News & Topicsイベント案内

Spin-L共催 生理学研究所 感覚認知情報研究部門 部門公開セミナー(第14回)を開催します。

内容

今回のセミナーでは、拡散強調MRIによる白質線維束の研究をご専門とされているLegarreta先生にご来所いただき、深層学習を用いた新しいデータ解析の枠組みについてご講演いただきます。このため、MRIによる脳イメージング研究をされている方のみならず、深層学習を生体データに適用する研究に興味のある方に広く参考になるご講演になるのではと思います。
ご関心のある方は、オンサイト会場まで直接お集まりいただけますと幸いです。
どうぞよろしくお願い致します。
We will host the following seminar with an onsite format on February 21st, 11AM. 
In this seminar, we asked Dr. Legarreta, who is an expert on diffusion MRI study on white matter tracts, to introduce his latest idea on using deep learning to analyze neuroimaging dataset.
Therefore, the talk will be of great interest to not only for the NIPS members working on MRI, but also members who are interested in learning how to use deep learning for analyzing physiological and anatomical dataset.
Please come to the seminar room if you are interested in this seminar. 

演題/Title

Rethinking diffusion MRI tractography synthesis and analysis using a deep learning representation framework.

演者/Speaker

Jon Haitz Legarreta

Postdoctoral fellow, Brigham and Women's Hospital/Harvard Medical School, USA)

抄録/Abstract

Diffusion MRI (dMRI) tractography of the brain provides information about its tissue microstructure and structural connectivity non-invasively. Since its inception in the mid 1990's, tractography has allowed to image the brain white matter pathways in-vivo. Although dMRI tractography methods have evolved to provide increasingly accurate white matter fiber reconstructions, their anatomical fidelity is impacted by inherent ambiguities of the diffusion signal and the fundamentals of the streamline propagation procedure. Several works have shown that conventional streamline tractography produces significant proportions of implausible streamlines, their ability to map a number of white matter pathways being moderate to low. Thus, the in-vivo delineation of the brain white matter architecture remains incomplete. In recent years, much effort has been put into proposing tractography deep learning models to overcome the limitations of conventional tractography synthesis and analysis methods. Deep learning-based tractography methods proposed in scientific literature have shown comparable or superior ability to generate anatomically plausible results compared to conventional methods. In this talk, I will present a family of deep representation learning methods that I have proposed to analyze and synthesize tractography data. By employing tractography streamline data and an  appropriate representation framework, I will demonstrate how the model can be harnessed to accomplish several tasks in tractography without requiring separate training steps. The framework allows to filter and bundle streamlines into anatomically consistent groups, and provides plausible white matter fiber reconstruction capabilities without requiring any streamline propagation. Results show that the proposed framework outperforms conventional streamline propagation and analysis methods on both synthetic and human brain in-vivo data.

案内(Information)

日時

Date & Time

2025年2月21日(金)11:00〜12:00

Februrary 21th, 11AM-noon, Japan Standard Time

会場

Venue

生理学研究所 明大寺地区実験棟1階 セミナー室A/B

Seminar Room A/B, 1st floor, National Institute for Physiological Sciences

言語

Language

英語

English

担当者

Host

生理学研究所 システム脳科学研究領域感覚認知情報研究部門 教授
竹村 浩昌(Hiromasa Takemura)