行動・代謝分子解析センター 感覚生理解析室

業績


学術論文 全て査読有り (新着順)

  1. Ohnishi K, Sokabe T*, Miura T, Tominaga M, Ohta A*, Kuhara A*. G protein-coupled receptor-based thermosensation determines temperature acclimatization of Caenorhabditis elegans. Nat. Commun. 15:1660, 2024. *責任著者
    https://doi.org/10.1038/s41467-024-46042-z
  2. Sato S, Magaji AM, Tominaga M, Sokabe T*. Avoidance of thiazoline compound depends on multiple sensory pathways mediated by TrpA1 and ORs in Drosophila. Front. Mol. Neurosci. 16:1249715, 2023. *責任著者
    https://doi.org/10.3389/fnmol.2023.1249715
  3. Suito T, Nagao K, Deng X, Ganser C, Uchihashi T, Tsutsumi M, Nemoto T, Hara Y, Tominaga M, Sokabe T*. Ether phospholipids modulate somatosensory responses by tuning multiple receptor functions in Drosophila. BioRxiv, 2023.2009.2012.556286., 2023 *責任著者
    https://doi:10.1101/2023.09.12.556286
  4. Sokabe T*, Bradshaw HB, Tominaga M, Leishman E, Chandel A, Montell C*. Endocannabinoids produced in photoreceptor cells in response to light activate Drosophila TRP channels. Sci. Signal. 15(755): eabl6179, 2022. *責任著者.表紙採択.AAAS広報誌「シグナリングに載った日本人研究者」に紹介記事掲載
    https://doi.org/10.1126/scisignal.abl6179
  5. Suito T, Nagao K, Juni N, Hara Y, Sokabe T, Atomi H, Umeda M. Regulation of thermoregulatory behavior by commensal bacteria in Drosophila. Biosci. Biotechnol. Biochem. zbac087, 2022. 2022年BBB論文賞受賞(12編のうちの1編), 2023年2月16日
    https://doi.org/10.1093/bbb/zbac087
  6. Feng X, Takayama Y, Ohno N, Kanda H, Dai Y, Sokabe T, Tominaga M. TRPV4 expression and function in Schwann cells during nerve demyelination after sciatic nerve injury. Commun. Biol. 3(1): 716, 2020.
    https://dx.doi.org/10.1038%2Fs42003-020-01444-9
  7. Ohnishi K, Saito S, Miura T, Ohta A, Tominaga M, Sokabe T*, Kuhara A*. OSM-9 and OCR-2 TRPV channels are accessorial warm receptors in Caenorhabditis elegans temperature acclimatization. Sci. Rep. 10(1): 18566, 2020. *責任著者
    https://dx.doi.org/10.1038%2Fs41598-020-75302-3
  8. Li Q, DeBeaubien NA, Sokabe T, Montell C. Temperature and sweet taste integration in Drosophila. Curr. Biol. 30(11): 2051-2067, 2020.
    https://doi.org/10.1016/j.cub.2020.03.066
  9. Liu J*, Sokabe T*, Montell C. A temperature gradient assay to determine thermal preferences of Drosophila larvae. J. Vis. Exp. (136): e57963, 2018. *筆頭著者
    https://doi.org/10.1016/j.cub.2020.03.066
  10. Sokabe T, Chen HC, Luo J, Montell C. A switch in thermal preference in Drosophila larvae depends on multiple rhodopsins. Cell Rep. 17(2): p336-44, 2016.
    https://dx.doi.org/10.1016%2Fj.celrep.2016.09.028
  11. Akitake B, Ren Q, Boiko N, Ni J, Sokabe T, Stockand JD, Eaton BA, Montell C. Coordination and fine motor control depend on Drosophila TRPγ. Nat. Commun. 6:7288, 2015.
    https://dx.doi.org/10.1038%2Fncomms8288
  12. Yoshiyama M, Mochizuki T, Nakagomi H, Miyamoto T, Kira S, Mizumachi R, Sokabe T, Takayama Y, Tominaga M, Takeda M. Functional roles of TRPV1 and TRPV4 in control of lower urinary tract activity: dual analysis of behavior and reflex during the micturition cycle. Am. J. Physiol. Renal. Physiol. 308(10): F1128-34, 2015.
    https://doi.org/10.1152/ajprenal.00016.2015
  13. Mizuno H, Suzuki Y, Watanabe M, Sokabe T, Yamamoto T, Hattori R, Gotoh M, Tominaga M. Potential role of transient receptor potential (TRP) channels in bladder cancer cells. J. Physiol. Sci. 64(4): 305–14, 2014.
    https://doi.org/10.1007/s12576-014-0319-6
  14. Sato A*, Sokabe T*, Kashio M, Yasukochi Y, Tominaga M, Shiomi K. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. USA. 111(13): E1249-55, 2014. *筆頭著者.
    https://doi.org/10.1073/pnas.1322134111
  15. Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 33(14): 6154-9, 2013.
    https://doi.org/10.1523/jneurosci.5672-12.2013
  16. Stefan CP, Zhang N, Sokabe T, Rivetta A, Slayman CL, Montell C, Cunningham KW. Activation of an essential calcium signaling pathway in S. cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot. Cell. 12(2): 204-14, 2012.
    https://doi.org/10.1128/ec.00299-12
  17. Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc. Natl. Acad. Sci. USA. 109(17): 6745-50, 2012.
    https://doi.org/10.1073/pnas.1114193109
  18. Kida N*, Sokabe T*, Kashio M, Haruna K, Mizuno Y, Suga Y, Nishikawa K, Kanamaru A, Hongo M, Oba A, Tominaga M. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch. – Eur. J. Physiol. 463(5): 715–25, 2012. *筆頭著者
    https://doi.org/10.1007/s00424-012-1081-3
  19. Kohno K*, Sokabe T*, Tominaga M, Kadowaki T. Honey Bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J. Neurosci. 30(37): 12219-29, 2010. *筆頭著者. 表紙採択.
    https://doi.org/10.1523/jneurosci.2001-10.2010
  20. Sokabe T*, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M*. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J. Biol. Chem. 285(24): 18749-58, 2010. *責任著者. 表紙採択. Paper of the Weekに選出.
    https://doi.org/10.1074/jbc.m110.103606
  21. Kawaguchi H, Yamanaka A, Uchida K, Shibasaki K, Sokabe T, Maruyama Y, Yanagawa Y, Murakami S, Tominaga M. Activation of Polycystic Kidney Disease-2-like 1 (PKD2L1)-PKD1L3 Complex by Acid in Mouse Taste Cells. J. Biol. Chem. 285(23): 17277-81, 2010.
    https://doi.org/10.1074/jbc.c110.132944
  22. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K. A 3.5-nm structure of rat TRPV4 cation channel revealed by zernike phase-contrast cryo-EM. J. Biol. Chem. 285(15): 11210-18, 2010.
    https://doi.org/10.1074/jbc.m109.090712
  23. Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T. Evolutionary conservation and changes in insect TRP channels. BMC Evol. Biol. 9(1): 228, 2009.
    https://doi.org/10.1186/1471-2148-9-228
  24. Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch. – Eur. J. Physiol. 458(6): 1093-102, 2009
    https://doi.org/10.1007/s00424-009-0703-x
  25. Mochizuki T, Sokabe T*, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M*. The TRPV4 Cation Channel Mediates Stretch-evoked Ca2+ Influx and ATP Release in Primary Urothelial Cell Cultures. J. Biol. Chem. 284(32): 21257-64, 2009. *責任著者. F1000 の“Must read” paperに選出.
    https://doi.org/10.1074/jbc.m109.020206
  26. Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J. Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J. Appl. Physiol. 106(1): 203-11, 2009.
    https://doi.org/10.1152/japplphysiol.00197.2008
  27. Fujita F, Uchida K, Moriyama T, Shima A, Shibasaki K, Inada H, Sokabe T, Tominaga M, Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. J. Clin. Invest. 118(12): 4049-57, 2008.
    https://doi.org/10.1172/jci35957
  28. Sokabe T, Tsujiuchi S, Kadowaki T, Tominaga M. Drosophila Painless is a Ca2+-requiring channel activated by noxious heat. J. Neurosci. 28(40): 9929-38, 2008.
    https://doi.org/10.1523/jneurosci.2757-08.2008
  29. Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M. Effects of Skin surface temperature on epidermal permeability barrier homeostasis. J. Invest. Dermatol. 127(3): 654-9, 2007.
    https://doi.org/10.1038/sj.jid.5700590
  30. Nakatsuka H*, Sokabe T*, Yamamoto K, Sato Y, Hatakeyama K, Kamiya A, Ando J. Shear stress induces hepatocyte PAI-1 gene expression through cooperative Sp1/Ets-1 activation of transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 291(1): G26-34, 2006. *筆頭著者.
    https://doi.org/10.1152/ajpgi.00467.2005
  31. Yamamoto K*, Sokabe T*, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 12(1): 133-7, 2006. *筆頭著者. “News and Views”でレビューに選出.
    https://doi.org/10.1038/nm1338
  32. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am. J. Physiol. Heart Circ. Physiol. 288(4): 1915-24, 2005.
    https://doi.org/10.1152/ajpheart.00956.2004
  33. Sokabe T, Yamamoto K, Ohura N, Nakatsuka H, Qin K, Obi S, Kamiya A, Ando J. Differential regulation of urokinase-type plasminogen activator expression by fluid shear stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 287(5): 2027-34, 2004.
    https://doi.org/10.1152/ajpheart.00260.2004
  34. Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, Shibata M, Nakatsuka T, Harii K, Wada Y, Kohro T, Kodama T, Ando J. Global analysis of shear stress-responsive genes in vascular endothelial cells. J. Atheroscler. Thromb. 10(5): 304-13, 2003.
    https://doi.org/10.5551/jat.10.304
  35. Yamamoto K, Sokabe T, Ohura N, Nakatsuka H, Kamiya A, Ando J. Endogenously released ATP mediates shear-stress-induced Ca2+ influx into pulmonary endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 285(2): 793-803, 2003.
    https://doi.org/10.1152/ajpheart.01155.2002
  36. Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 95(5): pp2081-8, 2003.
    https://doi.org/10.1152/japplphysiol.00232.2003
  37. Korenaga R, Yamamoto K, Ohura N, Sokabe T, Kamiya A, Ando J. Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am. J. Physiol. Heart Circ. Physiol. 280(5): pp2214-21, 2001.
    https://doi.org/10.1152/ajpheart.2001.280.5.h2214

英文総説 全て査読有り (新着順)

  1. Sokabe T*, Lee Y*, Huang J*. Editorial: Molecular and Cellular Mechanisms of Sensory Functions in Insect Models. Front. Mol. Neurosci (Frontiers), 15:1064452, 2022. *責任著者
    https://doi.org/10.3389/fnmol.2022.1064452
  2. Sokabe T, Tominaga M. The TRPV4 cation channel: A molecule linking skin temperature and barrier function. Commun. integr. Biol. 3(6): 619-21, 2010.
    https://doi.org/10.4161/cib.3.6.13461
  3. Sokabe T, Tominaga M. A temperature-sensitive TRP ion channel, Painless, functions as a noxious heat sensor in fruit flies. Commun. integr. Biol. 2(2): 170-3, 2009.
    https://doi.org/10.4161/cib.7708

日本語論文・総説 (新着順)

  1. 曽我部隆彰*. ロドプシン-脂質-TRPチャネル情報伝達経路の感覚機能における多機能性. 「膜」(日本膜学会), 49(2)(2024年3月刊行予定).
  2. 曽我部隆彰*. <TRPチャネル以外の温度受容体> ショウジョウバエから見つかってきた新たな温度受容メカニズム. (特集 温度・機械刺激受容の最前線) 生物の科学 遺伝(㈱エヌ・ティー・エス), 78(2): 112-117, 2024 *責任著者
    http://www.nts-book.co.jp/item/detail/summary/bio/20051225_42.htm
  3. 水藤拓人, 曽我部隆彰. ショウジョウバエの温度選好性を決める温度受容体と制御因子の解析. 昆虫と自然(ニューサイエンス社), 57(2): 29-32, 2022
    https://jglobal.jst.go.jp/detail?JGLOBAL_ID=202202221749088476
  4. 富永真琴*, 曽我部隆彰*. TRPチャネルによる昆虫の温度センシング. 昆虫と自然(ニューサイエンス社), 54(11): 30-33, 2019 *責任著者
    https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201902276005306755
  5. 曽我部隆彰. 昆虫のTRPチャネルと感覚機能 「TRPチャネルのすべて」.医学のあゆみ(医歯薬出版株式会社), 270(10): 989-97, 2019
    http://www.pieronline.jp/content/article/0039-2359/270100/989
  6. 木田尚子, 曽我部隆彰, 加塩麻紀子, 須賀康, 金丸晶子, 大場愛, 富永真琴. 表皮バリア機能におけるTransient Receptor PotentialVanilloid 4 (TRPV4) の重要性. 日本化粧品技術者会誌(日本化粧品技術者会), 47(2): 108-18, 2013. 2013-2014年日本化粧品技術者会(SCCJ)学会誌最優秀論文賞受賞
    https://doi.org/10.5107/sccj.47.108
  7. 曽我部隆彰. 「しっとり肌」を保つタンパク質を発見! 月刊「化学」(㈱化学同人), 65(7): 75, 2010.
  8. 曽我部隆彰, 富永真琴. 膀胱伸展を感知するTRPV4チャネル. 医学のあゆみ(医歯薬出版株式会社), 233(6): 497, 2010.
    https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201002233771869219
  9. 曽我部隆彰, 富永真琴. 哺乳類における温度受容の分子機構 (Molecular Mechanisms Underlying Thermosensation in Mammals). BRAIN and NERVE(医学書院), 61(7): 867-73, 2009.
    https://doi.org/10.11477/mf.1416100529
  10. 曽我部隆彰, 富永真琴. 細胞感覚とセルセンサー 04細胞膜温度センサー 温度を感じる分子たち. バイオニクス(オーム社), Vol.4/No.26, p44-50, 2007.
    https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902213586200491
  11. 安藤譲二, 曽我部隆彰, 山本希美子. 動脈硬化の病態基盤 9. ヘモダイナミクスと動脈硬化. 循環器科(科学評論社), 59(Suppl.3): pp121-29, 2006.
    https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902214416071162
  12. 安藤譲二, 大浦紀彦, 曽我部隆彰, 山本希美子. ずり応力による遺伝子転写機能調節. 血管医学(Vascular Biology & Medicine)(メディカルレビュー社), 6(1): pp47-55, 2005.

著書

  1. >Suito T, Nagao K, Kai M, Juni N, Sokabe T, Umeda M. Measurement of Thermoregulatory Behavior in Drosophila melanogaster. In: Yamamoto, D. (eds) Behavioral Neurogenetics, Neuromethods (Humana, New York, NY.), vol 181: pp 77–91, 2022.
    https://doi.org/10.1007/978-1-0716-2321-3_6

記事

  1. 曽我部隆彰. A FAOPS2019 satellite – NIPS/Thermal Biology Training Course活動報告. 日本生理学雑誌(日本生理学会), Vol.81, No.3: p60-64, 2019.

Editor業務

  1. Guest Associated Editor: Takaaki Sokabe, Youngseok Lee, Jia Huang. “Molecular and Cellular Mechanisms of Sensory Functions in Insect Models” in Methods and Model Organisms section, Frontiers in Molecular Neuroscience, July 2021~Oct 2022.
    https://www.frontiersin.org/research-topics/24102/molecular-and-cellular-mechanisms-of-sensory-functions-in-insect-models
  2. Guest Associated Editor: Takaaki Sokabe, Youngseok Lee, Jia Huang. “Molecular and Cellular Mechanisms of Sensory Functions in Insect Models - Volume II” in Methods and Model Organisms section, Frontiers in Molecular Neuroscience, Dec 2022~
    https://www.frontiersin.org/research-topics/51196/molecular-and-cellular-mechanisms-of-sensory-functions-in-insect-models---volume-ii