Physiological Sciences Program 2024

The course subjects and the faculty members

*Regarding E-mail, please replace (at) with @.

Division of Biophysics and Neurobiology

 tateyama2021.png Assoc. Prof. TATEYAMA, Michihiro
 
Dynamic aspects of structure-function relationship and regulation mechanisms of ion channels and receptors
 Membrane proteins such as ion channels and receptors are sophisticated elements which play critical roles in the brain function. To elucidate the functioning mechanisms we approach their dynamic structural rearrangements and the regulation mechanisms by combined techniques of molecular biology, electrophysiology and optophysiology. We also conduct research using genetically modified mice towards the functional significance of ion channels and receptors in the brain function.
 
Article Information

Shimomura T, Hirazawa K, Kubo Y (2023) Conformational rearrangements in the 2nd voltage sensor domain switch PIP2- and voltage-gating modes in two-pore channels. Proc Natl Acad Sci USA (120(6):e2209569120. doi: 10.1073/pnas.2209569120.)
Chen IS, Eldstrom J, Fedida D, Kubo Y (2022) A novel ion conducting route besides the central pore in an inherited mutant of G-protein-gated inwardly rectifying K+ channel. J Physiol 600: 603-622. doi: 10.1113/JP282430.
Andriani RT, Kubo Y (2021) Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. Elife 10:e65822. doi: 10.7554/eLife.65822.
 
Contact: TATEYAMA, Michihiro TEL:+81-564-55-7832 / E-mail:tateyama(at)nips.ac.jp
              (※Please note that Professor Kubo does not accept graduate students.)

Lab Website

Division of Structural Biology (Exploratory Research Center on Life and Living Systems)

murata.jpg Prof. MURATA, Kazuyoshi 
  
Three-dimensional structural analysis of biological macromolecules using cryo-electron microscopy
 We investigate three-dimensional (3D) structure of biological macromolecules, such as large protein complexes, membrane proteins, and virus particles, by using cryo-electron microscopy and single particle analysis. We also elucidate the 3D structure of bacteria and organelles by using cryo-electron tomography. Our research goal is to understand biological functions from molecular structure. URL: www.nips.ac.jp/struct
 
Article Information/General remarks

Chihara A, Burton-Smith RN, Kajimura N, Mitsuoka K, Okamoto K, Song C*, Murata K* (2022) A novel capsid protein network allows the characteristic inner membrane structure of Marseilleviridae giant viruses. Sci Rep 12(1):21428.
Watanabe R, Song C, Kayama Y, Takemura M, Murata K* (2022) Particle morphology of Medusavirus inside and outside cells reveals new maturation process of giant virus. J Viol 96(7), e0185321.

Contact: MURATA, Kazuyoshi TEL: +81-564-55-7893  / E-mail:kazum(at)nips.ac.jp

 
Lab Website

Division of Cell Structure

furuse.png Prof. FURUSE, Mikio*  izumi.png Assoc. Prof. IZUMI, Yasushi
 
Molecular mechanism of epithelial barrier function and paracellular transport
   We seek to clarify the molecular basis of epithelial barrier function and paracellular epithelial transport, both of which are required for homeostasis of the body fluid compartments. Our research focuses on tight junctions and their related structures. We characterize the function of the cell-cell junction-associated proteins that we identified by a combination of morphological, molecular biological and physiological techniques using cultured epithelial cells, mice and fruit flies.
 
Article Information

Sugawara T, Furuse K, Otani T, Wakayama T, Furuse M. (2021) Angulin-1 seals tricellular contacts independently of tricellulin and claudins. J Cell Biol. 220: e202005062
Izumi Y, Furuse K, Furuse M. (2021) The novel membrane protein Hoka regulates septate junction organization and stem cell homeostasis in the Drosophila gut. J Cell Sci. 134: jcs257022
Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M (2019) Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol 218: 3372-3396

Contact:   FURUSE, Mikio TEL:+81-564-59-5277 / E-mail:furuse(at)nips.ac.jp
               IZUMI, Yasushi TEL:+81-564-59-5279 / E-mail:yizumi(at)nips.ac.jp

(*Applicants who wish to enter the 5-year Doctoral Program with Prof. FURUSE Mikio as a supervisor are advised to have a close discussion with him in advance.)
 
Lab Website




Division of Cardiocirculatory Signaling (Exploratory Research Center on Life and Living Systems)

nishida.png Prof. NISHIDA, Motohiro  nishimura2021.png Assoc.Prof. NISHIMURA, Akiyuki

Elucidation of the molecular mechanism underlying maintenance and transfiguration of cardiovascular homeostasis
  We are studying the mechanism underlying adaptation and maladaptation of the cardiovascular system against hemodynamic load through focusing on TRP Ca2+-permeable channels as a regulator of excitation-transcription coupling and GTP-binding proteins as senescence-inducible redox sensors, using in vivo and ex vivo cardiovascular analyzing systems and chemical principles-based biological techniques.
 
Article Information

Nishiyama K, Nishimura A, Shimoda K, Tanaka T, Kato Y, Shibata T, Tanaka H, Kurose H, Azuma Y-T, Ihara H, Kumagai K, Akaike T, Eaton P, Uchida K, Nishida M*. Redox-dependent internalization of purinergic P2Y6 receptor limits colitis progression. Science Signal. (2022). doi: 10.1126/scisignal.abj0644.
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang XK, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M*. Myocardial TRPC6-mediated Zn2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nature Commun. 2022 Oct 26;13(1):6374.
doi: 10.1038/s41467-022-34194-9.
Numaga-Tomita T, Shimauchi T, Kato Y, Nishiyama K, Nishimura A, Sakata K, Saiki S,Inada H, Kita S, Iwamoto T, Nabekura J, Birnbaumer L, Mori Y, Nishida M*. Inhibition of TRPC6 promotes capillary arterialization during post-ischemic blood flow recovery. Br. J. Pharmacol. 2023 Jan;180(1):94-110. doi: 10.1111/bph.15942.

Contact:   NISHIDA, Motohiro TEL:+81-564-59-5560 / E-mail:nishida(at)nips.ac.jp
            NISHIMURA, Akiyuki TEL:+81-564-59-5563/ E-mail: aki(at)nips.ac.jp


Lab Website

Division of Molecular Neuroimmunology

murakami2022.jpg Prof. MURAKAMI, Masaaki*  hasebe2022.jpg Assoc.Prof. HASEBE, Rie

Molecular mechanism of the development of autoimmune diseases regulated by gateway reflex
   Prof. MURAKAMI and Assoc. Prof. HASEBE found a novel concept for neuro-immune interaction, “The Gateway Reflex”, by studying the mechanism of how IL-6 and autoreactive CD4+ T cells induce the tissue-specific autoreactive immune diseases (Cell 148, 447-, 2012, JEM 219, e20212019, 2022 etc). Six Gateway Reflexes have been found so far. In the Gateway Reflex, environmental stimulations such as gravity, pain, stress, light, and microinflammation activate the specific neural pathways, which induces accumulation of autoreactive CD4+T cells to induce inflammation around the specific blood vessels of the tissue possessing blood barrier (e.g. the central nervous system or retina). The mechanism of how the Gateway Reflex increases vascular permeability has been addressed by the concept of “IL-6 amplifier” (Immunity, 50, 812, 2019, Immunity, 29, 628-, 2008). The research goals of Division of Molecular Neuroimmunology are, 1. to discover novel Gateway Reflexes, 2. to elucidate molecular mechanism including the details of neural pathway related to the Gateway Reflexes, 3. to elucidate molecular mechanism of inflammation induced by IL-6 amplifier.
 
Article Information

Hasebe R, et al., (2022) ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 219: e20212019.
Stofkova A, et al., (2022) Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex. Int J Mol Sci 23: 453
Murakami M et al., (2019) Pleiotropy and Specificity: Insights from the interleukin 6 family of cytokines. Immunity 50: 812-831.
Stofkova A et al., (2019). Photopic light-mediated down-regulation of local α1A-adorenagic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Sci Rep 9: 2353.
Arima Y, et al., (2017) Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a neu neural circuit. eLife 6: e25517.
Arima Y, et al., (2015) A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. eLife 4: e08733.
Arima Y, et al., (2012) Reginal neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148: 447-457.

Contact:   HASEBE, Rie TEL:+81-564-55-7729 / E-mail : hasebe(at)nips.ac.jp
(*Prof. MURAKAMI, Masaaki cannot accept students as a supervisor. Assoc.Prof. HASEBE, Rie accepts them instead and discusses the research with Prof. MURAKAMI, Masaaki as well.)

  Lab Website

Division of Homeostatic Development

 narushima.JPG Assoc.Prof. NARUSHIMA, Madoka  

Reorganization of neural circuits in development and recovery after neural injury
 
Neuronal networks are dynamically reshaped by experiences during early postnatal life. The similar neural reorganization is observed after neural injury. What happens at the level of neural networks including synaptic formation and function during postnatal development and recovery after neurological damage? To address these questions, we study the rodent central nervous system with especially focusing on glial functions. Major research techniques applied in our laboratory include in vivo two-photon microscopy, slice patch clamp electrophysiology, immunohistochemistry and molecular biological techniques. In order to explore the possibility that immature features of neural circuits reemerge during the recovery period following neural injury, we study on the mechanisms underlying the reorganization of neural circuits using various animal models.

 
Article Information

Horiuchi H, Agetsuma M, Ishida J, Nakamura Y, Cheung D, Nanasaki S, Kimura Y, Iwata T, Takahashi K, Sawada K, Nabekura J (2020) CMOS-based bio-image sensor spatially resolves neural activity-dependent proton dynamics in the living brain. Nat Commun 11: 712.
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, Wake H (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation, Nature Commun 10: 5816.
Narushima M, Yagasaki Y, Takeuchi Y, Aiba A, Miyata M (2019) The metabotropic glutamate receptor subtype 1 regulates development and maintenance of lemniscal synaptic connectivity in the somatosensory thalamus. PLoS One 14(12): e0226820.

Contact: NARUSHIMA, Madoka  TEL:+81-564-55-7854/ E-mail:narumado(at)nips.ac.jp
           (※Please note that Professor Nabekura does not accept graduate students.)
 
Lab Website

Division of Visual Information Processing

yoshimura yumiko.jpg Prof. YOSHIMURA, Yumiko   

Circuit mechanisms underlying information processing and functional development in visual cortex
   We are studying the properties of neuronal circuits underlying visual information processing in visual cortex, and the development of the circuits based on experience-dependent and synaptic target recognition mechanisms. To this end, we are conducting electrophysiological analyses combined with optogenetics and laser photolysis of caged glutamate in rodent slice preparations and morphological analyses using transsynaptic viral tracers. In order to relate the properties of neuronal circuits to visual functions, we are also investigating the visual responses of cortical neurons in rodents with electrophysiological techniques and 2-photon Ca2+ imaging.
 
Article Information

Yoneda T, Hayashi K, Yoshimura Y. Experience-dependent functional plasticity and visual response selectivity of surviving subplate neurons in mouse visual cortex. PNAS, 120(9):e2217011120. doi: 10.1073/pnas.2217011120.
Kimura R, Yoshimura Y (2021) The contribution of low contrast–preferring neurons to information representation in the primary visual cortex after learning. Sci Adv, Volume 7, Issue 48
Nishio N, Hayashi K, Ishikawa AW, Yoshimura Y (2021) The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex. J Physiol, 2021 Sep;599(17):4131-4152.
 
Contact:   YOSHIMURA, Yumiko TEL: +81-564-55-7731 / E-mail:yumikoy(at)nips.ac.jp
 
Lab Website

Division of Biophotonics (Exploratory Research Center on Life and Living Systems)

nemoto.png Prof. NEMOTO, Tomomi  Enoki-trimmed.png Assoc. Prof. ENOKI, Ryosuke

Quantitative analysis of neural functions and biological rhythm by cutting-edge optical technologies
  We aim to explore new principles of physiological functions by developing innovative optical bioimaging. Utilizing the latest laser, optical, and material technologies, our goal is to observe and manipulate living specimens with high speed and super-high resolution without causing damage. Through quantitative visualization analyses, we aim to uncover the molecular and cellular mechanisms responsible for the functions of the central nervous system and organs, such as signal transmission, biological rhythms, and hibernation. We also promote the development of various models using cells, organs, and animals for disorders such as cancers, diabetes, and plants.
 
Article Information

Takahashi T, Zhang H, Kawakami R, Yarinome K, Agetsuma M, Nabekura J, Otomo K, Okamura Y, Nemoto T (2020) PEO-CYTOP Fluoropolymer Nanosheets as a Novel Open-Skull Window for Imaging of the Living Mouse Brain, iScience, 23(10), 101579.
Chang CP, Otomo K, Kozawa Y, Ishii H, Yamasaki M, Watanabe M, Sato S, Enoki R, Nemoto T (2022) Single-scan volumetric imaging throughout thick tissue specimens by one-touch installable light-needle creating device, Scientific Reports, 12:10468.
Kamada T, Otomo K, Murata T, Nakata K, Hiruma S, Uehara R, Hasebe M, Nemoto T (2022) Low-invasive 5D visualization of mitotic progression by two-photon excitation spinning-disk confocal microscopy, Scientific Reports, 12:809.

Contact:   NEMOTO, Tomomi  TEL:+81-564-59-5257 / E-mail: tn(at)nips.ac.jp
             ENOKI, Ryosuke   TEL:+81-564-59-5258 /E-mail: enoki(at)nips.ac.jp



Lab Website

 

Division of Multicellular Circuit Dynamics

wake2021.png Prof. WAKE, Hiroaki 

Physiological function measurement and manipulation of multicellular circuits in the central nervous system
  The Multicellular Circuit Dynamics Division aims to elucidate the physiological functions of the multicellular circuit dynamics, which consists of neurons and glial cells in the central nervous system, that contribute to higher brain functions. We aim to examine the physiological functions of glial cells that modify the neural circuits activity that ultimately lead to behavior output for mice and to link this to pathological conditions. In addition to the visualization technique using two-photon microscopy, we will further apply our holographic microscopy to biological applications, focusing on the functional connectivity of neurons and extracting the transcriptomes, and evaluating local neural circuits by using holographic stimulation and measurement. In addition to those applications, we are stimulating neurons and glial cells to control higher-order brain functions.
 
Article Information

Quan X, Kato D, Daria V, Matoba O, Wake H*. Holographic microscope and its biological application. Neurosci Res. 2021, Nov 2: S01680102(21)00220-0
Okada T, Kato D, Nomura Y, Obata N, Quan X, Morinaga A, Yano H, Guo Z, Aoyama Y, Tachibana Y, Moorhouse AJ, Matoba O, Takiguchi T, Mizobuchi S and Wake H*. Pain induces stable, active microcircuits in the somatosensory cortex that provide a new therapeutic target. Sci Adv, 2021 Mar 19;7(12):eabd8261.
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J and Wake H*. Dual Microglia Effects on Blood Brain Barrier Permeability Induced by Systemic Inflammation, Nature Commun. 2019, Dec 20;10(1):5816.

Contact:   WAKE, Hiroaki  TEL:+81-564-55-7724  / E-mail:hirowake(at)nips.ac.jp
 
Lab Website

Division of Behavioral Development

isoda.png Prof. ISODA, Masaki 

Neural mechanisms of social cognition and behavior
   The goal of this laboratory is to clarify the neural mechanisms underlying social cognition and behavior using macaques. In particular, we focus on self-other distinction, monitoring of others’ actions, observational learning, and self-other comparison. For this purpose, we employ various experimental approaches, such as behavioral testing, electrophysiological recording, neuropharmacological intervention, pathway-selective blockade of neural activity using viral vectors, and cognitive genomics.
 
Article Information

Ninomiya T, Noritake A, Kobayashi K, Isoda M (2020) A causal role for frontal cortico-cortical coordination in social action monitoring. Nature Communications 11: 5233.
Noritake A, Ninomiya T, Isoda M (2018) Social reward monitoring and valuation in the macaque brain. Nature Neuroscience 21: 1452-1462.
Yoshida K, Go Y, Kushima I, Toyoda A, Fujiyama A, Imai H, Saito N, Iriki A, Ozaki N, Isoda M (2016) Single-neuron and genetic correlates of autistic behavior in macaque. Science Advances 2: e1600558.

Contact:   ISODA, Masaki  TEL:+81-564-55-7761 / E-mail:isodam(at)nips.ac.jp

Lab Website

Division of Neural Dynamics

kitajo.png Prof. KITAJO, Keiichi 

The functional role of neural dynamics
  The neural activities of humans and other animals show a variety of nonlinear dynamics. We deal with EEG, ECoG, MEG, and fMRI data in humans. We promote computational studies by data analysis and mathematical modeling based on the nonlinear dynamical systems theory, information theory, complex network analysis, and statistical machine learning theory thereby trying to understand the functional role of neural dynamics in perception, cognition, motor, and social functions in relation to individual differences and pathological conditions. We also develop novel techniques for brain-machine interfaces and AI based on neural dynamics.
 
Article Information

Yokoyama H, Kitajo K (2022) Detecting changes in dynamical structures in synchronous neural oscillations using probabilistic inference. NeuroImage 252: 119052.
Sase T, Kitajo K (2021) The metastable brain associated with autistic-like traits of typically developing individuals. PLoS Computational Biology 17: e1008929.
Okazaki YO, Nakagawa Y, Mizuno Y, Hanakawa T, Kitajo K (2021) Frequency- and area-specific phase entrainment of intrinsic cortical oscillations by repetitive transcranial magnetic stimulation. Frontiers in Human Neuroscience 15: 608947.

Contact:  KITAJO, Keiichi TEL:+81-564-55-7751/ E-mail:kkitajo(at)nips.ac.jp
 
Lab Website


Division of Sensory and Cognitive Brain Mapping 

takemura2022.jpg Prof. TAKEMURA, Hiromasa 
Structural and functional brain mapping of sensory and cognitive system
   We investigate structure-function relationship of the brain based on structural and functional neuroimaging using magnetic resonance facility. While our primary focus is to study and understand healthy human brains, we also perform neuroimaging studies on animal models as well as and clinical neuroimaging studies on retinal disorders.
 
Article Information

Miyata T, Benson NC, Winawer J. & Takemura H. (2022) Structural covariance and heritability of the optic tract and primary visual cortex in living human brains. The Journal of Neuroscience, 42, 6761–6769.
Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R. & Zilles K. (2020) Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. eLife, 9, e55444.
Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi S, Sliwa J, Ye FQ, Barnett M, Leopold DA, Freiwald WA, Logothetis NK. & Wandel, BA. (2017) Occipital white matter tracts in human and macaque. Cerebral Cortex, 27(6), 3346–3359.

Contact:   TAKEMURA, Hiromasa  TEL:+81-564-55-7861 / E-mail:htakemur(at)nips.ac.jp
 
Lab Website


Division of Multisensory Integration Systems 

 sasaki2024.JPG Prof. SASAKI, Ryo 
Neural dynamics of multisensory integration for flexible behaviors
    Our goal is to clarify the dynamics of brain networks underling flexible cognitive behaviors and decision-making using non-human primates. To achieve this goal, we develop various behavioral paradigms with realistic environment utilizing virtual reality (VR) technology, and perform computational analysis based on large-scale neural activity recordings and neural circuit manipulation applying optogenetics. In particular, we focus on motion systems, spatial navigation systems, balancing system for risk-reward decisions, and art cognition.
 
Article Information

Sasaki R, Ohta Y, Onoe H, Yamaguchi R, Miyamoto T, Tokuda T, Tamaki Y, Isa K, Takahashi J, Kobayashi K, Ohta J, Isa T.  (2024) Balancing risk-return decisions by manipulating the mesofrontal circuits in primates. Science 383(6678):55-61
Sasaki R, Kumano H, Mitani A, Suda Y, Uka T. (2022) Task-specific employment of sensory signals underlies rapid task switching. Cereb Cortex 32(21):4657-4670
Sasaki R, Anzai A, Angelaki DE, DeAngelis GC. (2020) Flexible coding of object motion in multiple reference frames by parietal cortex neurons. Nature Neuroscience 23(8): 1004-1015

Contact:   SASAKI, Ryo   TEL:+81-564-55-7771    / E-mail:rsasaki(at)nips.ac.jp
 


Center for Animal Resources and Collaborative Study

nishijima.jpg Prof. NISHIJIMA, Kazutoshi

Establishment and characterization of experimental animal models
   Knowledge about animal characteristics and optimization of the breeding environment are indispensable for conducting scientifically meaningful animal experiments. Center for Animal Resources and Collaborative Study conducts the estblishment of experimental animal models and analysis of hteir characteristics, development of methods of strain preservation and breeding management suitable for each animal species (especially rabbits), from the viewpoint of veterinary and experimental animal sciences.
(※Currently, we do not accept students for trial enrollment.)
 
Article Information/Ggeneral remarks

Nishijima K, Kitajima S, Matsuhisa F, Niimi M, Wang C-c, Fan J (2021) Strategies for Highly Efficient Rabbit Sperm Cryopreservation. Animals. 2021 11: 1220.
Nishida Y, Nishijima K, Yamada Y, Tanaka H, Matsumoto A, Fan J, Uda Y, Tomatsu H, Yamamoto H, Kami K, Kitajima S, Tanaka K (2021) Whole-body insulin resistance and energy expenditure indices, serum lipids, and skeletal muscle metabolome in the lipoprotein lipase overexpression. Methabolomics 17: 26.
Matsuhisa F, Kitajima S, Nishijima K, Akiyoshi T, Masatoshi Morimoto M, Fan J (2020) Transgenic Rabbit Models: Now and the Future. Appl Sci 10: 7416.

Contact:  NISHIJIMA, Kazutoshi  TEL:+81-564-55-7781 / E-mail: kanish(at)nips.ac.jp
 
Lab Website

SUPPORTIVE CENTER FOR BRAIN RESEARCH, Section of Multiphoton Neuroimaging

murakoshi.bmp Assoc. Prof. MURAKOSHI, Hideji 

Imaging signal transduction in subcellular structures of living cells by 2-photon fluorescence microscopy
  We are working on imaging signal transduction in subcellular structure such as dendritic spine of hippocampal neurons using 2-photon fluorescence microscopy and fluorescence resonance energy transfer (FRET) techniques. By combining these techniques with optical manipulation techniques such as caged-compound uncaging and optogenetic tools, we are trying to understand the mechanism of physiological system such as memory system of brain at the level of single synapse.
 
Article Information/Ggeneral remarks

Shibata AC, Ueda HH, Eto K, Onda M, Sato A, Ohba T, Nabekura J, and Murakoshi H* (2021) Photoactivatable CaMKII induces synaptic plasticity in single synapses. Nature communications 12, 751
Murakoshi H, Shin M, Parra-Bueno P, Szatmari EM, Shibata AC, and Yasuda R (2017) Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94: 37-47.
Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100-104.

Ggeneral remarks    Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35:135-143.

Contact:   MURAKOSHI, Hideji Tel: +81-564-55-7857 / E-mail:murakosh(at)nips.ac.jp
 
Lab Website


SUPPORTIVE CENTER FOR BRAIN RESEARCH, Section of Brain Function Information

  Masaki Fukunaga2020.jpg Prof. FUKUNAGA, Masaki

Imaging structure and function relationship of human brain by ultra- high field MRI
 Magnetic resonance (MR) is an excellent technique for noninvasively observing living organisms' structure, function, metabolism, and molecular dynamics. In this section, we investigate the structure-function relationship of the human brain using 3 and 7-tesla ultra-high-field MR imaging and spectroscopy, and develop new imaging techniques to measure biological parameters. In addition, to understand the diseases through advanced brain imaging, we are participating in multi-center clinical research collaboration projects and promoting the exploration of endophenotypes and biomarkers of psychiatric disorders based on the analysis of big MR imaging data.
 
Article Information

Schijven D, Postema MC, Fukunaga M et al. (2023) Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proc Natl Acad Sci U S A. 120:e2213880120
Goda N, Hasegawa T, Koketsu D, Chiken S, Kikuta S, Sano H, Kobayashi K, Nambu A, Sadato N, Fukunaga M (2022) Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging. Cereb Cortex Commun 3:tgac022
Maruyama S, Fukunaga M, Sugawara SK et al. (2021) Cognitive control affects motor learning through local variations in GABA within the primary motor cortex. Sci Rep 11:18566
Yamamoto T, Fukunaga M, Sugawara SK et al. (2021) Quantitative evaluations of geometrical distortion corrections in cortical surface‐based analysis of high‐resolution functional mri data at 7T. J Magn Reson Imaging. 53:1220
 
Contact:   FUKUNAGA, Masaki  TEL:+81-564-55-7842 / E-mail:fuku(at)nips.ac.jp
 
Lab Website


CENTER FOR GENETIC ANALYSIS OF BEHAVIOR, Section of Viral Vector Development

kobayashi kenta.png Assoc. Prof. KOBAYASHI, Kenta 

Analysis of brain function using newly developed gene transfer system
   To understand the mechanisms underlying higher brain functions, we need to analyze the roles of specific neuronal pathways forming the complex neural networks. We succeeded in developing a new gene transfer system to induce transgene expression in the specific neural pathway by using an adeno-associated viral vector and a novel type of lentiviral vector. We analyze the physiological functions of specific neural pathways forming cortico-basal ganglia circuits by using our newly developed gene transfer approach.
 
Article Information/Ggeneral remarks

Sano H, Kobayashi K, Yoshioka N, Takebayashi H, Nambu A (2020) Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction. J Neurosci Methods 345:108887.
Kobayashi K, Kato S, Kobayashi K (2018) Genetic manipulation of specific neural circuits by use of a viral vector system. J Neural Transm (Vienna) 125:67-75.
Kobayashi K, Inoue KI, Tanabe S, Kato S, Takada M, Kobayashi K (2017) Pseudotyped lentiviral vectors for retrograde gene delivery into target brain regions. Front Neuroanat 11:65.
Kobayashi K, Sano H, Kato S, Kuroda K, Nakamuta S, Isa T, Nambu A, Kaibuchi K, Kobayashi K (2016) Survival of corticostriatal neurons by Rho/Rho-kinase signaling pathway. Neurosci Lett 630:45-52.

Contact:  KOBAYASHI, Kenta  TEL:+81-564-55-7827 / E-mail:kobaya(at)nips.ac.jp
 
Lab Website




CENTER FOR GENETIC ANALYSIS OF BEHAVIOR, Section of Sensory Physiology

 sokabe2021.png Assoc.Prof. SOKABE, Takaaki
 
Molecular mechanisms of sensing
 We are clarifying molecular mechanisms of sensing such as thermosensation, nociception and taste sensation by focusing on TRP channels mainly with behavioral, electrophysiological, and molecular biological techniques. We are investigating fruit flies to seek novel mechanisms of temperature and mechanical sensations and developing new strategies of insect pest management by seeking novel repellents and insecticides.
 
Article Information

*Sokabe T, Bradshaw HB, Tominaga M, Leishman E, Chandel A, *Montell C. Endocannabinoids produced in photoreceptor cells in response to light activate Drosophila TRP channels. Sci Signal. 15(755):eabl6179. 2022
*Kashio M, Masubuchi S, Tominaga M.
Protein kinase C (PKC)-mediated phosphorylation of TRPM2 Thr738 counteracts the effect of cytosolic Ca2+ and elevates the temperature threshold. J Physiol. 2022 Aug 30.
*Saito S, Saito CT, Igawa T, Takeda N, Komaki S, Ohta T, Tominaga M. Evolutionary tuning of TRPA1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches. Mol Biol Evol. 2022 Aug 22:msac180.
Suito T, Nagao K, Juni N, Hara Y, Sokabe T, Atomi H, *Umeda M. Regulation of thermoregulatory behavior by commensal bacteria in Drosophila. Biosci Biotechnol Biochem.86(8):1060-1070. 2022
Nguyen THD, Chapman S, Kashio M, Saito C, Strom T, Yasui M, *Tominaga M. Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1. J Biol Chem. 102271. 2022

    Contact:  SOKABE, Takaaki    TEL:+81-564-59-5287  / E-mail : sokabe(at)nips.ac.jp

Lab Website



Also, you can participate in visiting research divisions.
For the details of research activities, please contact the following 
or visit our website. 〔http://www.nips.ac.jp

National Institute for Physiological Sciences
Division of Sensory and Cognitive Brain Mapping, TAKEMURA, Hiromasa
TEL:+81-564-55-7861 / E-mail:htakemur(at)nips.ac.jp