humans, one of the most important sensory cues that enables the perception of self-motion is

optic flow. Optic flow refers to distinct patterns of motion projected onto the retina as we

move through an environment [1], and provides information that can be used to compute the

direction of heading [2, 3] as well as time to contact [4] and distance travelled [5]. Understand-

ing the neuronal circuitry underlying optic-flow processing is therefore essential in order to

elucidate the mechanisms that enable us to monitor and adjust our locomotory movements

according to the changes in the external environment.

Electrophysiological studies on macaque monkeys first revealed that neurons in the dor-

somedial part of area MST (MSTd) respond selectively to optic flow [6–8]. Evidence has since

accumulated, based on functional magnetic resonance imaging (fMRI) of both macaque and

human brains, that the neuronal representation of optic flow is not restricted to MSTd, but

rather distributed amongst several areas in the occipital, parietal and cingulate cortices [9–12].

Interestingly, some of those cortical areas have also been associated with vestibular- [13, 14]

and motor-related [15, 16] activity, suggesting that visual, vestibular and motor signals may

combine in these cortical regions to support self-motion and its perception.

The cingulate sulcus visual area (CSv; [9, 10] see [17] for a review) is one of the cortical

areas that respond selectively to optic flow compatible with self-motion. CSv is located bilater-

ally in the posterior part of the mid-cingulate sulcus. Since it was first described in Wall and

Smith [9], numerous studies have demonstrated CSv’s strong specificity to visual self-motion

[9, 18–20], and its involvement in monitoring self-motion [21, 22]. Evidence that further sup-

ports CSv’s role in encoding visual cues to self-motion and guiding locomotion comes from

findings that CSv receives vestibular input [13, 23, 24], and that CSv is activated during lower-

limb, but not upper-limb movements [15, 16]. However, a question remains as to how CSv

interacts with other cortical areas via structural connections within the white matter.

Recent advances in diffusion-weighted MRI (dMRI) methods have provided opportunities

to non-invasively study the white matter connections in living human brains, and compare

them with functionally defined areas measured by fMRI [25–27]. Diffusion MRI measures

anisotropy of water diffusion in brain tissues. Because water molecules preferentially move

parallel to fibre bundles in the white matter, dMRI data can be used to estimate the fibre orien-

tation within each white matter voxel. By applying tractography, which traces fibre orienta-

tions across white matter voxels, the three-dimensional trajectory of estimated fibre bundles

(i.e. streamlines; [28, 29]) can be reconstructed. Smith and colleagues [30] used this approach

to investigate the structural connectivity patterns of CSv. They defined CSv with a functional

localiser and used it as a seed region for connectivity analyses based on dMRI measurements

of the same human brains. They examined the cortical distribution of streamline endpoints

and found that CSv is connected ipsilaterally with the motor and sensorimotor areas in the

anterior and posterior cingulate sulci respectively, and contralaterally with the paracentral

gyrus and sulcus. A similar approach was applied in macaques by De Castro et al. [11], which

demonstrated that the putative macaque CSv is connected with the cingulate sulcus, much like

in humans. However, because those studies focussed on the cortical endpoints of streamlines,

their results did not reveal the trajectories of CSv streamlines within the white matter, thus the

white matter structure involved in signal transmission to and from CSv remains to be

explained.

Anatomical studies have shown that the white matter consists of a number of major bundles

of axons (i.e. tracts), such as the superior longitudinal fasciculus (SLF) and cingulum (see [31–

33] for reviews). Those tracts pass through specific portions of the white matter, and it has

been found that lesions to specific white matter tracts lead to impairment of specific brain

functions [34]. Recent studies have also demonstrated that different subdivisions of the same

white matter tract (e.g. three branches of SLF; SLF I, II, and III) show different degrees of
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lateralisation as well as age dependency, and correlation with cognitive functions and behav-

iour [35–37]. Therefore, understanding the relationship between the white matter tracts and

CSv connectivity will provide essential insights into the position of CSv in the context of estab-

lished properties of the white matter tracts and how their lesions might impact brain

functions.

This study re-analysed the data from Smith et al. [30], which included both fMRI data

allowing for CSv localisation and dMRI data for tractography. In contrast to Smith et al. [30],

we focussed on identification and characterisation of the white matter tracts around the func-

tionally defined CSv. We employed dMRI-based tractography and waypoint region of interest

(ROI) approach [38–40], and analysed the relationship between CSv and major white matter

tracts by categorising the streamlines terminating around CSv based on the white matter tracts

to which they belong. We also applied filtering to generated streamlines, which resulted in

more conservative estimates of structural connectivity supported by the dMRI data [41–44].

Materials and methods

We analysed fMRI and dMRI data acquired from healthy human subjects in previous work

(see [30] for details). All MRI data were collected with a 3T Siemens TIM Trio MAGNETOM

MRI scanner (Siemens, Erlangen, Germany) equipped with a 32-channel head coil at Royal

Holloway, University of London.

1. Subjects

Twelve healthy volunteers (five males and seven females; median age 23.5 years; S1-S12) par-

ticipated in the study in accordance with the ethical standards stated in the Declaration of Hel-

sinki, and approval from the Royal Holloway Research Ethics Committee.

2. Structural MRI data acquisition and analysis

For each subject, a 3D T1-weighted structural MR image was acquired. The T1-weighted

image was acquired with the modified driven equilibrium Fourier transform (MDEFT; [45])

sequence (160 sagittal slices, 1 mm isotropic voxels), and was used to perform tissue segmenta-

tion between the grey and white matter using FreeSurfer ([46]; https://surfer.nmr.mgh.

harvard.edu/).

3. fMRI data acquisition and analysis

1. Data acquisition. Functional MRI data were acquired using a previously established

localiser to identify CSv [9, 10]. The localiser consisted of two time-varying optic-flow stimuli.

The first optic-flow stimulus cycled smoothly through spiral space to simulate back-and-forth

rotational motion of the observer (i.e., compatible with self-motion). The second was a 3 x 3

array of similar spiral motions that was incompatible with self-motion. Visual stimuli were

projected onto an in-bore rear-projection screen in the scanner, viewed via a monocular mag-

nifying optical device placed over the subject’s preferred eye. Each stimulus was presented for

3 s in an event-related design, with intertrial intervals varying between 2 and 10 s. Each of six

fMRI scans consisted of 32 trials (16 per condition) presented in a pseudorandom order, and

lasted approximately five minutes. Subjects maintained central fixation and were engaged in

an attentional task at fixation throughout the scans.

Data were acquired with the generalised autocalibrating partially parallel acquisition

(GRAPPA; [47]) sequence (36 slices, 3-mm isotropic voxels, time of repetition [TR]: 2500 ms,
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time echo [TE]: 31 ms). Further technical details on fMRI data acquisition are provided in

Smith et al. [30].

2. Localisation of CSv. We used CSv as identified in Smith et al. [30] by fMRI-based loca-

liser data for subsequent analysis (see Fig 1 and S1 Fig). Functional MRI data were prepro-

cessed and analysed with the general linear model (GLM) using BrainVoyager QX ([48];

version 2.3; Brain Innovation, Maastricht, The Netherlands), according to the methods previ-

ously described in Wall and Smith [30]. The region of interest, CSv, was defined as contiguous

voxels, of which response was significantly greater to a single optic-flow patch than to an array

of optic-flow patches, within the cingulate sulcus in each hemisphere. As reported in Smith

et al. [30], the clusters of voxels belonging to CSv combined across all subjects had centres of

gravity of [9 -24 44] and [-10–26 41] in MNI152 space in the left and right hemispheres,

respectively.

4. dMRI data acquisition and analysis

1. Data acquisition. Diffusion-weighted MRI data were acquired in each subject by a

spin-echo sequence with echo-planar readout (65 axial slices, 2-mm isotropic voxels, TR: 9300

ms, TE: 94 ms, field of view: 192 x 192 mm2). The diffusion-weighted data were sampled in 64

directions using a b-value of 1000 s/mm2. Three sets of diffusion-weighted data were acquired

for all but one subject. For technical reasons, only two sets were acquired in one subject. The

results for this subject were not anomalous. In addition, six low b-value (b = 0) images were

obtained, in pairs interleaved with the three sets of diffusion-weighted scans. Further technical

details on dMRI data acquisition are provided in Smith et al. [30].

2. Data preprocessing. Diffusion-weighted MRI data were preprocessed using mrDiffu-

sion, implemented in Matlab as part of vistasoft software distribution (https://github.com/

vistalab/vistasoft). Diffusion-weighted images were corrected for eddy currents and head

motion by a 14-parameter constrained non-linear coregistration [49]. The gradient direction

in each volume was corrected using the rotation parameters from the motion-correction and

eddy-current correction processes. The diffusion tensor model was fitted to dMRI data to gen-

erate a colour-coded principal diffusion direction (PDD) map to visualise diffusion direction

in each voxel. In addition, fibre orientation distribution in each voxel was estimated by con-

strained spherical deconvolution (CSD; [50]; Lmax = 8) using MRtrix3 ([51, 52]; http://www.

mrtrix.org/).

3. Fibre tracking and evaluation. We used the ensemble tractography method [44]. This

minimises the known dependency of tractography on the choice of parameters [53–56] by gen-

erating streamlines using multiple tractography parameters. Amongst the streamlines gener-

ated, those that did not align with diffusion signals along the trajectories were then culled

using linear fascicle evaluation (LiFE; [41, 57]; http://francopestilli.github.io/life/), which is

Fig 1. Location of CSv (yellow patches highlighted by white circles) overlaid on the sagittal (left), coronal

(middle), and axial (right) sections of one representative subject (S1). See S1 Fig for other subjects.

https://doi.org/10.1371/journal.pone.0300575.g001
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one of the methods developed to filter and remove spurious streamlines. Our approach aimed

to achieve a more conservative selection of streamlines, while reducing the dependency of trac-

tography on arbitrary choices of parameters.

Specifically, we generated eight million candidate streamlines using CSD-based probabilis-

tic tractography implemented in MRtrix3 (iFOD2; [58]) using four angle thresholds (5.7, 11.5,

23.1, and 47.2 deg; two million candidate streamlines per angle threshold). We set the mini-

mum streamline length at 4 mm and the maximum at 250 mm. The default parameters of

MRTrix3 CSD-based probabilistic tractography were used except for the maximum streamline

length (250 mm). The seed voxels for tracking were randomly chosen from the grey-white

matter interface region [59]. Finally, LiFE; [41, 57]) was applied to filter streamlines. This pro-

cess removed streamlines that did not contribute to predicting diffusion signals and therefore

yielded the optimal set of streamlines (optimised streamlines). In subsequent analyses, we con-

sidered only the optimised streamlines. Technical details of the ensemble tractography method

are described in previous works [26, 44, 60].

5. Identification of white matter tracts adjacent to CSv

In order to identify white matter tracts near CSv, we first selected a subset of streamlines near

CSv from whole-brain streamlines optimised with LiFE. We selected streamlines that have an

endpoint falling within a threshold distance (3 mm) from CSv voxels identified using the fMRI

localiser. Fig 4 shows CSv streamlines in a representative subject.

We then examined how CSv streamlines run into major white matter tracts. We selected

seven candidate major white matter tracts (SLF I, II, III, the cingulum, the callosal fibres, the

arcuate fasciculus, and the corticospinal tract), whose proximity to CSv suggests that they

could be associated with CSv, by comparing the coordinates of CSv and the positions of major

white matter tracts described in the established atlases of the white matter [31, 33]. We used

the waypoint ROI approach to segment subsets of CSv streamlines belonging to the major

white matter tracts (Fig 2), following the criteria as in previous work [35, 37, 40, 61]. Five of

these tracts were manually segmented, due to difficulty in delineating neighbouring tracts

using automated methods. Manual segmentation of the white matter tracts also ensured con-

sistency with previously established protocols based on anatomical information [35, 37, 61].

The detailed procedure is described below.

1. Superior Longitudinal Fasciculus (SLF) I, II, and III. We identified CSv streamlines

turning into SLF I, II, and III using the coronal waypoint ROIs. The waypoint ROIs were man-

ually drawn for each subject on the coronal slice with the anterior commissure (AC), following

the definitions used in previous studies [35, 37, 61]. Specifically, we manually drew the way-

point ROIs, each of which covered an area in the white matter in the superior frontal, middle

frontal, and precentral gyri for SLF I, II, and III, respectively, in each hemisphere (Fig 2, cyan

for SLF I; blue for SLF II; purple for SLF III). We used the following sulcus landmarks to draw

the waypoint ROIs: the cingulate and the superior frontal sulci defined the borders of the way-

point ROI for SLF I, the inferior precentral sulcus was used as a landmark for the border

between waypoint ROIs for SLF II and III, and the lateral fissure defined the inferior border of

the waypoint ROI for SLF III. We defined CSv streamlines passing through those ROIs as

streamlines belonging to SLF I, II, and III, respectively.

2. Cingulum. Similarly, we identified CSv streamlines turning into the cingulum using a

coronal waypoint ROI (Fig 2). The waypoint ROI for the cingulum was manually defined in

the same coronal slice as were ROIs for SLF. We defined the coronal ROI for the cingulum in

the area of the white matter adjacent to the cingulate gyrus and ventral to the cingulate sulcus,

as in previous studies [62, 63]. We used the orientation of the cingulate sulcus in the coronal
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slice to define the border between ROIs for SLF I and the cingulum. CSv streamlines passing

through this ROI were defined as part of the cingulum.

3. Callosal fibres. We identified CSv streamlines turning into the corpus callosum by

defining a waypoint ROI for the callosal fibres in the sagittal slice (X = 0 in AC-PC coordi-

nates). The waypoint ROI was manually drawn to cover the entire corpus callosum in the mid-

sagittal slice (Fig 2). CSv streamlines passing through this ROI were defined as belonging to

the callosal fibres.

4. Arcuate fasciculus. We identified CSv streamlines turning into the arcuate fasciculus

(AF) using a waypoint ROI automatically generated by AFQ MATLAB toolbox [40]. The way-

point ROI covered an area of the white matter in the axial slice between the temporal and the

fronto-parietal cortices [64]. CSv streamlines passing through this ROI were defined as belong-

ing to AF.

5. Corticospinal tract. We identified CSv streamlines turning into the corticospinal tract

(CST) using two waypoint ROIs automatically generated by AFQ MATLAB toolbox [40]. The

inferior ROI was placed in the axial slice of the brainstem and covered the entire cerebral

Fig 2. Manually delineated waypoint ROIs used to identify five of the major white matter tracts analysed in this

study, superimposed on a coronal section of the T1-weighted image of one representative subject (S1). The

coloured areas depict ROIs for the five tracts (cyan, SLF I; blue, SLF II; purple, SLF III; green, cingulum; yellow, callosal

fibres). AC: anterior commissure, cgs: cingulate sulcus, sfs: superior frontal sulcus, iprs: inferior precentral sulcus, lf:

lateral fissure, SLF: superior longitudinal fasciculus.

https://doi.org/10.1371/journal.pone.0300575.g002
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peduncle. The superior ROI was placed in the axial slice and covered an area of the white mat-

ter composed predominantly of tracts with a superior-inferior trajectory, located inferior to

the region where CST and callosal fibres cross each other. CSv streamlines passing through

both of these ROIs were defined as belonging to the CST.

6. Statistical analysis. We evaluated the statistical significance of CSv streamlines belong-

ing to each of the seven white matter tracts considered. We first calculated the proportion of

CSv streamlines belonging to each tract. We then performed a one-sample t-test for each tract

in each hemisphere. A null hypothesis of this statistical test is that the proportion of CSv

streamlines belonging to each white matter tract is not different from zero. We defined a statis-

tical significance (α) as P = 0.007, which is equivalent to P = 0.05 after Bonferroni correction

for seven tracts tested for each hemisphere.

Results

This study aimed to identify and characterise CSv streamlines in relation to the white matter

tracts located near the functionally defined CSv, by re-analysing fMRI and dMRI data origi-

nally acquired by Smith et al. [30]. CSv was localised in each subject by contrasting blood-oxy-

gen level-dependent (BOLD) responses to optic flow compatible with self-motion against

those to an array of optic-flow patches incompatible with self-motion [9]. CSv was identified

in the posterior part of the mid-cingulate sulcus (Fig 1), in both hemispheres of all subjects

(see [30] for details).

Functionally localised CSv was overlaid on the PDD map of dMRI data, to visualise the spa-

tial relationship between CSv and major white matter tracts. PDD maps are widely used to

identify the positions of white matter tracts without performing tractography [65–68]. Fig 3

shows CSv superimposed on the PDD map on a representative coronal slice of four subjects

(S1-S4). Visual inspection of the PDD maps revealed that CSv is located near the cingulum,

which can be seen as white matter voxels inferior to the cingulate sulcus with the anterior-pos-

terior diffusion direction (green). It is, however, difficult to identify clear borders amongst

other white matter tracts, such as SLF I, II, and III solely based on the PDD maps. In order to

examine the structural connectivity of CSv in relation to the known white matter tracts with

more specificity, we subsequently performed tractography on dMRI data.

Tractography was performed on dMRI data to identify streamlines that have endpoints

near CSv. We note that we took a conservative approach and analysed only the optimised

streamlines (see S2 Fig for a comparison between CSv streamlines with and without applica-

tion of LiFE). As shown in Fig 4, CSv streamlines include long-range streamlines towards the

frontal cortex, shorter-range streamlines towards the dorsal, lateral, and posterior parts of the

parietal cortex as well as towards the temporal cortex, and interhemispheric streamlines into

the contralateral hemisphere. We then categorised the streamlines terminating around CSv,

based on the waypoint ROIs through which they passed, to evaluate the relationship between

Fig 3. Position of CSv (yellow) with respect to the PDD map of dMRI data on a representative coronal section of four subjects (S1-S4). The colour

scheme depicts the PDD in each voxel (blue, superior-inferior; green anterior-posterior; red, left-right). CSv is adjacent to the cingulum (highlighted by

white solid lines), which can be seen as a group of voxels located inferior to the cingulate sulcus with the anterior-posterior diffusion direction.

https://doi.org/10.1371/journal.pone.0300575.g003
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CSv streamlines and the major white matter tracts (Fig 2; see S3 Fig for CSv streamlines not

categorised into major white matter tracts).

Fig 5 depicts CSv streamlines that were categorised into major white matter tracts (SLF I,

the cingulum, and the callosal fibres) in four subjects. We identified CSv streamlines belonging

Fig 4. CSv streamlines in the left hemisphere of one representative subject (S1). Left CSv (yellow) identified by fMRI is shown

together with streamlines (light grey) terminating near CSv. CSv and streamlines are overlaid on the sagittal (left), coronal (middle),

and axial (right) sections of T1-weighted image. See S3 Fig for CSv streamlines which were not categorised into major white matter

tracts.

https://doi.org/10.1371/journal.pone.0300575.g004

Fig 5. CSv streamlines which were categorised into major white matter tracts; SLF I (red), the cingulum (green),

and the callosal fibres (blue), in the left (left column) and right (right column) hemispheres of four subjects

(S1-S4). CSv (yellow) identified based on fMRI data is shown with the streamlines in each hemisphere. CSv and

streamlines are overlaid on a sagittal section medial to CSv and streamlines. Note that CSv is not fully visible in every

image as it is located medially to some of the streamlines.

https://doi.org/10.1371/journal.pone.0300575.g005
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to the dorsal branch of SLF (i.e. SLF I; red in Fig 5) in all but one hemisphere, whereas those

belonging to SLF II and SLF III were observed less consistently (14/24 and 11/24 hemispheres,

respectively). We also identified CSv streamlines belonging to the cingulum (green in Fig 5) in

nearly all hemispheres (22/24). CSv streamlines running into the corpus callosum (i.e. the cal-

losal fibres, blue in Fig 5) were identified in 15/24 hemispheres.

Fig 6 shows the number of CSv streamlines belonging to each of the seven major white mat-

ter tracts, expressed as a proportion of the total number of CSv streamlines that were identi-

fied, averaged across subjects. Streamlines belonging to SLF I and the cingulum together

accounted for approximately 18% of all CSv streamlines. The other tracts examined accounted

for a further 6%. The remaining 76% of streamlines may reflect short-range streamlines which

do not belong to major white matter tracts; however, anatomical validity of these streamlines

is hard to establish because of the limited anatomical knowledge of short-range fibres (see Dis-

cussion). For this reason, here we focus on major white matter tracts that are consistently

reported in anatomical studies of the white matter.

To test the statistical significance of the presence of CSv streamlines belonging to each tract,

we performed one-sample t-tests on the proportion of CSv streamlines belonging to each tract.

The proportion of CSv streamlines categorised as SLF I was significantly above zero in the

Fig 6. Summary statistics of the proportion of CSv streamlines belonging to each of the major white matter tracts considered in the left (blue) and right

(yellow) hemispheres. CSv streamlines belonging to SLF I and the cingulum together accounted for approximately 18% of all CSv streamlines. Error bars depict ±1

SEM across subjects. SLF: superior longitudinal fasciculus, AF: arcuate fasciculus, CST: corticospinal tract.

https://doi.org/10.1371/journal.pone.0300575.g006
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right hemisphere (t11 = 4.30, 95% confidence interval [CI] = 0.043–0.133, P = 0.001). We also

observed a similar trend for SLF I in the left hemisphere, but the effect did not reach statistical

significance when multiple comparisons across tracts were taken into account (t11 = 3.15,

CI = 0.038–0.211, P = 0.009). The proportion of CSv streamlines belonging to the cingulum

was significantly above zero in the left hemisphere (t11 = 3.40, CI = 0.025–0.116, P = 0.006),

but did not reach statistical significance in the right hemisphere (t11 = 1.46, CI = -0.039–0.194,

P = 0.172). The proportions of CSv streamlines belonging to the other tracts (SLF II, III, the

callosal fibres, AF, and CST) were not significantly larger than zero in either hemisphere (t11 =

1.89, CI = -0.004–0.05, P = 0.086 for left SLF II; t11 = 1.16, CI = -0.010–0.033, P = 0.271 for

right SLF II; t11 = 1.37, CI = -0.004–0.019, P = 0.199 for left SLF III; t11 = 2.46, CI = 0.0004–

0.008, P = 0.025 for right SLF III; t11 = 2.90, CI = 0.005–0.034, P = 0.015 for left callosal fibres;

t11 = 2.59, CI = 0.008–0.098, P = 0.025 for right callosal fibres; t11 = 1.00, CI = -5.499–0.002,

P = 0.339 for left AF; t11 = 1.00, CI = -0.001–0.002, P = 0.339 for right CST). We note that we

were unable to perform statistical tests on right AF and left CST, since none of the CSv stream-

lines were found to belong to these tracts in any of the subjects.

Discussion

This study aimed to complement the connectivity study of Smith et al. [30] by examining the

relationship between CSv streamlines and the known major white matter tracts. Results indi-

cate that notable proportions of CSv streamlines belong to SLF I and the cingulum. Below, we

discuss the implications of these findings in relation to neuroanatomy and cortical functions.

SLF I and CSv

SLF is a white matter tract connecting the frontal and parietal cortices, and can be separated

into three branches (SLF I, II, and III) connecting different parts of the frontal and parietal

areas [31, 35, 37, 69, 70]. Previous studies demonstrated that the functional significance of

these three branches may vary, based on differences in lateralisation, deficits caused by lesions

to specific branches, fMRI studies on cortical areas in which the branches terminate, and cor-

relations with behavioural data [35, 36, 71, 72]. Amongst the three branches, SLF I is often dis-

cussed in relation to motor functions, as it connects the parietal cortex and supplementary

motor area [69], and its lateralisation significantly differs between left- and right-handed indi-

viduals [36].

Results demonstrating that CSv streamlines belong to SLF I, which likely carries motor-

related information, have implications for the role of CSv in motor control. Since CSv is acti-

vated by visual motion signals compatible with self-motion, it is hypothesised that CSv plays

an essential role in integrating sensory and motor information to guide locomotion [17]. Con-

sistent with this notion, a previous fMRI study [15] demonstrated that CSv is activated during

leg movements simulating locomotion but not during arm movements. It is plausible that SLF

I serves as a pathway conveying information related to motor execution between CSv and the

fronto-parietal regions involved in motor processing, such as the supplementary motor area.

Such interaction is essential to guiding locomotion.

Cingulum and CSv

The cingulum is a long association white matter tract which can be divided into at least two

components: (i) the dorsal component, which constitutes the white matter adjacent to the cin-

gulate gyrus with the anterior-posterior fibre orientation, and (ii) the ventral component run-

ning within the parahippocampal gyrus, retrosplenial cingulate gyrus, and posterior precuneus

and eventually reaching the medial temporal cortex [33, 73–75]. CSv streamlines, categorised
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as the cingulum, are consistent with the definition of the dorsal subdivision of the cingulum as

these streamlines run within the cingulate gyrus. The importance of the cingulum in relation

to CSv’s function is relatively unclear compared to that of SLF I, since the anterior-dorsal com-

ponent of the cingulum is often discussed as a pathway subserving the default mode network,

attention, memory, and affective functions [76, 77]. It could be speculated, however, that cog-

nitive functions such as memory and decision-making are critical to navigation. In fact, the

importance of the cingulum in spatial navigation has been discussed in a lesion study on

human patients [78]. A possible interpretation could be that, since the role of CSv in guiding

locomotion must ecologically serve an important purpose in navigation, the cingulum pro-

vides a channel of signal transmission between CSv and areas involved with spatial memory,

which might influence online control and adjustment of locomotory movements during active

navigation.

It should also be noted that, according to Schmahmann and Pandya [31], the cingulum ter-

minates in the supplementary motor area in macaques. It is possible that the cingulum is also a

motor-related pathway in humans, and has a role in relaying motor-related signals between

CSv and the supplementary motor area.

Relation to macaque studies

Studies on non-human primates, such as rhesus macaques, have complementary strengths as

compared with human neuroimaging studies, since invasive methods can be applied to study

them, including chemical tracers, which have higher levels of specificity for identifying fibre

trajectories from specific injection sites [79, 80]. A comparison of dMRI-based tractography

with macaque tracer studies can therefore prove useful not only for validating human findings

but also for indicating anatomical features that are shared across species [32, 81].

Schmahmann and Pandya [31] provide an extremely comprehensive atlas of the white mat-

ter in rhesus macaque brains, in which an anterograde tracer with radiolabelled isotopes was

injected to visualise the trajectories of fibre pathways. In their extensive report, they document

fibre pathways near the cingulate gyrus and cingulate sulcus ([31], Fig 12–3, pg. 355). Accord-

ing to their data based on a tracer injection in the prefrontal cortex, the cingulum travels

through the white matter regions near the cingulate gyrus. In addition, there are axons from

SLF I travelling parallel to the cingulate sulcus and terminating at the cingulate gyrus. Consid-

ering the fact that previous fMRI studies on macaques reported the putative macaque homo-

logue of CSv located in the cingulate sulcus [11, 82], those findings may suggest that our

results, demonstrating that human CSv is near SLF I and the cingulum, are in line with tracer

results by Schmahmann and Pandya [31].

Conclusions and future directions

In summary, we found that some of the streamlines terminating near CSv belong to major

white matter tracts, SLF I and the cingulum, using dMRI-based tractography with anatomical

prescriptions. Those findings enable evaluation of how the neuronal circuitry allowing us to

monitor and adjust our locomotory movements may be related to white matter tracts known

from classical dissection studies, lesion studies, and modern tractography studies. While the

possibility cannot be rejected that our results did not statistically support the existence of CSv

streamlines belonging to SLF II, III, and the callosal fibres because of the limitations in spatial

and angular resolutions of the dataset, it is also possible that the proportions of these tracts ter-

minating near CSv are not as prominent as those of SLF I and the cingulum, and therefore

play a limited role in the functions in which CSv is involved.
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In this study, we focussed on CSv streamlines that belong to major white matter tracts,

rather than the rest including short-range streamlines, since it is difficult to classify streamlines

that do not belong to white matter tracts known to exist in anatomical studies. For example,

we observed streamlines connecting CSv and the part of the parietal cortex that likely includes

the precuneus and the superior parietal lobule (S3B Fig). While these streamlines are of inter-

est as some of the regions involved in optic-flow processing are located in this general area [9,

10, 30], we did not include these streamlines in the main analysis as short-range streamlines

are particularly susceptible to partial voluming within the grey matter and to complex fibre

crossing [83] and therefore we have limited confidence in the short-range CSv streamlines

identified in this study using dMRI data with a standard resolution. Acquisition of dMRI data

with novel high-performance gradient systems [84] coupled with the CSv localiser or high-res-

olution analyses on anatomical data on fibre pathways [85–87] may allow for further analyses

of short-range pathways associated with CSv with greater confidence. We believe that an

extension of current work, together with improved methods in future studies, will provide a

more complete understanding on what type of white matter pathways carry signals between

CSv and other cortical regions involved in self-motion processing and motor control. These

regions, highlighted by Smith et al. [30], include pVIP (putative intraparietal cortex), hV6, PIC

(posterior insular cortex), SMA (supplementary motor area) and the cingulate motor areas.

CSv is now seen as a sensorimotor interface in the context of locomotion (see [17] for review);

however a full understanding of this system has not yet been reached.

It should also be noted that we took a relatively conservative tractography approach in the

present study, applying a filter to the whole-brain streamlines initially generated in order to

cull the streamlines that did not account for diffusion signals [41, 44, 57]. It is well established

that probabilistic tractography is prone to producing spurious streamlines. Filtering the

streamlines has been shown to yield more reliable estimates of structural connectivity [41, 44,

88, 89]. This process removed streamlines including, for example, those connecting CSv and

the visual cortex, which were present amongst the streamlines that were initially generated (S2

Fig). This does not necessarily mean that structural connections do not exist between CSv and

the visual cortex, however, these streamlines were not sufficiently supported by our dMRI data

according to the conservative criteria of the filtering process. As discussed above, it is possible

that if streamlines that contribute to genuine connections have been filtered out, similar

streamlines may survive the same filtering process if generated from future dMRI data

acquired with improved methods.

We used an approach to examine the relationship between CSv and white matter tracts

known to exist based on anatomical knowledge. This approach complements the approach

used in Smith et al. [30], which focuses on connectivity patterns between grey matter regions

without an explicit hypothesis on the existence of white matter tracts [30]. The strength of our

approach is that the findings can be used as evidence for validity of tractography results based

on anatomical knowledge, and to link a functionally defined area with functional roles of spe-

cific white matter tracts known from studies on lesion, lateralisation, and development [33,

35]. Our approach allowed the same set of data as in Smith et al. [30] to map specific portions

of CSv streamlines onto the major white matter tracts with known functional roles and there-

fore more directly implicate CSv in said functions, rather than to speculate the roles of CSv

connections based on their cortical endpoints. Our findings that CSv streamlines belong to (i)

SLF I, of which involvement in integration of sensory information and motor planning sup-

porting visuospatial attention and complex motor execution is well-documented [90], substan-

tiates CSv’s role as an interface between perception and action; while (ii) the cingulum, of

which association with cognitive functions such as attention and memory [77], implies CSv’s

possible involvement in active navigation. Although it is beyond the scope of our study, and
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therefore remains speculative, the possibility that CSv may be involved in navigation would be

novel if confirmed as it has not been suggested in previous studies (e.g. [17, 20, 30]). We

believe that our findings, together with the findings of Smith et al. [30], provide strong evi-

dence that CSv links sensory and motor systems in the context of self-motion and also connote

CSv’s potential role in navigation.

Better understanding of the tissue properties of SLF I and the cingulum, and their relations

with sensory and motor performance or disorders may provide a fuller picture of the role of

CSv. Since it has been established that CSv receives not only visual but vestibular input [13, 23,

24], it may also be informative to examine the relations between these white matter tracts and

vestibular areas in the medial cortex such as the vestibular pericallosal sulcus [91]. Finally, it

would be beneficial for future research to investigate how lesions to SLF I and the cingulum, or

individual variation of those tracts correlate with behavioural measurements on self-motion

perception, locomotion, and navigation.

Supporting information

S1 Fig. Location of CSv in three additional subjects (S2-S4). CSv (yellow patches highlighted

by white circles) overlaid on the sagittal (left), coronal (middle), and axial (right) sections.

(PDF)

S2 Fig. Comparison between A. all of CSv streamlines generated using ensemble tractography

[44] and B. CSv streamlines that remained after the application of LiFE [41, 57] in the left

hemispheres of four subjects (S1-S4). Left CSv (yellow) identified by fMRI is shown together

with streamlines (light grey) terminating near CSv. CSv and streamlines are overlaid on the

sagittal (left), coronal (middle), and axial (right) sections of T1-weighted image.

(PDF)

S3 Fig. CSv streamlines not categorised as part of major white matter tracts. A. Streamlines

not categorised as part of major white matter tracts in the left hemisphere of one representative

subject (S1). Conventions are identical to those in Fig 4. B. Short-range streamlines connect

CSv with the superior parietal regions. Left CSv (yellow) and the trajectories of streamlines

that were not categorised as part of major white matter tracts (orange) are overlaid on a repre-

sentative coronal section of the T1-weighted volume. Some of the streamlines can be observed

connecting CSv and the superior parietal regions, presumably including the precuneus and the

superior parietal lobule.

(PDF)
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